
ADR-X: ANN-Assisted Wireless Link Rate Adaptation for Compute-Constrained
Embedded Gaming Devices

Hao Yin*

University of Washington
Murali Ramanujam*

Princeton University
Joe Schaefer

Microsoft
Stan Adermann

Microsoft

Srihari Narlanka
Microsoft

Perry Lea
Microsoft

Ravi Netravali
Princeton University

Krishna Chintalapudi
Microsoft Research

Abstract
The wireless channel between gaming console and accessories
e.g. controllers and headsets, experiences extremely rapid
variations due to abrupt head and hand movements amidst
an exciting game. In the absence of prior studies on wireless
packet losses for console gaming, through extensive evalua-
tions and user studies, we find that state-of-the-art rate adap-
tation schemes, unable to keep up with these rapid changes,
experience packet loss rates of 2-10% while loss rates that
are 10× lower (0.1-0.5%) are required to ensure a high qual-
ity gaming experience. We present ADR-X, an ANN-based
contextual multi-armed bandit rate adaptation technique that
continuously predicts and tracks the channel and picks appro-
priate data rates. A key challenge for ADR-X is that it must
run on power and compute constrained embedded devices
under realtime constraints. ADR-X addresses this challenge
by meticulously crafting an ANN that leverages existing com-
munication theory results to incorporate domain knowledge.
This allows ADR-X to achieve 10× lower packet losses than
existing schemes while also running 100× faster than state-
of-the-art reinforcement learning schemes, making it suitable
for deployment on embedded gaming devices.

1 Introduction
Gaming is a $200 billion industry experiencing a rapid up-
ward trajectory in growth. A typical gaming setup comprises
a gaming console/PC located within 10 feet of the gamer. Dur-
ing gameplay, various gaming accessories such as controllers
with joysticks and buttons [42,65], headphones or specialized
headsets for audio, VR, or AR [43, 66] connect to the console
either via cables or wireless (Figure 1). The console continu-
ously receives player inputs, such as button interactions and
joystick maneuvers, and adjusts the game state in real-time.
Subsequently, it generates and dispatches audio, video, and
tactile feedback (like haptic responses) to the respective con-
nected accessories. The accessories are typically power and

* These authors contributed equally to this work.

Figure 1: A typical gaming setup.

compute constrained embedded devices e.g. Xbox controllers
use 250-600MHz ARM based processors [1].

Despite wired headsets/headphones impeding free move-
ment, ardent gamers today, prefer wired over wireless connec-
tivity as Wi-Fi1 packet losses deteriorate game audio/video
quality. Prior user studies have determined that packet loss
rates < 0.5% are necessary for a high quality gaming au-
dio/video experience [58, 70]. However, these studies were
conducted in the context of internet game streaming assuming
independent (Bernoulli) packet losses over wired connections.
To the best of our knowledge, no prior study examines the
nature and effect of packet losses in a console gaming session
over wireless links between the accessories and the console.

Amidst an exciting game (e.g. car racing or first person
shooter games), the constant jerky hand (controller) and head
(headset) movements of the gamer, rapidly affect the wire-
less channel resulting in up to 15dB signal strength variations
within 50-100ms (Sec 3.2) – 5−10× faster than usual Wi-Fi
usage scenarios. We find that these rapid changes result in
increased packet losses as the wireless Adaptive Data Rate
(ADR) schemes are too slow to react. We also find that packet
losses occur in succession, pairs and triplets, ≈ 50% of the
time (rather than independently as previous user studies as-
sumed). We conduct the first user study to quantify the effect
of successive packet losses on gaming audio/video experience
and find that (Sec. 3.3) consecutive losses are in fact more
perceptible than random isolated losses; e.g. with 2-3 consec-
utive losses, gamers negatively perceive loss rates as low as

1Although some existing gaming platforms adopt Bluetooth Low Energy
(BLE) for connectivity, low throughput and high congestion in 2.4 GHz
results in large latency, poor scalability.

0.1% for VR, a harsher requirement than that suggested by
prior studies.We have obtained an IRB for this study.

While there exists a vast literature of wireless ADR
schemes (Sec. 2.2), they have neither been tested nor designed
for these severe gaming conditions. It is therefore no surprise
that in our extensive evaluations (Table 1) of the state-of-the-
art ADR techniques, as well as from traces collected from
off-the-shelf gaming devices, we find 1− 10% packet loss
during an active gaming session, falling well short of the
desirable packet loss target.

Our key contribution is a novel wireless ADR technique,
ADR-X, that achieves 10× lower packet losses (0.1-0.3%)
than state-of-the-art during gaming conditions and an order
of magnitude lesser consecutive packet losses by “closely” fol-
lowing and predicting the wireless channel dynamics. ADR-X
takes a hybrid approach – it leverages the well established
analytical results from communication theory alongside an Ar-
tificial Neural Network (ANN) based contextual multi-armed
bandit. It employs online learning to implicitly model, predict
and adapt continuously to host radio hardware, background
interference conditions and gamers’ physical movement pat-
terns that are hard/impossible to model analytically. As we
demonstrate in our evaluations (Sec. 5.2), reinforcement learn-
ing approaches that do not leverage domain knowledge (e.g.
PPO [60]) run 100× slower than ADR-X and are unable to
meet the real-time and low compute constraints imposed by
the embedded gaming accessories.

Designing an ADR scheme that can predictively determine
the ideal data rate under the fast changing gaming channel
conditions poses two key challenges:
Wireless gaming channels are hard to predict analytically.
Communication theory provides analytical functions that can
accurately predict packet error rates over a wired medium [50].
Wireless channels however are far less amenable to modelling
and prediction due to frequency selective fading that changes
rapidly as the gamer changes hand and head orientations dur-
ing gameplay and unpredictable background interference. As
we discuss in Section 2.2 prior attempts [18] to analytically
predict packet loss are extremely sensitive to small calibration
and measurement errors, background interference, wireless
channel asymmetry due to differences between transmitter
and receiver radios, variations due to radio circuit compo-
nents such as Automatic Gain Control (AGC), etc. ADR-X
leverages the capability of ANNs to model and adapt to the
intractable effects of the wireless channel and gamer’s move-
ments in a data-driven manner.
Computation, power and real-time Constraints. (Sec. 4.2)
Gaming accessories e.g. controllers, headphones and headsets,
are low power embedded devices with limited computation
capabilities. For example, Xbox controllers uses 250MHz
ARM processors [42] and employ sleep duty-cycling roughly
1 out of 8ms to save power. A naive strawman approach might
be to employ ANN based online reinforcement learning to

predict the appropriate data rate. However, as our evaluations
show (Sec. 5.2), this approach proves to be extremely compu-
tationally demanding and unsuitable for embedded gaming
devices. The key insight in the design of ADR-X is to rely on
an ANN to model only the intractable effects while leveraging
the predictive power of analytical models used in wired com-
munication channels. This relieves the ANN from the burden
of re-learning well-known communication theoretical results,
making it more accurate and computationally economical.
ADR-X overview. ADR-X employs a contextual multi-armed
bandit architecture (Sec. 4.1) that comprises three stages. The
first stage is an ANN that transforms the wireless channel
measurements (e.g. Signal to Noise Ratio (SNR), Channel
State Information (CSI)) into an equivalent wired channel con-
ducted SNR – CSNR, by implicitly and continuously learn-
ing to model the latent effects such as background interfer-
ence, calibration errors, wireless channel asymmetry, hard-
ware/firmware specifics and gamer movements. The second
stage then leverages communication theory results to predict
packet success rates for each of the possible data rates. In
practice, to facilitate efficient gradient descent-based learn-
ing, we approximate the complex analytical communication
theory models in the second stage using sigmoid functions
(used commonly in training ANNs) with fixed pre-computed
parameters. Finally, the third stage uses an ε−greedy sam-
pling approach commonly used in multi-armed bandits to
pick a suitable data rate. Further, as described in Section 4.2,
ADR-X employs Wi-Fi domain specific feature engineering
for the ANN to allow for a small ANN architecture.
Dealing with survivorship bias. When packets are lost, so
are the associated channel measurements used to train the
ANN. This leads to survivorship bias [63] i.e. the ANN learns
only from successful examples leading to poor performance.
To solve these problems ADR-X uses a specially crafted
re-transmission strategy (Sec. 4.4) with stepped reductions
in data rate for each subsequent re-transmission that serves
as “training wheels” by providing second (or third) chances.
When an ACK is received after one (or more) retries, ADR-
X obtains negative examples corresponding to prior losses
and channel state. As ADR-X learns, its reliance on these
“training wheels” diminishes. Further, ADR-X uses imputa-
tion techniques [14] such as interpolation when packets are
lost despite the re-transmissions.
Quick start using pretrained/federated models. Starting
from a random initialization, when the player plays for the
first time, ADR-X takes about 50s of gameplay to learn and
converge (Sec. 5.3). We find that techniques such as (i) pre-
training the ANN on IEEE channel simulations, and (ii) using
federated model weights from other gamers or prior sessions
reduce this to about 20s. Further, this time reduces to about
10s after a few gaming sessions. The stepped re-transmission
strategy (described earlier) helps ADR-X in these initial few
seconds to overcome high packet losses.

Summary of contributions.
• We provide the first user study and insights on the nature

of packet losses for console-accessory wireless links and
their effect on the gaming audio/video experience (we
have obtained an IRB for the study). We show that ex-
isting wireless ADR schemes are unable to adapt “fast
enough” in response to the high dynamism of gaming
wireless channels resulting in successive losses rather
than isolated incidents. To the best of our knowledge, our
user study is the first to highlight that the traditionally ac-
cepted target loss rate of 0.5% for individual losses should
be supplemented by 0.1% for successive losses.

• We propose ADR-X, an ANN assisted contextual multi-
armed bandit based novel adaptive data rate scheme that is
suited for power and compute constrained embedded gam-
ing accessories. ADR-X predictively adjusts data rates
based on the history of channel wireless measurements
and packet losses.

• We evaluate ADR-X extensively across 20 diverse games*,
including multiple genres such as First Person Shooter
(FPS), racing, and action. In real-world experiments with
practical hardware, under extensive comparisons against
a bevy of state-of-the-art ADR baselines including sev-
eral ML based approaches, ADR-X is the only scheme
to achieve 0.1−0.3% packet loss on hardware matching
Xbox accessory clock speeds of 250-600MHz.

2 Background and Related Work

Signal to Noise Ratio (SNR) η, determines the data rate at
which bits can be successfully sent over a communication
channel. A data rate too high causes bits to be lost, and a
data rate too low is wasteful in terms of time and energy.
Since wireless channel conditions vary significantly over time;
Adaptive Data Rate (ADR) techniques aim to adapt data rate
to these changes by choosing the most appropriate data rate.
The Modulation Coding Scheme (MCS) index, a number be-
tween 0 to 9, in Wi-Fi determines the data rate of transmission
– the higher the MCS index, the higher the data rate. For each
MCS index m, communication theory allows the bit error rate
to be calculated analytically using a function berm(η) [16].

