
CORE: Resolving Code �ality Issues using LLMs

NALIN WADHWA,Microsoft Research, India

JUI PRADHAN,Microsoft Research, India

ATHARV SONWANE,Microsoft Research, India

SURYA PRAKASH SAHU,Microsoft Research, India

NAGARAJAN NATARAJAN,Microsoft Research, India

ADITYA KANADE,Microsoft Research, India

SURESH PARTHASARATHY,Microsoft Research, India

SRIRAM RAJAMANI,Microsoft Research, India

As software projects progress, quality of code assumes paramount importance as it a�ects reliability, main-

tainability and security of software. For this reason, static analysis tools are used in developer work�ows

to �ag code quality issues. However, developers need to spend extra e�orts to revise their code to improve

code quality based on the tool �ndings. In this work, we investigate the use of (instruction-following) large

language models (LLMs) to assist developers in revising code to resolve code quality issues.

We present a tool, CORE (short for COde REvisions), architected using a pair of LLMs organized as a duo

comprised of a proposer and a ranker. Providers of static analysis tools recommend ways to mitigate the tool

warnings and developers follow them to revise their code. The proposer LLM of CORE takes the same set of

recommendations and applies them to generate candidate code revisions. The candidates which pass the static

quality checks are retained. However, the LLM may introduce subtle, unintended functionality changes which

may go un-detected by the static analysis. The ranker LLM evaluates the changes made by the proposer using

a rubric that closely follows the acceptance criteria that a developer would enforce. CORE uses the scores

assigned by the ranker LLM to rank the candidate revisions before presenting them to the developer.

We conduct a variety of experiments on two public benchmarks to show the ability of CORE: (1) to generate

code revisions acceptable to both static analysis tools and human reviewers (the latter evaluated with user

study on a subset of the Python benchmark), (2) to reduce human review e�orts by detecting and eliminating

revisions with unintended changes, (3) to readily work across multiple languages (Python and Java), static

analysis tools (CodeQL and SonarQube) and quality checks (52 and 10 checks, respectively), and (4) to achieve

�x rate comparable to a rule-based automated program repair tool but with much smaller engineering e�orts

(on the Java benchmark). CORE could revise 59.2% Python �les (across 52 quality checks) so that they pass

scrutiny by both a tool and a human reviewer. The ranker LLM reduced false positives by 25.8% in these cases.

CORE produced revisions that passed the static analysis tool in 76.8% Java �les (across 10 quality checks)

comparable to 78.3% of a specialized program repair tool, with signi�cantly much less engineering e�orts. We

release code, data, and supplementary material publicly at http://aka.ms/COREMSRI.

CCS Concepts: • Software and its engineering→ Software maintenance tools; Automatic program-

ming.

Authors’ addresses: Nalin Wadhwa, Microsoft Research, India, t-nalwadhwa@microsoft.com; Jui Pradhan, Microsoft

Research, India, juipradhan2k@gmail.com; Atharv Sonwane, Microsoft Research, India, t-asonwane@microsoft.com; Surya

Prakash Sahu, Microsoft Research, India, suryaprakashsahuat1@gmail.com; Nagarajan Natarajan, Microsoft Research,

India, nagarajan.natarajan@microsoft.com; Aditya Kanade, Microsoft Research, India, kanadeaditya@microsoft.com; Suresh

Parthasarathy, Microsoft Research, India, supartha@microsoft.com; Sriram Rajamani, Microsoft Research, India, sriram@

microsoft.com.

© 2024 Copyright held by the owner/author(s).

ACM 2994-970X/2024/7-ART36

https://doi.org/10.1145/3643762

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0009-0005-1206-9851
HTTPS://ORCID.ORG/0009-0009-7753-6210
HTTPS://ORCID.ORG/0009-0000-2132-0458
HTTPS://ORCID.ORG/0009-0003-9943-5222
HTTPS://ORCID.ORG/0000-0001-6435-245X
HTTPS://ORCID.ORG/0009-0009-3734-0053
HTTPS://ORCID.ORG/0009-0002-6675-3219
HTTPS://ORCID.ORG/0000-0002-1400-7065
http://aka.ms/COREMSRI
https://orcid.org/0009-0005-1206-9851
https://orcid.org/0009-0009-7753-6210
https://orcid.org/0009-0000-2132-0458
https://orcid.org/0009-0003-9943-5222
https://orcid.org/0009-0003-9943-5222
https://orcid.org/0000-0001-6435-245X
https://orcid.org/0009-0009-3734-0053
https://orcid.org/0009-0002-6675-3219
https://orcid.org/0009-0002-6675-3219
https://orcid.org/0000-0002-1400-7065
https://doi.org/10.1145/3643762

36:2 N. Wadhwa, J. Pradhan, A. Sonwane, S.P. Sahu, N. Natarajan, A. Kanade, S. Parthasarathy and S. Rajamani

Additional Key Words and Phrases: Code quality, static analysis, code revision, LLMs

ACM Reference Format:

Nalin Wadhwa, Jui Pradhan, Atharv Sonwane, Surya Prakash Sahu, Nagarajan Natarajan, Aditya Kanade,

Suresh Parthasarathy, and Sriram Rajamani. 2024. CORE: Resolving Code Quality Issues using LLMs. Proc.

ACM Softw. Eng. 1, FSE, Article 36 (July 2024), 23 pages. https://doi.org/10.1145/3643762

1 INTRODUCTION

As software projects progress, assessing reliability, maintainability and security of software assumes
paramount importance. Quality of code plays a big role in ensuring these objectives [21, 23]. Static
analysis tools like CodeQL [12], Coverity [2], FindBugs [4], PMD [7] and Sonar�be [8] are
used in developer work�ows to �ag code quality issues. For instance, CodeQL can be integrated
in GitHub work�ows and is estimated to be used in tens of thousands of repositories. However,
developers need to spend extra e�orts to revise their code to improve code quality based on the
tool �ndings [59, 63].
Recognizing the value of static analysis tools in improving code quality, many approaches [13,

15, 20, 27, 28, 37, 38, 43, 53, 58] use them to detect and localize violations of static checks. To �x the
violations, they use either manually designed symbolic program transformations [20, 27, 53, 58],
mine symbolic patterns from commit data [13, 15, 37, 38, 43] or learn them from synthetically
generated data [28]. The code or �x generation capabilities of these symbolic approaches are limited
by the space of supported patterns. Learning-based approaches [30, 56, 62, 64] try to overcome
this limitation by training neural models to map buggy programs to their �xed versions. However,
similar to pattern-mining approaches, these require bug-�xing data for training and it limits the
types of bugs they can �x. Setting up these systems and supporting a di�erent programming
language, a new quality check or another static analysis tool incurs signi�cant engineering costs.
These factors prevent the wide-spread adoption of these automated program repair (APR) tools.

Providers of static analysis tools recommend ways to mitigate the tool warnings. Developers can
follow them to manually revise their code when warnings are raised. Figure 1 illustrates two quality
checks (a) and (b) from two tools: CodeQL applied to Python code1 and Sonar�be applied to Java
code2. At the top are code snippets with quality issues. The natural-language �x recommendations
for the quality checks are shown in the middle and the revised code that can be obtained after
manually following the �x recommendations are shown at the bottom.
The APR tools try to learn mapping between the original and revised snapshots of the code.

To avoid the limitations of APR tools outlined above, we propose to instead make direct use of the
clear and concise natural-language instruction (�x recommendation) supplied by the tool providers.
The emergence of large language models (LLMs) (e.g., [16–18, 46, 55]) o�ers an opportunity to
make this possible. LLMs are large neural networks that capture generative distributions of natural
languages and source code. These models are trained on very large data in unsupervised manner.
Instruction-tuning [47] enhances their utility by �netuning the base LLMs to comprehend and
follow natural language instructions. As we show in this paper, it is possible to instruct state-of-
the-art LLMs to revise a piece of code directly using natural language instructions. These models
can sample a variety of code conditioned on instructions, that too without any additional training
or �netuning. Unlike symbolic program transformations and neural models trained on speci�c
datasets, they are not limited by the space of patterns or bug-�xing data used for training. This
eliminates the need to expend the e�orts required in designing symbolic transformation systems
or training specialized neural models, and saves on engineering e�orts.

1https://codeql.github.com/codeql-query-help/python/py-unguarded-next-in-generator
2https://rules.sonarsource.com/java/RSPEC-1217/

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

https://doi.org/10.1145/3643762
https://codeql.github.com/codeql-query-help/python/py-unguarded-next-in-generator
https://rules.sonarsource.com/java/RSPEC-1217/

CORE: Resolving Code�ality Issues using LLMs 36:3

Fig. 1. Examples of quality checks (le�) “Unguarded next in generator” and (right) “Thread.run() should
not be called directly”, fix recommendations, and code before and a�er following the fix recommendations
for (le�) CodeQL and (right) SonarQube tools for (le�) Python and (right) Java languages.

We try to realize the promise of LLMs to resolve code quality issues �agged by static analyses in a
tool called CORE (short for COde REvision). CORE is architected using a pair of LLMs organized as
a duo comprised of a proposer and a ranker. The proposer LLM of CORE takes a �x recommendation
and applies it to a given source-code �le to generate candidate code revisions. The candidates which
pass the static quality checks are retained. However, the LLM may introduce subtle, unintended
functionality changes which may go un-detected by the static analysis. The ranker LLM evaluates
the changes made by the proposer using a rubric that closely follows the acceptance criteria that a
developer would enforce. CORE uses the scores assigned by the ranker LLM to rank the candidate
revisions before presenting them to the developer.

