
ConvStencil: Transform Stencil Computation to
Matrix Multiplication on Tensor Cores

Yuetao Chen∗
Microsoft Research

Beijing, China

Kun Li†
Microsoft Research

Beijing, China

Yuhao Wang∗
Microsoft Research

University of Science and Technology
of China

Hefei, China

Donglin Bai
Microsoft Research

Beijing, China

Lei Wang∗
Microsoft Research

University of Chinese Academy of
Sciences

Beijing, China

Lingxiao Ma
Microsoft Research

Beijing, China

Liang Yuan
Chinese Academy of Sciences

Beijing, China

Yunquan Zhang
Chinese Academy of Sciences

Beijing, China

Ting Cao
Microsoft Research

Beijing, China

Mao Yang
Microsoft Research

Beijing, China

Abstract
Tensor Core Unit (TCU) is increasingly integrated into mod-
ern high-performance processors to enhance matrix mul-
tiplication performance. However, constrained to its over-
specification, its potential for improving other critical scien-
tific operations like stencil computations remains untapped.

This paper presents ConvStencil1, a novel stencil comput-
ing system designed to efficiently transform stencil compu-
tation to matrix multiplication on Tensor Cores. We first
develop a performance model for ConvStencil to guide al-
gorithm design and optimization on TCUs. Based on this
model, we propose three techniques: (1) Memory-efficient
Layout Transformation using the stencil2row method; (2)

∗Work done during an internship at Microsoft Research.
†Corresponding author (kunli@microsoft.com).
1ConvStencil is available at https://github.com/microsoft/ConvStencil.
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Computation-dense Compute Adaptation with Dual Tessel-
lation and kernel fusion; and (3) Performance-boosting Con-
flict Removal using a Lookup Table and Dirty Bits Padding.
ConvStencil outperforms other stencil optimization frame-
works, achieving significant speedups compared to solutions
like AMOS, cuDNN, Brick, DRStencil, and TCStencil. By
transforming stencil computation on Tensor Cores, Con-
vStencil promises to improve the performance of various
scientific and engineering applications.
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1 Introduction
As deep learning models become more prevalent, primar-
ily characterized by matrix multiplication (MM) operations,
processors both existing and emerging have increasingly
incorporated specialized units to expedite MM. These spe-
cialized units are known as Tensor Core Units (TCUs) which
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provide substantial performance acceleration for MM-based
deep learning models [12], such as Tensor Cores in NVIDIA
GPUs.
While Tensor Cores could deliver a promising perfor-

mance, it is essential to note that the computing patterns in
HPC field are considerably more diverse and complicated.
Most of them are hard to be directly expressed with MM.
Stencil, identified as one of seven performance-critical com-
puting patterns by Berkeley view, is a representative one of
them [3, 4, 23].

A stencil contains a pre-defined pattern that updates each
point in 𝑑-dimensional spatial grid iteratively along the time
dimension. The value of one point at time 𝑡 is a weighted
sum of itself and neighboring points at the previous time 𝑡−1.
Stencil serves as one of the most important kernels widely
used in science and engineering, such as fluid dynamics [20,
25], earth modeling [21], and weather simulations [2, 6].

Currently, a limited number of studies have explored Ten-
sor Cores for non-MM operations. Initial work has imple-
mented simple reduction and scan primitives on Tensor
Cores, marking the first attempts to expand the range of
non-MM operations that can be expressed as Tensor Core
operations [13]. More recent research, TCStencil, has sought
to apply Tensor Cores to more complex computation pat-
terns like stencil [24]. However, TCStencil suffers from poor
algorithmic generality and low Tensor Core utilization. On
one hand, TCStencil is constrained to symmetric MM on
FP16 Tensor Cores (i.e. matrix multiplication of matrices
with the same shape), while most stencil computation neces-
sitates FP64 precision and only specific asymmetric MM is
supported on FP64 Tensor Cores. On the other hand, TCS-
tencil encounters uncoalesced access to global memory and
bank conflicts within shared memory, preventing the com-
puting power of Tensor Cores from being fully exploited.
To the best of our knowledge, there is no other work that
provides a practical way to adapt stencil computation on
Tensor Cores effectively.

This paper presents a novel stencil computing system,
ConvStencil, designed to transform stencil computation to
matrix multiplication on Tensor Cores efficiently.

The design of ConvStencil is based on a crucial observation
that stencil in high-performance computing and convolution
in deep learning exhibit similarities in their computational
patterns. Both approaches involve the use of a stencil kernel
(or convolution kernel) to form a sliding window, perform-
ing weighted computations on the data within the window
on the input matrix. To efficiently support convolution on
Tensor Cores, im2row(col) method is used in GEMM-based
convolution computations [9]. It involves converting the
input and filter into matrices, allowing convolution to be
computed by MM.

Guided by this observation, the key insight of ConvStencil
is inspired: since the computation patterns of stencil and
convolution are so similar, why not build a bridge between

stencil computation and Tensor Core using the im2rowmech-
anism? However, given the critical differences in algorithmic
details between stencil and convolution, this is still not a low-
hanging fruit as several considerable technical challenges
must be tackled.
Firstly, the application of im2row to convolution opera-

tions enables their transformation into MM. However, this
transformation results in matrix-vector multiplication due
to the fact that both the number of stencil kernels and the
number of channels are one during each iteration, poten-
tially causing significant memory expansion and low Tensor
Core utilization. Secondly, the FP64 Tensor Core operations
exclusively support a unique asymmetric small MM, which
presents challenges for efficient algorithm adaptation under
this constraint. Moreover, the algorithm’s implementation
and design may encounter performance-affecting conflicts
between algorithm implementation and hardware design,
such as warp divergence and bank conflicts, leading to a
substantial decline in performance.
The ConvStencil consists of three key techniques to ad-

dress the aforementioned challenges: memory-efficient Lay-
out Transformation, computation-dense Compute Adaptation,
and performance-boosting Conflicts Removal.
In Layout Transformation, we introduce stencil2row to

create an efficient memory layout for MM with reduced
memory consumption. It achieves a 70.0% to 96.4% memory
footprint reduction compared to im2row. In Compute Adap-
tation, we propose Dual Tessellation to enhance Tensor Core
utilization through matrix tessellation, increasing Tensor
Core utilization from 12.5% to 87.5%. Concurrently, Kernel
Fusion reduces matrix sparsity to further improve compu-
tational density on Tensor Cores. In Conflicts Removal, we
design a Lookup Table to avoid costly operations and re-
duce redundant addressing calculations. Moreover, Dirty Bits
Padding uses a padding zone to write dirty data and evade
conditional branches, thus achieving a conflict-free imple-
mentation for further boosting performance. In comparison
to TCStencil which also utilizes Tensor Cores, ConvStencil
reduces the non-coalesced global memory accesses by 44.0%
and the bank conflicts per request by 63.5%, on average.
Results are demonstrated from three aspects by using a

diverse set of stencil kernels. First, our designs and opti-
mizations prove to be effective, with each proposed tech-
nique contributing to a measurable performance improve-
ment. Second, ConvStencil outperforms five state-of-the-arts
(cuDNN [11, 31], AMOS [52], Brick [49–51], DRStencil [43]
and TCStencil [24]) in various benchmarks. Third, ConvSten-
cil is also superior to DRStencil with three-time-step fusion,
showing that our performance gains are not only from kernel
fusion optimization but also from our algorithmic design.