2.1 Channel Measurements
In OFDM [49] modulation used by Wi-Fi, a 20MHz channel
is split into 52 sub-carriers (sub-channels) in 802.11n and 242
sub-carriers in 802.11ax. Bits in a packet are spread out and
transmitted over these sub-carriers.
CSI. A radio wave transmitted over the ith sub-carrier un-
dergoes changes in amplitude and phase represented by a

* Full list of games with media samples exhibiting the impact of packet
losses is at https://muralisr.github.io/ADRX/.

complex number ci. Channel State Information (CSI) collects
all these values into a vector c =< c1, · · · ,cC >. While all Wi-
Fi radios have to necessarily measure CSI for each received
packet to decode, not all radio hardware/firmware provides
access to CSI information through an API.
RSS. Almost all radios provide Received Signal Strength
(RSS) measured in dBm, for each received packet – this mea-
sures the power level (strength) of a received signal.
SNR. Some radio APIs provide SNR, η (in dB) for each
packet. SNR and RSS in dB are related to each other as [18]

SNR = RSS−NF−AGC (1)

In Eqn. (1) NF is the noise floor of the radio and AGC is
Automatic Gain Control of the radio which is a dynamic
gain introduced by the radio circuit. While some radio APIs
provide Noise Floor (in dBm) of the radio [22,52], they do not
provide AGC. In practice computing SNR using RSS and NF
without accounting for AGC can lead to several dB of error.
SNR per subcarrier. As prior work [18] demonstrates, SNR
is an extremely poor predictor for packet loss due to frequency
selective fading, as each sub-carrier experiences a different
SNR and hence experiences a different bit-error rate. The
success or failure of a packet depends on the aggregate success
of all the bits transmitted across all the sub-carriers. The SNR
of the kth sub-carrier, ηk can be computed by scaling η by the
kth component of unit vector of c,

ζk = C
∑i ∥ci∥2 ∥ck∥

ηk = η−10log10 ζk
(2)

Effective SNR (ESNR). In channels undergoing frequency
selective fading, to tackle the ineffectiveness of SNR in pre-
dicting packet rate, [18] introduces ESNR (ηesnr). It summa-
rizes the per-subcarrier values < η1, · · · ,ηC > into a single
value to represent an equivalent SNR value corresponding
to a flat-fading channel (a channel without frequency selec-
tive fading) by treating the wireless channel to be composed
of several narrow wired channels, one for each sub-carrier.
Thus, for each MCS index m, [18] suggests computing ηesnr
analytically by calculating the average bit rate across all the
sub-carriers,

ηesnr = ber−1
d

(
i=C

∑
i=1

berd(ηi)

)
(3)

ESNR Computation is sensitive and error prone. Calibra-
tion errors and measurement errors of a few dB in CSI, RSS,
noise floor, or SNR are common in all radios. Further, berm
functions are exponential (based on the Q function) with very
sharp transitions from 0 to 1 within 2-3 dB. This makes ESNR
computation extremely sensitive to even small errors – 2-3
dB error can result over 10dB error in effective SNR. Conse-
quently, subsequent work [13] uses an exponentially weighted
mean of ηi, which is estimated during an initial calibration
phase, rather than relying on Eqn. (3).

https://muralisr.github.io/ADRX/

2.2 Existing ADR Techniques
In this paper, we broadly classify ADR techniques into re-
active and proactive ADR techniques. The former relies on
recent packet loss and re-transmission statistics (e.g. using
running average estimates). The latter makes use of channel
measurements such as RSS, SNR, CSI etc. to make a timely
choice based on the current state of the channel. Further,
several recent ADR techniques, both reactive and proactive,
employ ML to cope with vagaries of the wireless channel.
Reactive techniques. ARF [27], AARF [35], and CARA [31]
gradually increase or decrease the rate based on the success
or failure of consecutive transmission results. Several rate
control algorithms are designed to optimize specific metrics
instead of losses only e.g. average transmission time [5, 71],
frame loss ratio [36, 48, 73, 74], bit error rate [64, 69] and
throughput [9, 17, 47, 72, 75].
Reactive techniques Using ML. NeuRA [30] and MLRA
[39] attempt to reduce sampling overhead by using a neural
network model to predict the throughput of unsampled data
rate. Thompson Sampling [34] uses a multi-armed bandit
approach to improve the sampling of different data rates. As
discussed in Section 3.2, reactive techniques in general are too
slow and are unable to keep pace with the channel dynamism
during gaming, leading to a poor gaming experience.
Proactive or channel measurement-based techniques. [33]
uses RSS while [12, 21, 26, 38, 54, 56, 61, 68] use SNR mea-
surements from received packets to dynamically adjust trans-
mission rates. As discussed in Section 2.1 the performance
of these schemes is limited by the fact that RSS and SNR do
not take into account the effects of frequency selective fading.
While ESNR-based techniques [18] account for frequency se-
lective fading, as discussed in Section 2.1 their performance
is limited due to the sensitivity of ESNR computation to
hardware calibration errors and the requirement of offline
calibration for each device.
Proactive schemes using ML. Recently, researchers have
demonstrated the potential use of ML in proactive schemes
through Simulation studies [28, 29, 39, 53]. To the best of
our knowledge, EDRA [11] is the only existing implemented
proactive ML-based ADR scheme. EDRA uses reinforcement
learning, aiming to maximize throughput through joint rate
and bandwidth adaptation by using Deep Q-Learning [19]
with SNR, loss rates, and service times as inputs. However,
EDRA imposes severe computational requirements – even a
single inference takes 1.3-3.7ms on high-performance CPUs
like i7-8700 and i5-6200U.

3 Packet Losses in Gaming
In this section, we analyze wireless packet losses during active
gaming sessions. We show how off-the-shelf ADR schemes
are unable to keep up with the highly dynamic gaming wire-
less channel and cause multiple consecutive packet losses.

We then describe our user studies that show users are more
sensitive to multiple consecutive losses than isolated ones.

0

500

1000

1500

P
a

c
k

e
t

S
iz

e
 [

B
y

te
s

]

0 10 20 30

Time [ms]

UL Audio

DL Audio

Controller

Figure 2: Xbox traffic.

0

500

1000

1500

P
a

c
k

e
t

S
iz

e
 [

B
y

te
s

]

0 10 20 30 40 50 60

Time [ms]

UL Head/Controller Tracking

DL Burst Video Frames

0

500

1000

1500

13 13.5 14

Figure 3: VR traffic.

3.1 Gaming Traffic Patterns
To understand packet flow in gaming traffic, we collect packet
traces for Xbox [41] and Oculus [40] Quest 2 using a sniffer
during multiple gaming sessions – we highlight the results
from two games (out of the 20 games in our corpus) Cross-
FireX (Xbox) and Robo-Recall (Oculus Quest 2), but we note
that trends persist across games. As seen in Figure 2, the
Xbox console transmits one PCM game audio packet (1646
bytes), receives one chat audio packet (492 bytes) and one
game input packet (88 bytes) every 8ms. In VR traffic (Fig-
ure 3), a burst of roughly 50 packets (total of about 500Kb)
comprising game video and audio are transmitted once every
16.6ms (corresponding to 60Hz video frame refresh rate). A
headset tracking packet (326 bytes) is transmitted every 8ms.

3.2 Packet Losses During Gaming
In this sub-section, our goal is to gain insights into how wire-
less packet losses occur during an active gaming session.

Figure 4: The setup for con-
sole gaming experiments.

Figure 5: The setup for VR
gaming experiments.

Measurement methodology. In order to emulate Xbox and
Oculus Quest 2 radio firmware for controlled experiments, we
collect and replay game traces between two PCs. We affix an-
tennas on the console/desktop and the controller (since players
connect to the headset via an audio jack from the controller)
and VR headset (Figure 4, 5). We ask the gamers to play a
game using the controller/headset with the affixed antenna.
This allows the antenna to experience the same head/hand
motions as the headset/controller. When actual gaming traf-
fic is exchanged between the controller/headset and the con-
sole/desktop during a gaming session, we transmit gaming
traffic traces in an interference-free DFS channel [45] between

Figure 6: Channel, 50%ile SNR, re-transmissions, Losses and MCS
for Xbox Traffic.

4300 4400 4500 4600 4700 4800 4900 5000 5100 5200

Time (ms)

0

10

20

5
0

%
il

e
 S

N
R

[d
B

]

P50 SNR

Loss

Retransmission

4200 4400 4600 4800 5000 5200

Time [ms]

3
4
5
6
7

M
C

S

80ms 80ms

A CB D

Figure 7: Rate adaptation is unable to keep up with rapid channel
changes causing a cluster of losses.

the two PCs. We use PicoScenes toolbox [24, 25] to capture
the transmitted packets and measure their CSI and SNR. We
use these measurements to compute individual SNRs for each
of the 52 Wi-Fi sub-carriers as described in Section 4.2. We
consider three scenarios.
• static – the controller/headset is static, on a table about 5

feet from the transmitter in an empty room
• people movement – the controller/headset is static on a

table 5 feet from the transmitter but with a person walking
around in the room.

• game play – a gamer actively plays using the controller/
headset 5 feet from the transmitter (Figure 4, 5).

Observations. Figure 6 depicts the SNR heatmap for each of
the 52 Wi-Fi sub-carriers spanning a 20MHz Wi-Fi channel
as a function of time for each of the three scenarios. Figure 6
also depicts the instantaneous 50%ile SNR across all the sub-
carriers. This is based on the intuition that a packet loss in
Wi-Fi will occur when a “significant” fraction of sub-carriers
experience fading (low SNR) so that error correction is unable
to recover the correct bits. We also plot packet re-transmission
events and loss events (when the re-transmission fails) and
the MCS index (data rate) chosen by the native ADR scheme
in an off-the-shelf device.

In the static scenario, the wireless channel is excellent with
all the sub-carriers having an SNR of 30dB or higher with
no losses or re-transmissions. In the people movement sce-
nario, the channel sees variations with time due to changes
in multi-path reflections, and occasional packet losses. When
the gamer holds the controller or wears the headset and starts
playing the game, the channel changes rapidly, leading to a
large number of re-transmissions and packet losses. The ADR
scheme shows large frequent variations in MCS Index.
Data rate adaptation is unable to keep up. Figure 7 shows
a zoomed 1s section of the wireless channel for the playing
scenario between 4.2 to 5.2 seconds. The 50%ile SNR across
subcarriers shows a variation of over 15dB with a rapid de-
cline of up to 10dB within 80ms in sections AB and CD. The
interesting observation in Figure 7 is that while the channel
is degenerating, as seen by the decreasing trend in the 50%ile
SNR in AB and CD, the ADR scheme actually increases data

rates (MCS Index) and then starts reducing it when the chan-
nel SNR is improving – the exact opposite of the desired
behavior. This is because of the native ADR scheme, which
is reactive, i.e. relies on recent packet re-transmission and
loss statistics (e.g. running average) to adapt data rate. Before
A, the channel 50%ile SNR improves by almost 15dB within
a matter of 70ms. Based on the running average, after A, as
the channel deteriorates, the data rate is increased causing a
cluster of packet re-transmissions and losses. After B, even
though the channel has an improving trend, data is decreased
due to the history of failures.
Consecutive packet losses. As seen from Figure 7, due to
ADR’s reaction lag, packet losses occur in clusters and con-
secutive packets are lost when channel conditions change
rapidly. Figure 8 shows the distribution of the number of con-
secutive losses for different distances between the controller
and console. As seen from the figure, about 55-65% (100%-
fraction of single packet losses) of all the packet losses occur
with two or more packets lost consecutively. Our experiments
with the VR headset (elided for space constraints) also show
a similar cluster of losses.