We evaluate CORE on two public benchmarks: CodeQueries [51] and Sorald [53]. CodeQueries
is a benchmark of Python �les with quality issues �agged by one of the 52 common static checks
applied by the CodeQL tool. Sorald comprises of Java repositories with quality issues �agged by
one of the 10 common static checks applied by the Sonar�be tool. Both the datasets contain code
from public GitHub repositories and are representative of real-world quality issues.
We conduct a variety of experiments on these benchmarks to show the ability of CORE: 1 to

generate code revisions acceptable to both static analysis tools and human reviewers (the latter
evaluated with user study on a subset of the Python benchmark), 2 to reduce human review e�orts
by detecting and eliminating revisions with unintended changes, 3 to readily work across multiple
languages (Python and Java), static analysis tools (CodeQL and Sonar�be) and quality checks
(52 and 10 checks, respectively), and 4 to achieve �x rate comparable to a rule-based automated
program repair tool, Sorald, but with much smaller engineering e�orts (on the Java benchmark).
We obtain promising results that bear witness to practical utility of CORE using GPT-3.5-

Turbo [47] as the proposer LLM andGPT-4 [46] as the ranker LLM. CORE could revise 59.2% Python
�les (across 52 quality checks) so that they pass scrutiny by both a tool and a human reviewer. The
ranker LLM reduced the false positive rate by 25.8% in these cases. CORE produced revisions that
passed the static analysis tool in 76.8% Java �les (across 10 quality checks) compared to 78.3% of the
specialized program repair tool Sorald [53], but with signi�cantly much lesser engineering e�orts.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

36:4 N. Wadhwa, J. Pradhan, A. Sonwane, S.P. Sahu, N. Natarajan, A. Kanade, S. Parthasarathy and S. Rajamani

The authors of Sorald state that “The design and implementation of SORALD already represents
2+ years of full time work.” [53], whereas we were able to apply CORE on the Sorald benchmark
within a week’s time. Of course, the authors of Soraldmust have spent time to build the dataset and
reusable artifacts, which we get readily. However, the key point we want to highlight is that unlike
Sorald, we do not incur the cost of engineering an AST-to-AST transformation system, since the
LLM does code rewrites itself. Further, we analyzed the experimental results to identify strengths
and weaknesses of CORE to inform future research.
There is growing interest in using LLMs in program repair. Many existing techniques [22, 40,

60, 61] aim at �xing bugs characterized by failing test cases. In comparison, we focus on �xing
quality issues that are discovered statically and do not have accompanying unit tests for validation.
The techniques that repair statically detected errors [31, 32, 48] either target syntactic or simple
semantic errors [32], �netune an LLM on specially designed prompts [31] or use less powerful
models and prompting [48]. We target a wide range of code quality issues using instruction-tuned
LLMs which support powerful prompting without any �netuning.
We make the following contributions in this paper:

(1) We identify an emerging opportunity of using instruction-following LLMs to assist developers
in resolving code quality issues.

(2) We present a system, CORE, to evaluate this opportunity. We design a multi-step protocol
wherein one LLM proposes the code revisions, which are �ltered by applying the static
analysis and further ranked using a ranker LLM, before they are presented to the developer.

(3) We conduct extensive experimentation to evaluate (a) acceptability of the revisions produced
by CORE, (b) its ability to control false positives, (c) generalizability to di�erent languages,
tools and checks, (d) its performance compared to a specialized program repair tool, (e)
ablations of key choices in CORE, and (f) a qualitative study. Our results show that CORE is
a promising step in bringing LLMs to the help of developers in resolving code quality issues.

(4) We release code, data, and supplementary material publicly at http://aka.ms/COREMSRI.

2 OVERVIEW

Our goal is to (1) automate code quality revisions in software engineering work�ows, which
typically comprise large-scale code repositories and various code quality control checks; (2) by
taking static analysis tools and documentation of quality checks (natural language instructions) as
input; (3) with minimal developer intervention. This section gives an overview of the architecture
of CORE using an example code quality issue resolution scenario.

class PersistentDict(dict):

"""A class that persists a dict to a file. This class behaves like a dict and

adds new functionality to store the dict to a file when writing."""

def __init__(self, filename, load=True):

self._filename = os.path.abspath(filename)

if load: self._load()

self._transact = False

@property

def filename(self):

'The filepath to write'

return self._filename

Code 1. Example Python code with Eq-Not-Overridden issue.

Consider the Python code snippet shown above. The PersistentDict class derives from dict

class, adding _filename and _transact attributes of its own. It does not override the __eq__

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

http://aka.ms/COREMSRI

CORE: Resolving Code�ality Issues using LLMs 36:5

Fig. 2. CORE pipeline: Code quality issues (static checks) across so�ware repositories are documented by
the tool provider. CORE is integrated in the repo build pipeline that also runs the suite of static analysis
checks. The flagged source files and the documentation are fed as input to the CORE system to automatically
produce source file revisions that address the quality issues. The candidate revisions that pass the static
checks are further assessed and ranked by a ranker LLM to prevent surfacing spurious fixes to the developer.

method. This is an instance of poor code quality that can cause errors: when two objects of
PersistentDict class are compared, the subclass attributes get ignored. This example code gets
�agged by the CodeQL tool with the Eq-Not-Overridden warning [3].

Software engineering work�ows involve quality checks for readability, maintainability, security,
etc. Accompanying these checks are the guidelines (natural language instructions) for �xing the
issues in the source �les that are �agged by static analysis tools. For the Eq-Not-Overridden
check, the CodeQL manual page on the web [3] states “A class that de�nes attributes that are not
present in its superclasses may need to override the __eq__() method (__ne__() should also be de�ned)”.
Tool developers or quality assurance (QA), security and compliance teams in organizations write
the static quality checks and documentation (�x recommendations), and the repository owners
(dev team) are responsible for �xing the quality issues based on the provided guidelines.

CORE pipeline is con�gured with the inputs from the tool provider along with the source-code
�les �agged by the tools, and produces automatic revisions of the source �les to address the issues.
1 Con�guring the CORE pipeline: CORE, shown in Figure 2, is a generic pipeline for code
revisions. In order to con�gure CORE to process the Eq-Not-Overridden issue, the tool provider
supplies two types of information to CORE: (1) the static analysis tool (e.g., CodeQL) and the
check itself (e.g., a .ql �le), (2) a description of the code quality issue and instructions to �x the
issue in natural language. In our evaluation, we obtain the description of the quality issues and
the instructions to �x them from online documentation. Once con�gured, CORE can automati-
cally process static analysis reports corresponding to this issue, along with the �les containing
the code that needs to be revised to �x the issue, and propose candidate revisions to the code.

The aforementionedmanual con�guration for a code quality issue is a one-time, o�ine step, that serves
to produce revisions (in an automated, online fashion) for the issue arising in various repositories,
thereby automating the repetitive task of resolving the code quality issues.

We describe the components of the CORE pipeline next.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

36:6 N. Wadhwa, J. Pradhan, A. Sonwane, S.P. Sahu, N. Natarajan, A. Kanade, S. Parthasarathy and S. Rajamani

2 Constructing prompt: This component takes in the static analysis report, the �agged source
�le, and the documentation for the issue (see above), and constructs a “prompt” for querying the
large language model (LLM). A prompt encodes the natural language instruction to solve a particular
task and optionally additional information that the model might use to perform the task such as
hints (e.g., lines of interest in the �le), constraints (e.g., “do not modify parts of code unrelated to
the issue”), and demonstrations (e.g., an example code snippet with __eq__ not overridden and its
revised version). Typically, each LLM has a limit on the prompt size (also referred as context size) it
supports in terms of the number of tokens. In CORE, the prompt encapsulates the description of
the quality issue, �x suggestions, and the line(s) of code the static analysis report attributes the
issue to. In addition, CORE employs other relevant information that may be helpful to �x the issue,
such as fetching relevant blocks of code derived from static analysis reports. The details of prompt
construction are presented in Section 3.
3 Generating candidate revisions using Proposer LLM: The proposer LLM takes as input
the constructed prompt in natural language along with the code �agged for the quality issue and
outputs potential code revisions. We use GPT-3.5-Turbo, which is a state-of-the-art LLM for code
generation, in our experiments. GPT-3.5-Turbo supports large prompt sizes (up to 4000 tokens).
This lets us input the entire source-code �le for many cases. For very large �les, we give the largest
context block admissible (e.g., the entire method or class surrounding the lines of interest) by the
prompt size (details in Section 3). The output code (a block or a full �le, as the case may be) is then
patched back to the original �le. We sample 10 candidate revisions for each input �le.
4 Pruning revisions with the con�gured tool:We run the static analysis check (that CORE
is con�gured with in 1) against the candidate revisions and �lter out the ones where the code
quality issue continues to persist (i.e., non-zero violations detected). In this process, we de-duplicate
identical code revision suggestions as well as ensure the syntactic validity of code revisions, and
reject the ones with syntax errors.
5 Ranking admissible candidates using Ranker LLM: The static analysis tool could pass
revisions that are not acceptable to developers, such as introducing unintended changes in the
code (e.g., a revision that overrides the __eq__ method properly, but alters the implementation of
__hash__ unnecessarily). The impressive editing and generative ability of state-of-the-art LLMs
also means that they can make alterations (often subtle, but changing the semantics) to existing
code even if they are explicitly instructed not to do so. Furthermore, if the quality of the static
check (usually some form of pattern matching) itself is poor, it is even more important to ensure
incorrect revisions are not surfaced to the developer who will eventually accept or reject them. To
reduce the burden on the developers, and to improve the acceptance rate of the surfaced �xes, we
employ another LLM (GPT-4) to score the candidate revisions in the order of their likelihood of
acceptance. To instruct the LLM to do so, we rely on the same rubric, i.e., instructions for issue
resolution supplied in 1 , to construct a prompt for the LLM. In particular, we give the candidate
revision that passed the static analysis tool (di� with the original source code) along with the rubric
in natural language, as input to the Ranker LLM and ask it to assign an ordinal score in a range
(from strong accept to strong reject). We use this score to rank the potential candidates for a �le.
The details of the ranking strategy are discussed in Section 3.

Sample output: Code snippet shown below is a sample output generated by CORE for Code
1. Due to lack of space, instead of showing the full code, we display the outputs in the standard di�
format with respect to Code 1.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

CORE: Resolving Code�ality Issues using LLMs 36:7

@@ -128,0 +130,4 @@ class PersistentDict(dict):

+ def __eq__(self, other):

+ if isinstance(other, PersistentDict):

+ return dict.__eq__(self, other) and self._filename == other._filename and self.

↩→ _transact == other._transact

+ return False

Code 2. A correct revision of Code 1 generated by CORE.

