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The traditional approach to programming embedded systems is monolithic: firmware on a microcontroller

contains both application code and the drivers needed to communicate with sensors and actuators, using

low-level protocols such as I2C, SPI, and RS232. In comparison, software development for the cloud has moved

to a service-based development and operation paradigm: a service provides a discrete unit of functionality

that can be accessed remotely by an application, or other service, but is independently managed and updated.

We propose, design, implement, and evaluate a service-based approach to prototyping embedded systems

called Jacdac. Jacdac defines a service specification language, designed especially for embedded systems, along

with a host of specifications for a variety of sensors and actuators. With Jacdac, each sensor/actuator in a

system is paired with a low-cost microcontroller that advertises the services that represent the functionality of

the underlying hardware over an efficient and low-cost single-wire bus protocol. A separate microcontroller

executes the user’s application program, which is a client of the Jacdac services on the bus.

Our evaluation shows that Jacdac supports a service-based abstraction for sensors/actuators at low cost

and reasonable performance, with many benefits for prototyping: ease of use via the automated discovery

of devices and their capabilities, substitution of same-service devices for each other, as well as high-level

programming, monitoring, and debugging. We also report on the experience of bringing Jacdac to commercial

availability via third-party manufacturers.
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1 INTRODUCTION

The traditional approach to programming embedded systems is monolithic: firmware on a mi-
crocontroller unit (MCU) contains both application code and the drivers needed to communicate
with sensors, actuators, and other peripherals using low-level protocols such as I2C, SPI, and
RS232 [9, 18, 30]. Such protocols were designed to provide a universal interconnect between micro-
controllers and their peripherals; they are efficient but are low-level and use static addressing. While
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(a) (b)

Fig. 1. (a) a variety of Jacdac modules: (first row) light sensor, two different accelerometers, LED ring module;
(second row) bu�on, slider, and relay modules ; (third row) passive hub and servo modules; (b) “night light”
system—a BBC micro:bit slo�ed into a Jacdac adaptor, connected to four modules: accelerometer, light sensor,
slider, and LED ring.

software abstractions such as those provided by Arduino [31], ARM’s Mbed [2], and TinyOS [21]
provide higher-level APIs for programmers, the result is still a monolithic system with a tight
coupling between software and a static configuration of specific hardware components, as well as
the underlying protocols they depend upon.

In comparison, in the world of the web and cloud, software development has largely transitioned
from the delivery of monolithic layered systems to a service-based development and operation
paradigm. A service provides a discrete unit of functionality that can be accessed remotely by an
application program, or other service, but is independently managed and updated. Services have
radically changed how software is produced, delivered, and operated. Microservices can be used to
further decompose applications and services into smaller units of functionality [13].

We propose, design, implement, and evaluate a service-based approach to prototyping embedded
systems called Jacdac. Our main contribution is to show that it is possible to efficiently map service-
based abstractions to embedded systems, at low cost and reasonable performance. As a result, many
benefits can be realized that support prototyping, including: ease of use via the automated discovery
of devices and their capabilities, substitution of same-service devices for each other, and high-
level programming. Our target audience ranges from complete beginners including schoolchildren
exploring physical computing [17] to proficient programmers who are unfamiliar with embedded
systems such as web developers.

Jacdac defines a service specification language, designed especially for embedded systems, along
with a host of specifications for a variety of sensors and actuators. Service specifications provide a
separation of concerns between application code (client) and driver code (server) that interfaces
with hardware sensors and actuators. A Jacdac module (server) is a device that has one or more
sensors/actuators and advertises the services that it supports over the Jacdac bus. A Jacdac brain
(client) is a device that runs an application program, which consumes the services available on the
bus.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 175. Publication date: June 2024.
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Figure 1(a) shows a variety of Jacdac modules. The printed circuit boards (PCBs) of all modules
have one or more Jacdac 3-pin edge connectors; these are double-sided and wired so that the
Jacdac cable makes a stable connection, no matter which way it is plugged in. The PCB-based edge
connector is low-cost and provides a consistent and reliable experience for at least 1500 plug/unplug
cycles.
Figure 1(b) shows a small embeddable system built from a Jacdac brain (a BBC micro:bit [3],

shown at the top), a Jacdac adaptor (in the middle), and four Jacdac modules (from left to right,
accelerometer, light sensor, slider, and LED ring), which are connected to the adaptor via Jacdac
cables to form a single 3-wire bus. We will use this small Jacdac system to build a “night light” that
is only activated when the accelerometer is facing a given direction; the application logic then
turns on the LED ring when the light level falls below a certain threshold; the slider is used to
control the brightness of the LED ring (we do not consider here how to package the components
into a more suitable form factor).

The Jacdac service specification language is supported by a three-layer protocol: the service layer
represents all Jacdac services, including a set of common services for device discovery, advertisement
of a device’s services, power management, and firmware updating; the transport layer is responsible
for forwarding packets to the appropriate service or application; the network interface layer deals
with the transmission of Jacdac packets over the wire. Jacdac implements a “single wire serial”
protocol, a UART-based data transmission protocol that uses one shared wire for half-duplex data,
plus one for ground and one to supply power.
In our current implementation, each Jacdac module has a dedicated MCU with firmware that

implements the three layers of the Jacdac protocol and exposes a module’s on-board components
via services on the bus. A Jacdac module’s MCU abstracts over the specific hardware, adapting it
to the appropriate Jacdac service; this is analogous to how web services were originally used to
wrap legacy enterprise applications and make them available on the web. For many sensors and
actuators we support the Jacdac protocol using 8-bit MCUs with 64 bytes of RAM that cost as little
as US $0.03.
The Jacdac platform, both hardware designs and software, is open source1 and includes:

• a large library of service specifications, with supporting server firmware, web-based simulators,
and client bindings in a variety of languages;

• a growing device catalog of 80 Jacdac modules and several brains, produced by us and others;
• a platform-agnostic C99 implementation of the Jacdac protocol and a number of servers and
drivers for I2C/SPI components;

• a device development kit (DDK) with hardware designs, and firmware source code for a range
of MCUs, including the 8-bit PADAUKMCU, the 32-bit ARM-based family of STM32x0 MCUs,
as well as the ESP32 (which supports WiFi, TCP/IP and TLS) and the RP2040;

• additional implementations of the Jacdac protocol/runtime in Python, C#, TypeScript, and
Static TypeScript [6] (the subset of TypeScript supported by the MakeCode system [5, 11]);

• a (mostly code-generated) client library in each of the above languages for each service;
• a Jacdac website with monitoring/tracing, simulation, and testing tools.2

Altogether, the Jacdac stack effectively separates clients (brains) and server (modules) via ser-
vices and the supporting protocol, enabling the dynamic creation and modification of the system.
Programmers can choose from a variety of different programming languages to develop client/ap-
plication code. A previous paper evaluated the user experience with Jacdac using modules designed
and manufactured by us [12]. This paper focuses on the design and technical implementation of

1The main repo is https://github.com/microsoft/jacdac, which links to the other repos as well as the Jacdac website.
2The Jacdac website is at https://aka.ms/jacdac.
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1 # Accelerometer

2

3 identifier: 0x1f140409

4 extends: _sensor

5

6 ## Registers

7

8 ro forces @ reading {

9 x: i12.20 g

10 y: i12.20 g

11 z: i12.20 g

12 }

13

14 Indicates the current forces

15 acting on accelerometer.

16 ro forces_error ?: i12.20 g

17 @ reading_error

18

19 ## Events

20

21 event face_up @ 0x85

22 event face_down @ 0x86

23

24 Emitted when accelerometer is

25 laying flat in the given direction.

26

27 event freefall @ 0x87

28 event shake @ 0x8b

29 ...

