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ABSTRACT

The growing need for instant spoken language transcription
and translation is driven by increased global communica-
tion and cross-lingual interactions. This has made offering
translations in multiple languages essential for user applica-
tions. Traditional approaches to automatic speech recogni-
tion (ASR) and speech translation (ST) have often relied on
separate systems, leading to inefficiencies in computational
resources, and increased synchronization complexity in real
time. In this paper, we propose a streaming Transformer-
Transducer (T-T) model able to jointly produce many-to-one
and one-to-many transcription and translation using a single
decoder. We introduce a novel method for joint token-level
serialized output training based on timestamp information to
effectively produce ASR and ST outputs in the streaming set-
ting. Experiments on {it,es,de}<>en prove the effectiveness
of our approach, enabling the generation of one-to-many joint
outputs with a single decoder for the first time.

Index Terms— speech recognition, speech translation,
streaming, joint, timestamp

1. INTRODUCTION

With the expansion of global communication and cross-
lingual interactions, the demand for real-time spoken lan-
guage transcription and translation in multiple languages is
rapidly increasing [1]. Conventionally, this task is addressed
by separate automatic speech recognition (ASR) and transla-
tion (ST) models, leading to the necessity of running several
models in parallel to obtain the required outputs. This leads
to a huge demand for computational resources, in contrast
with Green Al [2], and also increases the complexity of co-
ordinating several systems in real-time. Moreover, in some
applications like news reports, maintaining consistency be-
tween on-screen transcriptions and translations is crucial to
deliver to the user similar content [3, 4, 5].

Previous works [6, 7] have shown improvements in qual-
ity and consistency when the model is trained to jointly gen-
erate both ASR and ST outputs. This approach was later
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adapted to the streaming scenario by Weller et al. [8] us-
ing an attention-based encoder-decoder architecture [9] with
re-translation [10]. More recently, Papi et al. [11] proposed
the adoption of a Transformer-Transducer (T-T) architecture
[12, 13], which is more suitable for the simultaneous sce-
nario [14], with the joint token-level serialized output training
(joint t-SOT). This method employs an off-the-shelf textual
aligner to determine how to effectively produce transcription
and translation words in real-time. However, their study only
focused on the many-to-one language setting and can be ap-
plied to one translation direction at a time, since finding the
alignment between one source language and multiple target
languages is a very complex task [15, 16, 17].

To overcome this limitation, in this paper, we propose
a streaming T-T model that is able to jointly produce both
many-to-one and one-to-many outputs using a single decoder.
We introduce a novel interleaving method based on timestamp
information that enables the model to learn how to produce
multiple target languages while maintaining a low latency.
Comparative experiments on {it,es,de } <»en with separate and
multilingual state-of-the-art T-T architectures show the effec-
tiveness of our interleaving approach, yielding significant im-
provements in terms of transcription quality while being com-
petitive when producing multiple translation languages.

2. METHOD

2.1. Joint t-SOT

Inspired by t-SOT [18] originally proposed for multi-talker
ASR, in the joint t-SOT, two output modalities are produced
by the model: ASR and ST. Therefore, two special symbols
are introduced (asr) and (st) to interleave a word or a set of
words. Specifically, given the reference transcription ras, =
[Fasrys s Tasr,, ] With m < len(ras,) and translation rgy =
[Fstyy s Tst, ] With n < len(rst), the joint t-SOT reference is:

T'sor = [<CLS7">, rasrl ) rasrzv (A {rasrn” <St>a rstl 9 Tstgv eeey Tstn]

To obtain the final ri gor, the concatenation process is re-
peated until all the ASR and ST words have been consumed,
i.e. m = len(rasy) and n = len(rgy).



2.2. Timestamp-based joint t-SOT

In Weller et al. [8], several methods have been proposed to
interleave ASR and ST modalities. In INTER 0.0, the en-
tire ASR output is emitted before the ST one, whereas in IN-
TER 1.0, the entire ST output is emitted first and followed
by ASR. In INTER 0.5, ASR and ST words are alternated.
These methods were then integrated into the joint t-SOT [11],
and extended to another technique, INTER ALIGN, where the
words are interleaved based on the source-target text align-
ments obtained by an external off-the-shelf tool. However, all
these methods are not trivial to adapt to the multilingual target
scenario, especially the INTER ALIGN method since finding
a one-to-many alignment is a complex task.