Our contributions are highlighted as follows.
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• We propose ConvStencil, a novel stencil computing
system designed to transform stencil computation to
matrix multiplication on Tensor Cores efficiently.

• We propose Stenci2row layout transformation. It re-
duces the redundancy in the im2row result and re-
mains an efficient memory layout for MM operations.

• Compute Adaptation adopts Dual Tessellation to en-
hance Tensor Core utilization and Kernel Fusion to fur-
ther improve computational density on Tensor Cores.

• Conflicts Removal presents Lookup Table and Dirty
Bits Padding to eliminate performance-affecting con-
flicts for further performance improvements.

2 Background and Challenges
2.1 Stencil Computation
Stencil computation, a widely adopted technique in scientific
and engineering domains, involves the iterative updating
of multi-dimensional inputs according to a predefined com-
putation pattern. This predefined pattern, referred to as the
shape, primarily consists of two types: star and box. A star
stencil computes the weighted sum of a central point and its
neighboring points, which diverge from the central point in a
single dimension only. A box stencil calculates the weighted
sum of a square or cube, wherein the central point is located
at the core of the geometric shape. The extent of points in-
volved in a specific computation pattern is dictated by the
radius, also referred to as order. For instance, the computa-
tion pattern for a box stencil with a radius of 1 constitutes a
3 × 3 square.

2.2 GEMM-based Convolution on Tensor Cores
Tensor cores represent a specialized hardware component,
developed by NVIDIA, designed to accelerate matrix multi-
plications. Its unique capacity to perform mixed-precision
matrix multiplication and accumulation (MMA, as demon-
strated in Equation 1), allows for processing speeds superior
to those of CUDA cores.

𝐷𝑚×𝑛 = 𝐴𝑚×𝑘 × 𝐵𝑘×𝑛 +𝐶𝑚×𝑛 (1)

The GEMM-based convolution converts convolution into
MM and becomes an efficient method for computing con-
volution on Tensor Cores. The procedure of GEMM-based
convolution is shown in Figure 1. In the procedure, the multi-
channel input and the convolutional kernels are both re-
shaped into 2D matrices and then the convolution opera-
tion is expressed as a MM. The input matrix is created by
unrolling each kernel-sized patch of the image into a row
(im2row). The kernel (or filter) matrix is created by unrolling
the filter weights into a column. The convolution operation
comprises multiple convolution kernels, typically in powers
of 2. Columns reshaped from convolutions form the ker-
nel matrix. The MM operation is then applied to these two
matrices.
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Figure 1. GEMM-based convolution and stencil.

2.3 Challenges
Convolution and stencil computations share a high degree
of similarity. They both slide the kernel over input grids
and compute the weighted sum. Despite extensive research,
there remains a lack of effective and practical methods for ef-
ficiently utilizing Tensor Cores in stencil computations. This
leads to the question of why stencil computations struggle to
be mapped to Tensor Cores as conveniently as convolutions.
Here we identify and discuss three primary challenges that
contribute to this issue.
1. Space explosion. Adopting the im2row transformation

to convert stencil to MM is a straightforward idea. However,
the im2row transformation demands high memory require-
ments, with the memory footprint of the resulting matrix
several times or even dozens of times larger than the orig-
inal input, leading to space explosion. For example, for a
10 × 10 input and a 3 × 3 kernel, the size of the input matrix
is expanded to 100 × 9, which is 9x larger than the origi-
nal input. For common convolutions, space explosion will
not become a concerning issue because enough columns of
the kernel matrix densify the matrix multiplication, which
achieves a balance between memory and computation over-
heads. However, after the im2row transformation, as illus-
trated in Figure 1, stencil computation is converted into a
matrix-vector multiplication. Due to the sparsity of matrix-
vector multiplication in Tensor Cores, the space explosion of
im2row becomes concerning. Furthermore, stencil compu-
tations usually require FP64 precision, further exacerbating
memory demands. In sharp contrast to this, the shared mem-
ory available on a GPU is limited; even on an A100, each
Streaming Multiprocessor (SM) has only 164KB of shared
memory [30].
2. Low Tensor Core utilization. As shown in Figure 1, the

convolution is converted into stencil computation when
these two requirements are satisfied. 1) The channel of input
data and convolution kernels is 1. 2) Stencil computation
only exists one kernel. At this point, the stencil computa-
tion becomes a matrix-vector multiplication. However, for
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FP64 precision, Tensor Cores on NVIDIA A100 only support
8× 8× 4 MMA (𝑚 = 8, 𝑛 = 8 and 𝑘 = 4 in Equation 1), which
means 7/8 columns of the matrix being multiplied on the
right are wasted.
3. Conflicts in algorithm and hardware. Upon completing

the design of the algorithm for the Tensor Core, it becomes
evident that there are two significant conflicts between the al-
gorithm implementation and the hardware design during the
mapping process. 1) A significant number of repetitive offset
calculations for memory access arise, leading to conflicts
with standard stencil computations. These conflicts consume
computational resources and result in performance degra-
dation. 2) A multitude of conditional branches and bank
conflicts exist in layout transformation, leading to severe
warp divergence and serial memory access.

3 ConvStencil
ConvStencil represents a novel approach to stencil computa-
tion, leveraging Tensor Cores via convolution-like method-
ologies.We first introduce our theoretical performancemodel.
Then we introduce the fundamental components of ConvS-
tencil, including layout transformation, compute adaptation,
and conflict removal.

During the layout transformation phase, we propose sten-
cil2row that reshapes the input into two distinct and smaller
matrices, primed for subsequent Tensor Core computations.
In the compute adaptation phase, dual tessellation iteratively
applies Tensor Core MMA on tiles selected from the sten-
cil2row matrix to generate the stencil results. For the con-
flicts removal part, we precompute pointer offsets to prevent
time-consuming integer division and modulus operations.
We also propose dirty bits padding that removes load bank
conflicts and eliminates conditional branches via utilizing
padding area.