Fig. 2. Jacdac accelerometer service (partial).

the Jacdac platform and evaluates it with respect to the cost of the solution, its generality, and
the overhead that the separation of client and server incurs. Three Jacdac kits, comprising over
twenty modules, have been produced by two third-party manufacturers3 and are now commercially
available, further validating our approach.

2 OVERVIEW

This section presents how a three-axis accelerometer is represented and programmed using Jacdac.
This example illustrates how Jacdac supports prototyping through standardized service specifications
— communication between devices is mediated via service specifications so that similar devices can
act as drop-in replacements for one another. Using the Jacdac protocol, devices can be the providers
and/or clients of services, allowing greater flexibility in application/system design than present in
monolithic systems; devices and their services are discovered dynamically as they join the Jacdac
bus. Finally, Jacdac supports application/client programming in a variety of high-level languages,
with monitoring and debugging support provided by a web dashboard that joins the Jacdac bus
using WebUSB or WebSerial.

2.1 Accelerometer Service

Figure 2 presents the (partial) source text of a Jacdac service specification for a three-axis
accelerometer, which is specified using a simple markdown language where indented text represents
the formal specification and non-indented text is descriptive.4 Every Jacdac service is uniquely
identified by a 32-bit identifier (line 3), also referred to as the service class, which is assigned randomly
by the initial author of the service (we maintain a central repository of service specifications;5 tools
check for service class collisions in newly submitted service specifications). We don’t expect there to
be more than a few thousand service classes overall, compared to billions of device instances (which
use 64-bit identifiers). Line 4 of the specification states that the accelerometer service extends the
abstract sensor service, which defines a set of common registers for working with sensors.

3KittenBot (https://www.kittenbot.cc/) and Forward Education (https://forwardedu.com). The modules in Figure 1 (a) are a

sample drawn from KittenBot’s Kit A and Kit B, as well as one created by the authors (the “turtle” shaped accelerometer).
4Full source at https://microsoft.github.io/jacdac-docs/services/accelerometer/.
5The Jacdac service library and device catalog reside at https://github.com/microsoft/jacdac.
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Line 8 defines a read-only register named forces, a record with three fields (x, y, and z). Every
Jacdac register is assigned a unique numeric code: the “@ reading” annotation on line 8 states that
the forces register is using the common code 0x101 as defined in the base service specification
(that all services inherit from). Sharing numeric codes allows for common sensor-handling code,
regardless of the specific service class. Lines 9, 10 and 11 define the type and units for the three
fields (x, y, and z) of the forces register. The i12.20 type is a signed 32-bit fixed point value, with
12 bits for the integer portion and 20 bits for the fractional part. Any data field, such as the three
above, should be annotated with its unit. Jacdac supports a large set of units (“g” is earth gravity).

The datasheet for a sensor specifies its sensitivity (which may depend on environmental factors
such as temperature), output resolution, and noise, among other characteristics. Lines 16-17 of
Figure 2 specify a register named forces_error which exposes the expected error when reading
the forces register.
The stream of values of any given sensor may give rise to a sequence of discrete events that

capture various patterns in the stream. Lines 21-28 declare a handful of events that the accelerometer
service raises: freefall is emitted when the total force acting on the accelerometer is much less
than 1g, while shake is emitted when the forces change violently a few times in a short period.
The face_up and face_down events are used in our running example.

2.2 Accelerometer Module: Hardware

A “turtle” shaped accelerometer module we designed and produced appears in the first row of
Figure 1(a); to the immediate right of this is a square shaped accelerometer module from KittenBot.
Both modules support the accelerometer service and are interchangeable. The large integrated
circuit on the PCB of both modules is a STM32F030x4 MCU (16kB flash, 4kB RAM, running at
8MHz), connected via I2C to Kionix’s KXTJ3 3-axis digital accelerometer, the square IC centered
under the MCU on the PCB. Both the front and back of the PCB depict the direction of the three
axes printed on the silkscreen. Both modules have two Jacdac edge connectors, which share the
same three PCB traces (PWR, GND, DATA), to allow the module to be connected to the Jacdac bus
and daisy-chained. Jacdac uses the UART capability on the MCU to allow the module to send and
receive Jacdac packets over the bus.

2.3 Accelerometer Module: Firmware and Jacdac Protocol

The responsibility of a Jacdac module’s firmware is to make its underlying hardware available as
one or more Jacdac services. In our example, the firmware abstracts over the KXTJ3 accelerometer,
exposing it via the Jacdac accelerometer service. The firmware includes the Jacdac runtime, enabling
the accelerometer module to join the Jacdac bus, advertise itself and its support for the accelerometer
service, respond to requests a client may send it, as well as generate events of interest. The firmware
communicates with other Jacdac-aware devices using the Jacdac protocol, and communicates with
the on-board KXTJ3 accelerometer over I2C. As the KXTJ3 uses a different representation of forces
from the service of Figure 2, the firmware also converts to the specified representation before the
register value is communicated via Jacdac.
The firmware for the accelerometer module is built using three layers:

(a) an MCU-specific C99 implementation of a hardware abstraction layer (HAL) that provides
the necessary primitives needed to interface with common hardware interfaces (I2C, SPI) as
well as those needed by the Jacdac protocol (UART);6

6See https://github.com/microsoft/jacdac-stm32x0.
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Fig. 3. JavaScript program for the “night light” running example. The coding environment is MakeCode
for the micro:bit[5], extended with support for displaying the state of connected and/or simulated Jacdac
modules/services.

(b) an MCU-independent C99 implementation of the Jacdac protocol (that relies on the HAL),
including the Jacdac control service, which advertises the supported services, and implemen-
tations of many services and drivers for various I2C/SPI hardware sensors, including the
KXTJ3 accelerometer;7

(c) finally, a small C driver that brings the above code together for the specific accelerometer
module, specifying the hardware (KXTJ3) used, the orientation of the chip with respect to silk
markings on the PCB, and the manufacturer and device name for easy user identification.8

2.4 Brain/Client Programming

We have ported the Jacdac protocol implementation to a variety of higher-level languages, in-
cluding Python, C#, TypeScript, and Static TypeScript (the programming language of Microsoft’s
MakeCode editors for physical computing [5]). These ports primarily support the programming of
brains/clients, with abstractions to hide the underlying asynchrony of the Jacdac protocol from the
application programmer, although they also can be used to implement servers. Code generation
tools compile each specification into high-level client APIs for each supported language, that
call into the underlying runtime. In the running example, we make use of the MakeCode Jacdac
extension/library9, most of which was generated automatically including the code for working
with the accelerometer service.10

Figure 3 shows a Static TypeScript program in the MakeCode editor for the micro:bit11 that
implements the logic of the “night light” application. The program is a client of accelerometer,
light level sensor, LED ring, and slider modules/services. The MakeCode Jacdac runtime provides
singletons (accelerometer1, lightLevel1, potentiometer1, ledStrip1) for working directly
with modules exposing a single service (the mapping from names to device identifiers is discussed

7See https://github.com/microsoft/jacdac-c.
8See https://github.com/microsoft/jacdac-msr-modules/tree/main/targets/jm-accelerometer-30-1.0.
9See https://github.com/microsoft/pxt-jacdac.
10The following web page shows the status of each service including the status of automatically generated code for

MakeCode: https://microsoft.github.io/jacdac-docs/tools/service-status/.
11See https://makecode.microbit.org.
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(a) (b)

Fig. 4. (a) “Night light” system from Figure 1, programmed per Figure 3 - the accelerometer and light level
module are being held face down, resulting in the LED ring turning on; (b) digital twins of the four modules
and the BBC micro:bit brain. Note that the light level is the amount of light being read by the light level
sensor while the potentiometer reflects the position of the slider, which controls the brightness of the LED
ring.

later). The program has event handlers for responding to the face_down and face_up events from
the accelerometermodule: the handler for a face down event displays a checkmark (IconNames.Yes)
on the micro:bit screen and enables the night light logic; the handler for a face up event displays an X
(IconNames.No), disables the night light logic, and turns off all LEDs on the LED ring. The program
has two other event handlers for monitoring the value of the light level and slider/potentiometer
and firing when the value has changed by the specified amount. When the light level is low, the
LED ring is turned on (green). When the slider changes, the brightness of the LED ring is adjusted
based on the new value.