3.3 Effect of Consecutive Packet Losses
Prior studies [7, 10, 57, 58, 70] in the context of internet game
streaming have shown that Bernoulli (independently occur-
ring) packet loss rates beyond 0.5% deteriorates audio/video
quality for online gaming. However, to the best of our knowl-
edge, there has not been a study quantifying the effect of con-
secutive packet losses on audio/video quality in a wireless
console gaming setup. Thus, we conduct a study to measure
the effect of consecutive packet losses on gaming audio and
video.
Test data. For our study, we chose 30 Xbox game audio
clips each 15s long, and 60 VR game video clips each
5s long as our original data set. These clips were drawn
from the games in our corpus comprising 15 popular Xbox
games and 5 popular VR games including racing, First Per-
son Shooter (FPS), and other action games(full list of games
with media samples exhibiting the impact of packet losses
is at https://muralisr.github.io/ADRX/). Audio data
is streamed as PCM audio packets (similar to Xbox) with

https://muralisr.github.io/ADRX/

1
pkt

2
pkt

3
pkt

4
pkt

5
pkt

>5
 p

kt
0

0.1

0.2

0.3

0.4

0.5
P

D
F

3 feet

10 feet

16 feet

Figure 8: Consecutive packet losses due to
slow rate adaptation.

0.1 0.5 1 3 5
Loss Rate [%]

0

1

2

3

1 Pkt

3 Pkts

6 Pkts

Slightly

Worse

Worse

Same

Much

Worse
Consecutive Pkt Losses

Figure 9: Effect of packet losses on game
audio.

0.1 0.5 1 3 5

Loss Rate [%]

0

20

40

60

80

100

1 Pkt

3 Pkts

6 Pkts

Consecutive Pkt Losses

Good

Fair

Poor

Bad

Excellent

Figure 10: Effect of packet losses on game
video.

8ms worth of data in each packet. Video data stream is en-
coded using H.264 video compression. Losses are injected
for each stream randomly, parameterized by different loss
rates ρ = {0.1%, 0.5%, 1%, 5%, 10%} and consecutive loss
length b = {1,3,6} packets. These parameter choices are in-
formed by the loss patterns observed during our experimental
evaluations (Sec. 5) of existing ADR schemes. This gives
us 15 different combinations of < ρ,b >. Once a packet is
randomly dropped with probability ρ, b−1 following packets
are also dropped to capture consecutive losses during rate
adaptation.
Measuring effect on game audio We conduct a user study ad-
hering to the Comparative Mean Opinion Score (CMOS) test
methodology as dictated by the ITU-T P.808 standard [44].
CMOS, as a subjective measure based on human percep-
tion, was chosen for its ability to accurately assess user-
experienced audio quality degradation due to packet losses,
particularly relevant for gamers. In contrast, PESQ [55], an
objective algorithmic measure, lacks this direct user experi-
ence perspective, making CMOS more suitable for evaluating
relative audio quality in our context. IRB approval from the
author’s organization was obtained prior to this study. Ten
unique participants were recruited to listen and compare two
audio clips – a lossy and an original clip, without knowing
which clip was the original. On a scale from -3 (much worse)
to +3 (much better), participants scored audio quality. During
the study, care is taken to sanitize the results for faulty data
points by eliminating incoherent outputs, and a calibration
step is used to ensure proper audio setup on the participants’
computers before the experiment (as per ITU-T P.808). Each
combination of < ρ,b > received 300 votes in all (30 clips
×10 people). As seen from Figure 9, our study reveals that
listeners are more sensitive to consecutive packet losses –
deterioration becomes perceptible at even 0.5% loss if b ≥ 6.
Measuring effect on game video To quantify the effect of
packet losses on VR video, we use the Video Multimethod
Assessment Fusion (VMAF) [46]. VMAF is a popular full-
reference objective video quality assessment model developed
by Netflix that uses human-vision modeling. VMAF predicts
a quality score that ranges from 0 to 100 for each video.
Figure 10 shows that ρ ≤ 0.5 and b ≤ 3 are required to ensure
the highest perception quality.

3.4 Conclusions
We summarize the observations in this section as,
• During gaming, the wireless channel varies by 10-15dB

within a matter of 50-100ms.
• Rate adaptation is unable to keep up with these rapid

changes resulting in consecutive packet losses.
• User studies indicate more than 2 consecutive packet

losses causes “significant” visual artifacts even at the
widely accepted standard of 0.5% packet loss rate. During
gaming, consecutive packet losses become imperceptible
only at the stricter threshold of 0.1%.

4 ADR-X
ADR-X continuously tracks the wireless channel and adapts
data rates predictively using the recent history of channel
measurement time series to avoid incurring losses. The fact
that gaming traffic is periodic 8ms-16ms (Sec. 3.1) facilitates
this approach since wireless channel measurements (e.g. CSI
and SNR) can be measured each time a packet is received.
ADR-X combines the strengths of ANNs to model the un-
measurable or hard-to-measure effects while leveraging the
analytical simplicity of predicting packet loss over wired chan-
nels. This approach allows ADR-X to be both accurate and
computationally efficient.

4.1 Overview of ADR-X
ADR-X takes a contextual multi-armed bandit approach –
where a feature vector derived from the recent history of
channel measurements serves as context (Sec. 4.2). ADR-X
comprises three logical parts – i) CSNR Mapper, an ANN
with learnable parameters that uses online gradient descent
based learning [6] to transform the context into Conducted
SNR (CSNR), ii) PSR Calculator, a layer pre-trained using
standard communication theory results to predict the packet
success rate given CSNR, and finally iii) MCS Sampler, an
explore-exploit module using multi-armed bandit approaches
to select the appropriate transmission rate to facilitate online
training.
CSNR Mapper. CSNR in spirit is the same as ESNR (Sec. 3)
– it maps the wireless channel measurements to a wired equiv-
alent SNR. However, while ESNR is computed analytically,

Figure 11: Architecture of ADR-X

0 5 10 15 20 25

SNR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
S

R

MCS1

MCS2

MCS3

MCS5

MCS6

MCS7

MCS8

MCS0

MCS4

Figure 12: Example of PSR-SNR
Curves for L=1536 over 802.11n.

0 2 4 6 8 10

Time [s]

0

5

10

15

20

25

30

[d
B

]

Tx-Rx SNR

RX-Tx SNR

Difference

Figure 13: Channel asymmetry

treating each sub-carrier as an individual wire (Eqn. (3)),
CSNR uses an ANN to learn this mapping on the fly in a
data-driven manner. In this way, CSNR hopes to account
for several practical hard to measure or un-measurable latent
effects inherent in wireless communication – such as calibra-
tion and measurement errors, unknown AGC (Automatic Gain
Control) or noise floor, background interference levels, wire-
less channel asymmetry, etc. as well as the nature of player’s
movements.

The CSNR mapper takes an input feature vector f =<
f1, f2, .., fn > extracted from the time series of channel mea-
surements e.g. CSI, SNR, RSSI, etc. (as described in Sec-
tion 4.2) and predicts the CSNR ηcsnr in dB as,

ηcsnr = F(f,(Θ)) (4)

In Eqn. (4), Θ are learnable parameters – weights, biases etc.
PSR Calculator. Since CSNR represents the SNR for a flat
fading channel. Communication theory provides analytical
formulae berm(η) to predict bit-error rate corresponding to
MCS index m (data rate) and SNR η (Sec. 2). Packet Success
Rate (PSR) may then be computed using berm(η) and packet
length L (Figure 12). These PSR functions however, tend to be
complex and hard to compute analytically and typically frac-
tional powers of er f c(x) [2]. For enabling gradient descent
based learning in ADR-X then, we would need to compute an-
alytical expressions for the derivatives of these PSR functions,
which are expensive to compute. Instead, ADR-X observes
that the PSR-SNR curves qualitatively resemble a typical
switching function [4] e.g. a Sigmoid function [8]. Thus,
in ADR-X, the PSR Calculator approximates the PSR-SNR
curves using the Sigmoid functions, a function commonly
used in Neural Networks. The packet success rate is com-
puted as,

PSR(m,L) =
1

1+ e−(αm,L+βm,Lηcsnr)
(5)

In Eqn. (5), PSR(m,L) is the estimated PSR for the data rate
corresponding to MCS index m, and the number of data bytes
L. We first use Matlab IEEE flat fading model simulations to
compute PSR for various values of SNR for different values
of < m,L >. Then we estimate αm,L and βm,L as a Least Mean
Square (LMS) estimate to fit these values. Since there are too
many possible values of L, in our implementation we compute
three sets of PSR-SNR curves for broad L ranges – (0-64
bytes], (64-512 bytes] and (512-1536 bytes] by generating

SNR, PSR values randomly sampling over the range of L.
αm,L and βm,L remain fixed during online training in ADR-X.
MCS Sampler. Once the PSR for each MCS Index is com-
puted, we must choose the appropriate data rate. In ADR-X
we define the optimal MCS value MCS∗ as one that offers
PSR higher than a certain threshold θPSR,

m∗= argmaxmPSR(m,L)> θPSR (6)

Since we aim to achieve < 0.5% PSR, we choose θ = 0.999.
Since the wireless channel changes with time, as described in
Section 3.2, ADR-X must continuously explore to adapt and
train correctly. Always sampling too conservatively will lead
to ADR-X choosing lower MCS values resulting in increased
power consumption and wastefully long transmission times.
Thus, ADR-X must occasionally take risks and explore higher
MCS rates. This problem is well known as the explore versus
exploit problem in reinforcement learning literature and there
exist several techniques [3, 20] to handle this tradeoff. In our
implementation, we choose an ε-greedy approach as it works
well in practice. MCS∗ is chosen with the probability of ε

(0.9 in our implementation) and a rate one step higher with a
probability of 1− ε.

4.2 Feature Engineering
Since ADR-X uses an ANN, it can potentially be generalized
to use different kinds of channel measurements. Almost all ra-
dios provide RSS while some others provide CSI in addition.
Thus, we generate two different flavors of features depend-
ing on the available channel measurements – ADR-X(CSI,
RSS) and ADR-X(RSS). ADR-X(RSS) simply uses a time-
series history of recently measured RSS value samples that are
8ms/16ms apart. ADR-X(CSI, RSS) uses the cumulative dis-
tribution function (CDF) of per-subcarrier SNR (ηi) described
in Section 3. For computing SNR from RSS, we simply use
NF as a constant -101db and let the ANN implicitly model
the errors in the SNR.

For ADR-X(CSI, RSS), the time series history of per-
subcarrier SNR values (Section 3) can lead to a large in-
put to the ANN which can be either 52 (802.11n) or 242
(802.11ax) per time step. ADR-X however, must run on power
and computation-constrained embedded devices such as 250-
600MHz ARM processors (used in Xbox controllers) [1, 42].

