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ABSTRACT

Memory constraint of always-on devices is one of the major con-
cerns when deploying speech processing models on these devices.
While larger models trained with sufficiently large amount of data
generally perform better, making them fit in the device memory is
a demanding challenge. In this paper, we aim to reduce model size
by reparameterizing model weights across Transformer encoder lay-
ers and assuming a special weight composition and structure. More
specifically, inspired by ResNet [1] and the more recent LoRA [2]
work, we propose an approach named ResidualTransformer, where
each weight matrix in a Transformer layer comprises 1) a shared
full-rank component with its adjacent layers, and 2) a unique low-
rank component to itself. The low-rank matrices only account for a
small amount of model size increase. In addition, we add diagonal
weight matrices to improve modeling capacity of the low-rank ma-
trices. Experiments of our 10k-hour speech recognition and speech
translation tasks show that the Transformer encoder size can be re-
duced by ~3 x with very slight performance degradation.

Index Terms— Weight sharing, low-rank approximation, model
compression, Transformer, speech recognition and translation

1. INTRODUCTION

Recent success on neural network based large models (usually at
least hundreds of millions of parameters) has led to a series of break-
throughs in natural language and speech processing tasks [3} 14} 15, 16].
While there is evidence that these large models, if trained with suffi-
ciently large amount of data, are of crucial importance for achieving
state-of-the-art performance, they also require more run-time mem-
ory (or sophisticated distributed inference mechanism, e.g., [[7]]) and
fast memory loading speed for model weight:

On the other end of the research spectrum, sometimes people are
more interested in “small models” when they are deploying Al mod-
els to always-on, embedded devices (e.g., smart phones, digital as-
sistants, wearable devices, etc.). Such devices are usually equipped
with limited computational resources, power source, and memory,
requiring low peak memory usage during inference [8]. One solu-
tion to fitting a model to small memory is splitting the model into
parts and continuously loading these partial models (e.g., layer by
layer). However, it will incur increased power usage and inference
latency [9]]. In such scenarios, it would be desirable to have small
models that fit in the memory and still maintain good performance.

In this paper, we aim to reduce the model size by sharing most of
model weights across layers and assuming a special composition and
structure of the weight matrices. During model inference, the shared

"'We use “weights” and “parameters” interchangeably when referring to
the variables, typically in the form of matrices, learned from model training.
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weights are loaded into memory once, saving time cost spent on
model loading for devices with limited memory. The approach was
motivated by observations from our preliminary experiments where
model weights are shared across consecutive Transformer layers in
the encoder network. It suggests that parameters may not differ too
much across a few layers.

We focus on applying our method to the Transformer layers [10],
as the Transformer architecture has been widely adopted as a build-
ing block in various natural language and speech processing tasks
(11} 4L 1120 1131 14} inter alia], and usually it accounts for a signifi-
cant portion of the total number of model parameters. It should be
noted that our method can also be applied to weight matrices in other
types of neural network layers (e.g., LSTM, embeddings, convolu-
tion, etc.), which will be our future work.

2. RELATED WORK

Many efforts have been made in order to deploy models on memory-
limited devices. These methods include knowledge distillation
[15, [16], low-rank factorization [17, [18]], low-bit quantization
[19 20], and model pruning [21, 22]. They either require spe-
cial hardware support which is not always available on the devices
(quantization), have considerable performance loss (low-rank fac-
torization, knowledge distillation), or are not very efficient in terms
of training (knowledge distillation) or tuning (model pruning). Our
method is orthogonal to most of these approaches (e.g., quantization,
model pruning, and knowledge distillation), has no special hardware
requirements, and leads to very slight performance loss.