2.5 Dashboard and Digital Twins

Figure 4(a) shows the system from Figure 1 with the MakeCode program deployed to the micro:bit
brain and the accelerometer and light level modules being held face down. This turns on the night
light logic (see check mark on micro:bit screen) and results in the LED ring turning on. The micro:bit
is connected over USB to a host computer, extending the Jacdac bus over USB so it can be accessed
from a web browser. Figure 4(b) shows the web-based Jacdac dashboard, which displays the digital
twins of the micro:bit and the four modules connected to it. The current state of the modules is
shown (light level is 18%) and the LED ring is displaying all green. Also, note that the actual devices
have been identified (by lookup in the device catalog) and small images of them appear in the
dashboard too.
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2.6 Summary

This section presented the essential facets of Jacdac. A Jacdac brain executes client code that can
discover Jacdac services on the bus, as advertised by Jacdac modules (servers). Communication
among Jacdac devices takes place via a packet-based protocol that leverages the low-cost UART
hardware available on MCUs. Each service represents a discrete unit of functionality, such as an
accelerometer, that can be accessed remotely over the Jacdac bus. Standardized Jacdac service
definitions abstract away the specific hardware that a module uses. As shown in the accelerometer
example, the Jacdac bus can be extended over WebUSB to allow the web browser to join the
conversation. This enables rapid prototyping of client programs in the web browser that work
against physical Jacdac modules as well as virtual ones.

3 SERVICE SPECIFICATION LANGUAGE

As shown in the previous section, services provide abstract, standardized interfaces that can be
used to work with physical hardware resources and permit devices with the same functionality but
different hardware implementations to be substituted for one another without having to recompile
the application (client code) that uses them. A service is globally and uniquely identified by its
service class, which should be found in the service catalog, as discussed before. Once a service is
marked stable, any changes to it must not break backward compatibility, as it may not be possible
to update the firmware on devices that support the service.
The Jacdac service specification language has two related goals:

• to describe the resources that a Jacdac device acting as a server provides on the Jacdac
bus, precisely defining the wire formats of data and requests/responses that the device will
accept/provide;

• to provide meaningful abstract names and types for the above resources that enable client
programming against a service at a high-level of abstraction.

In support of the two above goals, Jacdac provides tools that automatically generate C headers
from service specifications; these headers parameterize the Jacdac runtime, which provides a suite
of C helper functions for writing firmware. Other tools automatically generate client libraries
from service specifications in a variety of languages, as mentioned previously. For example, most
of the code for the MakeCode extension for Jacdac (see the subdirectories, one per service, in
https://github.com/microsoft/pxt-jacdac) was automatically generated (the top-level code in this
repo is the Jacdac runtime, written by hand).
The remainder of this section details the core abstractions of commands/reports that provide

the foundation of Jacdac, as well as the other abstractions (actions, registers, and events) that are
defined in terms of commands/reports. A service specification is written using markdown, which
allows for interspersing informal English explanations of the service interface with the (indented)
formal declarations of commands, reports, actions, registers, events, and other entities described
below.

3.1 Commands and Reports

Commands are requests to devices on the Jacdac bus and reports are responses from devices.
Definitions of commands and reports have a uniform base structure of a readable identifier, numeric

operation code and a statically-typed payload. On the command side, payloads serve as arguments
(for example, to a register write command). On the report side, payloads often serve as “return
values” (in the case of the register read operation, for example). Commands are distinguished from
reports in a Jacdac packet by a flag, as discussed in Section 4.
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⟨cmdrep⟩ ::= (‘command’ | ‘report’) ⟨ident⟩[‘?’] ⟨type-opcode⟩

⟨type-opcode⟩ ::= ‘:’ ⟨core-type⟩ ⟨unit⟩ ‘@’ ⟨opcode⟩ | ‘@’ ⟨opcode⟩ [⟨record-type⟩]

⟨opcode⟩ ::= ⟨hex-literal⟩ ⟨core-type⟩ ::= See Table 1

⟨record-type⟩ ::= ‘{’ (⟨ident⟩ ‘:’ ⟨core-type⟩ ⟨unit⟩ )* ‘}’

Fig. 5. Syntax of commands and reports.

Table 1. Core types supported by Jacdac specification language. All types are li�le endian.

u8, u16, u32, u64 unsigned (1, 2, 4, and 8 bytes)

uM.N unsigned fixed point (" + # ∈ {8, 16, 32})

i8, i16, i32, i64 signed (1, 2, 4, 8 bytes)

iM.N signed fixed point (" + # ∈ {8, 16, 32})

f32, f64 IEEE float and double

bytes byte buffer (until end of packet)

string UTF-8 encoded string (until end of packet)

string0 NUL-terminated UTF-8 string

bool a single byte; 0 = false, true otherwise

While commands and reports are often paired, they need not be. For example, events are reports
without an associated command. A command without a corresponding report is an instance of the
“fire-and-forget” pattern (that is, a request that doesn’t have an associated response). As discussed
in Section 6, these communication patterns are also found in TinyOS and WSDL; in both these
systems, as well as Jacdac, requests and responses are asynchronous operations.

Figure 5 gives the basic syntax of commands and report. A question mark following the identifier
of a command/report indicates that it is an optional feature of a service, otherwise the command/re-
port must be implemented to conform to the service specification.
Each command and report can carry a (possibly empty) payload. The payload can either be a

value of <core-type> (as enumerated in Table 1) or of <record-type>. In the first case, the core type
follows a ‘:’ and precedes the <unit> and <opcode>; in the second case, the record type follows
the <opcode> (we found this makes the specification more readable). 12 Each core type must be
annotated with a unit (a subset of SenML 13)
Commands can be used to direct a device to take some action. Here is the simplest form of a

command/report pair, used to direct a sensor to perform calibration, with a corresponding report
to acknowledge that calibration has taken place:

1 command calibrate @ 0x02 { }

2 report calibrate @ 0x02

In the above example, both the command and report use operation code 0x02, where the command
requests calibration and the report is a response indicating that calibration is complete. Note that
an empty record “{}” is the same as having no type, as shown in the report declaration above.
Commands and reports are different domains; the names and operation codes within each

domain must be unique, but as the above example shows may be reused across domains. An
implementation of a service must be robust to invalid commands, reports, and payloads. That

12Jacdac also supports a record that ends with a homogeneous sequence, which is not described further here.
13See https://www.iana.org/assignments/senml/senml.xhtml.
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1 identifier: 0x141a6b8a

2 extends: _sensor

3

4 ro distance: u16.16 m { typical_min =0.02, typical_max =4 } @ reading

5

6 const min_range ?: u16.16 m @ min_reading

7 const max_range ?: u16.16 m @ max_reading

8

9 enum Variant: u8 { Ultrasonic = 1, Infrared = 2, LiDAR = 3, Laser = 4 }

10 const variant ?: Variant @ variant

Fig. 6. Jacdac distance service (partial).

1 identifier: 0x1609d4f0

2 rw pixels: bytes @ value

3 const num_pixels: u16 # @ 0x182

Fig. 7. Jacdac LED service (partial).

is, while code generation may ensure that the client creates only valid commands, reports and
payloads, other devices (potentially buggy ones) may generate invalid traffic. The Jacdac runtime
performs a certain amount of runtime validation on packets, given the C header generated from a
service specification. Other implementations will need to do their own validation.