The above code snippet is a correct way of revising Code 1. It calls the __eq__ method of the
super class and compares all the member variables of the subclass. Further, it does not make any
unnecessary changes to the code.

3 DESIGN

Designing and tuning prompts for querying LLMs is a thriving new area of research [39]. In this
section, we describe in detail the prompt construction strategies, guided by static analysis reports.
The LLM invocations in our pipeline are for generating candidate revisions, and for scoring and
ranking the candidates.

3.1 Proposer LLM: Prompting the LLM to generate code revisions

To generate code revisions for a given code quality issue and an input source �le, we devise a
prompt template incorporating di�erent types of information, with elaborate natural language
instructions, needed to perform the revision task. Our prompt follows the generic structure shown
below, with �xed components (p1 and p2 , as per con�guration done in 1 discussed in Section 2)

as well as instance-speci�c components (p3 , p4 , and p5) obtained dynamically:

Proposer Prompt Template

p1 Description of the quality issue.

p2 Recommendations for resolving the quality issue.

p3 (Optional) Relevant code blocks for doing the revision.

p4 Input source �le (in full, or localized to the block containing the issue).

p5 Location and warning message given by the static check.

The �xed components of the prompt consist of the name of the quality check, description, and
recommended ways to resolve the issue. These are provided at the time of con�guring the CORE
pipeline.

We use remediation details verbatim from the webpages [1, 8] for 41/62 checks used in our study
(see Section 4); for the remaining 21 checks, we use our domain expertise to write �x remediation,
as there is no clear information in the webpages (see supplementary material for details). Note
that validity of all the �xes generated by the LLM is checked automatically by the static analysis
tool (step 4, Figure 2), including for �xes generated using the remediation instructions written by
us. Once the pipeline is con�gured, CORE programmatically extracts warning messages from the
static analysis reports needed for prompt construction. The instantiated prompt for our example
Code 1 is given in Figure 3. The text in italics is the template, the text in teal correspond to
the �xed components obtained from the tool providers, and the text in brickred correspond to
instance-speci�c information retrieved from static analysis (CodeQL for this example) reports.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

36:8 N. Wadhwa, J. Pradhan, A. Sonwane, S.P. Sahu, N. Natarajan, A. Kanade, S. Parthasarathy and S. Rajamani

Proposer Prompt (output of “Prompt Construction” stage in Figure 2)

p1 We are �xing code that has been �agged for the CodeQL warning titled "`__eq__` not

overridden when adding attributes" which has the following description:
A class that de�nes attributes that are not present in its superclasses may need to override
the __eq__() method (__ne__() should also be de�ned).
Adding additional attributes without overriding __eq__() means that the additional
attributes will not be accounted for in equality tests.

p2 The recommended way to �x code �agged for this warning is:

Override __eq__ method to also test for equality of added attributes by either calling eq
on the base class and checking equality of the added attributes, or implementing a new eq
method that checks equality on both self and inherited attributes.

p4 Modify the Buggy code below to �x the CodeQL warning(s). Output the entire code block

with appropriate changes. Do not remove any section of the code unrelated to the desired �x.

Buggy Code:
class PersistentDict (dict) :

· · ·

p5 CodeQL warning(s) for the above buggy code:

The class ‘PersistentDict’ does not override "__eq__" , but adds the new attributes
"_�lename" and "_transact".

The following lines are likely to be of interest:
1. class PersistentDict (dict) :

Fixed Code:

Fig. 3. Prompt supplied to the Proposer LLM for revising Code 1. This example does not require additional
relevant code blocks as context and hence, the corresponding prompt component p3 is not present.

Handling multiple violations in the input �le: The static analysis tool gives us the locations
(lines of interest), and in some cases associated warning messages as well, where the issue was
�agged in the input source �le. There can be multiple locations in a single �le where the check
violation is �agged. If the source �le is su�ciently small (to �t in the context size of the LLM), we
give the entire source �le (in p4) as well as all the �agged locations and warning messages (in

p5) in a single prompt. If not, we use Algorithm 1 to �rst extract code blocks of a predetermined

size, each containing one or more more issue violations. We then instantiate p4 and p5 with a

concatenation of the returned pairs of code blocks and the corresponding warning messages.

Relevant code blocks: During static analysis, tools like CodeQL identify and inspect code blocks
that are relevant for determining presence/absence of a property violation. We log this information
while running the static analysis and provide it as additional signal in our prompt in p3 . For example,

for a CodeQL check “signature mismatch in overriding method”, the declaration of the overriden
method from the superclass is a relevant block because the static check determines the mismatch

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

CORE: Resolving Code�ality Issues using LLMs 36:9

Algorithm 1: Psuedocode for handling multiple violations in the Proposer LLM prompt

Data: source �le to �x � , set of issue violation locationsV �agged in � , maximum size of a
code block) (in terms of number of tokens).

let 1;>2:_?A><?C_6A>D?B be an empty �82C (�>34�;>2:, !8BC (�BBD4B));
for E8 8= V do

28 ← !0A64BC�=2><?0BB8=6�;>2: (E8 ,) , �) // Returns the largest encompassing Class or
method or window around the issue location, of size smaller than the threshold)
if 28 8= 1;>2:_?A><?C_6A>D?B then 1;>2:_?A><?C_6A>D?B [28] .0??4=3 (E8)
else 1;>2:_?A><?C_6A>D?B [28] = [E8]

return 1;>2:_?A><?C_6A>D?B

between the overriden and overriding methods by inspecting their signatures. On the other hand,
in the example of Code 1, the CodeQL error message already provides su�cient information. As
shown in Figure 3, p5 gives the CodeQL diagnostics that _filename and _transact attributes are

added in the subclass and are not covered by the __eq__ method of the superclass. Thus, the �x
can be constructed from local code with this diagnostic information, and there is no need for any
other part of the source �le. For such checks, we do not supply p3 .

3.2 Ranker LLM: Prompting the LLM to score candidate revisions

As we stated in Section 2, static analysis tools could pass revisions that are not acceptable, e.g.,
introducing unintended changes or otherwise altering functional correctness of the source code.
In the running example of Code 1, we see two kinds of revisions that are likely to be rejected by
developers: (1) revisions that override the __eq__ method properly, but alter the functionality of
the code elsewhere, such as changing the implementation of __hash__, and (2) revisions that do
not quite resolve the quality issue, but by-pass the CodeQL checks anyway — for instance, all the
subclass members are explicitly enumerated in the equality check without calling super().__eq__
for the parent members. We do not want to surface such spurious candidates to the developer.

Ranker Prompt Template

r1 Description of the quality issue. (same as p1 in the Proposer template.)

r2 Recommendations for resolving the quality issue. (same as p2 in the Proposer template.)

r3 Rubric for scoring the revisions on the scale of “Strong Reject”, “Weak Reject”, “Weak

Accept”, “Strong Accept”.
r4 Input candidate revision as “Di�” with its source �le.

To this end, we use another instance of the LLM to act as a ranker that scores the candidate
revisions that pass the tool, i.e., output of stage 4 in Figure 2, in the CORE pipeline. We use a
prompting strategy similar to the one used for generating the revisions themselves in the previous
subsection to query the ranker LLM. The prompt template for scoring candidates is given above.
Note that the prompt is fairly generic, and in particular, is agnostic to the type of code quality
check or the static analysis tool.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

36:10 N. Wadhwa, J. Pradhan, A. Sonwane, S.P. Sahu, N. Natarajan, A. Kanade, S. Parthasarathy and S. Rajamani

Ranker Prompt (Details)

r1 You are an expert developer. You are verifying the code generated by LLM to �x the

warning titled "‘__eq__‘ not overridden when adding attributes" which has the following
description: A class that de�nes attributes that are not present in its superclasses may need
to override the __eq__() method (__ne__() should also be de�ned). ...

r2 The recommended ways to �x code �agged for this warning are:
Override __eq__ method to also test for equality of added attributes by either calling eq
on the base class and checking equality of the added attributes, or ...

r3 Your task is to assess the quality of the generated patch and rate it on the following evalu-
ation criteria:
Score 0, if the patch has changes unrelated and unnecessary to �xing the warning (Strong
Reject).
Score 1, if the patch has a few correct �xes, but still modi�es the original snippet unnecessar-
ily (Weak Reject).
Score 2, if the patch has mostly correct �xes but is still not ideal (Weak Accept).
Score 3, if the patch only makes edits that �x the warning with least impact on any unrelated
segments of the original snippet (Strong Accept).

If you �nd additions or deletions of code snippets that are unrelated to the desired �xes (think
LLM hallucinations), it can be categorically scored 0 (Strong Reject). That said, you can make
exceptions in very speci�c cases where you are sure that the additions or deletions do not alter
the functional correctness of the code, as outlined next.

Allowed Exceptions:
The following (unrelated) code changes in the di� �le can be considered okay and need not
come in the way of labeling an otherwise correct code change as accept (score 2 or 3). This list
is not exhaustive, but you should get the idea
(a) deleting comments is okay,
(b) rewriting a = a + 1 as a += 1 is okay, even though it may not have anything to do with
the warning of interest,
(c) making version speci�c changes is okay, say changing print ("hello") to print "hello".

The following (unrelated) code changes in the di� �le are NOT considered okay, and you
should label the di� �le as reject (score 0 or 1) even if it is otherwise correct for the query.
This list is not exhaustive, but you should get the idea
(a) deleting or adding a print statement,
(b) optimizing a computation,
(c) changing variable names or introducing typos.

r4 Output only the reason and score for the patch below. Do not output anything else.

Di� : ⟨ di� ⟩
Reason:

In addition to information about the quality check and �x recommendation, the prompt includes
description of a scoring rubric for the LLM to rank revisions, from strong accept (score 3) to strong
reject (score 0). The scoring criteria are (a) whether the revision addresses the issue(s) at hand
and (b) whether it introduces any unrelated changes. On the other hand, the proposer LLM could

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

CORE: Resolving Code�ality Issues using LLMs 36:11

enforce certain coding convention or style that it encountered frequently during training. We
instruct the ranker LLM to overlook such changes as long as they do not impact the functional
semantics of the code. Similarly, we also give examples of changes that should be rejected (as shown
in the full ranker LLM prompt above).