To achieve this, we engineer the features to reduce the burden
on the ANN itself in three steps.
1. Reducing frequency resolution. Instead of using all 52 or
242 values of per-subcarrier SNR, we compute the average
SNR over spectrum bins each 2MHz wide (computing an av-
erage over the constituent subcarriers in each bin) to generate
a vector v =< v1, · · · ,v9 > with nine values. This is based on
the observation that magnitudes of CSI of sub-carriers that
are “close” to each other in frequency are typically similar i.e.
correlated.
2. Sorting SNR values. We sort the nine values of v in a
decreasing order before presenting to the ANN - to create a
CDF representation of the values - vsorted .
3. Including historical time series. Since the per-subcarrier
SNRs show clear trends in 50-150ms time scales, we wish
the ANN to implicitly extrapolate the current channel quality
and compute PSR values. Thus, we provide the ANN with a
time series history of vsorted to allow it to make use of channel
trends. In our implementation, we found that using channel
information from 3 previous provides the most benefit. The
feature vector at time t, ft is computed as,

ft =
[
vsorted

t−(H−1)∆,v
sorted
t−(H−2)∆, · · · ,v

sorted
t

]
(7)

Here, H is the length of the time series and the feature
vector f comprises 9H numbers. Through experimentation,
we chose H = 3 for our implementation. When ADR-X loses
packets, it does not receive channel measurements. In this
case, we use linear interpolation on the historical CSI values
to fill in the gaps as imputation.
4.3 Online Training of ADR-X
ADR-X uses online training to allow it to adapt to changes in
wireless channel conditions.
Training Data. Each time a packet is transmitted, the receipt
of ACK or lack thereof indicates the success or failure of the
transmission. Thus, after each transmission, we obtain the
data < L,m,r >. Here L is the length of the packet, m is the
MCS index used and r is a binary variable equal to 1 if the
ACK was received or 0 if the packet was not received.

Figure 14: Channel measurements and feedback. ADR-X does not
use feedbackbut relies on the reverse channel measurements.
Obtaining RSS, CSI and wireless channel asymmetry. CSI
and SNR are obtained at the receiver (Rx) when a packet
is received, however, ADR-X runs on the transmitter (Tx)
(Figure 14). In principle, the receiver can explicitly provide a
channel feedback message with CSI and SNR information (as
employed in other proactive schemes). This approach consti-
tutes an additional communication overhead and complexity

of transmitting feedback. ADR-X, however, uses the channel
measurements from the received packets (or ACKs) on the
reverse path i.e. Rx-Tx instead of Tx-Rx. While in theory they
are supposed to be the same, in practice, these measurements
will be different (Figure 13), largely due to power differences
but also due to AGC and hardware/firmware differences. As
seen from Figure 13, there is a mean 5dB offset between the
Tx-Rx and Rx-Tx channel SNRs of two devices along with a
variation of up to ± 5dB. ADR-X implicitly learns to model
the channel asymmetry in-situ by using online training meth-
ods to learn the PSR from real transmissions. This allows it
to adapt to deployment scenarios with varying characteristics
and generalize to different devices.
Loss function and weight updates in ADR-X. Suppose that
the kth packet was transmitted using an MCS index m. Let δi,k
depict a binary indicator variable, capturing whether or not
the packet was successfully transmitted and MCS index i was
used. Thus, δi,k = 1 if i=m and the packet’s acknowledgment
was received and 0 otherwise. Further, suppose that the PSR
prediction of the ANN for this packet at MCS index m was
Pmk. The ADR-X loss function is given by,

Jloss =
1
M ∑

k
∑

i
δik (Pik −δik)

2 (8)

In Eqn. (9) M is the total number of packets. Note the loss
function is for the PSR is based on the Eqn. (5) with param-
eters from the channel model simulations, which will regu-
late the PSR from being too close to 1 such that the loss is
minimized trivially. ADR-X trains the weights of the ANN
using gradient decent-based back-propagation to minimize
Jloss using online training. After each packet, it runs one back-
propagation step using the MCS index, success/failure of
the latest packet, and the current feature vector f. We use a
learning rate of 0.001 in our implementation.
Outline of proof for the validity of ADR-X’s loss function.
Let pi be the true PSR for the ith MCS index and qi be that
estimated by ADR-X. As M → ∞, i.e. for a large number of
received packets, we have,

Jloss = pi (1−qi)
2 +(1− pi)q2

i (9)
∂Jloss

∂qi
= 2(qi − pi) (10)

Thus, at extremum qi = pi i.e. qi converges to pi. In other
words ADR-X constantly updates the weights to predict the
true PSRs.

4.4 Packet Re-transmission Strategy
Re-transmission is used in general to improve packet success
rates by giving more chances for the packet to succeed. Packet
losses in ADR-X cause two challenges – first, survivorship
bias and second, high pre-convergence losses.
Survivorship bias. When a packet is lost so is the associated
CSI and RSS information. This causes survivorship bias i.e.

ADR-X will be able to train only on positive examples us-
ing channel measurements and MCS rates from successful
transmissions. This can undermine the learning process.
Pre-Convergence losses. In the initial stages of learning or
when there are sudden changes in the wireless environment
e.g. due to channel change, ADR-X might experience higher
losses initially leading to poor audio/video experience.
Packet re-transmission strategy. To solve both these prob-
lems, ADR-X relies on a re-transmission strategy of using
packet re-transmissions at stepped lower data rate. Upon
packet loss, ADR-X re-transmits the packet immediately at
three indices below the MCS index suggested by ADR-X for
the original transmission. This choice provides insurance by a
margin of 10dB prediction error. Optionally, we also use a sec-
ond re-transmission at four MCS indices below the original
transmission in case the first re-transmission is also lost pro-
viding a cover of 15dB error. This approach provides negative
examples for transmissions that fail as well as positive exam-
ples when they succeed in re-transmissions. Further, these
re-transmissions also serve as “training wheels” by providing
second (or third) chances. As ADR-X learns, its reliance on
these “training wheels” diminishes and it succeeds without
re-transmissions as we demonstrate in our evaluations.

4.5 Federated Learning for Initialization
When the device is turned on the first time, ADR-X has to start
learning from no prior experience. In practice, this means ini-
tializing the weights of the neural networks randomly. Starting
from no experience, ADR-X may take about 20s - 2 minutes
to converge depending on the interference levels in the chan-
nel (Section 5). It is however possible to reduce this initial
convergence time using two strategies – first, pre-training
ADR-X on simulations and second, by leveraging the experi-
ences learned from other consoles using Federated Learning
(FL) [32]. ADR-X employs both these strategies in order to
reduce initial convergence time.

As we show in our evaluations (Sec. 5.3) using IEEE TGax
Channel Model B [67] simulations ADR-X’s convergence
time reduces to 20-40s with this optimization. The second ap-
proach is based on federated learning (FL) algorithms that con-
duct a weighted model aggregation over all the users through
weighted averaging of ANN network weights. If Wm are the
weights of the mth device. To fuse the individual models, FL
performs a weighted averaging operation:

W̃ =
M

∑
m=1

ΩmWm, (11)

where Ωm is the weight matrix of user m for each neuron in
the neural networks. For a newly joined user (i.e., a user with-
out any prior experience), we generate and apply a privacy-
preserving model [32] with average experience from all users.
Since games played on different consoles can be in different
environments, the federated model represents a generic model
for initialization. However, we note that safe mechanisms to

collect data in a privacy-preserving manner may be required
to deploy Federated Learning successfully in practice.

4.6 Implementation of ADR-X
We implement ADR-X at the application layer as a Pi-
coScenes Plugin [23], on a desktop or portable laptop
equipped with commercial off-the-shelf Qualcomm Atheros
9300 NIC Cards (802.11a/b/g/n) that provides CSI, RSS,
NoiseFloor and SNR information for each received packet.
We use the PicoScenes toolbox [24] APIs (on Ubuntu
20.04.3.) to collect the CSI measurements for each packet
from the NIC. To customize the packet sizes and feedback,
we use the packet injection mode provided by the PicoScenes
Plugins [23]. PicoScenes APIs allow us to modify packet
size, traffic patterns, and MCS directly from the toolbox in
real-time. We implemented the ADR-X with about 1.5 K lines
of C++ code for the whole ADR-X algorithm, including the
gradient descent updates of the neural network.

5 Evaluation of ADR-X
In this section, we evaluate the performance of ADR-X
and compare with seven representative state-of-the-art ADR
schemes with respect to packet loss rates, consecutive packet
loss rates, and average packet transmit times as well as their
run times on embedded platforms. We also examine the con-
vergence of ADR-X’s learning and the benefit of pre-training
through simulations and federated models and the impact of
sudden changes in the wireless environment such as chan-
nel changes. In the end, we summarize the impact of feature
engineering and architecture search for the ANN in ADR-X.

5.1 Experimental Setup
We use the identical setup described in Section 2.1 and imple-
mentation in Section 4.6 for conducting our experiments.
Multiple locations and gamers. We tested ADR-X’s perfor-
mance across 10 different gamers at different locations includ-
ing two different apartments in different apartment complexes
and university labs and conference rooms.
Diverse games and traces. We evaluate ADR-X across 20
diverse games, spanning multiple genres such as FPS, racing,
and action (list of games with media samples is at https://
muralisr.github.io/ADRX/). We use 15-minute (allowing
each ADR algorithm sufficient time to converge to a steady
state) gaming sessions on each game while recording network
packet traces. Each resulting trace contains > 105 packets.
Embedded devices. Since Xbox devices use 250MHz-
600MHz ARM processors, we used Raspberry PI 1 A+ with
250MHz BCM2835 chipset and Raspberry PI 2 600MHz [15]
with BCM2836 chipset for evaluating run-times. These em-
bedded devices are representative of the environment requir-
ing link rate adaptation. Specifically, in Xbox, microphone
audio transmission occurs from the controller to the console,
which is a critical aspect of user experience. Similarly, in the
VR scenario, not only is there a comparable audio uplink, but
video streaming also occurs from the headset to the server.

https://muralisr.github.io/ADRX/
https://muralisr.github.io/ADRX/

Table 1: Summary of the Main Results.
Xbox VR

Loss Rate [%] Loss Rate [%]Methods
Channel

Info Used
Avg. Total

Runtime [µs]
Channel

Condition
No Retry 1 Retry Overall

Consective
Loss (>=3)[%]

Average
Tx Time µs No Retry 1 Retry Overall

Consective
Loss (>=3)[%]

Average
Tx Time [µs]

DFS 20.7 4.4 3.7 1.82 376 25.5 5 4.3 2.11 380
5GHz 25.2 4.7 3.9 1.9 449 27.9 6.2 4.7 2.25 464

1. ARF [27]
(reactive)

Pkt Loss 0.23
2.4GHz 26.7 5.6 4.9 2.36 476 29.3 6.7 5.3 2.5 482

DFS 18.8 2.5 1.9 0.63 295 21.9 3.7 3.1 1.2 337
5GHz 19.6 2.9 2.6 0.84 351 24.9 4 3.5 1.38 360

2. Minstrel [72]
(reactive)

Pkt Loss 4.83
2.4GHz 21.8 3.9 3.2 1.02 367 26.2 4.5 3.8 1.57 359

DFS 8.9 2.3 1.8 0.42 311 11.1 2.2 1.7 0.35 285
5GHz 10.4 2.8 2.3 0.56 373 13 2.5 1.9 0.44 312

3. RAM [12]
(proactive)

SNR 5.62
2.4GHz 11.4 3.4 3 0.68 415 14 2.7 2.2 0.52 337

DFS 6.5 2.5 2.2 0.4 295 10.5 3 2.4 0.5 280
5GHz 8.4 3 2.6 0.46 344 12.4 3.2 2.7 0.53 291

4. ESNR [18]
(proactive)

CSI,SNR 31
2.4GHz 10.1 3.3 2.7 0.54 395 13.6 3.6 3.1 0.66 312

DFS 6.1 2.4 1.9 0.45 281 7.3 2.4 2 0.58 259
5GHz 7.8 2.7 2.3 0.52 306 9.7 2.6 2.2 0.65 284

5. TS [34]
(reactive-ML)

Pkt Loss 67
2.4GHz 8.9 3.5 2.9 0.66 325 10.3 3.3 2.6 0.78 303

DFS 4.5 2.4 1.6 0.39 264 4.85 2.5 1.4 0.53 238
5GHz 5.9 2.7 1.8 0.48 279 6.3 2.7 1.5 0.65 270

6. EDRA [11]
(proactive-ML)

RSS
Pkt Loss

16645
2.4GHz 8.1 3.2 2.1 0.62 295 8.4 2.9 2.2 0.73 289

DFS 1.8 0.57 0.13 0.001 248 3.1 0.42 0.15 0.002 225
5GHz 2.7 0.64 0.21 0.018 257 4.5 0.81 0.43 0.008 239

7a. PPO(RSS)
(proactive-ML)