3.1 Performance Model
In order to demonstrate the performance improvement of
ConvStencil theoretically, we build the performance model,
which is shown in Equation 2, 3 and 4:

T =𝑚𝑎𝑥 (T𝑐𝑜𝑚𝑝𝑢𝑡𝑒 ,T𝑚𝑒𝑚𝑜𝑟𝑦) (2)

T𝑐𝑜𝑚𝑝𝑢𝑡𝑒 =
1

𝑓 𝑁𝑡𝑐𝑢

𝐾𝑡𝑐𝑢∑︁
𝑖=0

(𝑘𝑡𝑐𝑢𝑖 ×𝐶𝑃𝐼𝑡𝑐𝑢𝑖 ) (3)

T𝑚𝑒𝑚𝑜𝑟𝑦 =𝑚𝑎𝑥 (𝑑𝑎𝑡𝑎𝑅
𝑏𝑤𝐺

+ 𝑑𝑎𝑡𝑎𝑊

𝑏𝑤𝐺
,
𝑑𝑎𝑡𝑎𝑡𝑟𝑎𝑛𝑠𝑊

𝑏𝑤𝑆
+ 𝑑𝑎𝑡𝑎𝑡𝑟𝑎𝑛𝑠𝑅

𝑏𝑤𝑆
)

(4)
The explanation of used symbols is listed in Table 1. The

compute time and memory access time constitute the overall
time of stencil computations.
The time required for computation is the product of the

inverse of the clock frequency and the number of cycles
required. The number of cycles required is computed by

summing the products of the number of each type of instruc-
tion in the program and the number of cycles that instruc-
tion takes. On NVIDIA A100 GPU, the number of cycles of
an FP64 MMA instruction on TCU is 16 [1]. The time re-
quired for memory access is the maximum sum of read/write
time across different memory hierarchies. Through this the-
oretical performance model, we analyze the performance
advantages of ConvStencil in Section 3.3.

3.2 Layout Transformation
Stencil2row. Current im2row transformation suffers mem-
ory explosion. When the original input is transformed into
an im2row matrix, the demand for memory inflates by sev-
eral times. Figure 2 demonstrates this phenomenon using a
7 × 7 convolution kernel as an example. Upon transforming
a𝑚 × 𝑛 input via im2row, an (𝑚 − 6) (𝑛 − 6) × 49 im2row
matrix is formed. As the kernel size increases, the memory
required for the im2row transformation escalates.

The stencil2row is proposed based on the following three
observations. 1) When the original input is transformed into
an im2row matrix, most elements in the im2row matrix are
redundant and the transformation causes a space explosion.
As shown in Figure 2, the elements of its 1𝑠𝑡 ∼ 6𝑡ℎ rows
are all repetitions of the elements in the 0𝑡ℎ and 7𝑡ℎ rows. 2)
In the im2row transformation, we observe that the data se-
quencing in redundant rows has been already stored beyond
the redundant rows. For example, the 3𝑟𝑑 row of im2row ma-
trix in Figure 2 can be divided into two parts (sandy brown
and light blue). The data sequencing of the first part (sandy
brown) can be found in the 0𝑡ℎ row, while the data sequenc-
ing of the second part (light blue) can be found in the 7𝑡ℎ
row. This observation suggests that the structure of interme-
diate rows (e.g. 1𝑠𝑡 ∼ 6𝑡ℎ rows) containing redundant data is
subsumed by other rows (e.g. 0𝑡ℎ and 7𝑡ℎ rows), indicating
that there exists the potential to construct the outcome of

Table 1. Notations.

Symbols Meanings

T Overall core time
T𝑐𝑜𝑚𝑝𝑢𝑡𝑒 Core time of computing
T𝑚𝑒𝑚𝑜𝑟𝑦 Core time of memory transactions

𝑓 GPU frequency (core clock)
𝑁𝑡𝑐𝑢 Number of TCUs
𝐾𝑡𝑐𝑢 Types of TCU instructions
𝑘𝑡𝑐𝑢𝑖 Number of the 𝑖𝑡ℎ type of TCU instructions
𝐶𝑃𝐼𝑡𝑐𝑢𝑖 Cycles per the 𝑖𝑡ℎ type of TCU instruction
𝑑𝑎𝑡𝑎𝑅 Amount of data read from GM1

𝑑𝑎𝑡𝑎𝑊 Amount of data written to GM
𝑑𝑎𝑡𝑎𝑡𝑟𝑎𝑛𝑠𝑊 Amount of transformed data written to SM2

𝑑𝑎𝑡𝑎𝑡𝑟𝑎𝑛𝑠𝑅 Amount of transformed data read from SM
𝑏𝑤𝐺 Bandwidth of global memory
𝑏𝑤𝑆 Bandwidth of shared memory

1 GM denotes global memory.
2 SM denotes shared memory.
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Figure 2. Stencil2row and its comparison with im2row.

intermediate rows solely with other rows (e.g. 0𝑡ℎ and 7𝑡ℎ
rows). 3) Shared memory resides on-chip, so it has much
lower latency than global memory. Table 2 shows the access
latencies of different memory types [1]. The access latency
of global memory exceeds that of shared memory by more
than an order of magnitude.

Based on these three observations, we propose stencil2row.
Stencil2row transforms the original input into two smaller
matrices. In Figure 2, these two matrices are marked as Sten-
cil2row Matrix A & B. The 0𝑡ℎ row of the stencil2row matrix
A can be viewed as an extension of the 0𝑡ℎ row of the im2row
matrix. The 0𝑡ℎ row of stencil2row matrix A extends to the
last row of the original input matrix. In other words, the final
elements of the stencil2row matrix A are the elements of the
last row of the original input matrix. Next, the 1𝑠𝑡 row of
stencil2row matrix A can be viewed as an extension of the

Table 2. Memory access latencies [1].