The idea of reusing Transformer layer was proposed in [23]] for
natural language processing tasks with a different motivation: they
regard the repeated applications of the network function as a comple-
mentary way of introducing a recurrent inductive bias to Transform-
ers, and it was observed that their method outperforms the vanilla
Transformer on several tasks. [24] adopted the cross-layer weight-
sharing in the pretraining/fine-tuning setting to improve model scal-
ability. [25] extends it to the speech recognition task, working on rel-
atively small-scale datasets (100—1k hours). The results with weight-
sharing in their settings are comparable or even outperforms the un-
sharing baselines, which is not the case in our 10k-hour setups. [9]
explored sharing different parts of Conformer [26] on different levels
of granularity with the model size hard-constrained by memory.

Low-rank factorization was applied to the parameters of Trans-
formers in [18]. WER improvement was observed with a properly
chosen rank on their 150-hour datasets. However, our preliminary
experiments indicate that it causes degradation on large-scale tasks
(e.g., 10k hours). Also, [27] demonstrated that it is less parameter-
efficient than weight sharing across layers. LoRA [2] was recently
proposed to adapt a large model (e.g., GPT-3 [4]]), well-(pre-)trained
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on general domains, to a specific domain or task. Instead of fine-
tuning all the parameters which is time and resource consuming,
LoRA freezes all those pretrained parameters, and injects very small
amount of trainable low-rank decomposed weights to each layer for
fine-tuning. Our approach was inspired by LoRA, but with a differ-
ent goal: we would like the low-rank weights to compensate for the
performance loss resulted from weight sharing, without increasing
the model size significantly. Because of the nature of this different
problem, we do not freeze the shared weights during training.

Our method is also inspired by ResNet [1], where a residual
block is to learn the residual function after subtracting the identity
mapping. In our case, low-rank “residual weights” of Transformer
layers are added and trained together with the shared weights, which
is different from simply replacing the full-rank weights described in
[18,9]]. Therefore, we name our method ResidualTransformer.

3. METHODS

3.1. Transformers

Transformers [10f], characterized by its self-attention structure and
parallelized processing over sequences, has gained popularity in both
natural language and speech communities for its capability of di-
rectly modeling context dependency for sequence data. The Trans-
former architecture is now a building block of various models in se-
quence modeling tasks. For speech recognition and translation being
focused on in this paper, Transformers layers, which usually con-
tribute a lot (around 70% in our cases) to the model size, are part
of the encoder network. Our method is applied to all the projection
weights in the Transformer layers, including the linear projections
for query, key and value in the self-attention module, the linear post-
projection after self-attention, and those in the feed-forward module.
Let 2 € R™ be the input and y € RY the output, these projections
can be formulated as:

y=WTz+b (M

RJVIXN

where the projection matrix W &€ and the bias vector b €

RY are trainable weights.

3.2. Weight Sharing across Layers

Assume we have an L-layer Transformer encoder, with a weight ma-
trix W; € RM*¥ agsociated with the [-th layerﬂ Normally, W; are
distinct to each other, as each layer has their own parameters. We
denote these distinct matrices as U; € RM > such that W, = U,
forl € [0, L — 1]. In this case, the total number of the parameters is
Lx M xN.

Due to memory constraint, we are going to reduce the model size
by dividing the L layers into groups, and making all the layers within
the same group to share common weight matrices (while Dropout
and LayerNorm modules still operate independently). Specifically,
every consecutive K layers are grouped together, so that Wy =
Up, Wi = Uyp,...,.Wk_1 = Up, Wxg = Ui,... (or more gen-
erally, with distinct matrices {U;|i = 0,...,[L/K] — 1}, we have
Wi = U k). Consequently, a weight matrix is reused K times,
and the total number of the parameters is [L/K| x M x N, typi-
cally K times smaller than the original network. During inference,
weights can be sequentially loaded into memory once every K layers
in the forward pass of the network, saving the time cost of loading
the model by the factor of K.

2The bias vector b; of the weights is treated similarly regarding weight
sharing.