Operation codes (16-bit) are partitioned into the following ranges based on the class of operation:
action (0x0XXX), register read (0x1XXX), register write (0x2XXX), reserved (0x3XXX-0x7XXX), and
events (0x8XXX-0xfXXX). An action is a command with an optional associated report of the same
name and code, given with the following syntactic sugar:

1 command calibrate @ 0x02 { } report { }

The following sections give more details on registers and events.

3.2 Registers

Registers are used for exposing necessary device state and have three forms:

• const registers do not change until module reset (which may put it into a new mode), though
they most often will represent constraints imposed by the hardware that are forever the
same. Lines 6 and 7 of Figure 6 use const to specify the minimum and maximum range of a
distance sensor.

• read-only (ro) registers can be used to expose the value of relevant sensors. The distance
register declared at Line 4 of Figure 6 is an example of a read-only register.

• read-write (rw) registers are generally used to configure the hardware and assignments to
them are idempotent. Figure 7 presents an excerpt of the LED service that declares a read-
write register pixels at line 2 which is a buffer of 24-bit RGB color entries (one per LED
pixel).

Register declarations are (mostly) syntactic sugar over the command/report abstraction, given
by the following grammar:

⟨register⟩ ::= ⟨register-modifiers⟩ ⟨ident⟩[‘?’] ⟨type-code⟩
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⟨register-modifiers⟩ ::= ‘const’ | ([‘volatile’] (‘ro’ | ‘rw’))

A register declaration translates to two commands (to read/write the register’s value) and one report
(the response to a read with the value of the register). A report is only issued for the read request;
for a write request, the client must issue a separate read command to confirm the value written.
Also note that the service is not guaranteed to return the value written, as the underlying firmware
may clamp or modify the written value. Furthermore, another write command may interleave
between a client’s write and subsequent read. Trying to write to a read-only register will be ignored
by the server.
A ro/rw register may be annotated as volatile indicating that its value may change indepen-

dently of any activity on the Jacdac bus. That is, a volatile register’s value may change based on
physical environmental conditions outside of programmatic control (the sensor service’s @ reading

register is implicitly volatile). This enables a caching strategy for non-volatile registers that flushes
the client cache whenever there is some write to the service. For volatile registers, cached values
will generally become stale very quickly.

3.3 Events

A Jacdac server may perform some computation over the stream of data from the sensor it en-
capsulates to detect a pattern. Events are a mechanism for notifying clients when such patterns
are identified. We have seen examples of events with no payloads in the accelerometer service of
Figure 2 (freefall, shake, ...). Jacdac client libraries provide APIs so that an application program
can subscribe to a service event of a particular device. An event may contain a payload, as shown
in the grammar:

⟨event⟩ ::= ‘event’ ⟨ident⟩ ⟨type-code⟩

Events translate to reports (with no associated command) that are given special treatment at the
protocol level to ensure reliable delivery, as detailed in Section 4. The event opcode is limited to
eight bits, with the remaining bits of the report opcode used for a counter for reliable delivery.

3.4 Compile Time Declarations and Hints

For readability, the specification language provides declarations for naming of values and enumera-
tions of values. Figure 6 shows a simple specification of a distance sensor. Line 4 declares a read-only
register distance with type u16.16 whose value is in meters (m), as well as two compile-time
constants: typical_min and typical_max, used when visualizing data in the Jacdac dashboard
(eg., for axis scale for plots). The notation ‘@ reading’ that ends line 4 assigns the specific code of
the reading register common to sensors to the register distance.

Line 9 of Figure 6 declares an enumeration named Variants, listing the different kinds of distant
sensors, which is then used in the optional register declaration of variant (optional declarations
have a ’?’ trailing the name). Enumerations are meant to be future-extensible and are primarily
informational (eg., used in the Jacdac dashboard to visualize the sensor).

In addition to the volatile and constmodifiers on registers, which are hints to the client runtime,
one can add the modifier unique to a command, which means that the command is not idempotent;
that is, multiple invocations with the same payload are different from a single invocation.

4 PROTOCOL

This section visits the layers of the Jacdac protocol top-down, from the service layer to the transport
and network layers. Device identification is introduced between the descriptions of the service
(device-unaware) and transport (device-aware) layers. We illustrate how the protocol maps to the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 175. Publication date: June 2024.



175:12 Thomas Ball, Peli de Halleux, James Devine, Steve Hodges, and Michał Moskal

client program of Figure 3 that uses the accelerometer and LED ring modules, represented by the
accelerometer and LED services (Figure 2 and Figure 7, respectively).

4.1 Service Layer

The service layer deals with the commands and reports specified by the service specification, as
detailed in the previous section. Commands and reports are just Jacdac packets, provided to the
service layer by the transport layer via a simple API. Helper functions provide access to the packet
data structure via the abstractions of registers, events, and commands/reports.

4.1.1 Control Service. For a device to be recognized on the Jacdac bus, it must run its own control
service.14 The logic for the control service is generic, parameterized by the set of services a device
supports, and is part of the Jacdac runtime.

The main job of the control service is to send a report every 500 milliseconds that advertises the
device’s presence on the bus and the list of services (via service class numbers) it supports. The
other devices (clients) on the bus can inspect these advertisements and subsequently communicate
with the advertised services. The advertisement also includes several flags indicating various
protocol-level capabilities of the device, as well as a “restart counter” that monotonically increases
and can be used to detect a device restart.
The control service also offers a set of common commands that can be used to query/inspect a

Jacdac device. For example, the identify command causes a Jacdac device to perform an action
that allows a user to locate it, usually through blinking an LED.

4.1.2 Processing Commands and Reports. A device acting as a server (of a particular service ()
will receive commands from the transport layer for ( and send reports back (it may also initiate
sending of reports on its own). A device acting as a client of a service ( will send commands (via
the transport layer) and receive reports back. A device may act in the roles of both a client and a
server. The transport layer is responsible for routing commands/reports to and from the proper
services. Services are addressed by 6-bit indices referring to the position of the service class (32-bit
number), as listed in the advertisement packet. The zero index is reserved for the control service. A
server will generally maintain device-specific state for each of the services that it supports, usually
via an array indexed by the service index; in the simplest case, a device has only two services (the
control service and, say, a button service), and an array is not necessary.

4.2 Device Identification, Roles, and the Role Manager Service

Jacdac device identifiers are 64-bits in length and are used to determine the sending or receiving
device, and for devices to remember one another on the bus. The Jacdac protocol does not support
the allocation of unique device identifiers. Instead, each device must be assigned (or assign itself)
a 64-bit device identifier; once assigned, a device’s identifier must remain constant. As long as
identifiers are generated with appropriate entropy (i.e., using a random number generator), there is
little chance of identifier collision. If we consider one trillion Jacdac networks size of 200 devices
with randomly chosen 64-bit identifiers, the probability of an identifier collision in at least one of
the networks is 0.1%. The device identifier can be programmed at the factory, or the device can
generate the identifier by itself upon first boot and store it in non-volatile memory. In either case,
an appropriate source of randomness should be used.
In the example program of Figure 3, the four services of the four modules are represented by

fixed “role” names available in the MakeCode runtime for Jacdac. For example, the role name
accelerometer1 is a static instance of a Jacdac SensorClient, a client-side representation of a

14See https://microsoft.github.io/jacdac-docs/services/control/.
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1 struct jd_packet_t {

2 uint16_t crc; // crc and following 2 fields are from frame

3 uint8_t flags; // various flags (see #defines below)

4 uint64_t device_identifier; // sending/receiving device , per flags

5

6 uint8_t service_index; // which service does this packet refer to

7 uint16_t service_opcode; // the operation within the service

8 uint8_t service_size; // size of the service payload

9 uint8_t data [236]; // payload

10 }

Fig. 8. Jacdac packet structure (simplified).

sensor-based service, specialized for the accelerometer service. Jacdac’s role manager service keeps
a mapping from role names to device identifiers (and the index of a particular service on that
device). The role manager will eagerly map names to unmapped devices’ services, unless directed
otherwise by the programmer. Until the role name accelerometer1 is bound to a device identifier
providing an accelerometer service, the event handlers onFaceDown and onFaceUp in the program
will not fire. In the case of multiple modules with the same set of services, the programmer can
direct the role manager service to explicitly control the mapping of names to device identifiers.