Memory access types Cycles

Global memory 290
Shared memory (load/store) 23/19

8𝑡ℎ row of the im2row matrix. This pattern continues in the
same manner and the stencil2row matrix A is constructed.
The mapping function of stencil2row matrix A is written as
a vector function in Equation 5,

Y = 𝑠𝑡𝑒𝑛𝑐𝑖𝑙2𝑟𝑜𝑤𝐴 (X)

=

[
⌊𝑦/(𝑛𝑘𝑒𝑟𝑛𝑒𝑙 + 1)⌋

𝑛𝑘𝑒𝑟𝑛𝑒𝑙𝑥 + 𝑦 mod (𝑛𝑘𝑒𝑟𝑛𝑒𝑙 + 1)

] (5)

where

X =

[
𝑥

𝑦

]
, (𝑦 + 1) mod (𝑛𝑘𝑒𝑟𝑛𝑒𝑙 + 1) ≠ 0

X indicates the index of the original input elements. Y indi-
cates the index of stencil2row matrix A elements. 𝑛𝑘𝑒𝑟𝑛𝑒𝑙 is
the edge length of the kernel. The construction of stencil2row
matrix B is similar, which is shown in Equation 6,

Y = 𝑠𝑡𝑒𝑛𝑐𝑖𝑙2𝑟𝑜𝑤𝐵 (X)

=

[
⌊(𝑦 − 𝑛𝑘𝑒𝑟𝑛𝑒𝑙 )/(𝑛𝑘𝑒𝑟𝑛𝑒𝑙 + 1)⌋

𝑛𝑘𝑒𝑟𝑛𝑒𝑙𝑥 + (𝑦 − 𝑛𝑘𝑒𝑟𝑛𝑒𝑙 ) mod (𝑛𝑘𝑒𝑟𝑛𝑒𝑙 + 1)

] (6)

where

X =

[
𝑥

𝑦

]
, ((𝑦 − 𝑛𝑘𝑒𝑟𝑛𝑒𝑙 + 1) mod (𝑛𝑘𝑒𝑟𝑛𝑒𝑙 + 1) ≠ 0

After defining how stencil2row matrices form, we im-
plicitly construct stencil2row matrices in shared memory
based on the observation of different access latencies be-
tween global memory and shared memory. We construct
the tiles of stencil2row matrices on the fly as original input
data are loaded. Specifically, in the context of NVIDIA GPUs,
we retrieve original data from global memory, subsequently
construct the tiles of stencil2row matrices within shared
memory, and utilize Tensor Cores to read from shared mem-
ory for matrix computations. Throughout the entire process,
the stencil2row matrices are not explicitly fully constructed.
Stencil2row eliminates most redundant elements in the

im2rowmatrix and alleviates memory pressure. Furthermore,
not only does stencil2row preserve the beneficial character-
istics of im2row that allow the use of matrix multiplication,
but it is also more suited to the Tensor Cores specifically
for stencil computations. Moreover, we construct the tiles of
stencil2row matrices in shared memory on the fly as original
input data are loaded, which reduces global memory load
and store operations. After stencil2row transformation, ma-
trices are computed by Tensor Core via dual tessellation that
is introduced in Section 3.3. With the details of stencil2row
described, we quantitatively analyze the advantages of sten-
cil2row from the perspectives of memory saving and data
transfer saving.

Memory Saving. For stencil2row data layout, the original
input is transformed into two matrices. The numbers of rows
and columns of each matrix are calculated by Equation 7 and
8,

𝑚𝑠𝑡𝑒𝑛𝑐𝑖𝑙2𝑟𝑜𝑤 =
𝑛

𝑛𝑘𝑒𝑟𝑛𝑒𝑙 + 1
(7)
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𝑛𝑠𝑡𝑒𝑛𝑐𝑖𝑙2𝑟𝑜𝑤 = 𝑛𝑘𝑒𝑟𝑛𝑒𝑙 ×𝑚 (8)

where𝑚 and 𝑛 denote the dimensions of the input. However,
for im2row data layout, the numbers of rows and columns
of im2row matrix are shown in Equation 9 and 10.

𝑚𝑖𝑚2𝑟𝑜𝑤 =𝑚𝑛 (9)

𝑛𝑖𝑚2𝑟𝑜𝑤 = 𝑛2
𝑘𝑒𝑟𝑛𝑒𝑙

(10)

Thus, the ratio of memory space occupied by stencil2row
and im2row is defined by Equation 11.

𝑠𝑡𝑒𝑛𝑐𝑖𝑙2𝑟𝑜𝑤
𝑖𝑚2𝑟𝑜𝑤

=
2

(𝑛𝑘𝑒𝑟𝑛𝑒𝑙 + 1)𝑛𝑘𝑒𝑟𝑛𝑒𝑙
(11)

Table 3 shows the multiplication factors of memory ex-
pansion for im2row and stencil2row compared to the input
memory under various shapes, and the amount of memory
reduced in stencil2row compared to im2row. Compared to
im2row, stencil2row reduces memory usage by over 70%
across all shapes.

Data Transfer Saving. Though stencil2row reduces over
70% memory expansion compared to im2row, the transfer of
this data still constitutes a considerable expense. Data trans-
fer between global memory and shared memory/registers is
expensive. Stencil2row saves data transfers in two aspects.
First, stencil2row implicitly constructs the tiles of sten-

cil2row matrices in shared memory. ConvStencil only con-
ducts a single globalmemory read-and-write operation, thereby
not increasing the overhead of global memory read-and-
write operations.

Second, compared to im2row, stencil2row reduces the
occupancy of memory space, leading to a decrease in the
amount of data written to shared memory. It is often difficult
to eliminate store bank conflicts in shared memory, so the
reduction of data written to shared memory by stencil2row
is more beneficial to performance enhancement.

3.3 Compute Adaptation
After layout transformation, the question then becomes how
to efficiently compute the stencil results on stencil2row ma-
trices with Tensor Cores. To address this, we propose dual
tessellation to efficiently exploit Tensor Cores for stencil com-
putation. We also leverage kernel fusion to further enhance
Tensor Core utilization.

Table 3.Multiplication factors of memory expansion com-
pared to the original input.

Shapes im2row stencil2row Memory saving

Heat-2D 5 1.5 70.00%
Box-2D9P 9 1.5 83.33%
Star-2D9P 9 1.67 81.49%
Box-2D25P 25 1.67 93.33%
Star-2D13P 13 1.75 86.54%
Box-2D49P 49 1.75 96.43%

Dual Tessellation. Applying the existing GEMM-based
convolution methodology to stencil computation can re-
sult in poor Tensor Core utilization and memory explosion,
which has already been discussed in Section 2.3 and Section
3.2 respectively. Stencil2row transformation reduces mem-
ory demand, then we need to efficiently use Tensor Cores
for stencil computation based on the stencil2row matrices.
We observe that the sequencings of the redundant rows

in im2row matrix, as shown in Figure 2, have been stored
in nonredundant rows. Moreover, this redundancy exhibits
a well-defined pattern. In Figure 2, it is demonstrated that
redundant rows may be composed of multiple triangles. Each
element within the brown triangles is incorporated in the
first nonredundant row, while every element in the blue
triangles is included in the second nonredundant row. These
observations enable us to construct a highly efficient stencil
algorithm on the Tensor Cores, based on the stencil2row
matrices.

We propose dual tessellation, a novel algorithm for stencil
computation based on stencil2row transformation. Dual tes-
sellations are iteratively called to progressively compute all
stencils. Each dual tessellation firstly builds two half-result
matrices called vitrolite A & B2. Then, summing two pieces
of vitrolite yields the stencil computation result, which is
termed tessellation.