3.3. Adding Residual Matrices to Shared Weights

Our preliminary speech recognition experiments (see Section |4.4.1)
reveal that, with a 18-layer encoder, the model with X = 3 only
performs 4% worse relatively than the baseline (i.e., K = 1), and
the gap quickly becomes larger as K increases, e.g., the model with
K = 9is 17% worse. This may suggest that, if we consider the
model training as an optimization problem, there exists a close-to-
optimal solution where the layer parameters does not differ too much
across a few consecutive layers. To compensate for performance
loss due to the weight sharing strategy across layers within the same
group, we add a few more parameters to each layer, so that a layer
can still play as a unique transforming function. Inspired by ResNet
[1]], where the parameters in a residual block is supposed to learn
the residual function in addition to the identity mapping, we add a
“residual” weight matrix AW; € RM*¥ to the I-th layer to learn a
layer-specific residual function:

y=W, + AW, )z +b )

Ideally AW, should have much smaller number of parameters com-
pared to W;. A good candidate of it could be low-rank decomposed
matrices of the form AW = AB where A € RM*XE B ¢ RFEXN
and R < min(M, N). At first glance it looks very similar to LoORA
[2] where such low-rank decomposed weights are added to a well-
trained large model to adapt the model to another particular domain
or task, by only fine-tuning the low-rank weights on the target do-
main/task. Our approach is inspired by LoRA. However, it faces a
different problem and has a different purpose from LoRA: the model
(before adding the low-rank matrices) is built under resource con-
straints, thus is not a full-fledged one (due to weight sharing across
layers); and we are not doing adaptation. Therefore, we need to up-
date all the parameters, including W;, during training to achieve the
best performance.

As in [28], we also add a diagonal matrixﬂ D; € RM*XN o
AW,, making AW full rank without introducing a significant num-
ber of parameters:

AW, = A/B, + D, 3)
B RxN

NN W (shared) D M N
A M xR

Fig. 1: The proposed weight structure for each weight matrix in a
Transformer layer. The layer index [ is omitted in the notations. W
is a full-rank matrix being shared with other layers, A and B are two
low-rank decomposed matrices, and D is a diagonal matrix.

3More strictly, we are referring to rectangular diagonal matrix, which is
an M-by-N matrix with all the entries not indexed by (%, 7) being zero.



Fig. [T]illustrates the proposed weight matrix structure. A, B and
D together are designated as residual matrices for the shared one W,
so that a unique function will be learned for each Transformer layer
despite the presence of weight sharing. We name this structure as
ResidualTransformer.

4. EXPERIMENTS
4.1. Datasets

Both the speech recognition (ASR) and translation (ST) task use 10k
hours of our in-house anonymized English audio data for training.
For ASR, the original English transcriptions are tokenized into sen-
tence pieces [29]. For ST, we leverage Microsoft cognitive transla-
tion service to translate the original English (EN) transcriptions into
Chinese (ZH), and use those translated text as training targets after
tokenization by characters.

The test set for ASR covers various application scenarios, such
as Cortana, far-field speech and call center, consisting of 1.8M words
in total. The test sets for EN-ZH ST include the publicly available
CoVoST 2 [30] (a total of 61k characters in reference, denoted as C),
MSLT vl1.1 [31]] dev and test sets (a total of 92k characters in refer-
ence, denoted as M), and our internal data covering four scenarios
of call center, conversation, dictation, and meetings (a total of 317k
characters in reference, denoted as /). When reporting BLEU scores
on a data set, numbers are averaged over its subsets. Note that our
ST training set does not contain any in-domain data of the public test
sets, i.e., we do not use any training data from CoVoST 2 or MSLT.