4.3 Transport Layer

The transport layer deals with Jacdac packets and is responsible for generating acknowledgements,
routing a packet to the correct service, as well as reliable events.
Figure 8 presents a simplified view of a Jacdac packet. A packet contains only one device

identifier (rather than both source and destination identifiers, as in IP). If the bit 0x01 in the flags
field is set, the packet is a command packet and device_identifier is the destination device
receiving the packet; otherwise, the packet is a report packet and device_identifier is the source
device broadcasting information on the bus. Sometimes, report packets will be broadcast without a
preceding command (most prominently, in the case of advertisements and events). The maximum
packet size is 252 bytes, which limits the size of a service payload to 236 bytes, which we find is
sufficient for communication and control of many sensors and actuators (Jacdac has support for
pipes, not discussed here, for working with data that does not fit in a single packet).

An acknowledgement should be sent if the bit 0x02 in flags is set. The acknowledgement packet
includes the CRC of the packet being acknowledged. Finally, to support broadcast to all services on
the bus (regardless of device), if the bit 0x04 in the flags field is set then the device_identifier
field of the packet will be interpreted as a service class number, and the packet will be dispatched
to all services on the bus with that class number.
Besides the support for acknowledgements, the transport layer is similar to UDP [25], as no

delivery guarantees are provided. Since the two packets for a command/report pair may be separated
by other packets, we provide support in the Jacdac runtime (a client of the protocol) to wait for the
response (report) to a request (command). Support for TCP-like reliability and ordering also can be
added [26] (as done with Jacdac pipes, which are unidirectional reliable streams).

4.3.1 Events. The transport layer has special queue-based logic for reliable sending of events. To
communicate a discrete event reliably, the transport layer sends two identical repetitions of the
event packet after the initial packet, with a 20-100ms gap between them. As typical packet loss is
well under 1%, this ensures packet reception. The gaps between repetitions are relatively large to
limit problems with reception queues at the client being temporarily full (which in our experience is
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the main cause of packet loss), or interrupts being temporarily blocked. The event packets contain
a per-device counter, incremented for every event sent (but not for the repetitions). This lets the
client process the events in the correct order, even if some are lost.

4.3.2 Running Example. Returning to the “night light” program of Figure 3, once the four program
roles (accelerometer1, etc.) are bound to the four modules, the face_up and face_down events
(reports) generated by the accelerometer module will be routed to the corresponding event handlers
in the program. The programmer does not need to know about the details of the protocol, the
device identifiers, or the low-level encoding of the accelerometer service (the operation codes).
The method setAll of the ledStrip1 client fills a pixel buffer with the given color and sends

a register write command (packet) to the LED ring module that writes the buffer to the pixel

register of the device. Again, the client wrapper abstracts over the details of the protocol. Two
other “ChangedBy” event handlers in the program await changes to the reading register of the light
level and the slider/potentiometer. This is implemented in the Jacdac runtime by asking the server
to stream register reading packets at specified frequency and generating an event on the client side
when the value has changed by the specified amount.

4.4 Network Layer: Single Wire Serial

A Jacdac frame contains a list of Jacdac packets (of length at least one), which all share the same
device identifier and flags. The frame also contains a cyclic redundancy code (CRC). The Jacdac
single wire serial (SWS) protocol is used to transmit a Jacdac frame over the wire, and requires an
MCU with following basic functionality:

• transmitting and receiving UART-style bytes at 1Mbaud in half-duplex mode (as is standard,
bytes are 10 bits long and are composed of 1 start bit, 8 data bits, and one stop bit);

• a GPIO with an internal or external 10-50kΩ pull up and support for interrupts, implemented
in hardware or in software by spin waiting;

• the ability to keep time, via instruction counting or a hardware timer;

The MCU is not required to have UART hardware—we implemented SWS on PADAUK 8-bit MCUs
(US $0.03) via bit-banging in software.

Any Jacdac device can initiate a transmission at any time. Because of this, devices must assert
control over the bus before sending any bytes. This is where SWS differs from a traditional half-
duplex UART: a device wanting to start transmitting checks if it is not in the middle of reception
and that the line is not currently low; only then does the device bring the line low for 11 to 15
microseconds (start pulse). A collision is possible if another device at about the same time also
determines the line to be high, and pulses it low. The window for such a collision is typically a few
clock cycles (under 1`s s), resulting in typical collision rate of 0.1% for fully-utilized bus.

After the start pulse, the device waits at least 50`s (to allow other devices time to set up reception)
and starts UART transmission of bytes, followed by an end pulse of 11-15`s (such pulses are
recognized as break “characters” by UART hardware making them convenient frame markers). The
receivers also have upper time limits on gaps between the start pulse, bytes of transmission, and
the end pulse. If these are exceeded, any data is dropped, and the receivers go back to waiting for
start pulse. Thus, no condition disrupts the bus for very long.

5 EVALUATION AND DISCUSSION

This section evaluates and discusses the impact of the design decisions on the cost, generality,
and performance of Jacdac. Jacdac offers a tradeoff compared to using traditional embedded
communication methods like I2C and SPI. Jacdac brings ease of use: dynamic device discovery,
hot-plugging, error resilience and standardized services (Section 5.2). This is paid for by using
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additional MCUs (Section 5.1) and additional wire time (Section 5.4). We argue that the costs are
small and the benefits large, enabling more programmers to participate in building embedded
systems.

5.1 Cost

From the outset, Jacdac was designed to ensure that its hardware implementation would be low
cost and flexible. The protocol can be implemented on 8-bit MCUs such as the PADAUK PMS150C,
PMS171B and PMS131 which run at 8MHz and have 64-96 bytes of RAM and 1000-1500 words of
program memory. These processors don’t provide UART hardware support, so our implementation
uses bit-banging implemented via cycle-counted assembly language. These processors cost as little
as US $0.03 (Shenzhen pricing for 1k units or more). The first kit produced by KittenBot uses the
PADAUK PMS131 for all seven modules.
In addition to the MCU itself, a handful of discrete components are required to interface to the

Jacdac bus for reliable operation: an RLC low-pass filter, a clamping diode and two electrostatic
discharge protection diodes. If a server is powered from the Jacdac bus it typically also requires a
low-dropout linear regulator (∼US $0.03, Shenzhen pricing).
For modules that use a very low-cost peripheral such as an LED or a push button, the total

bill-of-materials (BoM) cost can be as little as ∼US $0.10 in quantities of 1k units (Shenzhen pricing).
More sophisticated services may need more expensive sensors and/or a more capable MCU. For
many of our prototypes, we used the STM32G030F6P6 (8kB RAM, 32kB ROM; US $0.51 ST Micro
list price for 1k quantities). Our cheapest Jacdac brain is based on the RP2040 MCU and has a BoM
cost of ∼US $1.50.