CSI,RSS,
Pkt Loss

17568
2.4GHz 3.9 1.14 0.32 0.021 265 5.3 1.08 0.51 0.015 243

DFS 0.82 0.23 0.06 0.001 233 0.91 0.15 0.04 0.004 218
5GHz 1.1 0.31 0.13 0.004 247 1.3 0.26 0.11 0.012 224

7b. PPO(CSI,RSS)
(proactive-ML)

CSI,RSS,
Pkt Loss

31081
2.4GHz 1.9 0.57 0.21 0.008 266 1.8 0.41 0.17 0.021 239

DFS 2.4 0.68 0.24 0.015 256 4.8 0.92 0.43 0.024 234
5GHz 3.5 0.72 0.25 0.023 269 5.4 1.2 0.56 0.038 247ADR-X(RSS)

RSS,
Pkt Loss

135
2.4GHz 5.1 1.71 0.49 0.08 277 6.3 1.9 0.67 0.042 255

DFS 1.2 0.33 0.13 0.003 245 1.5 0.27 0.14 0.007 223
5GHz 1.4 0.39 0.15 0.01 253 1.7 0.34 0.15 0.014 231ADR-X(CSI, RSS)

CSI,RSS,
Pkt Loss

381
2.4GHz 2.3 0.79 0.25 0.024 274 2.6 0.56 0.26 0.036 252

This is particularly relevant for scenarios such as VR content
sharing and live streaming, underscoring the importance of
link adaptation in the embedded device side.
External interference scenarios. In a practical environment,
background interference can cause packet losses. Packet
losses due to interference occur independent of channel mea-
surements making learning harder for ADR-X. We consider
three different interference conditions by operating in three
distinct bands – 2.4 GHz band (High Interference), 5 GHz
non-DFS bands (Medium Interference), and the DFS bands
(No Interference). To provide intuition, Figure 15 depicts
the power level and channel width for each of the interfering
Wi-Fi devices in the three different Wi-Fi bands within an
apartment complex between 10:00-10:15 A.M. at one of the
locations where the experiments were conducted. There were
161 active interfering Wi-Fi devices in the 2.4 GHz band, 85
in the 5 GHz band, and none in the DFS band.

Figure 15: The Wi-Fi environment in 2.4 GHz (High Inter-
ference), 5 GHz (Medium Interference) and DFS channels
(No Interference).

5.2 Performance of ADR-X
In this section, we show that ADR-X’s offers 10× lower
loss rate than state-of-the-art under gaming conditions while
being computationally efficient. ADR-X is able to achieve
this efficiency as it eschews a pure black-box ML approach in
favor of synergizing an ANN with communication theoretical
results as described in Sec 4.1. This allows ADR-X to sidestep
computing analytical expressions for the PSR functions in
favor of cheaper switching functions.

Given the large body of prior work in ADR, we choose six
representative state-of-the-art ADR schemes from each of the
four categories (Sec. 2.2) reactive, proactive, reactive using
ML (reactive-ML) and proactive using ML (proactive-ML).
Further, since Proximal Policy Optimization (PPO) is con-
sidered state-of-the-art in reinforcement learning, we imple-
mented our own version of ADR based on PPO as described
in Appendix B as an additional comparison point.
Reactive ADR schemes - 1. ARF [27], 2. Minstrel [72].
ARF, found in most off-the-shelf Wi-Fi devices due to its ease
of implementation, maintains the packet loss rate as a moving
average. The data rate is decreased by one MCS index after
two consecutive packet re-transmissions/losses and increased
after 9/10 successful transmissions. Minstrel is considered
state-of-the-art among reactive ADR schemes and is typically
implemented in the Linux driver as the default ADR algorithm.
It dedicates 10% of its traffic to probing different rates to
search for the maximum achievable throughput.
Proactive ADR schemes - 3. RAM [12], 4. ESNR [18]. Rate

0 10 20 30 40 50 60 70 80

Time [s]

0

0.5

1

1.5

2

2.5

3

P
a

c
k

e
t

L
o

s
s

 P
ro

b
a

b
il

it
y

 [
%

]

Random

Simulation

2
nd

 Trial

Federated Learning

5
th

 Trial

Figure 16: Example of ADR-X(CSI, RSS)
convergence in 5GHz for Xbox traffic.

DFS 5 GHz 2.4 GHz
0

10

20

30

40

50

60

70

80

90

C
o

n
v

e
rg

e
n

c
e

 T
im

e
 [

s
]

Random

Simulation

2
nd

 Trial

Federated Learning

5
th

 Trial

Figure 17: Loss Convergence of of ADR-
X(CSI, RSS) for Xbox.

DFS 5 GHz 2.4 GHz
0

20

40

60

80

100

C
o

n
v

e
rg

e
n

c
e

 T
im

e
 [

s
]

Random

Simulation

2
nd

 Trial

Federated Learning

5
th

 Trial

Figure 18: Loss Convergence of of ADR-
X(CSI, RSS) for VR.

Adaptation in Mobile environments (RAM) represents the
state-of-the-art in proactive schemes that use RSS for channel
measurements. RAM maintains a throughput-vs-(rate, SNR)
table. It uses measured SNR and the table to select the rate that
can maximize throughput. ESNR, described in Section 2.1,
represents the state-of-the-art among proactive schemes that
use both CSI and RSS. It computes ESNR (Eqn. (3)) using
the received packets and computes PSRs to pick the highest
data rate that is predicted to have a <10% packet loss rate.
Reactive ADR with ML – 5. Thompson Sampling (TS) [34].
Thompson sampling based ADR is theoretically optimal [51]
and considered the state-of-the-art in this category. It takes
a multi-armed bandit [37] based on an efficient explore vs
exploit approach to selecting the right data rate.
Proactive ADR with ML – 6. EDRA [11] EDRA uses Q-
learning based Reinforcement Learning (RL) to select rates
aiming to maximize throughput and is the state-of-the-art.
7. PPO based ADR Since, arguably Proximal Policy Opti-
mization (PPO) is the state-of-the-art in RL, we created our
own version of ADR that leverages PPO [60] (PPO-Clip) for
two cases – i) when only RSS is available as a measurement
and ii) both RSS and CSI are available. Due to space con-
straints, we describe the scheme in detail in the Appendix B.
Table 1 summarizes our results averaged across all 10 gamers.
Packet loss rates. For Xbox and VR, and all three interference
conditions, only ADR-X and PPO, achieve overall packet loss
rates (after two MAC re-transmissions) of 0.1-0.25% with
almost negligible consecutive losses – 10× lower than that for
all other ADR schemes except ranges around 2-3% (Overall
Loss Rate in Table 1).
Loss rates without re-transmissions. To answer the ques-
tion, “how well does ADR-X pick the data rate compared
to other schemes?” we examine the loss rates prior to
packet re-transmissions. ADR-X and PPO rely on MAC re-
transmissions only 1.2-2.3% of the time (No Retry Loss Rate
in Table 1), ≈ 4× improvement over all other schemes that
offer between between 6-20%. In fact even with 1 retry, ADR-
X and PPO achieve < 0.5% loss rate while others offer 10×
loss rates (1 Retry Loss Rate in Table 1).
Average transmission times. Choosing a rate too low will
ensure packet transmission success but increase transmission
time. Choosing a rate too high will result in packet losses
and incur re-transmissions, once again increasing the over-
all packet transmission time. Thus, the ability of an ADR

scheme to pick just the right rates can be measured by its
ability to minimize overall packet transmission time. Packet
transmission time is an important metric as it is commonly
used as a proxy for energy consumption [62]. ADR schemes
that minimize the transmission time also reduce the energy
consumption by reducing the duration of time the radio has to
be awake for transmission. In Table 1 we compute the average
time to transmit a packet. The time to transmit a given packet
is the sum of transmission times of all its re-transmissions and
the original transmission. As seen from Table 1, ADR-X and
PPO offer about ≈40% reduction compared to ARF and ≈25-
30% compared to Minstrel and other schemes. An interesting
observation is that even ADR-X(RSS) with only RSS, has a
20−25% lower transmission times than all existing schemes.
Average run-time. Table 1 highlights the average run-time
per data rate decision by each of the algorithms on com-
putationally constrained embedded chip-sets. The run-time
measurements for 250MHz ARM processor are provided in
Table 1, and those for the 600MHz processor are provided
in Table 2. ADR-X runs ≈ 100× faster than PPO. It is the
only scheme that satisfies the 8-16ms time budget (Sec. 3.1)
with significant time left over for duty-cycling to save power.
Effective Quality of Experience (QoE) hinges on balanc-
ing packet losses, transmission time, and power consumption.
While a lower MCS reduces packet loss, it may increase trans-
mission time and power usage. High packet loss, especially
in Wi-Fi, necessitates retransmissions, further raising power
consumption. The primary goal is to finely tune these param-
eters to minimize packet losses and reduce transmission time,
thereby enhancing user experience.

0 50 100 150 200 250 300

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
a
c
k
e
t

L
o

s
s
 P

ro
b

a
b

il
it

y
 [

%
]

2.4 GHz DFS 5 GHz 2.4 GHz

Figure 19: Effect of sudden changes in interference levels.

5.3 Convergence of ADR-X
In this section we ask the question, “How quickly does ADR-
X learn during a gaming session?". We define convergence

Table 2: Network Architecture Exploration.
Runtime (250 MHz) [µs] Runtime (600 MHz) [µs]Feature Engineering Architecture

(In-Hidden-Out)
Historical
datapoints

Total
parameters Loss (%) Convergence

below 0.5% Training Inference Total Training Inference Total
242-20-1 1 4881 1.31 N/A 4343 3519 7862 1752 1421 3173
726-20-1 3 14561 0.92 N/A 12511 11515 24026 5348 4928 10276Raw (Unsorted)

726-5-20-1 3 3776 0.13 44s 3496 2708 6204 1403 1107 2510
242-20-1 1 4881 1.14 N/A 4250 3408 7658 1761 1426 3187
726-20-1 3 14561 0.87 N/A 12958 12116 25074 5358 4935 10293Sorted

726-5-20-1 3 3776 0.13 42s 3527 2704 6230 1411 1114 2525
27-20-1 3 581 1.34 N/A 478 325 803 194 132 326Freq. Binning

(Unorted) 27-5-20-1 3 281 0.76 N/A 206 156 362 84 63 147
9-5-1 1 56 0.73 N/A 75 47 122 28 16 44
9-20-1 1 221 0.65 N/A 182 135 317 73 53 126
27-5-1 3 146 0.39 89s 134 104 238 55 41 96

27-20-1 3 581 0.31 96s 461 334 794 196 138 334
27-5-15-1 3 246 0.21 57s 183 164 347 72 63 135
27-5-20-1 3 281 0.15 49s 221 159 381 86 65 151

Freq. Binning
(Sorted)

45-5-20-1 5 371 0.17 71s 303 239 542 125 94 219

as the time taken for ADR-X to reach below 0.5% overall
loss rate and 0.1% for consecutive losses. We consider four
different ANN weight initializations, i) Random- randomly
initialized ANN weights; ii) Simulation based pre-training -
ANN weights obtained by training on simulated CSI, RSS and
packet losses using the IEEE TGax Channel Model B [67];
iii) Federated model - a federated model (using [32]) based
on learned weights obtained from 9 different users across
different locations; iv) Successive trials - the gamer plays
multiple games, each 15 minutes long with a break of 10
minutes in between. After each successive gaming session,
weights are passed on to the next session.