To overcome this limitation, we propose INTER TIME,
a novel interleaving method based on word-level timestamps,
which not only is able to build more effective joint t-SOT out-
puts but also enables the one-to-many multilingual scenario
by interleaving more than one translation language at a time.
Specifically, for each reference word, we extract the corre-
sponding timestamp information (for simplicity, we consider
the end time) by applying the Viterbi algorithm to pretrained
streaming models. This process is executed for each modality
(ASR and ST) and language direction.

In the one-to-many setting, let r,s, be the utterance tran-
scription, Trgt,,...,T'st, the corresponding translations in n
different languages, and (asr), (st1),..., (st,) the language
tags.' Each element of rasp, Isty,..., I'st, 1S composed of
three elements (time, tag, word), where time is the times-
tamp (integer number, in milliseconds), tag is the corre-
sponding language tag, and word is the word that has been
emitted with timestamp time. For instance, if the word “I”’
has been uttered at 200ms, the word “am” at 300ms, and the
word “happy.” at 500ms, the corresponding r,s, extracted
from the ASR model is:

Tasr = [(200, (asr), “I”), (300, (asr), “am™)
(500, (asr), “happy.”)]

if the Spanish translation is “Estoy feliz.” with emission
timestamps [250, 550] and the German translation is “Ich bin
froh.” with timestamps [350, 550, 650], the corresponding
rst, and rg, extracted from the ST models are:

rst, = [(250, (st1), “Estoy”), (550, (st1), “feliz.”)]

ret, = [(350, (st2), “Ich™), (550, (st2), “bin”)
(650, (sta), “froh.”)]

The INTER TIME output is built by applying Algorithm 1 to
Tasr> I'sty, I'st, tO obtain the final r.sor. In particular, the

Y{asr), (st1),..., {stn) are not considered as special tokens during train-
ing: they are added directly to the vocabulary and considered as all the other
tokens in the loss computation.

reference words for each modality and language are concate-
nated, sorted by timestamp (increasing order) and then inter-
leaved following the temporal order. The language tag is in-
serted only if the previous interleaved word was of a different
language. Following the previous example, the output is:

with ras, = “#ASR#”, rot, = “HES#’ ret, = “#DE#”, the
corresponding textual output used during training is:

“#ASR# I #ES# Estoy #ASR# am #DE# Ich
#ASR# happy. #ES# feliz. #DE# bin froh.”

Note that Algorithm 1 can be easily applied to the many-to-
one scenario by using different ASR models to obtain multi-
lingual r,s, and a unique rg¢.

Algorithm 1 INTER TIME
Require: rugy, I'st,, ..., I'st,

> ASR and multi ST references

re| |
for 7; in [rasy, T'sty, .-, I'st, | dO

r<r+r; > Concatenate all the reference words
end for
r < $0rtyime (r(time, tag, word)) > Sort by timestamp
resor < [

prev_tag <— None
for (time,tag, word) in r do
if tag # prev_tag then
resor < T'esor + tag
prev_tag < tag
end if
risor < Tesor + word
end for

> Language switch

2.3. Time Step Grouping

With the aim of limiting the frequency of the switch between
languages, we propose the adoption of a grouping mechanism
in the data construction process. The grouping mechanism is
guided by the size of the time step 7' (e.g., 500ms, 1000ms,
...). It groups the (time, tag, word) tuple of each reference
word r; of the sorted reference sort;;me (r(time7 tag, word))
in Algorithm 1 by looking at the time attribute. Then, the
words that belong to the current same time step group t, i.e.
ts — T < time < t, are interleaved together. The final
sequence can be obtained by substituting the time attribute
of each word with its corresponding ¢4 in Algorithm 1.

For instance, if we look at the example in Section 2.2 and
set the step size T' to 300ms, we have three groups [time <



300,300 < time < 600,600 < time < 900]. If we substi-
tute time with the corresponding ¢ in the sorted r, we obtain:

that corresponds to the output:

“#ASR# I #ES# Estoy #ASR# am happy. #ES#
feliz. #DE# Ich bin froh.”

The overall language switch reduction depends on the time
step 71" and, on our training data, is estimated as -34% for
500ms, and -54% for 1000ms.

3. EXPERIMENTAL SETTINGS

For all our experiments, we use a streaming T-T architecture
[19] with 24 Transformer layers for the encoder with 8 at-
tention heads, 6 LSTM layers for the predictor and 2 feed-
forward layers for the joiner. The embedding dimension of
the encoder is 512 and the feed-forward units are 4096. We
use a chunk size of 1 second with 18 left chunks. The LSTM
predictor and feed-forward layers of the joiner have 1024 hid-
den units. We use 80-dimensional log-mel fiterbanks (fbanks)
as features, sampled every 10 milliseconds. Before feeding
them to the Transformer encoders, we apply 2 layers of CNN
with stride 2 and kernel size of (3, 3), with an overall input
compression of 4. The total number of parameters is 188.5M.