4 EXPERIMENTAL SETUP

Datasets: (1) We use a subset of the CodeQueries [51] dataset3 in our experiments. It contains
Python �les with quality issues �agged by a set of 52 CodeQL queries (i.e., static checks). The 52
CodeQL queries are taken from the standard Python CodeQL (version 2.5.0) suite; these analyze
various aspects of code such as security, correctness, maintainability, and readability. In all our
experiments, we use the test split of the CodeQueries dataset. Due to throttled LLM access, we use
a subset of 2752 �les across 52 static checks. We denote this dataset as CQPy. Further, we sample
10 �les per query from CQPy to conduct a user study on revisions generated by CORE. We refer
to this subset as CQPyUS. (2) We use a subset of the Sorald [53] dataset4; this subset consists of a
collection of 151 java repositories from Github. The original dataset contains an additional 10 large
repositories, that substantially increase the number of �agged �les for 3 of the 10 issues (75% total
increase) in the dataset. So, to avoid biasing the results and �ndings towards these speci�c issues
and �les, we exclude the 10 repositories from our experiments. Our dataset has a total of 483 �les,
and covers all the 10 Sonar�be checks studied in [53]. We refer to this set as SQJava.

The static checks used in these two datasets cover a diverse spectrum of analyses targeting type
checking, exception handling, class inheritance, control-�ow and data-�ow properties, concurrency
errors and others, across two popular programming languages on real-world code.

Model con�gurations: We conduct our experiments using the GPT-3.5-Turbo model as the
proposer. We obtain 10 responses per input source �le using the OpenAI inference API. Following
recent work [11], to encourage diversity in the sampled responses, we use a combination of
temperature settings for the model (that controls the stochasticity in the generated responses): 1
response with temperature = 0 (greedy decoding), 6 responses with a temperature of 0.75, and 3
responses with a temperature of 1.0. In Section 5.6, we consider the e�ect of a di�erent LLM choice
in the pipeline. We use GPT-4 as the ranker (our early investigations suggested that GPT-4 is
signi�cantly better in terms of reasoning with code di�s compared to GPT-3.5-Turbo) and obtain a
single response (score) per candidate revision, with temperature 0. We set max_tokens to 4000 for
GPT-3.5-Turbo and 1000 for GPT-4.

Evaluation metrics: For each dataset, we report the number of �les �agged and the number of
total issues �agged across the �les. We measure how many �les have at least one revision that
passes the static check and how many issues remain in �les with no such revision after the Proposer
LLM and Ranker LLM stages of CORE are applied. In the user study, we measure how many �les
have at least one revision that is accepted by the human reviewer and report how many revisions
were accepted and rejected across the �les by the reviewers. We refer to the number of revisions
produced by the CORE pipeline but rejected by the human reviewer as false positives.

5 EVALUATION

Our goal is to extensively evaluate the end-to-end CORE pipeline across various quality-improving
code revision tasks and to answer the following questions:

3https://huggingface.co/datasets/thepurpleowl/codequeries
4https://github.com/khaes-kth/Sorald-experiments

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

https://huggingface.co/datasets/thepurpleowl/codequeries
https://github.com/khaes-kth/Sorald-experiments

36:12 N. Wadhwa, J. Pradhan, A. Sonwane, S.P. Sahu, N. Natarajan, A. Kanade, S. Parthasarathy and S. Rajamani

RQ1: How e�ective is the end-to-end CORE pipeline in mitigating code quality issues and in passing
scrutiny by the Ranker LLM on the Python benchmark CQPy?

RQ2: How many of the CORE-generated revisions are also accepted by human reviewers on the
Python benchmark CQPyUS?

RQ3: How readily does CORE pipeline generalize to a di�erent programming language (Java) and
a static analysis tool (SonarQube)?

RQ4: How well does CORE compare to a state-of-the-art automatic program repair technique
(Sorald) for mitigating static analysis warnings?

RQ5: Where does CORE succeed and where does it fail?
RQ6: What is the e�ect of using a less powerful LLM in the CORE pipeline?

5.1 RQ1: How e�ective is the end-to-end CORE pipeline in mitigating code quality

issues and in passing scrutiny by the Ranker LLM on the Python benchmark CQPy?

We start by looking at the overall performance of the CORE pipeline in terms of (1) �xing the
code quality issues as determined by the static analysis tool that CORE is con�gured with, and (2)
acceptances as determined by the Ranker LLM using a detailed evaluation criteria to assess the
code revisions (as described in Section 3.2).
The overall evaluation results of the end-to-end CORE pipeline (on the datasets and metrics

introduced in Section 4) are presented in Table 1. For RQ1, we will focus on the �rst row, that
corresponds to CORE pipeline con�gured with CodeQL as the static analysis tool, and the 52 quality
checks that are part of the CQPy Python dataset.

The �rst block of columns shows the dataset statistics. There are 5389 quality issues (i.e., static
check violations) �agged in the 2752 �les of the CQPy dataset, with each �le having at least one
issue �agged, by the end of stage 1 in Figure 2. In the second block of columns, we show the
e�ectiveness of the Proposer LLM, after the proposed candidate revisions (10 revisions per �agged
�le) are �ltered by the tool (i.e., CodeQL for the �rst row) by the end of stage 4 . First, we observe
that 88.81% of the �agged �les get �xed entirely as validated by the static analysis tool, i.e., they
have at least one revision that completely passes the static checker with zero issues �agged. Second,
we observe that, the average number of issues remaining per revised �le, by the end of stage 4 of
the CORE pipeline, is 0.25 compared to over 1.95 issues on average per source �le at the beginning
of the pipeline. This is particularly remarkable as the Proposer LLM is able to perform revision
with just the natural language instructions, without explicitly providing any training examples of
the form ⟨before code, after code⟩ that are commonly needed for automatic program repair tools.

The instruction-following ability of the Proposer LLM to do code revisions, although impressive,
can also produce spurious �xes that pass static checks. In the last stage of the CORE pipeline, the
Ranker LLM uses elaborate evaluation criteria (in its carefully-constructed prompt presented in
Section 3.2) to reject such spurious �xes and accept revisions that are likely to be also accepted by
developers. From the last block of columns of Table 1, we see that 2325 out of 2752 �les are ranked
high, i.e., strong or weak accept, by the Ranker LLM by the end of stage 5 . In particular, the Ranker
LLM (strong- or weak-) rejects every revision (possibly spurious) for 119 �les even though they are
passed by the tool in stage 4 . In the subsequent RQ, we analyze how well the acceptances and the
rejections by the Ranker LLM correlate with human reviewers, on a subset of the CQPy dataset.

CORE pipeline is e�ective for resolving code quality issues in real software engineering work�ows
that rely on static tools for quality assurance. CORE produces a list of the candidate revisions
in decreasing order of con�dence for a given �le, using an elaborate grading criteria including
checking for unintended side-e�ects and semantic correctness which the static tools miss.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

CORE: Resolving Code�ality Issues using LLMs 36:13

Table 1. Summary of end-to-end evaluation of CORE on real-world Python and Java files, with 52 and 10
static checks using CodeQL and SonarQube respectively. “#Files flagged” and “#Issues flagged” correspond
to output of static checks (stage 1 in Figure 2). “#Files passing static checks” and “#Issues remaining” report
the number of files having at least one revision that passes the static checks and the issues that remain in
files with no such revision (stage 4 output). “#Files ranked high (low)” is the number of files with at least one
revision (no revision, respectively) that is scored as weak/strong accept by the Ranker LLM (stage 5 output).
For files, the percentages are reported with respect to the “#Files flagged”.

Dataset Dataset statistics E�ectiveness of Proposer LLM Rankings by Ranker LLM

#Files �agged #Issues �agged #Files passing #Issues remaining #Files ranked

(Avg. per �le) static checks (%) (Avg. per �le) high (%) low (%)

CQPy 2752 (100%) 5389 (1.95) 2444 (88.81%) 693 (0.25) 2325 (84.48%) 119 (4.32%)

CQPyUS 520 (100%) 999 (1.90) 453 (87.11%) 159 (0.31) 427 (82.11%) 26 (5.00%)

SQJava 483 (100%) 999 (2.06) 397 (82.19%) 270 (0.56) 371 (76.81%) 26 (5.38%)

5.2 RQ2: How many of the CORE generated revisions are also accepted by human

reviewers on the Python benchmark CQPyUS?

In this RQ, we investigate the correctness of the revisions produced by CORE, and in particular
the e�ectiveness of the Ranker LLM, by conducting a user study. We use a subset of CQPy, called
CQPyUS, with a sample of 10 �les per quality check, which already yields 2397 candidate revisions
(out of stage 4) to be manually scrutinized. The CORE pipeline results for this dataset are presented
in the second row of Table 1, where the trend closely resembles that of CQPy in the �rst row.
For each of the 453 �les in CQPyUS that comes out of stage 4 (as seen from row 2, Table 1),

we ask a human reviewer to label all the revisions for the �le as accept or reject. We provide the
same rubric that we give as prompt to the Ranker LLM (presented in Section 3.2) to the reviewer
to assess the correctness of the revisions — the only change is that we ask the reviewer to give a
binary accept/reject decision than a graded score that we elicit from the Ranker LLM. Our user
group consists of 15 Python developers (intermediate level, with 1-3 years of software engineering
experience). Each revision was labeled by only one user, and each user was responsible for labeling
revisions of 2 to 4 (randomly chosen) static checks from the dataset. On average, a user spent about
4 hours to �nish the labeling assignment (di�culty of labeling varies signi�cantly across static
checks and, in some cases, across �les within checks). They were given a tutorial on the CodeQL
static checks and �x recommendations. They had access to the internet to refer to the CodeQL
online documentation. None of the authors of this paper were part of the user group.