4.2. Models

The Transformer-Transducer model [32,|13]] with chunk-wise masks
for streaming [33] tasks is used to evaluate our method for ASR and
ST. The encoder consists of 2 2D convolutions with a total of 4x
downsampling, 18 Transformer layers with relative positional em-
beddings, where each layer includes a 512-dim multi-head attention
with 8 heads and a 2048-dim feed-forward layer. The masks are
configured such that the chunk size is 160ms, and for each chunk
the look-back history is 288ms and the look-ahead latency is 160ms.
The prediction network is a 2-layer LSTM network with the hid-
den size of 1024 and the embedding size of 320. The joint network
projects the output of the encoder and prediction network into a 512-
dim space. The input to the network is 80-dim FBANK features with
a 10ms stride, normalized by the global mean and variance com-
puted on the training set. Depending on the task, the vocabulary size
is 4,002 (for ASR) or 11,109 (for ST). The total size of the baseline
model is 78.0M (for ASR) or 83.9M (for ST), 56.7M of which are
parameters of the Transformer layers. In this paper, we only investi-
gate applying our method to Transformers, and leave applications to
other types of network blocks for future work.

4.3. Training

Baseline models, and models with weight sharing but without resid-
ual weights, are trained from scratch (i.e., parameters are randomly
initialized) for 350k/200k[ﬂsteps with Adam optimizer and linearly
decaying learning rate on 16/32 GPUs for ASR/ST. When it comes
to models with ResidualTransformer that include residual matrices,
all but the residual weights are initialized with the parameters from
their weight-sharing-only counterparts, and then trained for the same
number of steps as their respective baseline does. Compared to train-
ing from scratch, we found that initialization in this way empirically
benefits the final model performance.

4No further improvement is observed if trained with more steps.

4.4. Results
4.4.1. Weight Sharing

We first apply the weight sharing described in Section 3.2 to the
18-layer Transformer encoder (i.e., L = 18), and set K to 1 (base-
line), 3, 6, 9, and 18, respectively. We also train models without
weight sharing (i.e., K = 1) with L = 6, 3, 2, and 1, respectively,
for comparisons between models of the same size. The ASR re-
sults are shown in Table[[l Note that models in the same column
contain about the same number of pararnetersﬂ We have two ob-
servations. 1) Having the same model size, the model with weight
sharing performs much better than the one without weight sharing
(thanks to repeatedly applying the same layer function K times),
and the gap becomes larger when the model size is smalle—WER
is almost halved in the last column. 2) With weight sharing, WER
degrades faster as K increases. For example, when K increases from
1 to 3, WER is only hurt by 4.0% relative (13.28—13.81). But when
K increases from 6 to 18, the relative change is as high as 18.3%
(14.59—17.26). The ST results in Table [2] demonstrate a similar
trend. These imply that: 1) weight sharing is an effective way of
improving model capacity without increasing the model size; and 2)
when sharing weights, it would be better to share with adjacent lay-
ers than with those far away. The parameters of a distant layer are
probably quite different, and sharing weights with it will limit the
model’s flexibility of learning good speech representations through
a stack of Transformers.

Table 1: Comparisons of ASR models with or without weight shar-
ing. Models in the same column are about of the same size.

no weight sharing: K =1, L = 6 3 2 1
WER(%). 1625 20.11 23.60 33.23
weight sharing: L = 18, K = 1 (baseline) 3 6 9 18
WER(%). 13.28 13.81 1459 1549 17.26

Table 2: Comparisons of ST models with or without weight sharing.
Models in the same column are about of the same size. BLEU is
reported on three sets individually.

no weight sharing: K =1, L = 6 3 2 1
BLEU(%)t  C|M|I 22.3]28.2(26.0 16.123.2[22.6 12.9]20.1[20.2 7.3[14.2[15.9
weight sharing: L =18, K = 1 (baseline) 3 6 9 18
BLEU(%)t  C|M|I 29.8[32.4/29.4 26.7|31.3|28.3 24.7|29.9]27.4 23.6/29.3[26.5 19.1|25.6[24.5