To provide an intuition into ADR-X’s convergence dur-
ing a gaming session, Figure 16 depicts the packet loss rates
of ADR-X(CSI,RSS) in the 5GHz channel for Xbox traf-
fic. As seen from Figure 16, while random initialization
takes about 50s to achieve convergence, simulation-based
pre-trained model and federated models take about 35s and
20s respectively. Finally, ADR-X convergence improves to
10s over 5 consecutive gaming sessions.

Figures 17, 18 capture the average convergence times for
Xbox and VR over all user experiments under various in-
terference conditions. Interference-free DFS channels are
the fastest to converge. The higher the external interference,
the longer ADR-X takes to converge. Federated models take
about 20s to converge in highly congested channels.

5.4 Sudden Changes in Interference Levels
In this section, we ask the question “How does ADR-X adapt
upon experiencing sudden changes in the ambient interfer-
ence?”. This can occur when the radio changes its operating
channel into say a highly congested channel. We conduct an
experiment starting in a 5GHz channel on a federated model
(Sec. 5.3) and then change the operating channel between
DFS, 5GHz, and 2.4 GHz as shown in Figure 19. Figures 19
that depicts packet loss as a function of time – each time the
channel changes to higher congestion levels ADR-X adapts,
however loss rates are below 0.5% at all times.

5.5 Benefits of Feature Engineering
In this section, we answer the question, “How crucial are the
various steps of feature engineering to ADR-X?” The feature
engineering 4.2 comprises threes aspects – i) use of historical
time series of CSI, and RSS values ii) reduction the resolution
of the subcarriers through frequency binning and iii) sorting
the SNR per subcarriers. Table 2, summarizes performance
results for ADR-X with and without different kinds of feature
engineering for different ANN architectures. In all cases the
including 3 historical channel measurement values brings a
significant improvement in ADR-X performance. Frequency
binning brings about 10− 20× reduction in runtimes over
both 250MHz and 600MHz ARM processors. With frequency
binning, sorting the SNRs makes a significant improvement in
performance – a reduction in loss rates from 0.7% to 0.15%.

5.6 Architecture exploration
We use a Multilayer Perceptron architecture for our ANN.
Table 2 presents a few representative examples from our ex-
tensive architecture sweep for the ANN architecture – our
choice indicated in gray has a loss rate of 0.15% and compute
time of 151µs on a 600MHz ARM processor.

6 Conclusions
We perform the first study into wireless losses and their ef-
fects on console gaming audio/video experience. Due to
gamer hand/head motion during gaming, the wireless chan-
nel between a console and its accessories experiences rapid
changes. Existing ADR schemes’ inability to cope to fast
channel changes results in 2-10% losses whereas our study
indicates that 0.1-0.5% losses are required for a high quality
experience. This paper introduces ADR-X, a contextual ANN
assisted multi-armed bandit that closely tracks the channel
and adapts quickly. Its novel design exploits communication
theory domain knowledge to make it computationally effi-
cient. Overall, ADR-X achieves 10× lower packet loss than
the ADR schemes widely used today while running 100×
faster than the state-of-the-art ML approaches.

References

[1] Xbox controller teardown. https://www.
techinsights.com/blog/xbox-one-teardown.

[2] Milton Abramowitz and Irene A Stegun. Handbook
of mathematical functions with formulas, graphs, and
mathematical tables, volume 55. US Government print-
ing office, 1968.

[3] Deepak Agarwal and Bee-Chung Chen. Statistical Meth-
ods for Recommender Systems. Cambridge University
Press, 2016.

[4] Issa Batarseh and S. B. Dewan. The Switching Function:
analysis of power electronic circuits. The Institution of
Engineering and Technology, 2006.

[5] John Charles Bicket. Bit-rate selection in wireless net-
works. PhD thesis, Massachusetts Institute of Technol-
ogy, 2005.

[6] Michael Biehl and Holm Schwarze. Learning by on-line
gradient descent. Journal of Physics A: Mathematical
and general, 28(3):643, 1995.

[7] Gulnaziye Bingol, Luigi Serreli, Simone Porcu, Alessan-
dro Floris, and Luigi Atzori. The impact of network
impairments on the qoe of webrtc applications: A sub-
jective study. In 2022 14th International Conference on
Quality of Multimedia Experience (QoMEX), pages 1–6.
IEEE, 2022.

[8] Christopher M. Bishop. Pattern Recognition and Ma-
chine Learning. Springer, 2006.

[9] Seongho Byeon, Kangjin Yoon, Changmok Yang, and
Sunghyun Choi. Strale: Mobility-aware phy rate and
frame aggregation length adaptation in wlans. In IEEE
INFOCOM 2017 - IEEE Conference on Computer Com-
munications, pages 1–9, 2017.

[10] Kuan-Ta Chen, Chi-Jui Chang, Chen-Chi Wu, Yu-Chun
Chang, and Chin-Laung Lei. Quadrant of euphoria:
a crowdsourcing platform for qoe assessment. IEEE
Network, 24(2):28–35, 2010.

[11] Syuan-Cheng Chen, Chi-Yu Li, and Chui-Hao Chiu. An
experience driven design for ieee 802.11ac rate adapta-
tion based on reinforcement learning. In IEEE INFO-
COM 2021 - IEEE Conference on Computer Communi-
cations, pages 1–10, 2021.

[12] Xi Chen, Prateek Gangwal, and Daji Qiao. Ram: Rate
adaptation in mobile environments. IEEE Transactions
on Mobile Computing, 11(3):464–477, 2012.

[13] Riccardo Crepaldi, Jeongkeun Lee, Raul Etkin, Sung-Ju
Lee, and Robin Kravets. Csi-sf: Estimating wireless
channel state using csi sampling & fusion. In 2012
Proceedings IEEE INFOCOM, pages 154–162, 2012.

[14] A Rogier T Donders, Geert JMG Van Der Heijden, Theo
Stijnen, and Karel GM Moons. A gentle introduction
to imputation of missing values. Journal of clinical
epidemiology, 59(10):1087–1091, 2006.

[15] Raspberry Pi Foundation. Raspberry pi documentation -
computers, 2023. Accessed: [insert date you accessed
the site].

[16] Andrea Goldsmith. Wireless Communications. Cam-
bridge University Press, 2005.

[17] Rémy Grünblatt, Isabelle Guérin-Lassous, and Olivier
Simonin. Simulation and performance evaluation of
the intel rate adaptation algorithm. In Proceedings of
the 22nd International ACM Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems,
MSWIM ’19, page 27–34, New York, NY, USA, 2019.
Association for Computing Machinery.

[18] Daniel Halperin, Wenjun Hu, Anmol Sheth, and David
Wetherall. Predictable 802.11 packet delivery from
wireless channel measurements. SIGCOMM ’10, page
159–170, New York, NY, USA, 2010. Association for
Computing Machinery.

[19] Hado van Hasselt, Arthur Guez, and David Silver. Deep
reinforcement learning with double q-learning. In Pro-
ceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, AAAI’16, page 2094–2100. AAAI Press,
2016.

[20] Mikael Henaff. Explicit explore-exploit algorithms in
continuous state spaces. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

[21] Gavin Holland, Nitin Vaidya, and Paramvir Bahl. A
rate-adaptive mac protocol for multi-hop wireless net-
works. In Proceedings of the 7th Annual International
Conference on Mobile Computing and Networking, Mo-
biCom ’01, page 236–251, New York, NY, USA, 2001.
Association for Computing Machinery.

[22] Intel. Intel ultimate n wifi link 5300, 2009.

[23] Zhiping Jiang and contributors. Developing Your
PicoScenes Plugins. https://ps.zpj.io/plugin.
html, 2021.

[24] Zhiping Jiang and contributors. PicoScenes. https:
//ps.zpj.io/, 2021.

https://www.techinsights.com/blog/xbox-one-teardown
https://www.techinsights.com/blog/xbox-one-teardown
https://ps.zpj.io/plugin.html
https://ps.zpj.io/plugin.html
https://ps.zpj.io/
https://ps.zpj.io/

[25] Zhiping Jiang, Tom H. Luan, Xincheng Ren, Dongtao
Lv, Han Hao, Jing Wang, Kun Zhao, Wei Xi, Yueshen
Xu, and Rui Li. Eliminating the barriers: Demystifying
wi-fi baseband design and introducing the picoscenes
wi-fi sensing platform. IEEE Internet of Things Journal,
9(6):4476–4496, 2022.

[26] Glenn Judd, Xiaohui Wang, and Peter Steenkiste. Ef-
ficient channel-aware rate adaptation in dynamic en-
vironments. In Proceedings of the 6th International
Conference on Mobile Systems, Applications, and Ser-
vices, MobiSys ’08, page 118–131, New York, NY, USA,
2008. Association for Computing Machinery.

[27] Ad Kamerman and Leo Monteban. Wavelan®-ii: A
high-performance wireless lan for the unlicensed band.
Bell Labs Technical Journal, 2(3):118–133, 1997.

[28] Raja Karmakar, Samiran Chattopadhyay, and Sandip
Chakraborty. Smartla: Reinforcement learning-based
link adaptation for high throughput wireless access net-
works. Computer Communications, 110:1–25, 2017.

[29] Raja Karmakar, Samiran Chattopadhyay, and Sandip
Chakraborty. An online learning approach for auto link-
configuration in ieee 802.11ac wireless networks. Com-
puter Networks, 181:107426, 2020.

[30] Shervin Khastoo, Tim Brecht, and Ali Abedi. Neura: Us-
ing neural networks to improve wifi rate adaptation. In
Proceedings of the 23rd International ACM Conference
on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, MSWiM ’20, page 161–170, New York,
NY, USA, 2020. Association for Computing Machinery.

[31] J. Kim, S. Kim, S. Choi, and D. Qiao. Cara: Collision-
aware rate adaptation for ieee 802.11 wlans. In Proceed-
ings IEEE INFOCOM 2006. 25TH IEEE International
Conference on Computer Communications, pages 1–11,
2006.

[32] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Pe-
ter Richtárik, Ananda Theertha Suresh, and Dave Bacon.
Federated learning: Strategies for improving commu-
nication efficiency. arXiv preprint arXiv:1610.05492,
2016.

[33] Lito Kriara and Mahesh K. Marina. Samplelite: A hy-
brid approach to 802.11n link adaptation. SIGCOMM
Comput. Commun. Rev., 45(2):4–13, apr 2015.

[34] Alexander Krotov, Anton Kiryanov, and Evgeny Khorov.
Rate control with spatial reuse for wi-fi 6 dense deploy-
ments. IEEE Access, 8:168898–168909, 2020.

