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ABSTRACT 

 

 

We propose gated language experts to improve multilingual 

transformer transducer models without user’s language 

identification (LID) input during inference. We define gating 

mechanism and LID loss to let transformer experts learn 

language-dependent information, construct the multilingual 

transformer block with gated transformer experts and shared 

transformer layers, and apply linear experts to better 

regularize joint network. In addition, a curriculum training 

scheme is proposed to let LID guide gated experts serve their 

own languages better. Evaluated on English and Spanish 

bilingual task, our method achieves average 12.5% and 7.3% 

relative word error reductions over baseline bilingual and 

monolingual models, obtaining similar results to the upper-

bound model trained and inferred with oracle LID. We further 

explore our method on trilingual, quadrilingual, and 

pentalingual models, and observe similar advantages as in 

bilingual models, demonstrating its easy extension to more 

languages. 

 

 

Index Terms—Multilingual automatic speech 

recognition, transformer transducer, language ID, expert 

 

1. INTRODUCTION 

 

While end-to-end (E2E) models have made rapid progress in 

automatic speech recognition (ASR) [1-8], there are large 

amount of demands of multilingual ASR models since there 

are more than 60% people in the world can speak more than 

2 languages according to [10]. There have been plenty of 

efforts to develop E2E multilingual models [11-26], and these 

models can achieve the comparable or even better ASR 

performance than monolingual baselines by passing the 

language identification (LID) information in the form of a 

one-hot or learnable embedding vector to distinguish 

different languages. In order to build streaming multilingual 

ASR systems for lots of practical applications that can 

perform similarly as the monolingual ones, we should not 

request users to input any LID information during model 

inference. One solution is to infer LID as an embedding 

vector and attach it to the input features [18, 19, 21]. 

However, this kind of solution either leads to limited 

improvement due to LID prediction inaccuracy or introduces 

extra latency for reliable LID prediction [18,19]. 

In this paper, we propose gated transformer with 

auxiliary LID loss and linear experts to improve multilingual 

speech recognition. The gated transformer experts can make 

compact models and better speech information sharing across 

different languages. Linear experts can better regularize joint 

network output, which greatly stabilizes the model training. 

We further propose a curriculum training strategy for LID 

input during training to make the experts better learn the 

corresponding language information. Our model does not 

need any LID input from users during inference. Our 

experiments on English and Spanish bilingual models 

achieve 12.5% relative word error (WER) reduction over the 

bilingual model baseline without LID as input, similar to the 

performance of the bilingual model with the oracle LID as input. In 

addition, our bilingual model can also beat monolingual baselines. 

We further extend our methods to build trilingual, quadrilingual, and 

pentalingual models and achieve similar success as bilingual models 

with only limited model size increase. 

 

2. RELATED WORK 

 

The concept of expert has been applied to ASR in [27, 28]. It 

has been also explored to solve bilingual code-switching 

problem as in [29, 30] by using a dedicated encoder as the 

expert for a specific language. A gate function is defined to 

combine the output from different experts, and there is no 

LID loss applied to regularize the experts’ outputs. In [31], 

informed experts based on RNN-transducer with LID input 

are applied for multilingual ASR. A LSTM model is proposed 

as a gate to generate scores to combine experts from different 

languages. In [20], a configurable multilingual model is 

proposed that is trained once and can be configured as 

different language combinations. Linear language experts are 

applied in both encoder and prediction networks. 

 

3. MULTILINGUAL TRANSFORMER 

TRANSDUCER WITH GATED LANGUAGE 

EXPERTS 
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3.1 Transformer transducer model 

 

A neural transducer model [4] has three components: an 

acoustic encoder, a label prediction network, and a joint 

network. Neural transducer models can use different types of 

models as encoders such as LSTMs in RNN-T [4] and 

transformers [7, 8, 9, 17, 20, 21, 22] in transformer transducer 

(T-T). In this study, we use T-T as the backbone model for 

the development. Each transformer module in the encoder 

network is constructed from a multi-head self-attention layer 

followed by a feed-forward layer. The loss function of neural 

transducer models is the negative log posterior of output 

target label 𝒚 given input acoustic feature 𝒙 and is defined as 

              𝐿𝑟𝑛𝑛𝑡 = −log𝑃(𝒚|𝒙)                                    (1) 

which is calculated by the forward-backward algorithm as in 

[4].   

 

3.2 Gated language transformer experts in encoder 

 

Encoder is the most important component in T-T models. In 

multilingual speech recognition, if all languages share one 

encoder, different languages may affect the model 

performance since they can be confused by each other as 

discussed in [22]. In this work, we associate each language 

with its own specific transformer encoder as shown in Figure 

1. Different encoders can be combined with a gate 𝑔 that is 

defined as 

 

Figure 1: Architecture of multilingual T-T model with 

separated transformer encoders for different languages 

           𝑂 =  𝑊𝑜(tanh (∑ 𝑊𝑖  ℎ𝑖)))𝑁
𝑖=0                            (2) 

           𝑔 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑂)                                              (3) 

where  ℎ𝑖 is the encoder embedding from language 𝑖, and 𝑊𝑖 

is a linear matrix that is associated with each language, 𝑁 is 

the number of languages. Then the whole encoder network 

embedding output is  

            ℎ𝑒𝑛𝑐= ∑ 𝑔𝑖ℎ𝑖
𝑁
𝑖=0                                                  (4) 

Since gate 𝑔  combines encoder embedding from different 

languages, the encoder networks themselves do not realize 

which language they should serve as the corresponding 

transformer encoder. In order to make the encoder networks 

to learn their own corresponding languages, a LID cross 

entropy (CE) loss is proposed as  

            𝐿𝑙𝑖𝑑 = 𝐶𝐸(𝑂)                                                    (5) 

Therefore, the overall loss is defined as a combination of the 

original transducer loss and the LID loss as following 

             𝐿 = 𝐿𝑟𝑛𝑛𝑡 +  𝜆𝐿𝑙𝑖𝑑                                            (6) 

where 𝜆 is the weight to adjust the ratio of these two losses. 