The results of the CQPyUS user study are presented in Table 2. The �rst row of the Table shows
the (baseline) metrics for the user study we conducted — all the outputs of stage 4 were reviewed
by the users, and 70.64% of the reviewed �les have at least one revision that a human reviewer
accepted. However, from the last column, we see that this high acceptance rate comes at a high
cost of 1321 false positives, i.e., 55.11% of the revisions that passed CodeQL were rejected by users.
This trade-o� between acceptance rate and false positives of the pipeline can be crucial in practice.
In the following, we show that the Ranker LLM helps achieve a signi�cantly better trade-o�.
Equipped with the accept/reject labels given by users for all the CodeQL-passed revisions of

the CQPyUS dataset, we ask: Can the Ranker LLM help tell the correct revisions from the incorrect
ones, which would in turn help minimize the review burden of developers? We answer this question
a�rmatively in the subsequent rows of Table 2. From the second row, we see that if we surface
only the candidates strongly accepted by the Ranker LLM, the rejection rate drops to 47.55%. In an

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

36:14 N. Wadhwa, J. Pradhan, A. Sonwane, S.P. Sahu, N. Natarajan, A. Kanade, S. Parthasarathy and S. Rajamani

Table 2. Results of user study on the CQPyUS dataset. “Ranker LLM, SA” denotes all the revisions scored as
strong accept by the Ranker LLM; “Ranker LLM, WA” denotes all the revisions scored as weak accept by the
Ranker LLM, and “Ranker LLM, WR/SR” denotes all the revisions scored as rejects (strong or weak) by the
Ranker LLM. For files and revisions, the percentages are reported row-wise with respect to the numbers in
the first block of columns (under “Stage-wise output”). Column-wise maximums are in the bold typeface.

Stage evaluated Stage-wise output Results of user study

#Files #Revisions % Files % Revisions % Revisions

retained retained accepted (#) accepted (#) rejected (#)

Stage 4 (Proposer LLM) 453 (100%) 2397 (100%) 70.64% (320) 44.89% (1076) 55.11% (1321)

Stage 5 (Ranker LLM, SA) 410 (100%) 1756 (100%) 72.68% (298) 52.45% (921) 47.55% (835)

Stage 5 (Ranker LLM, WA) 17 (100%) 228 (100%) 58.82% (10) 36.40% (83) 63.60% (145)

Stage 5 (Ranker LLM, WR/SR) 26 (100%) 413 (100%) 46.15% (12) 17.43% (72) 82.57% (341)

absolute sense, the number of rejections drops to 835 from 1321, which is close to 25% reduction.
At the same time, 72.68% of the scrutinized �les have at least one revision accepted by a reviewer.
Furthermore, from the last row, we see that if we consider only the �les for which no revision was
(strong- or weak-) accepted by Ranker LLM, the users also rejected over 82% of those revisions;
this indicates that dropping the low con�dence rejections by the Ranker LLM can indeed help
signi�cantly reduce the review burden of developers in practice.

It is evident from our user study that relying only on the (symbolic) tools for �ltering revisions is
problematic. The Ranker LLM helps reduce the number of false positives greatly, while also ensuring
that acceptable revisions which preserve functional correctness are surfaced to the developers.

5.3 RQ3: How readily does CORE pipeline generalize to a di�erent programming

language (Java) and a static analysis tool (Sonar�be)?

CORE can handle di�erent programming languages and static analysis tools out of the box. To
demonstrate this, in this RQ, we con�gure CORE with another widely-used static analysis tool
Sonar�be, and the 10 static checks applied to Java code from the SQJava dataset (introduced in
Section 4). This con�guration was straight-forward; it took us less than a week to get this done. In fact,
lines of code that needed changes in our CORE implementation (in Python) for this con�guration
was less than 100. Speci�cally, we did not have to adapt or tune the prompts of the Proposer and
Ranker LLMs in our pipeline to accommodate the new tool or the programming language. The
authors of the Sorald dataset have made available clear descriptions and �x recommendations for
the 10 checks, which we readily use to instantiate our LLM prompts. Further, Sonar�be provides
localization for the check violations (line numbers in the source �le) needed to extract code blocks
as discussed in Section 3.1.

We report results on the SQJava dataset consisting of real-world Java repositories in the last row
of Table 1. There are 999 quality issues �agged in 483 �les of the dataset, with each �le having at
least one issue �agged, by the end of stage 1 of CORE. As in the case of the other datasets (�rst
and second rows), we �nd that over 82% �les have at least one candidate revision that entirely
passes the associated Sonar�be check. Furthermore, the average number of issues that remain
by the end of stage 4 is about 0.56 per �le, compared to over 2 issues per �le on average to begin
with. From the last column, we see that the Ranker LLM rejects all the (possibly spurious) revisions
that passed Sonar�be checks for 26 �les, and (strong- or weak-) accepts at least one revision for
371 �les, which is over 76% of the total �les.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

CORE: Resolving Code�ality Issues using LLMs 36:15

Table 3. Comparison of COREwith the state-of-the-art APR technique Sorald on the SQJava dataset consisting
of 10 static checks, using SonarQube as the static analysis tool. “#Files (%)” for CORE and Solard rows indicate
the number of files (% with respect to the Flagged files) that are fixed by the tools respectively.

#Files (%) #Issues remaining (%)

Flagged 483 (100%) 999 (100%)
CORE 371 (76.8%) 270 (27.03%)
Sorald 378 (78.3%) 371 (37.14%)

CORE can be readily extended to new static tools and programming languages with minimal
engineering e�orts and lines of code changes.

5.4 RQ4: How well does CORE compare to a state of the art automatic program repair

technique (Solard) for mitigating static analysis warnings?

We compare CORE with the state-of-the-art automatic program repair (APR) technique Sorald [53]
for �xing static check issues in code. We use the latest verion of Sorald (v0.8.5) [9]. Sorald is a
rule-based approach that leverages “metaprogramming templates”, which are basically AST-to-AST
transformations, that can be applied on the detected violations in code. In particular, for each
violation location in the code, Sorald applies one metaprogramming template to the corresponding
AST element to �x it. They manually implement one metaprogramming template per static check,
based on the �x recommendations for the check, which we directly use in the form of natural
language instructions in the CORE pipeline. While their repair tool is extensible to other languages
and static analysis tools, their publicly available implementation [9] is for Java and Sonar�be.
So, for this RQ, we focus on the SQJava dataset.

The comparison results on the Java dataset are presented in Table 3. Of the 483 �les in the dataset,
CORE, i.e., the output of stage 5 , considering the (strong/weak) accepted revisions by the Ranker
LLM, �xes 371 �les entirely, at a rate of 76.8%. This is comparable to the manually crafted Sorald
tool that �xes 378 �les. On the other hand, the number of issues that remain by the end of CORE
pipeline is 270 (about 27%), signi�cantly less compared to 371 (about 37%) for the Sorald tool. Note
that since we tested CORE against the latest version of Sorald (v0.8.5) [9], the results we reported
for Sorald in Table 3 are better than the results reported in the study by the authors (refer to Table
4 [53]).

CORE is competitive to state-of-the-art automatic program repair tool Sorald with signi�cantly
less engineering e�orts, and with absolutely no tuning of the pipeline for the benchmark.

5.5 RQ5: Where does CORE succeed and where does it fail?

We present qualitative analysis of CORE outputs, with a deep-dive of some of the results presented
in the above subsections.

(i) Prompt size needed vs. the performance on various static checks: We present a more
�ne-grained analysis of the results in Tables 1 and 2 in Figure 4. We show how the performance of
CORE varies by query and by the prompt size (i.e., Proposer and Ranker LLM prompts) needed
per �le. Larger source �les tend to be more challenging in general as LLMs have to reason with
very long contexts. For the Proposer LLM (top table), we use the performance metric of Table 1, i.e.,
the fraction of �les (falling in the bin) passing static checks (for the query). For the Ranker LLM
(bottom table), we use the �le acceptance rate after human review (as in Table 2) as the metric.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

36:16 N. Wadhwa, J. Pradhan, A. Sonwane, S.P. Sahu, N. Natarajan, A. Kanade, S. Parthasarathy and S. Rajamani

Fig. 4. Performance of the proposer LLM (top) and the ranker LLM (bo�om) stages in CORE, on CQPyUS,
by static checks and prompt size needed (0th-50th percentile and 50th-100th percentile bins). The last rows
(columns) of the tables are row (column) sums normalized by total number of files (520 for the top table
and 453 for the bo�om table). “NA” indicates that the cell did not have any files. Appendices A, B in the
supplementary material give the mapping from the column headings (numbers assigned to the checks) to
names of the CodeQL static checks.

Multiple observations are in order from the two tables presented in the �gure: 1) there are some
checks that are easier to resolve than others, no matter the prompt size. For instance, “Duplicate key
in dict literal” check (number 4 in the top table, see Appendix A in the supplementary material) is
resolved by simply updating the associated dict variable5 whose precise location is given by the
CodeQL error message that we include in the prompt in p5 as discussed in Section 3.1; 2) in case

of the Proposer LLM (top), the larger prompt size needed (i.e., 50th-100th percentile bin) results
in reduction in performance for 19 out of 52 checks; the bin-wise average performance of CORE
(last column) is 42% in the larger bin compared to 45% in the smaller bin; 3) in case of the Ranker
LLM (bottom), the larger prompt size needed (i.e., 50th-100th percentile bin) results in reduction in
performance for 26 out of 52 checks.

(ii) Common failure modes: Figure 5 shows the histogram of the failure modes of CORE, i.e.,
the reasons given by the human reviewers in our user study presented in Section 5.2 for rejecting
the candidate revisions. From Table 2, we have that 1321 revisions were rejected out of the 2397
revisions produced by CORE. We also requested users to provide a terse reason for their decision,
whenever they chose to reject a revision. The users provided reasons for 1108 (about 84%) of the
rejected 1321 revisions. The most common failure mode observed in Figure 5 is introducing semantic
changes, unrelated to the issue of interest, that could potentially impact the functional correctness
of the code (e.g., changing the de�nition of __hash__ while revising the implementation of __eq__
for the Eq-Not-Overridden issue). Many of the presented failure modes align with the prevailing
wisdom on the pitfalls of LLMs, including 1) hallucinations (such as creating super�uous classes
and methods, rewriting exception handler messages, etc.), and 2) going above and beyond the given
brief (via the prompt) to make unnecessary additions or deletions or edits. For instance, we �nd
that in about 7% of the cases, LLMs try and �x seeming semantic inconsistencies in the source �le
— such as renaming variables consistently, adding or removing logging statements in certain code
branches, etc. The user study also underscores the unreliability of static tools even for the quality
checks, let alone functional correctness — in about 8.94% of the cases, �xes in the revised code were
incorrect, and in about 1.44% of the cases, the �xes were incomplete, yet those revisions passed the
associated CodeQL checks.