In Figure 3, dual tessellation encompasses three steps.
In Step 1, a tile3 from stencil2row matrix A needs to be

multiplied by weight matrix A to build vitrolite A. We intro-
duce the tile and weight matrix A respectively.
The dual tessellation process iteratively retrieves a tile

from the stencil2row matrix A. This tile comprises 8 rows,
because of the fact that the number of rows in the matrix
being left-multiplied by the Tensor Core is 8. The column
number of the tile is 𝑛2

𝑘𝑒𝑟𝑛𝑒𝑙
. As exemplified by Box-2D49P

in Figure 3, the size of a tile is 8 × 49. Each dual tessella-
tion retrieves a different tile from the stencil2row matrix A.
Equation 12 presents the base address of each tile,

𝑏𝑎𝑠𝑒 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑖 = 8𝑛𝑠𝑡𝑒𝑛𝑐𝑖𝑙2𝑟𝑜𝑤
⌊
𝑖

𝑚

⌋
+ (𝑖 𝑚𝑜𝑑 𝑚)𝑛𝑘𝑒𝑟𝑛𝑒𝑙 (12)

where 𝑖 ∈ {0, 1, 2, · · · }. Intuitively, it means that each tile
shifts 𝑛𝑘𝑒𝑟𝑛𝑒𝑙 elements to the right after dual tessellation.
Once the first eight rows are computed, the next eight rows
are processed until the end of stencil2row matrix A.

The size of weight matrix A is 𝑛2
𝑘𝑒𝑟𝑛𝑒𝑙

×𝑛𝑘𝑒𝑟𝑛𝑒𝑙 . In Figure 3,
the size of the weight matrix is 49× 7 and is padded to 49× 8
for the Tensor Core MMA operations. The weight matrix A
is composed of seven lower triangular matrices concatenated
together. The first column of weight matrix A contains all
the 49 weights (𝑎1 ∼ 𝑎49), so the product of the tile from sten-
cil2row matrix A and the first column computes 8 complete
2Vitrolite is a kind of pigmented glass with different colors and was often
tessellated on walls for decoration in the 20th century.
3Here, a tile refers to a portion of a matrix.
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Figure 3. Dual tessellation of stencil computation.

stencil results. In Figure 3, this product is the first column of
vitrolite A (half-result matrix A) as indicated in the darkest
red. The second to seventh columns of weight matrix A con-
tain partial weights; hence, the second to seventh columns
of vitrolite A constitute partial stencil computation results.
The gradation of red in Figure 3 indicates the proportion of
the stencil computation accomplished. The last column of
weight matrix A is entirely zeros, which in turn results in
the last column of vitrolite A also being composed of zeros,
as indicated in white. At this point, we have built vitrolite A
and completed Step 1.
Step 2 is similar to Step 1, but it retrieves tiles from sten-

cil2rowmatrix B and uses a different weight matrix B.Weight
matrix B is composed of upper triangular matrices. The pur-
pose of this design is to align the two product matrices so
that they can be directly added together. Vitrolite B is the
product of a tile from stencil2row matrix B and weight ma-
trix B. Under meticulous design, vitrolite B is the opposite:
the first column is entirely composed of zeros, while the last
column contains complete stencil computation results, each
position corresponding directly to that of vitrolite A.
In Step 3, called tessellation, by summing vitrolite A and

vitrolite B, we obtain the result of the stencil computation.
As exemplified by Box-2D49P in Figure 3, the index of the
first dual tessellation results is [3][3:66]. Finally, we write
back the results to global memory.
Since the Tensor Core MMA operation can fuse matrix

multiplication and accumulation, we did not calculate vit-
rolites A & B separately and then add them together in the
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Figure 4. Kernel fusion to increase Tensor Core utilization.

implementation. Instead, after calculating vitrolite A, the re-
sults of each matrix multiplication in the calculation of vitro-
lite B are accumulated on vitrolite A. This approach reduces
one MMA operation for each dual tessellation. The number
of MMA operations in a dual tessellation is 2

⌈
𝑛2
𝑘𝑒𝑟𝑛𝑒𝑙

/4
⌉
.

For stencil computation, dual tessellation significantly
improves Tensor Core utilization and is compatible with our
stencil2row transformation.
Kernel Fusion Dual tessellation can be applied to any

stencil kernel. Nevertheless, some small kernels struggle to
efficiently utilize the Tensor Cores. Therefore, we temporally
fuse some stencil kernels for densifying the computations in
Tensor Cores. For example, in Figure 4, weight matrix A of
Box-2D9P has only 3 columns, which wastes 5 columns in
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Tensor Core fragments. To enhance the utilization of Tensor
Cores, we performed two temporal fusions, converting Box-
2D9P into Box-2D49P. After kernel fusions, only 1 column
of Tensor Core fragments is wasted, thereby improving the
utilization of Tensor Cores.
Quantitative Performance Analysis For a better un-

derstanding of the advantages of ConvStencil compared to
convolution for stencil computations, we conduct a quanti-
tative analysis of ConvStencil’s performance.

We analyze the performance of our ConvStencil andGEMM-
based convolution based on the theoretical performance
model discussed in Section 3.1. According to Equation 2,
since the total time is the maximum of computation time
and memory access time, we analyze computation time and
memory access time separately.

Computation time analysis. Each dual tessellation compute
stencils. Thus, for the𝑚 × 𝑛 input, the number of required
dual tessellations is𝑚𝑛/(8𝑛𝑘𝑒𝑟𝑛𝑒𝑙 + 8) . Because the number
of MMA operations in a dual tessellation is 2

⌈
𝑛2
𝑘𝑒𝑟𝑛𝑒𝑙

/4
⌉
,

the number of MMAs required by ConvStencil is shown in
Equation 13.

𝑁𝑀𝑀𝐴 =
2𝑚𝑛

8 × (𝑛𝑘𝑒𝑟𝑛𝑒𝑙 + 1)

⌈
𝑛2
𝑘𝑒𝑟𝑛𝑒𝑙

4

⌉
(13)

Thus, the computation time of ConvStencil is shown in Equa-
tion 14,

T𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐶𝑜𝑛𝑣𝑆𝑡𝑒𝑛𝑐𝑖𝑙
=

2𝑚𝑛
8(𝑛𝑘𝑒𝑟𝑛𝑒𝑙+1)

⌈
𝑛2
𝑘𝑒𝑟𝑛𝑒𝑙

4

⌉
×𝐶𝑃𝐼𝑡𝑐𝑢

𝑓 𝑁𝑡𝑐𝑢
(14)

where, in the A100 FP64 context, 𝑓 is 1410 MHz, 𝑁𝑡𝑐𝑢 is 432
and 𝐶𝑃𝐼𝑡𝑐𝑢 is 16 cycles [1, 32].
However, the computation time of using GEMM-based

convolution to compute stencil is shown in Equation 15.

T𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐺𝐸𝑀𝑀−𝑏𝑎𝑠𝑒𝑑𝐶𝑜𝑛𝑣
=

𝑛2
𝑘𝑒𝑟𝑛𝑒𝑙

𝑚𝑛

32 ×𝐶𝑃𝐼𝑡𝑐𝑢

𝑓 𝑁𝑡𝑐𝑢
(15)

Due to the orders of stencils is always greater than one,
𝑛𝑘𝑒𝑟𝑛𝑒𝑙 ≥ 3. Thus, the computation time of ConvStencil is
less than that of GEMM-based convolution.
Memory access time analysis. We assume that the imple-

mentation of GEMM-base convolution is implicit that will
not introduce overhead of loading or storing data in global
memory. Thus, based on Equation 4, 𝑑𝑎𝑡𝑎𝑅 , 𝑑𝑎𝑡𝑎𝑊 , 𝑏𝑤𝐺 , and
𝑏𝑤𝑆 are constants. We only need to analyze 𝑑𝑎𝑡𝑎𝑡𝑟𝑎𝑛𝑠𝑊 and
𝑑𝑎𝑡𝑎𝑡𝑟𝑎𝑛𝑠𝑅 . As shown in Equation 11, 𝑑𝑎𝑡𝑎𝑡𝑟𝑎𝑛𝑠𝑊 of ConvS-
tencil is only 2/((𝑛𝑘𝑒𝑟𝑛𝑒𝑙 + 1)𝑛𝑘𝑒𝑟𝑛𝑒𝑙 ) of that of GEMM-based
convolution. 𝑑𝑎𝑡𝑎𝑡𝑟𝑎𝑛𝑠𝑅 of ConvStencil is 2/(𝑛𝑘𝑒𝑟𝑛𝑒𝑙 + 1) of
that of GEMM-based convolution. Therefore, the memory
access time of ConvStencil is less than that of GEMM-based
convolution.
As both the computation time and memory access time

for ConvStencil are less than those for GEMM-based convo-
lution, ConvStencil outperforms GEMM-based convolution
in terms of stencil computations.
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Figure 5. Dirty bits padding eliminates load bank conflicts
and conditional branches.

3.4 Conflicts Removal
After introducing layout transformation and compute adap-
tation, three conflicts hidden in ConvStencil undermine the
performance. 1) A large number of integer division and mod-
ulus operations are inevitably involved for indexing in layout
transformation. This causes a conflict between the intro-
duced computation interrupts and continuous data trans-
fers.2) Bank conflicts that occur during dual tessellations
limit the shared memory bandwidth. 3) Because stencil2row
matrix A or B is smaller than the original input, conditional
statements are applied to determine whether the data is re-
quired or not. These conditional branches introduce conflicts
in thread control. To remove these three conflicts, we intro-
duce lookup tables and dirty bits padding.
Lookup Table. In the process of layout transformation,

the address pointer offsets need to be computed for trans-
forming data from global memory to shared memory. These
computations contain a large number of integer division
and modulus operations that are highly time-consuming on
GPUs. Moreover, these offset computations are redundant
across different blocks. To reduce computational overhead
in the layout transformation process, we precompute the
pointer offsets in the host and provide them to the CUDA
kernel as lookup tables.
Dirty Bits Padding. The padding area used to alleviate

bank conflicts is filled with dirty data to eliminate condi-
tional branch statements. In dual tessellations, bank conflicts
usually occur when Tensor Cores load data from stencil2row
matrices in shared memory. The bank conflict arises when
multiple threads within a single warp simultaneously access
different addresses of the same bank. The hardware splits
this request into multiple independent conflict-free requests,
which diminishes the shared memory throughput.

We use paddings to remove load bank conflicts in shared
memory. The padding adds extra space to change the way
data is mapped into shared memory. Figure 5 exemplifies,
with the case of the stencil2row matrix A (with 266 columns),
why padding removes load bank conflicts. On A100 GPU, the
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bank size is 4 bytes, whichmeans the 1 FP64 element occupies
2 banks. In CUDA WMMA API, a warp (32 threads) loads a
8 × 4 matrix fragment, so each thread reads one FP64 type.
However, 32 FP64 elements occupy 64 banks, and a warp read
from up to 32 different banks at one time. Thus, a 8×4 matrix
fragment read is composed of two shared memory requests.
The first 16 threads read the 4 × 4 fragment at the front,
followed by the last 16 threads reading the 4 × 4 fragment at
the back. Thus, the unit to check for bank conflicts should be
a 4× 4 fragment. In Figure 5, without padding, A[0][0:3] and
A[3][4:7] both fall in bank 0-3, resulting in bank conflicts of
the first request. A similar situation applies to the second
request. After padding of two FP64 elements, the first and
second requests of 4 × 4 fragments are equally distributed in
32 different banks, leading to load bank conflict free.

However, typically padding area is wasted after changing
the memory layout. We found that unused data (dirty bits)
can be dumped into the padding space, which eliminates
the conditional branches and corresponding computation.
As introduced in Section 3.2, stencil2row transforms the
original input into two matrices and the size of each matrix
is smaller than the original matrix. This suggests that, for
each transformed matrix, some elements of the input cannot
be mapped into the transformed matrix, which introduces
the conditional branches and corresponding comparison op-
erations. As illustrated in Figure 5, with dirty bits padding,
unused data are mapped into the padding area via the lookup
table and will not be used. After this optimization, no condi-
tional branch statements are needed to select data to be used,
thus improving the performance of stencil computations.

4 Generalization
After introducing ConvStencil in 2D, ConvStencil can be
easily generalized to other dimensions.

4.1 1D
For 1D stencil, the shape of stencil2row matrices changes.
The number of rows and columns in a stencil2row matrix
are 𝑛/(𝑛𝑘𝑒𝑟𝑛𝑒𝑙 + 1) and 𝑛𝑘𝑒𝑟𝑛𝑒𝑙 , respectively. 𝑛𝑘𝑒𝑟𝑛𝑒𝑙 indicates
the length of the kernel and 𝑛 indicates the size of inputs.
After layout transformation, the 1D computation process
of ConvStencil is identical to the 2D ConvStencil. The dual
tessellation is iteratively applied to compute all stencils.