4.4.2. Residual Weights

Next, we add low-rank and diagonal residual weights to the shared
weights. We set R = 16 so that, for example, for a weight matrix in
the feed-forward module WF € R®12X2048 4 pajir of low-rank de-
composed matrices A" € R5'2*16 and BF ¢ R'6%2048 a]ong with
a diagonal matrix DY € R?'2%2948 are added to each Transformer
layer, summing up to the model size increase of 2.7M. The effect of
adding such residual weights under different values of K is shown in
Table[3] (for ASR) and Table[d](for ST). Apparently, adding residual
weights consistently reduces the relative gap between weight shar-
ing and the baseline. For example, when K = 3, the gap is reduced
from 4.0% to 1.8% in ASR, or from 3.4-10.4% to 0.3-3.4% in ST,
i.e., the gap is reduced by more than 55% relative, and the remaining

5There are two LayerNorm modules in a Transformer layer whose train-
able parameters are not shared. But the number of these parameters is negli-
gible. So we still consider the two models of the same size.



gap is quite small given such a large reduction in model size. How-
ever, the extent to which the gap is reduced becomes smaller when
K is larger. For instance, when K = 18, the relative gap is reduced
from 30.0% to 21.2% in ASR, or from 16.7-35.9% to 13.3-27.2% in
ST, areduction by only 20+% relative. This suggest that, if too many
layers are grouped together (i.e., K is too large) for weight sharing,
adding the residual weights to each layer is still unable to compen-
sate for most of the gap. This can be attributed to the underlying
structure of the residual weights. Although we make it full-rank by
adding a diagonal matrix, the residual weights are still not as power-
ful as full matrices in the baseline that are unique to each layer.

The comparison between “weight sharing with K = 6” and “+
residual weights with K = 9” also caught our attention. These two
settings have the similar number of parameters (9.5M vs. 9.0M) and
their performance is close (14.59 vs. 14.62 in WER, 24.7|29.9|27.4
vs. 25.1|30.2]27.3 in BLEU). A natural question arises: is the gain
obtained from adding residual weights simply because of the model
size increase? To answer this question, we make the weights of the
last layelﬂ unique in the setting “weight sharing with K = 3”, so
that the number of parameters increases from 18.9M to 22.0M. We
trained this model for ASR and the WER of such a model is 13.73,
worse than 13.52 from the setting “+ residual weights with K = 3”
(21.6M params.). Similarly, if the 4 sets of distinct layer weights
spread roughly evenly across the 18 layers (12.6M params.), the
WER is 14.28, still worse than 14.12 from the setting “+ residual
weights with K = 67 (12.2M params.). These additional exper-
iments provide more evidence to support our previous speculation
that when K is not that large (e.g., <=6), using residual weights is
more parameter-efficient than just adding distinct layer weights.

Table 3: Effect of adding residual weights for ASR under different
values of weight-sharing factor K (with rank R = 16).

K 1 (baseline) 3 6 9 18
# params. in Trans. 56.7M 189M 95M 63M  32M
weight sharing WER(%). 13.28 13.81 1459 1549 17.26
rel. gap from baseline (%) 4.0 9.9 16.6 300
# params. in Trans. N/A 21.6M 122M 9.0M 59M
+ residual weights  WER(%)] N/A 1352 1412 1462 16.09
rel. gap from baseline (%) 1.8 6.3 10.1 21.2

Table 4: Effect of adding residual weights for ST under different
values of weight-sharing factor K (with rank R = 16). BLEU is
reported on three sets individually.

K 1 (baseline) 3 6 9 18

# params. in Trans. 56.7M 18.9M 9.5M 63M 32M

BLEU(%)t C|M|I 29.8)32.4[20.4 26.7|31.3(283 24.7129.9[27.4 23.6[29.326.5 19.1125.624.5

rel. gap from baseline (%) 1043437 17.1]7.7/68  20.8(9.6/9.9 35.9[21.0]16.7

# params. in Trans. N/A 21.6M 122M 9.0M 59M

+residual weights BLEU(%)1 C|M|I N/A 28.8/32.3/29.0 26.530.9/283 25.1130.2[27.3 21.727.7]25.5
rel. gap from baseline (%) 3403]14 1114637 158(6.8/7.1 27.2[14.5/133

weight sharing

4.4.3. Rank of Matrices

We are now going to see how the model performance will be affected
with different values of rank R. Due to the memory constraint, we
do not experiment with settings where R > 16, and instead focus
on smaller values of R, i.e., 16, 8, 4, 2, and 1. We show the re-
sults of ASR with K = 3 or 9 in Table 5] It can be seen that, with
K = 3, decreasing the value of R does not have significant impact
on WER until R reaches 1. Even when R = 1, the WER (=13.59)