5.2 Generality

Jacdac is a platform, so it is natural to consider how well it can support a range of hardware
peripherals and how difficult it is to extend the platform to support new hardware. There are about
80 different Jacdac modules (some using the same set of services, but with different underlying
hardware) designed and deployed, by us and others. We have also created various Jacdac adaptors so
that various compute devices can act as Jacdac brains (BBC micro:bit, Raspberry Pi, laptop/desktop).
Table 2 provides an overview of 22 services we created to support these modules, categorizes

them and describes how much code was needed to implement the server code supporting them. As
shown in the second column of the table, we classify services into four basic kinds:

• UX-in services are mainly for user interface where we expect a person to take some action,
such as push a button, twist a knob, or move a slider;

• sensor services are mainly for monitoring the environment, though a number of them may
be used for user input (in particular, the accelerometer, flex, and motion services);

• actuator services generally cause some sort of motion to occur, though this may not be
visible to the user;

• UX-out services are mainly for presenting information to the user.

Not surprisingly, UX-in and sensor services are described mainly by a few read-only registers and
some events, though their operating envelope may need to be characterized by a few constant
registers. Actuator and UX-out services, on the other hand, make more use of read-write registers
and commands. Most of the services’ logic is implemented by well under 100 lines of C code,
especially for sensors, which have a fairly simple structure given by the abstract sensor service.
The accelerometer service is noteworthy for the variety of events it can raise; its implementation
requires more code to identify the events.
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Table 2. Selection of services (22 out of 96, divided into four broad kinds) and their characteristics: columns
rw, ro, const give the number of read-write, read-only and constant registers in the service, while cmds

(commands) and events count the number of those service members, respectively; LOC is the number
of lines of C code to implement the service logic (on top of the Jacdac protocol runtime), and Flash is
the number of bytes the compiled service code occupies. The source code of these services is in https:

//github.com/microsoft/jacdac-c/tree/main/services.

Service Kind rw ro const cmds events LOC Flash

Button UX-in 2 1 3 81 348
Potentiometer UX-in 1 1 72 292
Rotary encoder UX-in 1 2 120 406

Switch UX-in 1 1 2 48 152

Accelerometer sensor 1 2 1 12 251 798
Air Pressure sensor 2 26 56

Flex sensor 1 1 54 176
Humidity sensor 2 2 25 56

Illuminance sensor 2 26 56
Light level sensor 2 1 72 292

Motion sensor 1 3 1 51 184
Soil moisture sensor 2 1 72 292
Temperature sensor 2 3 26 56

TVOC sensor 2 2 26 56
UV index sensor 2 1 26 56

Motor actuator 2 3 136 473
Relay actuator 1 2 62 182
Servo actuator 5 1 4 119 422

Buzzer UX-out 1 2 87 228
Dot Matrix UX-out 2 3 84 204

LED UX-out 3 1 6 134 620
Vibration motor UX-out 1 1 77 246

Figure 9 shows a service specification for a simple buzzer service and the C code of the integrated
service and driver. The C code includes a header file for the buzzer service (automatically generated),
as well as a header file of helper functions for working with Jacdac services. This reduces the
amount of new code that needs to be written to a bare minimum. In particular, the developer of a
new service only needs to implement several required functions, as shown in Figure 9, without
having to know the details of the Jacdac protocol; they focus mainly on what state needs to be
updated and what responses need to be generated for each function. Command line tools are
available for creating the necessary header files locally from a new service specification. To make a
new service widely available requires sending a pull request to the Jacdac team.
At its upper-edge, the service code uses the Jacdac runtime to communicate in the language of

commands and reports. At the lower-edge, it communicates with specific hardware. The services
are parameterized in one of three ways, based on the nature of the underlying hardware:

• GPIO: many modules have very simple hardware that can be accessed directly via general-
purpose input/output (GPIO) pins; in these cases, the service initialization routine is parame-
terized by a C struct providing pin mapping and other domain-specific information (services:
button, buzzer, rotary encoder, switch, motion, servo, relay, motor);
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1 // jacdac/services/buzzer.md

2 identifier: 0x1b57b1d7

3 rw volume = 1: u0.8 / @ intensity

4 command play_tone @ 0x80 {

5 period: u16 us

6 duty: u16 us

7 duration: u16 ms

8 }

9

10 // jm -v4.0/ profile/buzzer -89.c

11 #include "jdprofile.h"

12 FIRMWARE_IDENTIFIER (0x3ff4e45b ,

13 "JM -Buzzer 89 v4.1");

14 void app_init_services () {

15 buzzer_init(PA_4);

16 }

17

18 // jacdac -c/services/buzzer.c

19 #include "jd_services.h"

20 #include "jacdac/dist/c/buzzer.h"

21

22 struct srv_state {

23 SRV_COMMON;

24 uint8_t volume;

25 // ^^^ see REG_DEFINITION ()

26 uint8_t pin;

27 uint32_t end_tone_time;

28 uint16_t period;

29 };

30 // jacdac -c/services/buzzer.c contd.

31 // define registers mapping to 'state '

32 REG_DEFINITION(buzzer_regs , REG_SRV_COMMON ,

33 REG_U8(JD_BUZZER_REG_VOLUME), // maps to state ->volume

34 )

35 void buzzer_handle_packet(srv_t *state , jd_packet_t *pkt) {

36 if (pkt ->service_command == JD_BUZZER_CMD_PLAY_TONE &&

37 pkt ->service_size >= 6) {

38 jd_buzzer_play_tone_t *d = (void *)pkt ->data;

39 state ->end_tone_time = now + d->duration * 1000;

40 state ->period = d->period;

41 d->duty = (d->duty * state ->volume) >> 8;

42 jd_pwm_pin(state ->pin , state ->period , d->duty);

43 } else service_handle_register_final(state , pkt , buzzer_regs);

44 }

45 void buzzer_process(srv_t *state) {

46 if (state ->period && in_past(state ->end_tone_time)) {

47 jd_pwm_pin(state ->pin , state ->period , 0);

48 state ->period = 0;

49 }

50 }

51 // bind buzzer_* functions to JD_SERVICE_CLASS_BUZZER:

52 SRV_DEF(buzzer , JD_SERVICE_CLASS_BUZZER);

53 void buzzer_init(uint8_t pin) {

54 SRV_ALLOC(buzzer); // allocate 'srv_state '

55 state ->pin = pin;

56 state ->volume = 255; // volume defaults to 1.0

57 pin_setup_output(state ->pin);

58 }

Fig. 9. Jacdac service for a buzzer (buzzer.md) includes one command and one register. When using the
jacdac-c framework, the firmware for every device is defined in one small file (buzzer-89.c here) which sets
the numeric and string identifier and initializes specific services with relevant configuration information (the
hardware pin number for the buzzer). The service implementation (buzzer.c) uses #defines generated from
the service file (buzzer.h), defines the state structure (the value of the volume register and data of the currently
playing sound), and implements callbacks to be run for every incoming packet, and on every "tick" (typically
10ms), as well as an initialization function. The packet function updates state for play_tone command and
handles writes to registers via service_handle_register_final(), which uses the mapping defined by
REG_DEFINITION() macro (the volume register is bound to the first byte (U8) of the state structure). The
"tick" function stops the sound at the right time. The SRV_DEV() macro binds the three functions to the
service class identifier of the buzzer (0x1b57b1d7).

• analog sensor: a few sensors provide a simple analog value, for which Jacdac provides an
analog service based on an analog-to-digital converter (services: flex, light level, soil moisture,
potentiometer);

• complex sensor: the remaining modules/services are generally more complicated sensors
with their own integrated circuitry that is accessed via I2C or SPI, requiring driver code as
shown in Table 3, typically under 200 lines of C code.

As shown in Table 3, we have used a variety of hardware sensors for the same service (namely,
accelerometer, air pressure, temperature, and humidity). The Jacdac runtime provides class drivers
for environmental sensors and other common classes of sensors that reduces the programming
task to providing a C struct configuring the class driver.