4.2 3D
The 3D stencil computation can be decomposed into 2D
stencil computations with different weights, which are calcu-
lated using ConvStencil, and then summed over different 2D
planes. In star shape of 3D stencil, each 2D plane has a differ-
ent size. We use CUDA cores to compute small planes, while
tensor cores are used for large planes. Although commercial
GPUs do not provide an interface for warp scheduling to ex-
plicitly implement parallel computing between Tensor Cores
and CUDA cores, the utilization of both Tensor Cores and

CUDA cores can afford opportunities for GPU scheduling to
leverage these two types of computing units parallelly [48].

5 Evaluation
5.1 Setup
Implementation.We implement ConvStencil with CUDA
C++ and WMMA APIs. ConvStencil is compiled with NVCC
12.2.

Platform. Our experimental platform is composed of an
AMD EPYC 7V13 processor and an NVIDIA A100 Tensor
Core GPU. The A100 GPU we use is connected to the moth-
erboard via PCIe Gen4, with a transmission bandwidth of
64GB/s. Our A100 GPU possesses 80GB of HBM2e memory
with 1935GB/s memory bandwidth. The A100 GPU features
108 SMs, with each SM comprising 4 Tensor Cores. The Ten-
sor Cores deliver a peak FP64 performance of 19.5 TFLOPS.
Our platform also possesses 216GB DDR4 DRAM memory
in 8 channels.

State-of-the-arts. We compare ConvStencil with a wide
range of state-of-the-arts, including cuDNN [11, 31], AMOS [52],
Brick [49–51], DRStencil [43], and TCStencil [24] in FP64.
We use cuDNN convolution API and set 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 1 to

compute stencils with FWD_IMPLICIT_PRECOMP_GEMM
algorithm which is the most related to ConvStencil. AMOS
supports depth-wise convolutions that are computationally
equivalent to stencil operations. Because it requires space
searches for better mappings, we use the results after 1,000
search trials. TCStencil is designed to support only FP16
precision for stencil computation. Due to the different matrix
shapes between FP16 and FP64 on Tensor Cores, it cannot be
directly converted into FP64 precision. For the same memory
bandwidth, the speed of reading and writing FP16 data is
four times that of FP64. Moreover, on the Tensor Cores of
A100, the computation speed of FP16 is 16 times that of FP64.
Therefore, if TCStencil is modified to support FP64, in the
best case, its speed (GStencils/s) will be reduced to a quarter
of the original. Thus, we conduct the comparison by dividing
the speed of TCStencil by 4 in our evaluation.

Benchmarks.We apply various stencil kernels for bench-
marks, including Heat-1D, 1D5P, Heat-2D, Box-2D9P, Star-
2D13P, Box-2D49P, Heat-3D, and Box-3D27P, which is shown
in Table 4 in detail [18, 45].

Table 4. Configuration of benchmarks.

Kernels Points Problem size Block size

Heat-1D 3 10240000 × 100000 1024
1D5P 5 10240000 × 100000 1024

Heat-2D 5 10240 × 10240 × 10240 32×64
Box-2D9P 9 10240 × 10240 × 10240 32×64
Star-2D13P 13 10240 × 10240 × 10240 32×64
Box-2D49P 49 10240 × 10240 × 10240 32×64
Heat-3D 7 1024 × 1024 × 1024 8×64

Box-3D27P 27 1024 × 1024 × 1024 8×64
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Figure 6. Performance breakdown of ConvStencil.

Metrics. Most studies on stencil [10, 28, 44–47] exhibit
their results in terms of GStencils/s (GCells/s) representing
how many stencil points are updated per second, which is
defined in Equation 16,

𝐺𝑆𝑡𝑒𝑛𝑐𝑖𝑙𝑠/𝑠 =
𝑇 ×∏𝑛

𝑥=1 𝑁𝑥

𝑡 × 109
(16)

where𝑇 indicates the iteration round; 𝑁𝑥 indicates the prob-
lem size of the 𝑥𝑡ℎ dimension; 𝑡 indicates the execution time.

5.2 Performance Breakdown
In this subsection, we investigate how ConvStencil benefits
from different optimizations. We illustrate the performance
breakdown of ConvStencil on three benchmarks, including
Heat-1D, Box-2D9P, and Box-3D27P, because these are rep-
resentative complex shapes across different dimensions.

As can be seen from Figure 6, our stencil2row transforma-
tion provides 22%, 170%, 67% speedup compared to explicit
transformation in global memory, in Heat-1D, Box-2D9P, and
Box-3D27P, respectively. This performance improvement
comes from reducing data transfers. Stencil2row performs
read and write operations on 100% of the original data in the
global memory, without introducing any additional overhead
of global memory transactions.
Then, Tensor Cores are introduced in ConvStencil. Due

to the powerful FP64 floating point computation capabilities
of Tensor Cores, the performance has improved by 76%, 68%,
and 44% respectively. Next, paddings are used to reduce bank
conflicts in shared memory on GPU. Paddings change the
data layout across shared memory banks and remove load
bank conflicts. In ConvStencil, the number of load operations
in shared memory significantly exceeds the number of store
operations. Although store bank conflicts still exist, we gain
1%, 14%, and 10% performance improvements in Heat-1D,
Box-2D9P, and Box-3D27P, respectively. The performance
improvement of Heat-1D padding is relatively inconspicuous.
This is primarily attributed to the fact that the stencil2row
matrices of Heat-1D contain fewer columns and load opera-
tions, thereby padding benefits outweigh overheads lightly.
However, the padding area is blank and wasted in the

common padding technique. Finally, we propose dirty bits
padding to utilize the area and remove conditional branches.
At this stage, we witnessed a 4%, 19%, and 13% enhancement

in performance metrics. At this point, we have demonstrated
the effects of all optimization methods in ConvStencil.

5.3 State-of-the-art Comparison
In Figure 7, ConvStencil shows a clear performance advan-
tage over all state-of-the-arts.

In the convolution aspect, compared with cuDNN, ConvS-
tencil improves the performance sustainably by 2.89x onmin-
imum and 42.62x on maximum. This result is attributed to
not using Tensor Cores and not optimizing for one-channel
cases. Although AMOS maps the stencil computations to the
Tensor Cores, its performance is even worse than cuDNN, be-
cause it conducts a direct and unoptimized stencil-to-Tensor-
Cores mapping and wastes most compute capacity of Tensor
Cores.
In the stencil aspect, ConvStencil achieves an average

2.77x speedup compared to Brick. ConvStencil also achieves
an overall 2.02x speedup on average compared to DRStencil.
In Heat-2D and Box-2D9P, TCStencil outperforms DRSten-
cil, but it still significantly falls behind ConvStencil. Despite
using Tensor Cores, the inefficiency of TCStencil arises be-
cause its algorithm is sub-optimal, characterized by a major-
ity of zero elements in Tensor Core computations. Besides, as
shown in Table 5, the number of uncoalesced global accesses
and bank conflicts per request is obviously more than that
of ConvStencil, resulting in a performance decline.