Swe also tried to make the middle or 2nd layer unique, and the results are

similar to or worse than doing so to the top layer.

is still better than 13.73 which is from the aforementioned configu-
ration where weights in the last layer are unique and the model size
is larger (19.1M vs. 22.0M). With K = 9, however, we do observe
that a smaller R hurts the performance a little bit, since given a larger
sharing factor K, it may need a larger matrix rank for layers to dis-
tinguish themselves among others within the same weight-sharing
group. Due to space limitations we do not tabulate the ST results
which have a similar tendency, and only report BLEU when K = 3
and R = 2, which is, 28.8/32.3]29.2.

Table 5: Effect of different values of rank R of residual weights for
ASR with the weight-sharing factor K = 3 or 9.

R 16 8 4 2 1
K=3

# params. in Trans. (residual weights) 21.6M (2.7M) 20.3M (1.4M) 19.6M (0.7M) 19.3 (0.4M) 19.1M (0.2M)
WER(%)/} 13.52 1351 13.54 13.53 13.59

rel. gap from baseline (%) 1.8 1.7 20 1.9 23
K=9

# params. in Trans. (residual weights) 9.0M (2.7M) 7.7M (1.4M) 7.0M (0.7M) 6.7 (0.4M) 6.5M (0.2M)
WER(%)} 14.62 14.73 14.82 14.88 14.95

rel. gap from baseline (%) 10.1 10.9 11.60 12.0 12.6

Overall, if we look at the configuration “weight sharing + resid-
ual weights with K = 3 and R = 27, the number of parameters
in Transformers is 34.0% of that in the baseline, with only slight
performance decline in ASR (1.9%) and ST (3.4|0.3]0.7%).

4.5. Ablation Study: Diagonal Matrices

We wonder how the diagonal matrices contribute to the model per-
formance. As an ablation study, we remove diagonal matrices from
residual weights, and report the WER changes in ASR under several
configurations in Table [§] Generally, adding diagonal matrices has
quite small impact on the results. Its effect is more prominent when
K is larger (D1 vs. D2), or R is smaller (D3 vs. D4), correspond-
ing to the cases where the rest of the model is relatively weak (due
to either with more weight sharing, or with a lower rank of residual
weights). The changes of BLEU in ST are similar. For example,
when K = 3 and R = 16, BLEU is changed from 28.8|32.3]29.0 to
28.5|31.9|29.1; and when K = 3 and R = 2, BLEU is changed
from 28.8]32.3|29.2 to 28.9|31.8|29.0. Since the increase of the
model size is negligible, we keep the diagonal matrices as part of
the residual weights.

Table 6: Effect of diagonal matrices in residual weights for ASR.

K R WER(%)] w/diagonal WER(%)J w/o diagonal
DI 3 16 13.52 13.51
D2 9 16 14.62 14.65
D3 3 8 13.51 13.52
D4 3 2 13.53 13.57

5. CONCLUSION

We propose an approach to reduce the model size and memory load-
ing cost of Transformer layers without significant performance loss
for memory-constrained devices: each weight matrix in a layer con-
sists of a full-rank component being shared with its adjacent layers,
and a distinct low-rank component plus a diagonal matrix not be-
ing shared with others. The low-rank and diagonal matrices only
account for a small amount of model size increase but can largely
improve the model capacity. Experiments on our 10k-hour speech
recognition and translation tasks show that the size of Transform-
ers can be reduced by almost 3 x while performance deterioration is
quite small.
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