[35] Mathieu Lacage, Mohammad Hossein Manshaei, and
Thierry Turletti. Ieee 802.11 rate adaptation: A practi-
cal approach. In Proceedings of the 7th ACM Interna-
tional Symposium on Modeling, Analysis and Simula-
tion of Wireless and Mobile Systems, MSWiM ’04, page
126–134, New York, NY, USA, 2004. Association for
Computing Machinery.

[36] Mathieu Lacage, Mohammad Hossein Manshaei, and
Thierry Turletti. Ieee 802.11 rate adaptation: A practi-
cal approach. In Proceedings of the 7th ACM Interna-
tional Symposium on Modeling, Analysis and Simula-
tion of Wireless and Mobile Systems, MSWiM ’04, page
126–134, New York, NY, USA, 2004. Association for
Computing Machinery.

[37] T.L Lai and Herbert Robbins. Asymptotically efficient
adaptive allocation rules. Advances in Applied Mathe-
matics, 6(1):4–22, 1985.

[38] Okhwan Lee, Jihoon Kim, Jongtae Lim, and Sunghyun
Choi. Sira: Snr-aware intra-frame rate adaptation. IEEE
Communications Letters, 19(1):90–93, 2015.

[39] Chi-Yu Li, Syuan-Cheng Chen, Chien-Ting Kuo, and
Chui-Hao Chiu. Practical machine learning-based rate
adaptation solution for wi-fi nics: Ieee 802.11ac as a
case study. IEEE Transactions on Vehicular Technology,
69(9):10264–10277, 2020.

[40] Meta. Quest 2. https://www.oculus.com/quest-2/,
2020.

[41] Microsoft. Xbox Series X. https://www.xbox.com/
en-US/consoles/xbox-series-x, 2020.

[42] Microsoft. Xbox Wireless Controller.
https://www.xbox.com/en-US/accessories/
controllers/xbox-wireless-controller, 2020.

[43] Microsoft. Xbox Wireless Headset. https:
//www.xbox.com/en-US/accessories/headsets/
xbox-wireless-headset, 2020.

[44] Babak Naderi and Ross Cutler. An open source im-
plementation of itu-t recommendation p.808 with val-
idation. In Proc. Interspeech 2020, pages 1166–1170,
2020.

[45] National Telecommunications and Information Admin-
istration. Agreement reached regarding u.s. position,
2003.

[46] Netflix. Vmaf - video multi-method assessment fusion.
https://github.com/Netflix/vmaf, 2021.

[47] Ioannis Pefkianakis, Yun Hu, Starsky H.Y. Wong, Hao
Yang, and Songwu Lu. Mimo rate adaptation in 802.11n

https://www.oculus.com/quest-2/
https://www.xbox.com/en-US/consoles/xbox-series-x
https://www.xbox.com/en-US/consoles/xbox-series-x
https://www.xbox.com/en-US/accessories/controllers/xbox-wireless-controller
https://www.xbox.com/en-US/accessories/controllers/xbox-wireless-controller
https://www.xbox.com/en-US/accessories/headsets/xbox-wireless-headset
https://www.xbox.com/en-US/accessories/headsets/xbox-wireless-headset
https://www.xbox.com/en-US/accessories/headsets/xbox-wireless-headset
https://github.com/Netflix/vmaf

wireless networks. In Proceedings of the Sixteenth An-
nual International Conference on Mobile Computing
and Networking, MobiCom ’10, page 257–268, New
York, NY, USA, 2010. Association for Computing Ma-
chinery.

[48] Ioannis Pefkianakis, Starsky H.Y. Wong, Hao Yang, Suk-
Bok Lee, and Songwu Lu. Toward history-aware robust
802.11 rate adaptation. IEEE Transactions on Mobile
Computing, 12(3):502–515, 2013.

[49] Ramjee Prasad. OFDM for Wireless Communications
Systems. Artech House, 2004.

[50] John G Proakis. Digital communications. McGraw-Hill,
Higher Education, 2008.

[51] Hang Qi, Zhiqun Hu, Xiangming Wen, and Zhaom-
ing Lu. Rate adaptation with thompson sampling
in 802.11ac wlan. IEEE Communications Letters,
23(10):1888–1892, 2019.

[52] Qualcomm. Qualcomm csrc9300 bluetooth & wi-fi
combo chipset, 2014.

[53] Ruben Queiros, Eduardo Nuno Almeida, Helder Fontes,
Jose Ruela, and Rui Campos. Wi-fi rate adaptation using
a simple deep reinforcement learning approach, 2022.

[54] Hariharan Rahul, Farinaz Edalat, Dina Katabi, and
Charles G. Sodini. Frequency-aware rate adaptation
and mac protocols. In Proceedings of the 15th Annual
International Conference on Mobile Computing and Net-
working, MobiCom ’09, page 193–204, New York, NY,
USA, 2009. Association for Computing Machinery.

[55] Antony W Rix, John G Beerends, Michael P Hollier,
and Andries P Hekstra. Perceptual evaluation of speech
quality (pesq)-a new method for speech quality assess-
ment of telephone networks and codecs. In 2001 IEEE
international conference on acoustics, speech, and sig-
nal processing. Proceedings (Cat. No. 01CH37221),
volume 2, pages 749–752. IEEE, 2001.

[56] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly.
Opportunistic media access for multirate ad hoc net-
works. In Proceedings of the 8th Annual International
Conference on Mobile Computing and Networking, Mo-
biCom ’02, page 24–35, New York, NY, USA, 2002.
Association for Computing Machinery.

[57] Steven Schmidt, Babak Naderi, Saeed Shafiee Sabet,
Saman Zadtootaghaj, and Sebastian Möller. Assessing
interactive gaming quality of experience using a crowd-
sourcing approach. In 2020 Twelfth International Con-
ference on Quality of Multimedia Experience (QoMEX),
pages 1–6. IEEE, 2020.

[58] Steven Schmidt, Saman Zadtootaghaj, Shijie Wang, and
Sebastian Möller. Towards the influence of audio quality
on gaming quality of experience. In 2021 13th Interna-
tional Conference on Quality of Multimedia Experience
(QoMEX), pages 169–174. IEEE, 2021.

[59] John Schulman, Philipp Moritz, Sergey Levine, Michael
Jordan, and Pieter Abbeel. High-dimensional continuous
control using generalized advantage estimation. arXiv
preprint arXiv:1506.02438, 2015.

[60] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

[61] Sayandeep Sen, Neel Kamal Madabhushi, and Suman
Banerjee. Scalable WiFi media delivery through adap-
tive broadcasts. In 7th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 10),
San Jose, CA, April 2010. USENIX Association.

[62] Pablo Serrano, Andres Garcia-Saavedra, Giuseppe
Bianchi, Albert Banchs, and Arturo Azcorra. Per-frame
energy consumption in 802.11 devices and its implica-
tion on modeling and design. IEEE/ACM Transactions
on Networking, 23(4):1243–1256, 2015.

[63] Gary Smith. Standard deviations: Flawed assump-
tions, tortured data, and other ways to lie with statistics.
Abrams, 2014.

[64] Lixing Song and Shaoen Wu. Aarc: Cross-layer wireless
rate control driven by fine-grained channel assessment.
In 2015 IEEE International Conference on Communica-
tions (ICC), pages 3311–3316, 2015.

[65] Sony. DualSense Wireless Controller. https:
//www.playstation.com/en-us/accessories/
dualsense-wireless-controller/, 2020.

[66] Sony. PULSE 3D Wireless Headset. https:
//www.playstation.com/en-us/accessories/
pulse-3d-wireless-headset/, 2020.

[67] TGax. Tgax channel model document. Technical report,
IEEE 802.11, 2014.

[68] Xiaozheng Tie, Anand Seetharam, Arun Venkataramani,
Deepak Ganesan, and Dennis L. Goeckel. Anticipatory
wireless bitrate control for blocks. In Proceedings of the
Seventh COnference on Emerging Networking EXperi-
ments and Technologies, CoNEXT ’11, New York, NY,
USA, 2011. Association for Computing Machinery.

[69] Mythili Vutukuru, Hari Balakrishnan, and Kyle
Jamieson. Cross-layer wireless bit rate adaptation. In
Proceedings of the ACM SIGCOMM 2009 Conference
on Data Communication, SIGCOMM ’09, page 3–14,

https://www.playstation.com/en-us/accessories/dualsense-wireless-controller/
https://www.playstation.com/en-us/accessories/dualsense-wireless-controller/
https://www.playstation.com/en-us/accessories/dualsense-wireless-controller/
https://www.playstation.com/en-us/accessories/pulse-3d-wireless-headset/
https://www.playstation.com/en-us/accessories/pulse-3d-wireless-headset/
https://www.playstation.com/en-us/accessories/pulse-3d-wireless-headset/

New York, NY, USA, 2009. Association for Computing
Machinery.

[70] Abdul Wahab, Nafi Ahmad, and John Schormans. Varia-
tion in qoe of passive gaming video streaming for differ-
ent packet loss ratios. In 2020 Twelfth International Con-
ference on Quality of Multimedia Experience (QoMEX),
pages 1–4. IEEE, 2020.

[71] Shao-Cheng Wang and Ahmed Helmy. Beware: Back-
ground traffic-aware rate adaptation for ieee 802.11. In
2008 International Symposium on a World of Wireless,
Mobile and Multimedia Networks, pages 1–12, 2008.

[72] Linux Wireless. Minstrel rate control algo-
rithm. https://wireless.wiki.kernel.org/
en/developers/documentation/mac80211/
ratecontrol/minstrel, 2015.

[73] Linux Wireless. PID. http://linuxwireless.
sipsolutions.net/en/developers/
Documentation/mac80211/RateControl/PID/,
2015.

[74] Starsky H. Y. Wong, Hao Yang, Songwu Lu, and Vadu-
vur Bharghavan. Robust rate adaptation for 802.11 wire-
less networks. In Proceedings of the 12th Annual In-
ternational Conference on Mobile Computing and Net-
working, MobiCom ’06, page 146–157, New York, NY,
USA, 2006. Association for Computing Machinery.