5https://codeql.github.com/codeql-query-help/python/py-duplicate-key-dict-literal

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

https://codeql.github.com/codeql-query-help/python/py-duplicate-key-dict-literal

CORE: Resolving Code�ality Issues using LLMs 36:17

Fig. 5. Reasons given by reviewers for re-
jecting the candidate revisions produced
by CORE on CQPyUS.

Table 4. Ablation of Proposer LLM: Comparing GPT-3.5-

Turbo andWizardCoder-15B as the Proposer LLM in the CORE
pipeline over a subset of CQPy consisting of small files fi�ing
within a prompt budget of 1000 tokens. The first row gives the
dataset statistics. The number of candidate revisions sampled
per file is denoted by =.

#Files (%) #Issues remaining (%)

Flagged 224 (100%) 417 (100%)

WizardCoder-15B (= = 10) 192 (85.71%) 88 (21.10%)

GPT-3.5-Turbo (= = 10) 215 (95.98%) 15 (3.60%)

WizardCoder-15B (= = 1) 133 (59.37%) 171 (41.01%)

GPT-3.5-Turbo (= = 1) 186 (83.03%) 56 (12.71%)

Our qualitative analysis reveals that size of the �le a�ects the performance of CORE on some static
checks more than others. Close scrutiny of the feedback from human reviewers shows that many
erroneous revisions come from hallucinations and the propensity of the LLMs to make unrelated
changes. These insights should be useful to improve CORE and other similar e�orts.

5.6 RQ6: What is the e�ect of using a less powerful LLM in the CORE pipeline?

We perform ablative study with a less powerful LLM for generating candidate revisions in the
CORE pipeline. For this study, we use a recent open-source coding model WizardCoder-15B

[42] 6, an order of magnitude smaller in size, but competitive on widely-used coding benchmarks
such as HumanEval7, compared to GPT-3.5-Turbo that we have used as the Proposer LLM in our
results thus far. The only other change in CORE for this ablation is that we encapsulate the prompt
template described in Section 3.1 in a more general format thatWizardCoder-15B is trained on,
as recommended by its authors [42]. We do this study on a smaller subset of CQPy where less
powerful models are likely to succeed — we consider source �les that are smaller in size, that �t
within a needed budget of 1000 tokens for the total prompt size. We sample up to 5 such �les per
each of the 52 static checks in the dataset, yielding 224 �agged source �les for this study.
In Table 4, we compare the performance of CORE pipeline (by the end of stage 4) on this

dataset with WizardCoder-15B or GPT-3.5-Turbo as the Proposer LLM in stage 3 . There are
417 issue violations in the 224 �agged �les in total. From the second and the third rows, we see
that WizardCoder-15B is fairly competitive to GPT-3.5-Turbo, and resolves over 85% of the �les,
compared to about 96% by GPT-3.5-Turbo. The instruction-following ability of WizardCoder-15B

has been documented for various benchmarks [42], and through our study, we �nd promise for
code reasoning and issue resolution as well.
Finally, in the last two rows of the table, we ablate on the number of revisions per �le used in

CORE. If we sample only one (with temperature = 0, as given in Section 4) candidate revision per
�le instead of 10 (which is the default in CORE), we see that GPT-3.5-Turbo still resolves over
83% of �les while WizardCoder-15B is relatively poorer at about 59%. While the gap is clear,
these results are promising in general — we can consider deploying substantially smaller models as
proposer in CORE without compromising much on the performance.

6https://huggingface.co/WizardLM/WizardCoder-15B-V1.0
7https://github.com/openai/human-eval

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

https://huggingface.co/WizardLM/WizardCoder-15B-V1.0
https://github.com/openai/human-eval

36:18 N. Wadhwa, J. Pradhan, A. Sonwane, S.P. Sahu, N. Natarajan, A. Kanade, S. Parthasarathy and S. Rajamani

A recent trend on program synthesis benchmarks shows that smaller yet powerful LMs can be
competitive to LLMs. Our study (on a relatively simpler subset of CQPy) gives initial evidence that
this may also apply to the di�erent task of �xing code quality issues that we address in this paper.

6 THREATS TO VALIDITY

A possible threat to validity is that the input code in our dataset might have been seen by the LLM
during its training.
While the input code in our datasets may have been part of LLM training, it is highly unlikely

for the LLMs to have seen the prompts constructed by us paired with expected code revisions. We
analyzed 3535 Python repos from the CQPy dataset and found that less than 5% of the repos have
CodeQL in their GitHub work�ows. Thus, it is unlikely that the CodeQL warnings in CQPy were
addressed in the repos, and so, unlikely that the LLM training included the �xes.

The LLM is unlikely to have seen the prompts constructed by us paired with the expected code
revisions during training. Therefore, our results can be attributed to the ability of the LLMs to
follow the instructions, their knowledge of programming languages and the informative details we
provide in our prompts. By basing our experiments on hundreds of issues �agged by 52 diverse
static checks for Python and 10 diverse static checks for Java from two di�erent static analysis
tools, we avoid the possibility of biasing our results to a small dataset, certain code quality issues,
or a single tool or programming language. We follow the exact experimental setup as CodeQL and
Sorald to avoid any language or tool version mismatch issues.
The code generated by the LLM may pass the previously failing static checks but change the

code semantics, e.g., by completely deleting the code. To mitigate this problem, we perform human
evaluation for verifying soundness of the revisions, albeit on a subset of our Python dataset, but
ensuring full coverage in terms of the static checks. This manual labeling could be noisy. All the
labels were independently reviewed by one of the authors to avoid such cases.

We found cases where the users were unsure why the tool �agged a violation in the source code
in the �rst place, or whether the �x in the revision had no unintended side e�ects. There were also
a few cases that proved to be challenging to manually verify the correctness of the revisions. For
instance, consider the “import *may pollute namespace” static check for Python �les8. The correct
revisions would replace the * with relevant modules. However, verifying if all the required imports
are fully enumerated can be challenging, especially for large source �les. Looking at multiple
revision candidates for some �les was helpful to users in this regard — whenever two candidates
for a �le had a non-overlapping subset of enumerated imports, the user tried to reason about the
di�erences and was able to resolve incompleteness of one or both the revisions. To avoid cases from
in�ating or otherwise biasing our evaluation results, we instructed the users to reject revisions that
they were unsure of, as in some of the examples mentioned above, erring on the safer side. From
Figure 5, we see that less than 1% of the cases analyzed by the reviewers were di�cult to judge for
them, and those revisions were rejected.

7 RELATED WORK

Automatic program repair is a topic of active research and many tools have been built over the years.
Here, we discuss the most closely related work and refer the reader to excellent surveys [24, 26, 44].

7.1 Repairing static check violations

Among the approaches that target static analysis errors, [20, 27, 53, 58] use manually designed
symbolic program transformations to �x speci�c classes of properties like heap safety [58], security

8https://codeql.github.com/codeql-query-help/python/py-polluting-import/

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

https://codeql.github.com/codeql-query-help/python/py-polluting-import/

CORE: Resolving Code�ality Issues using LLMs 36:19

vulnerabilities [27], static quality checks [53] or data races [20]. Other approaches [13, 15, 37,
38, 43, 50] mine symbolic patterns from commit data to learn repair strategies or learn them
from synthetically generated data [28]. For instance, SpongeBugs [43] uses SonarQube [8] to
�nd bugs and commit data to create paired dataset. Similarly, Avatar [37, 38] and Phoenix [15]
use FindBugs [4] and commit data. Revisar [50] mines edits from commit data for PMD [7].
GetAFix [13] uses Infer [5] and Error Prone [10], and mines general tree-edit-patterns from
commit data using anti-uni�cation. These repair techniques can synthesize only those �xes that
are covered by their symbolic patterns. An alternative approach based on learning [30, 56, 62, 64] is
to train neural models to map buggy programs to their �xed versions. The models learn to directly
transform code. However, their scope is determined by the diversity of bug-�xing examples present
in the training data and they do not generalize to new classes of bugs not seen during training.
All these approaches require extensive data curation and o�ine learning e�orts, and require

redesign when targeting di�erent kinds of bugs. In contrast, the line of work we pursue, using
LLMs, does not require any data curation or learning e�ort. Since LLMs have aleady been pretrained
with a large corpus of code and other documents, they can be readily customized to revise code to
�x any type of error detected by static analysis, just by suitably authoring prompts.

7.2 LLMs for program repair

The aforementioned advantage of using LLMs has motivated other researchers to use them for
program repair. Xia, Wei and Zhang [60] use LLMs with few-shot prompts to generate candidate
�xes on buggy code from Defects-4J, QuixBug and ManyBugs benchmarks and use entropy values
(the negative log probability of each generated token) to rank candidate �xes. The work relies on
the existence of a test suite to validate a candidate �x. In a more recent work, Xia and Zhang [61]
use a conversational approach, where a test suite is a requirement, and error messages from failed
tests are used in a conversational style with the LLM to re�ne the candidate �x into one that passes
the test suite, and present results on the QuixBug benchmarks. Another interesting line of work is
to �x bugs in code generated by an LLM using traditional program repair techniques or another
LLM [22, 29, 40]. These approaches aim at �xing bugs identi�ed by failing test cases. In comparison,
our work addresses a related but di�erent problem of �xing errors �agged by static analysis tools.