5.4 Does Performance Gain Attribute to Kernel
Fusion?

Although this paper does not involve temporal blocking [19,
35], we apply kernel fusion to densify computations for ap-
propriate shapes. This subsection investigates how much
performance gains from the kernel fusion technique.
Figure 8 shows the comparison between kernel fusion

shapes of ConvStencil and DRStencil fusing 3 time steps
(DRStencil-T3). For 2D shapes, the input scale step is 256,
while for 3D shapes, the input scale step is 32. In Figure 8,
ConvStencil outperforms DRStencil-T3 in the vast majority
of cases. In the case of Heat-2D and Box-2D9P, ConvStencil
outperforms DRStencil-T3 when the input size exceeds 7682
and 5122, respectively. As the performances of ConvStenci
and DRStencil-T3 plateau, ConvStencil achieves speedups
of 1.42x and 2.13x compared to DRStencil-T3 respectively.

Table 5. Conflicts comparison to TCStencil.

Kernels Heat-2D Box-2D9P

Metrics UGA1 BC/R2 UGA BC/R

TCStencil 49.40% 0.91 45.35% 1.29
ConvStencil 3.42% 0.39 3.42% 0.39

1 UGA denotes the percentage of uncoalesced global accesses.
2 BC/R denotes the average bank conflicts per request.
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Figure 7. Performance comparison between state-of-the-arts and ConvStencil.
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Figure 8. Performance comparison between ConvStencil
and DRStencil-T3.

In the case of Heat-3D and Box-3D27P, ConvStencil outper-
forms DRStencil-T3 when the input size exceeds 2883 and
1283, respectively. After their performances stabilized, Con-
vStencil achieves speedups of 1.63x and 5.22x compared to
DRStencil-T3 in Heat-3D and Box-3D27P. Another phenom-
enon is the fluctuation of ConvStencil’s performance in 3D
kernels. This is due to the growth step of the input scale
being 32, while the spacial tiling used by ConvStencil is 64.
This paper does not involve other optimizations related

to spatial and temporal blocking in DRStencil. After this
comparison with DRStencil-T3, we conclude that our perfor-
mance gains do not primarily originate from kernel fusion.

6 Related Work
The optimization and acceleration of stencil computation
on CPU have been the subject of extensive research [23,

45]. Vectorization utilizes SIMD instructions to improve the
performance of stencil computations [17, 18, 23]. Data reuse
technique optimizes the order of execution instructions in
order to decrease load or store operations, thus reducing the
register pressure [36, 40, 49]. Tiling exploits the data locality
of multiple loop nests to accelerate stencil computations,
such as diamond tiling [5, 8], time skewing tiling [22, 42],
rectangular tiling [39], and tessellating tiling [45].

Stencil optimizations on GPU are also widely studied [27,
33, 37]. The tiling technique is also powerful on GPUs, in-
cluding spatial tiling [14, 26, 49] and temporal tiling [7, 15,
19, 29, 34, 41]. Besides, stencil optimizations on GPU in-
clude unrolling [16], prefetching [38], and streaming [37].
Brick [49–51] exploits data reuse opportunities within a fine-
grained block of a stencil computation and achieves per-
formance portability across CPU and GPU. DRStencil [43]
leverages the fusion-partition optimization to accelerate the
stencil computation and implements it into an effective code
generation framework. The above studies focus on CUDA
core, while a limited number of studies have explored Ten-
sor Cores for stencil. To our best knowledge, TCStencil [24]
is the only work that applies Tensor Cores to stencil com-
putation. However, it is designed in FP16 precision, which
limits its practicality. cuDNN [11, 31] is a library developed
by NVIDIA for deep learning. It provides highly optimized
implementations for primitive functions, such as convolu-
tion. AMOS [52] maps different operations from software
to different hardware including Tensor Cores. It supports
depth-wise convolutions that are computationally equivalent
to stencil operations.

7 Conclusion
This paper introduces ConvStencil, transforming stencil com-
putation to matrix multiplication on Tensor Cores. Inspired
by GEMM-based convolution, it comprises Layout Transfor-
mation, Compute Adaptation, and Conflicts Removal. Our
evaluation shows that our designs prove to be effective and
ConvStencil outperforms state-of-the-arts. We believe and
hope that ConvStencil promises to improve the performance
of various scientific and engineering applications.
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A Artifact Description
This artifact contains the source code of ConvStencil, a novel
stencil computing system to transform stencil computation
to matrix multiplication on Tensor Cores efficiently.

A.1 Availability
Our code is released onGitHub: https://github.com/microsoft/
ConvStencil. Our artifact is also available on Zenodo: https:
//zenodo.org/doi/10.5281/zenodo.10225523.

A.2 Requirements
A.2.1 Hardware Dependencies.

• x86-64 CPU
• A single NVIDIA A100 GPU
• 20GB of memory

A.2.2 Hardware Dependencies.
• CUDA - 12.2 (Tested). Lower versions down to CUDA
11.0 are also supported, but it may affect the perfor-
mance.

• GCC - 9.4.0 (Tested). You may also try to use icx or
clang.

• cuDNN - above 8.0.

A.3 Getting Started
The artifact is hosted at https://github.com/microsoft/ConvStencil.
Our artifact can be acquired using:

$ git clone https://github.com/microsoft/
ConvStencil.git

Our artifact can be compiled using:

$ mkdir -p build
$ cd build
$ cmake ..
$ make all -j24

This will generate three executable files in the build/ direc-
tory: convstencil_1d, convstencil_2d, and convstencil_3d.

A.4 Reproducing Results
You can run convstencil in the following input format:

$ convstencil_{x}d shape input_size
time_interation_size options

• convstencil_{x}d can be chosen from convstencil_1d,
convstencil_2d, and convstencil_3d for different
dimensions.

• shape can be chosen by the different dimension:
◦ 1d1r and 1d2r for 1D.
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◦ star2d1r, box2d1r, star2d3r and box2d3r for 2D.
◦ star3d1r and box3d1r for 3D.

• input_size depends on the number of dimensions;
the number of inputs required is equal to the number
of dimensions.

• time_interation_size is the iteration time.
• options:
◦ --help prints the help information.
◦ --custom inputs the custom stencil kernel weights.

A.5 Output Format
In non-breakdownmode, convstencilwill generate the fol-
lowing output, indicating the computation time and speed.

$ ./convstencil_2d box2d1r 10240 10240 10240
INFO: shape = box_2d1r, m = 10240, n = 10240,

times = 10240
ConvStencil(2D):
Time = 17109[ms]
GStencil/s = 188.268193

In breakdownmode, convstencilwill output the compu-
tation time and speed for different experiments.
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