Our Many-to-English experiments follow the settings of
previous work [11]: all models are trained for 6.4M steps on
1k hours of proprietary data for each source language (Italian,
Spanish, German) and tested on the CoVoST?2 dataset [20].
8k-sized SentencePiece vocabulary [21] was trained with cov-
erage 1.0 and shared between languages.

For the English-to-Many experiments, we used 1k hours
of English audio with the corresponding translation into Ital-
ian, Spanish, and German. The models are tested on the
FLEURS dataset [22]. The multitask multilingual ASR &
ST model is realized by pre-pending the language ID (LID)
tag [23], i.e. by replacing the <SOS> with <LID>. Pre-
prended LID is used also to train the single-translation ver-
sion of the joint t-SOT. All but separate models are trained
for 6.4M steps starting from the multitask multilingual ASR
& ST model weights pretrained for 3.2M steps, including the
multitask multilingual model itself. Timestamps for INTER
TIME are estimated using monolingual ASR and ST mod-
els trained on the same data. Time step grouping is applied
at 500ms and 1000ms, since preliminary experiments with
higher values (e.g., 2000ms) showed quality degradation.

AdamW [24] is used as optimizer with the RNN-T loss
[25]. Checkpoints are saved every 320k steps. The learning
rate is set to 3e-4 with Noam scheduler, 800k warm-up steps

and linear decay. We use 16 NVIDIA V100 GPUs with 32GB
of RAM for all the training and a batch size of 350k. We se-
lect the last checkpoint for inference, which is then converted
to open neural network exchange (ONNX) format and com-
pressed. The beam size of the beam search is set to 7.

We report WER for the ASR quality and BLEU? for the
ST quality. Latency is measured in milliseconds (ms) with the
length-adaptive average lagging (LAAL) [27].

4. RESULTS

4.1. Many-to-English

Table 1 shows the results for the {it,es,de}-en language di-
rections. For comparison, we report the results for the joint
t-SOT INTER 0.5 and INTER ALIGN approaches while not
including the INTER 0.0 and 1.0 since they are not streaming
for one of the two modalities (either ASR or ST).

We observe that INTER TIME achieves higher or simi-
lar BLEU scores, except for de-es, and obtains the best WER
on all the source languages (Italian, Spanish, and German).
Compared to all models, it yields improvements from 0.93
to 3.19 WER on average among languages while showing
a comparable latency with INTER ALIGN, the model with
lower latency. When time step grouping is applied, we notice
an overall translation quality improvement, especially using
500ms time step, with average gains of 0.54 BLEU compared
to the multilingual ASR & ST and, respectively, 0.12 and 0.64
BLEU compared to INTER ALIGN and TIME without time
step grouping. With 500ms time step, INTER TIME also ob-
tains higher quality transcriptions, with an average improve-
ment of -2.00 WER compared to the multilingual ASR &
ST, and -0.91 WER compared to INTER ALIGN while being
comparable with INTER TIME without time step grouping.

All in all, the best quality-latency trade-off is achieved by
INTER TIME with time step grouping of 500ms, yielding the
best results in most languages and modalities.

4.2. English-to-Many

In Table 2, we compare our joint t-SOT INTER TIME using
both multiple translation languages (rows 4-6), and only one
translation language (rows 7-9) in the target. Therefore, the
latter produces the transcription and the corresponding trans-
lation in a single language, similar to Section 4.1.

First, comparing ASR and ST models (rows 1-3), we
observe that the multitask multilingual ASR & ST model
achieves the best results, with an improved WER and similar
or better BLEU scores compared to using separate models for
modalities (ASR and ST) and languages. For the joint t-SOT
INTER TIME trained on multiple translation languages, we
notice that the time step grouping helps with the performance,
both in terms of quality and latency, yielding improvements

ZsacreBLEU [26] version 2.3.1



Model # inf. it-en es-en de-en
steps || WER LAAL |BLEU LAAL ||WER LAAL |BLEU LAAL || WER LAAL |[BLEU LAAL

separate ASR & ST* 6 25.83 1191 | 16.41 1844 |/ 22.69 1149 | 19.24 1682 |[23.11 1071 | 19.11 1613
multilingual ASR & ST* 23.48 1181 | 21.06 1663 | 22.84 1147 | 22.76 1622 | 21.82 1133 | 21.51 1642
joint t-SOT INTER 0.5* 3 22.35 1110 | 20.22 1515 || 21.19 1126 | 22.25 1468 || 21.35 1051 | 20.19 1547
joint t-SOT INTER ALIGN* 21.74 1092 | 21.80 1355 |[21.04 1094 | 23.42 1341 || 22.07 1043 | 21.36 1335
joint t-SOT INTER TIME 21.11 1141 | 21.70 1442 (| 19.79 1143 | 23.38 1452 ||21.16 1112 | 19.96 1791