5.3 Platform Code Size

For server code, there are two major implementations, one written in standard C99 and the other
written in PADAUK macro-assembler. The C99 implementation is used mostly for Jacdac modules
that use the STM32F0 and STM32G0 MCUs. The smallest in each family are STM32F030x4 with
4kB of RAM and 16kB of flash, and STM32G030x6 with 8kB of RAM and 32kB of flash.
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Table 3. Jacdac-independent driver code for a variety of hardware sensors and actuators. LOC is the number
of lines of C code and Flash is the number of bytes of the compiled code. The source code of these services is
in https://github.com/microsoft/jacdac-c/tree/main/drivers.

Hardware Description LOC Flash

ADS1115 Analog-to-digital converter 269 658

KX023 Accelerometer 137 327
KXTJ3 Accelerometer 118 443

QMA7981 Accelerometer 218 310
LSM6DS Accelerometer + gyroscope 179 741

CPS122 Air pressure 111 396
LPS33HWTR Air pressure 228 711
MPL3115A2 Air pressure 157 522

SHT30 Temperature and humidity sensor 123 537
SHTC3 Temperature and humidity sensor 123 636
TH02 Temperature and humidity sensor 125 503

DS18B20 Temperature probe 91 361
MAX31855 Thermocouple interface 71 292
MAX6675 Thermocouple interface 71 276

AW86224FCR Vibration motor controller 110 172
LTR390UV Visible + UV light sensor 137 517

SGPC3 TVOC (air quality) sensor 183 696

5.3.1 C99 Servers. As an example of code size, the C99 implementation of a temperature/humidity
module with STM32G030 MCU includes:

• 0.6kB of service and driver code (as indicated in Tables 2 and 3);
• 0.9kB of generic sensor code;
• 4.8kB of service framework, control service, and various queues;
• 6.6kB of MCU-specific HAL code (RTC, ADC, I2C, UART, pins, startup);
• 0.3kB of glue code;
• 0.8kB of runtime support (integer division; the standard C library is not used);

for a total of 14kB of compiled code. At runtime, around 3kB of RAM are consumed, 1kB of which
is debug logging buffer and 0.5kB is stack. The rest is mostly Jacdac queues.

The Jacdac implementation for STM32x0 also includes a bootloader, which allows for updating
device firmware over Jacdac (from a web browser). The bootloader contains a very simplified Jacdac
implementation and is 3kB in size. The bootloader must fit together with the module implementation
in the flash of the MCU. Thus, for STM32F030x4 with 16kB of flash, we disable some optional
features, resulting in firmware sizes of around 12-13kB.

5.3.2 PADAUK Servers. While the C99 code makes quite standard use of buffers and queues, the
PADAUK implementation uses a very different approach.15 As the PADAUK chips have 64-128
bytes of RAM, we only keep one packet buffer (of 24 bytes) for both reception and transmission.
Only 6 bytes are allocated for stack, which is also used for interrupt handlers, so function calls are
severely limited. The UART is implemented in software, with bit-banging.

After a packet is received it is immediately processed. A single bit of memory is allocated for every
possible packet response (eg., a request to get the temperature register, would set a “temperature

15See https://github.com/microsoft/jacdac-padauk.
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get pending” bit), with two additional bytes allocated for a single ACK. If any packet pending bits
are set, and the transmission procedure successfully starts the low pulse, the remaining ∼62`s
before transmission of actual data are used to construct packet in memory based on the pending
bit (which is cleared) and the state of the service.

In all, the implementations of various analog services, as well as a button all fit in the 1000-1500
words of one-time programmable (OTP) memory on the chip. Every word is a PADAUK instruction,
so this would translate to around 2-3kB of ARM Thumb machine code. We also believe Jacdac could
be implemented completely using custom silicon, without a general-purpose MCU, using strategies
like the ones we used in our PADAUK implementation.

5.3.3 Clients. The size of client code vastly depends on the level of abstraction and programming
language used. The simplest C implementation adds a few kilobytes, compared to server code. The
MakeCode implementation, with a much higher abstraction level and less efficient translation from
Static TypeScript to ARM machine code is tens of kilobytes. The TypeScript implementation for
web browsers is hundreds of kilobytes. 16

5.4 Performance

It is important to see Jacdac performance in light of its intended use: to create an embedded system
from a small network of low-bandwidth sensors and actuators, with one to two handfuls of devices
(modules and brain). It has been designed with robustness and ease of implementation in mind,
rather than for low latency and high throughput.

5.4.1 Overhead. Sending a Jacdac packet using the Single Wire Serial (SWS) protocol of Section
4.4 takes, on average, 384`s of wire time plus 10`s for every byte of command payload. Often there
is no payload, and otherwise it tends to be short, though it can be up to 236 bytes. This results from
the SWS running at 1Mbaud (1 million bits per second, with 10 bits sent per byte due to start and
stop bits), the wire arbitration protocol, and the packet structure.

For wire arbitration, SWS requires a start pulse (∼12`s), ∼50`s gap, data transmission, stop pulse
(∼12`s), and requires spacing between packets of 100-200`s (randomly chosen to avoid collisions).
On average this comes to 224`s of overhead per packet. Jacdac packets have a 16-byte header, which
includes the CRC, device identifier, other routing information, and command code (but not payload).
This comes to 160`s. For example, an advertisement packet has at least an 8-byte payload, so takes
464`s, and is sent every 500ms. Thus, with 10 devices the bus is 1% saturated by advertisement
packets, while 1000 devices would completely saturate the bus.

Typically, sensors that stream data are the largest users of wire time. A single sensor streaming
at 2kHz would saturate the bus, so we advise streaming at not more than 50Hz. It is also possible to
pack several readings in a single packet (or frame), to support sampling rates in the kHz range. As
for latency, the time between a module deciding to send a packet, and the packet being received by
the client is typically under 500`s. This is sufficient for most use cases, but may not be fast enough
for hard real-time use.

5.4.2 Comparison to I2C and SPI. I2C typically runs at 100kHz or 400kHz (though faster modes are
sometimes used). I2C latency at 100kHz is comparable to Jacdac on SWS, while I2C throughput at
400kHz is comparable to Jacdac using large payload sizes. I2C most often uses 7-bit addressing, so
cannot support more than 127 devices, and in reality addresses are typically fixed for a given device
type limiting usable networks to a handful. SPI can run at 50MHz or more, depending on MCU and
peripherals. At these frequencies, the latency and throughput are much better than Jacdac over

16See https://github.com/microsoft/jacdac-c, https://github.com/microsoft/pxt-jacdac, and https://github.com/microsoft/

jacdac-ts.
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SWS. However, SPI typically requires separate addressing wires from the MCU, limiting network
sizes to a handful of devices. Both SPI and I2C have severe limitations on cable lengths (typically
under 30cm), whereas Jacdac on SWS can run over a few meters of wire.

5.4.3 Power Consumption. STM32G0-based sensors use around 50`A for the MCU and power
regulation, plus whatever sensor is using (typically very little). Thus, a full system with a few
sensors and a brain can be on the order of 1mA, which can run for months on a smartphone-sized
battery. The low-cost PADAUK-based sensors use more current - around 1mA each. This is because
they can’t be put to sleep between incoming Jacdac packets, as they take a whole millisecond to
wake up (unlike the STM32). This could be reduced dramatically with custom silicon support.

5.5 Security

The main attack surface introduced by the bus architecture of Jacdac is related to supply chains. A
rogue device masquerading to be, say a button, could secretly listen to packets from other devices
and even pretend to be the brain. Thus, sensitive services (typically ones related to the internet
connection) should not be used on the same bus as untrusted devices. Typically, this is implemented
by bundling the sensitive services with the brain and connecting them internally. We have recently
introduced restricted modifier on packet specifications which instructs the brain to only accept
them from a trusted connection (eg., USB to the computer) and never send them on the single-wire
Jacdac bus. This allows for configuration of connection strings, WiFi passwords etc.