Prompting techniques: RING [32] �xes syntactic and simple semantic errors across multiple
languages using an LLM and retrieval-augmented few-shot prompting. The complexity of errors
and required �xes in our case is higher. InferFix [31] targets violations �agged by the Infer static
analyzer [5, 6] for three types of bugs. However, it constructs prompts augmented with bug type
annotation and similar bug-�x pairs, and �netunes the Codex model on these prompts. We use
an instruction-based LLM in zero-shot setting (i.e., no ⟨before code, after code⟩ examples needed)
without �netuning. Pearce et al. [48] �x security vulnerabilities using auto-regressive LLMs which
are prompted with partial code in which the buggy lines are commented out and the LLM is
prompted to generate a “�xed" version of those. We use a more powerful class of instruction-
tuned LLMs which bene�ts from detailed instructions that provide additional context necessary
for generating correctly revised code. Our prompts encompass description of the quality issue,
suggested resolutions, localization hints and constraints. Due to the auto-regressive nature, the
generations in [48] are conditioned only on pre�x of the buggy code, whereas we pass the buggy
code in the prompt and hence, the code generation can attend to the bidirectional code context,
both before and after the buggy lines in the input code.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

36:20 N. Wadhwa, J. Pradhan, A. Sonwane, S.P. Sahu, N. Natarajan, A. Kanade, S. Parthasarathy and S. Rajamani

7.3 Automating code reviews

A related line of research is automating code review activities [25, 34–36, 57]. However, this line of
research has important di�erences from the focus of our work. While humans can give feedback
on code quality, the common best practices are often distilled as automated checks. We focus
on the latter and take advantage of the automated tools already in the engineering pipelines to
automatically validate the LLM-generated �xes. This prevents unnecessary back-and-forth between
the reviewer and the code author for the same. Automated code review tools aim to assist human-
raised issues and help reduce load for reviewers. They exist alongside or after our tools in a typical
software development and management pipeline; and they work in tandem between reviewer and
author.

7.4 LLMs as verifiers

The issue of plausible but incorrect �xes is well-known [41, 49]. CORE may generate code that
passes the static check (a plausible �x) but changes semantics of the input code in unintended
ways. The developer can review the statically-validated code-revisions to �lter out such cases.
Unit tests can also help catch such cases, but they are not always available or may themselves be
incomplete. LLMs have been shown to be e�ective in assessing and supervising quality of output
from other LLMs [14, 33], thereby helping reduce the e�orts required for human review. Using
LLMs, especially GPT-4, for evaluating code generations has been attempted recently. Olausson
et al. [45] also have a dual LLM setup, where they use the feedback from GPT-4 in the form of
critique to modify the prompt of the proposer LLM for code generation tasks. Zhuo [65] constructs
an elaborate prompt for GPT-3.5-Turbo to perform two aspects of evaluation of code generations,
namely, code usefulness and evaluation-based functional correctness. Inspired by these �ndings, to
reduce the burden on the developer, we employ a second instance of LLM (GPT-4) as a ranker to
score the candidates produced by the proposer LLM based on (1) the correctness of issue resolution,
and (2) preserving functional correctness. The code generation datasets studied in [65] consist
mostly of small code snippets, unlike our setting where we use large real source code �les. We
work with code di�s in the Ranker LLM prompt, and in our investigations, GPT-4 is substantially
better in terms of reasoning with code di�s compared to GPT-3.5-Turbo that Zhuo [65] employs.

8 CONCLUSIONS AND FUTURE WORK

Code quality is a persistent concern in software engineering. Though much progress has been
made in detecting these issues statically, �xing them automatically has remained challenging due
to the variety of code quality issues that surface in real code. Our proposal in this work is to use
the power of large language models, particularly, those that go beyond code completion and can
follow natural language instructions, to assist developers in revising and improving their code.
Through comprehensive evaluation on two public benchmarks in Python and Java that use 52 and
10 static checks from two di�erent tools, we show the promise of this approach when coupled with
carefully crafted prompts. We further show that by employing an LLM instance as a ranker, that
assesses the likelihood of acceptance of proposed code revisions, we can e�ectively catch plausible
but incorrect �xes and reduce developer burden.

Our objective for future is to expand the scope of our tool CORE by building more components
in the pipeline to not only support more tools and checks but to also improve the quality and
correctness of the generated �xes. We believe that feedback-driven continuous improvement is
a key to make this work mainstream. For this, we plan to draw upon the traditional static and
dynamic analysis techniques for automated feedback generation and use the recent advances based
on reinforcement learning and human or tool feedback [19, 47, 52, 54].

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

CORE: Resolving Code�ality Issues using LLMs 36:21

REFERENCES

[1] [n. d.]. CodeQL website. https://codeql.github.com/. Accessed: September 15, 2023.

[2] [n. d.]. Coverity Static Analysis. https://www.synopsys.com/software-integrity/security-testing/static-analysis-

sast.html. Accessed: September 15, 2023.

[3] [n. d.]. __eq__ not overridden when adding attributes. https://codeql.github.com/codeql-query-help/python/py-

missing-equals/. Accessed: September 15, 2023.

[4] [n. d.]. FindBugs Project. https://spotbugs.github.io/. Accessed: September 15, 2023.

[5] [n. d.]. Infer static analyzer. https://fbinfer.com/. Accessed: September 15, 2023.

[6] [n. d.]. InferSharp static analyzer. https://github.com/microsoft/infersharp. Accessed: September 15, 2023.

[7] [n. d.]. PMD: An extensible cross-language static code analyzer. https://pmd.github.io/. Accessed: September 15, 2023.

[8] [n. d.]. SonarQube. https://docs.sonarqube.org/latest/. Accessed: September 15, 2023.

[9] [n. d.]. Sorald Tool Source. https://github.com/ASSERT-KTH/sorald/releases/tag/sorald-0.8.5.

[10] Edward Aftandilian, Raluca Sauciuc, Siddharth Priya, and Sundaresan Krishnan. 2012. Building useful program analysis

tools using an extensible java compiler. In 2012 IEEE 12th International Working Conference on Source Code Analysis

and Manipulation. IEEE, 14–23.

[11] Lakshya A Agrawal, Aditya Kanade, Navin Goyal, Shuvendu K Lahiri, and Sriram K Rajamani. 2023. Guiding Language

Models of Code with Global Context using Monitors. arXiv preprint arXiv:2306.10763 (2023).

[12] Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. 2016. QL: Object-oriented Queries on

Relational Data. In 30th European Conference on Object-Oriented Programming. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik.

[13] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Geta�x: Learning to Fix Bugs Automatically.

Proc. ACM Program. Lang. 3, OOPSLA, Article 159 (oct 2019), 27 pages. https://doi.org/10.1145/3360585

[14] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna

Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. 2022. Constitutional AI: Harmlessness from AI Feedback. arXiv

preprint arXiv:2212.08073 (2022).

[15] Rohan Bavishi, Hiroaki Yoshida, and Mukul R. Prasad. 2019. Phoenix: Automated Data-Driven Synthesis of Repairs

for Static Analysis Violations. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (Tallinn, Estonia) (ESEC/FSE 2019). Association

for Computing Machinery, New York, NY, USA, 613–624. https://doi.org/10.1145/3338906.3338952

[16] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,

Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in neural

information processing systems 33 (2020), 1877–1901.

[17] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards,

Yuri Burda, Nicholas Joseph, Greg Brockman, et al. 2021. Evaluating large language models trained on code. arXiv

preprint arXiv:2107.03374 (2021).

[18] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham,

Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. 2022. Palm: Scaling language modeling with pathways.

arXiv preprint arXiv:2204.02311 (2022).

[19] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. 2017. Deep reinforcement

learning from human preferences. Advances in neural information processing systems 30 (2017).

[20] Andreea Costea, Abhishek Tiwari, Sigmund Chianasta, Abhik Roychoudhury, and Ilya Sergey. 2023. Hippodrome:

Data race repair using static analysis summaries. ACM Transactions on Software Engineering and Methodology 32, 2

(2023), 1–33.

[21] Paul M Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous integration: improving software quality and reducing

risk. Pearson Education.

[22] Zhiyu Fan, Xiang Gao, Abhik Roychoudhury, and Shin Hwei Tan. 2022. Automated Repair of Programs from Large

Language Models. arXiv preprint arXiv:2205.10583 (2022).

[23] Martin Fowler. 2018. Refactoring: Improving the Design of Existing Code. Addison-Wesley Professional.

[24] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated program repair. Commun. ACM 62, 12

(2019), 56–65.

[25] Yang Hong, Chakkrit Tantithamthavorn, Patanamon Thongtanunam, and Aldeida Aleti. 2022. CommentFinder: a

simpler, faster, more accurate code review comments recommendation (ESEC/FSE 2022). Association for Computing

Machinery, New York, NY, USA, 507–519. https://doi.org/10.1145/3540250.3549119

[26] Kai Huang, Zhengzi Xu, Su Yang, Hongyu Sun, Xuejun Li, Zheng Yan, and Yuqing Zhang. 2023. A Survey on Automated

Program Repair Techniques. arXiv preprint arXiv:2303.18184 (2023).

[27] Zhen Huang, David Lie, Gang Tan, and Trent Jaeger. 2019. Using Safety Properties to Generate Vulnerability Patches.

In 2019 IEEE Symposium on Security and Privacy (SP). 539–554. https://doi.org/10.1109/SP.2019.00071

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

https://codeql.github.com/
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://codeql.github.com/codeql-query-help/python/py-missing-equals/
https://codeql.github.com/codeql-query-help/python/py-missing-equals/
https://spotbugs.github.io/
https://fbinfer.com/
https://github.com/microsoft/infersharp
https://pmd.github.io/
https://docs.sonarqube.org/latest/
https://github.com/ASSERT-KTH/sorald/releases/tag/sorald-0.8.5
https://doi.org/10.1145/3360585
https://doi.org/10.1145/3338906.3338952
https://doi.org/10.1145/3540250.3549119
https://doi.org/10.1109/SP.2019.00071

36:22 N. Wadhwa, J. Pradhan, A. Sonwane, S.P. Sahu, N. Natarajan, A. Kanade, S. Parthasarathy and S. Rajamani

[28] Naman Jain, Shubham Gandhi, Atharv Sonwane, Aditya Kanade, Nagarajan Natarajan, Suresh Parthasarathy, Sriram

Rajamani, and Rahul Sharma. 2023. StaticFixer: From Static Analysis to Static Repair. arXiv:2307.12465 [cs.SE]

[29] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh Parthasarathy, Sriram Rajamani, and Rahul

Sharma. 2022. Jigsaw: Large languagemodels meet program synthesis. In Proceedings of the 44th International Conference

on Software Engineering. 1219–1231.