+ 500ms step grouping 3 21.22 1142 | 22.05 1493 |119.74 1139 | 24.09 1489 || 21.17 1103 | 20.81 1664

+ 1000ms step grouping 21.64 1115 | 21.75 1457 || 20.26 1052 | 23.75 1467 ||21.49 1076 | 20.58 1651

Table 1. WER/| and BLEU? on CoVoST 2 for the Many-to-English setting with their latency LAALJ. Bold represents overall
best result, underline represents best result balancing both quality and latency (there can be multiple combinations for each
language). * Results reported in [11].

Model # inf. en en-it es-en de-en
steps | WER LAAL | BLEU LAAL | BLEU LAAL | BLEU LAAL
separate ASR & ST 2902 1089 8.76 1932 9.50 1853 9.87 2156
+ multilingual ST 4 ) 11.17 1612 11.34 1618 | 13.14 1799
multitask multilingual ASR & ST 27.53 917 11.56 1607 11.38 1608 13.11 1844
joint t-SOT INTER TIME 36.23 1544 7.52 2313 8.28 2331 8.54 2497
+ 500ms step grouping 1 31.51 1118 9.68 1668 9.86 1852 11.30 1993
+ 1000ms step grouping 29.34 913 10.85 1395 10.90 1509 12.74 1918
~ -single translation | ~]2633 959 | 1038 1564 | 11.24 1520 | 1239 1733

+ 500ms step grouping 3 27.00 918 11.45 1580 11.89 1610 12.79 1830
+ 1000ms step grouping 26.81 892 11.25 1776 11.52 1797 12.85 1999

Table 2. WER| and BLEU? on FLEURS for the English-to-Many setting with their latency LAAL]. Bold represents overall
best result, underline represents best result balancing both quality and latency (there can be multiple combinations for each
language). ASR results of joint t-SOT INTER TIME with single translation are averaged among the three languages.

of -6.89 WER and an average of +3.38 BLEU with 983ms
latency reduction obtained by the 1000ms step grouping.
However, compared with the strongest ASR & ST system
(multitask multilingual), our model shows a quality degrada-
tion of +1.81 WER and -0.52 BLEU although with a slight
latency reduction. Even demonstrating quality degradation,
especially on the recognition quality, it is important to no-
tice that this model is the only one producing all the outputs
within a single inference step. Therefore, quality drops are
expected but, nevertheless, the results obtained by this model
are competitive with those obtained by training separate ASR
& ST models, showing to be a promising direction.

If we constrain the join t-SOT INTER TIME strategy
to deal with only one translation language, we observe sig-
nificant improvements compared to its multiple translation
languages version, especially with the time step grouping.
WER improvements range from -2.34 to -3.01 and average
BLEU gains are up to 0.55 compared to multiple transla-
tions and 1000ms time step grouping. In accordance with the
results obtained in Section 4.1, the 500ms time step group-
ing is the best-performing model and, compared with the
multitask multilingual ASR & ST model, it yields a transcrip-
tion quality improvement of -0.53 WER while maintaining
comparable or slightly better translation quality and latency.

To conclude, we show the effectiveness of the joint t-SOT
INTER TIME, especially when time step grouping is applied.
Results on both ASR and ST tasks show that our method
achieves the best overall results compared to the strongest
multitask multilingual model and, if extended to deal with
multiple translation languages all at once, maintains compa-
rable results to models specifically tailored for ASR or ST.

5. CONCLUSIONS

In this paper, we proposed a streaming Transformer-Transducer
able to jointly produce both many-to-one and one-to-many
transcriptions and translations. To effectively train the model
to maximize ASR and ST quality while minimizing latency,
we introduced INTER TIME, a novel method for the joint
token-level serialized output training based on timestamp in-
formation. We also proposed a variant of this method based
on grouping the timestamp according to a fixed time step.

Comparative studies on {it,es,de}-en and en-{it,es,de}
prove the effectiveness of our approach, especially when the
time step grouping is adopted, achieving the best perfor-
mance in both many-to-one and one-to-many scenarios while
being competitive when the joint generation of multiple target
languages with a single decoder is enabled.
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