5.6 Working with Jacdac via the Web Browser

To get the most from Jacdac’s service-based approach to working with sensors/actuators, we devel-
oped a web stack and site to make it possible to work with Jacdac without the need to download
and install the tool chains or development environments usually associated with embedded devel-
opment. A Jacdac module with USB-C connector is used to extend the Jacdac bus over USB so that
a web browser that supports WebUSB can join the bus, sending and receiving Jacdac packets using
the TypeScript port of the Jacdac runtime. We have created a set of React components that are
parameterized by Jacdac service specification (compiled to JSON), upon which a Jacdac web site is
based, as shown in Figure 4(b). The web-based service-aware tooling proved to be very useful for
working with third-party hardware manufacturers based in China.

6 RELATED WORK

This section compares Jacdac with other approaches to composing embedded systems, interfacing
with hardware, and connecting up microcontroller-based hardware.

6.1 TinyOS

Perhaps the most closely related work to Jacdac in terms of core abstractions, although with fairly
different goals and end-users in mind, is TinyOS [15, 21]. TinyOS provides a framework for building
embedded systems from a set of components, each described by a module interface in the nesC
language [16]. Specifically, the Jacdac abstractions of commands and reports, which correspond to
decoupled, asynchronous requests and responses, are quite similar to TinyOS “commands” and
“events”, which are termed a “split phase” interface. TinyOS is tightly dependent on the nesC
programming language [16], in which the framework is written, while Jacdac adopts a neutral
stance with respect to the client and server programming languages.
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TinyOS’s focus is on a modular framework that supports whole program optimization, which
benefits from a static approachwhere all code—the client application and hardware-specific servers—
is combined together [20]. Jacdac, on the other hand, focuses on dynamic discovery and hot-
swapping to support rapid prototyping with hardware modules. The starting point for Jacdac is
to separate the client code and server code on different MCUs, using a new wire protocol to join
them on a bus. There are various benefits: true memory/fault isolation of client and server code,
substitution of hardware modules without any change to client code or recompilation. TinyOS,
in comparison, uses several techniques to prevent a component’s memory from being corrupted
by the code of a different component [8] and requires recompilation when hardware needs to be
changed.
Of course, it also is worth noting that two decades separate TinyOS and Jacdac. Today, much

lower-cost MCUs—nonetheless capable of running Jacdac—are now available, allowing us to place
an MCU on each module. At the same time, modern US $1 MCUs are powerful enough to run
Jacdac at the application level. This has led to a shift in how these devices are programmed: from
assembly, through subsets of C, to full C and C++, and now towards high-level languages like
Python and JavaScript. Jacdac is a continuation of this trend towards higher levels of abstraction in
the hardware space.

6.2 IDLs for Distributed Computing and DSLs for Device Drivers

There is a long and rich history of interface definition languages (IDLs) for specifying the abstract
interfaces to components/services in a language-independent manner, ranging from object-oriented
models for distributed computing with (default) remote procedure call (RPC) semantics [14] to
stateless models with four-way transmission semantics such as WSDL [37]. Jacdac follows the
WSDL paradigm with respect to transmission options, simplified/adapted for embedded systems as
discussed previously in Section 3.

Also relevant are domain specific languages (DSLs) for aiding the development of device drivers [7,
22, 23, 27, 34]. Devil [23] addresses the error-prone nature of writing the C programs that interface
with specific hardware, especially as hardware documentation often is ambiguous or inaccurate, by
providing a formal specification of the functional interface to hardware, from which C stubs can be
generated. Devil models the interface to a device via three levels of abstractions: a physical address
space of bytes; named registers; and finally, variables that cast registers into C types.
Many device driver DSLs follow this basic paradigm of interfacing to the C type system, as

the goal is to aid the developer in writing correct C device drivers. In contrast, the goal of Jacdac
specifications is to capture the functional interface to a wide class of devices at a higher-level of
abstraction, while supporting a packet-based protocol (rather than a C interface). Towards this end,
Jacdac provides a more expressive type system with support for units, uses a logical address space
rather than physical, and provides support for actions and events, as well as registers.

6.3 Embedded Protocols and Toolkits

We analyze existing protocols with respect to three dimensions used to guide the design of Jacdac:

• Standardized service interfaces: Protocols such as USB (and Jacdac) abstract hardware via
standard interfaces so that devices with similar functionality can act as drop-in replacements
for one another. However, most of the interfaces provided by protocols for MCUs are low-level
and do not provide this level of abstraction.

• Communication paradigm: While some communication protocols support only direct links
between two devices (1:1), others define specific roles for devices on the network to reduce
the complexity of peripherals therefore creating 1:N interconnects. To enable more flexible
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peer-to-peer scenarios, some protocols adopt an N:M communication paradigm, as Jacdac
does.

• Dynamic device/service discovery: Once a device has been connected, some protocols perform
automatic service discovery to load the correct driver to operate a device. Without automatic
service discovery, applications require prior knowledge of any software required to operate
the device and its services. Applications also need to be recompiled to support new devices.

6.3.1 Wired Protocols. Widely used and highly efficient, I2C and SPI are the protocols of choice
when connecting on-board peripherals to MCUs [9, 18, 30]. Driver writers use (statically assigned)
peripheral addresses and adhere to individualized peripheral register maps to interact with and
configure peripherals.
RS232, which is based on a universal asynchronous receiver transmitter (UART), has been ex-

tremely popular over the years. It is designed for point-to-point, full-duplex communications
between two devices such as MCUs [29]. RS232 defines the format of bytes rather than the specifi-
cation of packets, giving developers freedom over the packet structure. RS422 builds on RS232, but
instead adopts a 1-to-many paradigm (1:N), and RS485 builds on both, applying a many-to-many
(N:M) paradigm [1, 32].

Dallas 1-wire brings both communication and power to low-cost MCU-based peripherals con-
nected to a single wire bus (with a second connection for ground) [4]. Each peripheral draws power
from the bus, provided by a single host, storing charge that is used to temporarily power peripherals
during communications.

USB (the Universal Serial Bus) [33] is designed for dynamically connecting peripherals to personal
computers. Instead of providing just a physical transport like I2C, SPI, and RS232, USB contributes
an entire stack that hides the complexities of address allocation and the transmission of packets
to peripherals. The abstract driver model of USB enables the plug-and-play of peripherals and for
driver reuse between devices, though at significantly higher cost than Jacdac.

While these protocols enable fast communications between the embedded device and peripherals,
the development and debugging experience requires specialist tools and knowledge. Jacdac aims to
simplify this experience while combining the dynamism of USB with the simplicity RS232.

6.3.2 Toolkits for Combining Embedded Devices and Peripherals. .NET Gadgeteer is a modular
electronics toolkit that enables the integration of peripherals to a central MCU using a custom
cable and socket system [36] supporting communication via UART, I2C and SPI. YAWN is based
on UART and requires one host to control peripherals [35]. E-TAG and i*CATch peripherals are
pre-programmed with unique I2C addresses [19, 24]. Other work enhances I2C using additional
protocols to add on-the-fly address allocation [28]. While many of the above toolkits have succeeded
in enabling the integration of embedded devices and peripherals, most of these solutions have
worked within the constraints of static protocols and use higher-level APIs to simplify access to
them, rather than changing the stack to support a true separation of concerns between client and
server code, as done with Jacdac.

7 CONCLUSION

We have presented Jacdac, a platform for the dynamic composition of embedded systems from
microcontrollers and hardware peripherals such as sensors and actuators. Central to the design of
Jacdac is the specification of services, used to standardize the access to sensors/actuators and other
hardware on the Jacdac bus, supported by a protocol that effectively separates application logic
(on clients) from hardware (on servers), while enabling the dynamic discovery of devices and their
services. As we have shown, a service architecture can be achieved at a very low cost and with
acceptable overhead for many applications.
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