[30] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. Cure: Code-aware neural machine translation for automatic program

repair. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 1161–1173.

[31] Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey Svyatkovskiy. 2023.

InferFix: End-to-End Program Repair with LLMs. arXiv preprint arXiv:2303.07263 (2023).

[32] Harshit Joshi, José Cambronero, Sumit Gulwani, Vu Le, Ivan Radicek, and Gust Verbruggen. 2022. Repair is nearly

generation: Multilingual program repair with llms. arXiv preprint arXiv:2208.11640 (2022).

[33] Tom Kocmi and Christian Federmann. 2023. Large language models are state-of-the-art evaluators of translation

quality. arXiv preprint arXiv:2302.14520 (2023).

[34] Jia Li, Ge Li, Zhuo Li, Zhi Jin, Xing Hu, Kechi Zhang, and Zhiyi Fu. 2023. CodeEditor: Learning to Edit Source

Code with Pre-trained Models. ACM Transactions on Software Engineering and Methodology 32, 6 (Sept. 2023), 1–22.

https://doi.org/10.1145/3597207

[35] Lingwei Li, Li Yang, Huaxi Jiang, Jun Yan, Tiejian Luo, Zihan Hua, Geng Liang, and Chun Zuo. 2022. AUGER:

Automatically Generating Review Comments with Pre-training Models. arXiv:2208.08014 [cs.SE]

[36] Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep Majumder, Jared Green, Alexey Svy-

atkovskiy, Shengyu Fu, and Neel Sundaresan. 2022. Automating Code Review Activities by Large-Scale Pre-training.

arXiv:2203.09095 [cs.SE]

[37] K. Liu, D. Kim, T. F. Bissyande, S. Yoo, and Y. Le Traon. 2018. Mining Fix Patterns for FindBugs Violations. IEEE

Transactions on Software Engineering (2018), 1–1. https://doi.org/10.1109/TSE.2018.2884955

[38] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawende F. Bissyandè. 2019. AVATAR: Fixing Semantic Bugs with Fix

Patterns of Static Analysis Violations. In 2019 IEEE 26th International Conference on Software Analysis, Evolution and

Reengineering (SANER). 1–12. https://doi.org/10.1109/SANER.2019.8667970

[39] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. 2023. Pre-train, prompt,

and predict: A systematic survey of prompting methods in natural language processing. Comput. Surveys 55, 9 (2023),

1–35.

[40] Vadim Liventsev, Anastasiia Grishina, Aki Härmä, and Leon Moonen. 2023. Fully Autonomous Programming with

Large Language Models. arXiv preprint arXiv:2304.10423 (2023).

[41] Fan Long and Martin Rinard. 2015. Staged program repair with condition synthesis. In Proceedings of the 2015 10th

Joint Meeting on Foundations of Software Engineering. 166–178.

[42] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qing-

wei Lin, and Daxin Jiang. 2023. WizardCoder: Empowering Code Large Language Models with Evol-Instruct.

arXiv:2306.08568 [cs.CL]

[43] D. Marcilio, C. A. Furia, R. Bonifacio, and G. Pinto. 2019. Automatically Generating Fix Suggestions in Response to Static

Code Analysis Warnings. In 2019 IEEE 19th International Working Conference on Source Code Analysis and Manipulation

(SCAM). IEEE Computer Society, Los Alamitos, CA, USA, 34–44. https://doi.org/10.1109/SCAM.2019.00013

[44] Martin Monperrus. 2018. Automatic software repair: a bibliography. ACM Computing Surveys (CSUR) 51, 1 (2018),

1–24.

[45] Theo X. Olausson, Jeevana Priya Inala, ChenglongWang, Jianfeng Gao, and Armando Solar-Lezama. 2023. Demystifying

GPT Self-Repair for Code Generation. arXiv:2306.09896 [cs.CL]

[46] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

[47] Long Ouyang, Je�rey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini

Agarwal, Katarina Slama, Alex Ray, et al. 2022. Training language models to follow instructions with human feedback.

Advances in Neural Information Processing Systems 35 (2022), 27730–27744.

[48] Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Brendan Dolan-Gavitt. 2022. Examining Zero-

Shot Vulnerability Repair with Large Language Models. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE

Computer Society, 1–18.

[49] Je� H Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan Bachrach, Michael Carbin, Carlos Pacheco,

Frank Sherwood, Stelios Sidiroglou, Greg Sullivan, et al. 2009. Automatically patching errors in deployed software. In

Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles. 87–102.

[50] Reudismam Rolim, Gustavo Soares, Rohit Gheyi, Titus Barik, and Loris D’Antoni. 2018. Learning Quick Fixes from

Code Repositories. arXiv:1803.03806 [cs.SE]

[51] Surya Prakash Sahu, Madhurima Mandal, Shikhar Bharadwaj, Aditya Kanade, Petros Maniatis, and Shirish Shevade.

2024. CodeQueries: A Dataset of Semantic Queries over Code. In 17th Innovations in Software Engineering Conference.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

https://arxiv.org/abs/2307.12465
https://doi.org/10.1145/3597207
https://arxiv.org/abs/2208.08014
https://arxiv.org/abs/2203.09095
https://doi.org/10.1109/TSE.2018.2884955
https://doi.org/10.1109/SANER.2019.8667970
https://arxiv.org/abs/2306.08568
https://doi.org/10.1109/SCAM.2019.00013
https://arxiv.org/abs/2306.09896
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1803.03806

CORE: Resolving Code�ality Issues using LLMs 36:23

ACM.

[52] Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. 2023. Re�exion:

Language Agents with Verbal Reinforcement Learning. arXiv:2303.11366 [cs.AI]

[53] Khashayar Etemadi Someoliayi, Nicolas Yves Maurice Harrand, Simon Larsen, Haris Adzemovic, Henry Luong Phu,

Ashutosh Verma, Fernanda Madeiral, Douglas Wikstrom, and Martin Monperrus. 2022. Sorald: Automatic Patch

Suggestions for SonarQube Static Analysis Violations. IEEE Transactions on Dependable and Secure Computing (2022).

[54] Nisan Stiennon, Long Ouyang, Je�rey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei, and

Paul F Christiano. 2020. Learning to summarize with human feedback. Advances in Neural Information Processing

Systems 33 (2020), 3008–3021.

[55] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste

Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023. Llama: Open and e�cient foundation language models.

arXiv preprint arXiv:2302.13971 (2023).

[56] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and Denys Poshyvanyk. 2019.

An empirical study on learning bug-�xing patches in the wild via neural machine translation. ACM Transactions on

Software Engineering and Methodology (TOSEM) 28, 4 (2019), 1–29.

[57] Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys Poshyvanyk, and Gabriele Bavota. 2022.

Using Pre-Trained Models to Boost Code Review Automation. arXiv:2201.06850 [cs.SE]

[58] Rijnard van Tonder and Claire Le Goues. 2018. Static Automated Program Repair for Heap Properties. In Proceedings

of the 40th International Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18). ACM, New York, NY,

USA, 151–162. https://doi.org/10.1145/3180155.3180250

[59] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Harald C Gall, and Andy Zaidman. 2020.

How developers engage with static analysis tools in di�erent contexts. Empirical Software Engineering 25 (2020),

1419–1457.

[60] Chunqiu Steven Xia, YuxiangWei, and Lingming Zhang. 2023. Automated program repair in the era of large pre-trained

language models. In Proceedings of the 45th International Conference on Software Engineering (ICSE 2023). Association

for Computing Machinery.

[61] Chunqiu Steven Xia and Lingming Zhang. 2023. Conversational automated program repair. arXiv preprint

arXiv:2301.13246 (2023).

[62] He Ye, Matias Martinez, and Martin Monperrus. 2022. Neural program repair with execution-based backpropagation.

In Proceedings of the 44th International Conference on Software Engineering. 1506–1518.

[63] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and Massimiliano Di Penta. 2017. How Open

Source Projects Use Static Code Analysis Tools in Continuous Integration Pipelines. In 2017 IEEE/ACM 14th International

Conference on Mining Software Repositories (MSR). 334–344. https://doi.org/10.1109/MSR.2017.2

[64] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong, and Lu Zhang. 2021. A syntax-guided

edit decoder for neural program repair. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering. 341–353.

[65] Terry Yue Zhuo. 2023. Large Language Models Are State-of-the-Art Evaluators of Code Generation.

arXiv:2304.14317 [cs.AI]

Received 2023-09-29; accepted 2024-01-23

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 36. Publication date: July 2024.

https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2201.06850
https://doi.org/10.1145/3180155.3180250
https://doi.org/10.1109/MSR.2017.2
https://arxiv.org/abs/2304.14317

	Abstract
	1 Introduction
	2 Overview
	3 Design
	3.1 Proposer LLM: Prompting the LLM to generate code revisions
	3.2 Ranker LLM: Prompting the LLM to score candidate revisions

	4 Experimental Setup
	5 Evaluation
	5.1 RQ1: How effective is the end-to-end CORE pipeline in mitigating code quality issues and in passing scrutiny by the Ranker LLM on the Python benchmark CQPy?
	5.2 RQ2: How many of the CORE generated revisions are also accepted by human reviewers on the Python benchmark CQPyUS?
	5.3 RQ3: How readily does CORE pipeline generalize to a different programming language (Java) and a static analysis tool (SonarQube)?
	5.4 RQ4: How well does CORE compare to a state of the art automatic program repair technique (Solard) for mitigating static analysis warnings?
	5.5 RQ5: Where does CORE succeed and where does it fail?
	5.6 RQ6: What is the effect of using a less powerful LLM in the CORE pipeline?

	6 Threats to validity
	7 Related work
	7.1 Repairing static check violations
	7.2 LLMs for program repair
	7.3 Automating code reviews
	7.4 LLMs as verifiers

	8 Conclusions and Future Work
	References