[75] Wei Yin, Peizhao Hu, and Jadwiga Indulska. Rate con-
trol in the mac80211 framework: Overview, evaluation
and improvements. Computer Networks, 81:289–307,
2015.

https://wireless.wiki.kernel.org/en/developers/documentation/mac80211/ratecontrol/minstrel
https://wireless.wiki.kernel.org/en/developers/documentation/mac80211/ratecontrol/minstrel
https://wireless.wiki.kernel.org/en/developers/documentation/mac80211/ratecontrol/minstrel
http://linuxwireless.sipsolutions.net/en/developers/Documentation/mac80211/RateControl/PID/
http://linuxwireless.sipsolutions.net/en/developers/Documentation/mac80211/RateControl/PID/
http://linuxwireless.sipsolutions.net/en/developers/Documentation/mac80211/RateControl/PID/

Appendices

A Deep Reinforcement Learning Design

A General Overview of DRL. Deep reinforcement learn-
ing (DRL) is an advanced machine learning approach that
combines deep learning and reinforcement learning (RL)
techniques. It leverages neural networks to interpret high-
dimensional inputs, making it adept at handling complex
problems. In the DRL framework, at each time instance t,
the RL algorithm necessitates determining the optimal trans-
mission rate for a packet. This decision is based on the input
state vector S(t), which incorporates the experience vector
harvested from the experience memory. The RL algorithm
then prescribes an action state a(t), encompassing the appro-
priate data rate (MCS) to be employed. Within the RL engine,
there exists a mapping from the state to action, denoted as
S(t)→ a(t), which is regarded as the state-action policy map,
represented by πθ. Here, θ symbolizes the parameters of the
policy map function, which are updated iteratively during the
learning process. Following each transmission, a reward value
r(t) is determined to assess the efficacy of selected action a(t)
at the current state S(t). These rewards are pivotal in training
the RL engine, guiding the optimization of the state-action
policy function through the adjustment of θ to enhance the
anticipation of future rewards.
State, Action, and Rewards in DRL. The efficacy of a DRL
algorithm is fundamentally governed by the appropriate selec-
tion and definition of states, actions, and rewards, which are
essential in training the DRL model. Initially, we delineate the
general design underpinning DRL algorithms, followed by
the proposition of two distinct DRL policies sharing identical
state, action, and reward designs.
State s(t): The state must ideally comprise all information
that is relevant for the actor network and enable it to pre-
dict an appropriate action (data rate). In our implementa-
tion these comprise channel quality CQ and packet length
of the current packet to be transmitted lt . Since, the most
recent channel measurement is usually taken in the past
(typically T ms in the past), the channel may have changed
within these T ms. The actor must be able to implicitly pre-
dict the current state of the channel from history. To enable
this, we provide as state, a vector comprising a history of
n channel states and lengths. The state is thus computed as
S(t) =< CQ(t −T),CQ(t − 2T), · · · ,CQ(t − kT), lt >. We
use k = 3 in our implementation since higher values did not
provide any significant benefit. The contents of CQ are com-
puted by the Input Generator and depend on the type of chan-
nel measurement available in the device. We have designed
DRL for three different kinds of channel measurements, each
of which uses a different CQ.
Action a(t): The action space is all the possible MCSs de-
termined by the IEEE standards for each packet. The policy
network outputs the probability estimated by the neural net-

work for actions to achieve the highest reward. Since the
action space is discrete, we choose the action with the largest
possibility with 95% of the time and 5% of the time we choose
the action randomly to explore other rates.
Reward r(t): We design the reward in DRL to specifically
target packet loss and power consumption as they are the
primary determining factors for user experience in a gaming
scenario. In our design we prioritize packet loss more than
power consumption since packet loss results in immediate
loss of user experience. Further, consecutive packet losses are
discouraged to greater degree as they have more significant
impact on user experience. The reward function as follows:

r(t) =−τ(MCS)−Q∗ρ(t), (12)

where τ(MCS) is the total transmission time by choosing the
current MCS, including the retransmission time if the first
packet is lost and ρ(t). The term −τ(MCS) is a penalty on
long packet transmission times and hence discourages DRL
from choosing low data rates. The term Q ∗ ρ(t) penalizes
packet losses with the weight Q determining the trade-off
between the power consumption and the packet losses. To
prioritize avoiding packet loss ρ(t) is computed as a running
average of the packet loss given by :

ρ(t) = ρ(t −1)∗α+b(t),

b(t) =

{
0 if no packet loss
1 if packet loss

(13)

α denotes the reliability requirements, for instance, α = 0.99
for the audio packets. In this manner, each packet loss has a
long lasting negative impact on the reward, and consecutive
packet losses have a greater impact on the reward calculation.
This choice discourages DRL to quickly eliminate losses.

B Proximal Policy Optimization (PPO)

B.1 PPO Design

Overview of PPO Algorithm. PPO algorithms belong to
class of RL algorithms known an Actor-Critic algorithms
comprising two separate neural network models – an Actor
and a Critic (Fig. 20). An actor model is a state-action pol-
icy map, πθ to learn what action to take under a particular
observed state; θ represent the weights of the neural network.
The critic model Vφ evaluates the effectiveness of πθ by pre-
dicting the expected future reward based on past history of
action-reward pairs;its weights are represented by φ. The critic
learns by trying to minimize the discrepancy between its past
estimates of future rewards and those that it actually observes.
The actor learns by attempting to maximize the expected fu-
ture rewards as predicted by the critic network. Both actor and
critic networks learn in conjunction taking turns based on the
evolution of state, actions and rewards by employing gradient
decent optimization. As time progresses, the critic learns to

Table 3: Network Architecture Exploration for PPO.
Actor Critic Loss [%] Convergence

below 0.5%
Runtime (250 MHz) [µs] Runtime (600 MHz) [µs]

Architecture
(In-Hidden-Out)

Total
Parameters

Architecture
(In-Hidden-Out)

Total
Parameters Training Inference Total Training Inference Total

27-120-9 4320

27-240-1 6720 2.4 NA 13017 4831 17848 5300 2085 7385
27-40-80-1 4360 2.7 NA 10093 4825 14918 4188 2080 6268
27-80-40-1 5400 2.8 NA 11531 5003 16534 4657 2087 6744
27-80-80-1 8640 2.1 NA 14114 5008 19122 6133 2081 8214

27-240-9 8640

27-240-1 6720 0.69 NA 17327 10169 27496 7371 4148 11519
27-40-80-1 4360 0.98 NA 14900 9660 24560 6239 4115 10354
27-80-40-1 5400 0.76 NA 16294 10153 26447 6750 4154 10904
27-80-80-1 8640 0.47 218s 18949 9970 28919 8191 4135 12326

27-40-80-9 5000

27-240-1 6720 0.49 196s 13758 5537 19296 5571 2385 7956
27-40-80-1 4360 0.65 NA 10346 5773 16119 4454 2406 6860
27-80-40-1 5400 0.61 NA 12169 5662 17831 4927 2417 7344
27-80-80-1 8640 0.42 211s 15693 5638 21331 6465 2422 8887

27-80-40-9 5720

27-240-1 6720 0.36 165s 14444 6708 21152 5941 2760 8701
27-40-80-1 4360 0.43 159s 11708 6659 18367 4844 2766 7610
27-80-40-1 5400 0.41 162s 12835 6515 19350 5305 2749 8054
27-80-80-1 8640 0.28 171s 16438 6557 22994 6834 2759 9593

27-80-80-9 9280

27-240-1 6720 0.16 174s 18156 10485 28641 7598 4413 12011
27-40-80-1 4360 0.24 163s 16210 10586 26796 6561 4417 10978
27-80-40-1 5400 0.19 169s 16731 11011 27742 7039 4452 11491
27-80-80-1 8640 0.13 185s 20250 10825 31075 8534 4416 12950

Flatten

CQ() … CQ(nT)

Channel Tracking

Next Packet Length

Inputs ()

S
o

ftm
a

x

MCS

0

… …

8

Actor: Policy Network

Critic: Q Value Network

Action: ()

Figure 20: The PPO Architecture for Reinforcement Learning.

predict future rewards more accurately and the actor learns to
take more optimal actions for each state. While updating the
policy-map, PPO algorithms constrain the amount of change
allowed in the policy to limit sudden/drastic changes and
hence are stable to sudden changes. In our implementation,
we chose a Multilayer Perceptron (MLP) with two hidden
layers to represent both actor and critic models
Training Methodology. The objective of the PPO algorithm
is to maximize the expected accumulative reward from cur-
rent time t: Rθ(t) = E(S(t),a(t))∼πθ

[
∑

∞
j=t γ(j−t)r(j)

]
, where

γ ∈ [0,1] is the discount factor (usually 0.99) used to avoid
the accumulated reward to be infinity, and r(t) is the reward
by taking action a(t) at state S(t).

The Actor-Critic structure first obtains a finite mini-batch
of sequential samples from the trajectory memory. The PPO
algorithm randomly chooses a start point within each batch
and uses the sub-sequential data to train the network. A new
objective function is proposed in PPO to achieve mini-batch
updates and update the policy smoothly. PPO introduces im-

portance sampling to obtain the expectation of samples gath-
ered from an old policy πold under the new policy πnew we
want to refine with the probability ratio Rθ(t) = πθ(at |st)

πθold (at |st)
.

They maximize the following surrogate objective function:
L(θ) = Ê

[
min

(
Rθ(t),clip(Rt(θ),1− ε,1+ ε)

)
Ât

]
, where ε

is the clipping parameter. Ât is an estimator of the advantage
function at time step t. We use the generalized advantage esti-
mator (GAE) [59] to calculate Ât . By introducing the clipped
objective function, the PPO algorithm won’t stick to the fa-
voring actions with positive advantage, and make quicker
update to avoid actions with a negative advantage function
from a mini-batch of samples. θ = θ−ηθ∇Lθ, where ηθ is
the learning rate for the actor model optimization.
Avoiding Losses During Convergence. When PPO is train-
ing for the first time or when the environment changes sud-
denly, PPO may experience higher packet losses during the
time it takes to learn, adapt and converge to a steady state. In
order to avoid the losses during these vulnerable times, PPO
chooses a relies on a conservative retransmission strategy.
While RL in PPO provides only the data rate of the initial
transmission, the retransmission provides greater reliability
by reducing the data rate to an MCS three steps below that
suggested by PPO. Note that the corresponding longer trans-
mission time also acts as a discouraging penalty to the reward
function

B.2 PPO Network Architecture Exploration.
In this study, we explored various architectural configurations
for the actor and critic networks in the PPO algorithm to eval-
uate their performance on different metrics, including loss

percentage, convergence time, and runtime in two different
CPU frequency settings (250 MHz and 600 MHz) for the
CSI based input. The architectures were delineated based on
the input-hidden-output layers, and each configuration’s total
number of parameters was reported. A discernible trend is the
general improvement in loss percentage and convergence time
with more complex network architectures, characterized by a
higher number of parameters. The most notable performances
were observed in configurations employing the 27-80-80-9 ar-
chitecture for the actor network, which consistently achieved
the lowest loss percentages and reasonable convergence times
below 0.5%. Specifically, the combination with the 27-80-
80-1 critic architecture exhibited the most promising results,
recording the lowest loss of 0.13% and a swift convergence
time of 185 seconds.

While the intricate architectures, such as the 27-80-80-9
actor and 27-80-80-1 critic configuration, exhibit good per-
formance in reducing loss and enhancing convergence times,
they necessitate significantly extended runtime durations, es-
pecially at a frequency setting of 250 MHz. This increase in
runtime, which encompasses both the training and inference
phases, exhibits a positive correlation with the complexity of
the network architectures. In summary, while the PPO net-
work is capable of learning from scratch to find a policy that
optimizes the packet loss rate, achieving this necessitates a rel-
atively large network. This complexity poses a challenge for
implementation on embedded devices, where computational
resources are typically limited. This underscores the need
to strike a balance between network complexity and compu-
tational efficiency to achieve optimal performance without
over-burdening the system resources.

	Introduction
	Background and Related Work
	Channel Measurements
	Existing ADR Techniques

	Packet Losses in Gaming
	Gaming Traffic Patterns
	Packet Losses During Gaming
	Effect of Consecutive Packet Losses
	Conclusions

	ADR-X
	Overview of ADR-X
	Feature Engineering
	Online Training of ADR-X
	Packet Re-transmission Strategy
	Federated Learning for Initialization
	Implementation of ADR-X

	Evaluation of ADR-X
	Experimental Setup
	Performance of ADR-X
	Convergence of ADR-X
	Sudden Changes in Interference Levels
	Benefits of Feature Engineering
	Architecture exploration

	Conclusions
	Deep Reinforcement Learning Design
	Proximal Policy Optimization (PPO)
	PPO Design
	PPO Network Architecture Exploration.