One drawback of the above design is each language has 

its own encoder that makes the model difficult scale up when 

the number of languages increases. Also, separated encoders 

for different languages may not be an optimal choice since 

there are still lots of acoustic conditions, speaker voice 

characteristics, and even pronunciation similarity that could 

be shared across different languages. Therefore, we propose 

another more effective and compact encoder structure for the 

T-T based multilingual ASR as shown in Figure 2. Instead of 

building fully separated encoders for each language, different 

languages can share transformer layers while each language 

can still have their own corresponding transformer experts 

that are combined with gate 𝑔 as defined in Equations (2) and 

(3) while the LID loss function is defined as following 

                            𝐿𝑙𝑖𝑑 = 𝐶𝐸(∑ 𝑂𝑙
𝑀
𝑙=1 )                                (7) 

where  𝑂𝑙  is the logit output as in Equation (2) but from 

different layer 𝑙. Language dependent experts, their gate, and 

the shared transformer layers can construct a multilingual 

transformer block as shown in the dotted lines of Figure 2. In 

a T-T multilingual model, there can be several multilingual 

transformer blocks included. In addition, we can also apply 

the shared transformer layers at the bottom of the network 

since the input filterbank speech features share lots of 

common characteristics from different languages. With this 

new structure, the network can share common speech 

information while learning linguistic knowledge from 

different languages. Besides, the multilingual model size can 

be easily controlled by the number of blocks, which is 

beneficial for scaling up the multilingual models to more 

languages.     

 

3.3 Gated language linear experts for joint network 

 
Joint network in T-T model combines both acoustic and 

language information from encoder and prediction networks. 

Inspired by [20], instead of adding language specific gated 

linear experts on both encoder and prediction networks, linear 

experts can be directly applied to the output of the joint 

network as shown in Figure 2. Let’s define 𝑊 =
{𝑤1, 𝑤2, … , 𝑤𝑁} is linear matrix combination of 𝑤𝑖  (𝑖 = 1 to 

N) that is a linear expert matrix corresponding to a language 
𝑖. After multiplying this language gated linear matrix, the new 

joint network output is defined as   

                      ℎ𝑗𝑜𝑖𝑛𝑡
′ =  ℎ𝑗𝑜𝑖𝑛𝑡  𝑊 𝐺𝐿                                         (8) 



 

Figure 2: Architecture of multilingual T-T models with 

shared transformer layers at the bottom, multilingual 

transformer blocks (one block is defined as in dotted 

lines) including gated language transformer experts and 

shared layers, and linear experts for joint network 

 

where ℎ𝑗𝑜𝑖𝑛𝑡  is the output of joint network and 𝐺𝐿 =

{𝑔𝐿1
, 𝑔𝐿2

, … , 𝑔𝐿𝑁
} is the gating network that is an affine LID  

projection referred as a “LID gate” that is controlled by the 

LID input. In order to get better model performance, we do 

leverage oracle LID in model training, but during inference, 

we don’t need users to input any LID information, which we 

elaborate in more detail in section 3.4. In addition, a layer 

normalization is applied on ℎ𝑗𝑜𝑖𝑛𝑡
′  to stabilize the training. 

  

3.4 Curriculum training strategy for LID input in 

training 

 

Even though the LID loss is applied to enforce the 

transformer experts to learn the corresponding speech 

information for its own language, the network can still be 

confused by the languages with the similar word 

pronunciations and the same writing letters, especially at the 

early stage of training which could lead to the model 

performance degradation.  In [29], a seed model with 

explicitly leveraging LID information is pre-trained to relieve 

this language confusion issue. In our method, a single LID is 

passed to the LID gate to set its corresponding values to 1 as 

mentioned in section 3.3 at the early stage of model training 

to guide the transformer experts to learn their own languages. 

When training is going on, we also pass multilingual LIDs 

from all languages to the LID gate while still keeping a 

portion of passing one single LID to have the gradual 

transition from one LID training to multiple LID training, 

which is called as the curriculum training strategy for LID 

input. At the final stage of model training, only multiple LIDs 

for all languages are passed to the LID gate. Let’s take the 

bilingual model as an example. At the beginning of training, 

we only pass LID vectors [0, 1] or [1, 0] to the LID gate for 

different input languages, and then in the middle stage of 

training, we pass 1hot vectors [0, 1], [1,0], or 2-hot vector 

[1,1] to the model training with a probability of p for 1 hot 

vectors, and 1- p for 2-hot vector. p decreases when training 

goes on. At the final stage of training, p reduces to 0, and we 

only pass 2-hot vector [1,1] in model training. Then the 

Equation (2) is further improved as      

         𝑂𝑙  =  𝑊𝑜(tanh (∑ 𝑊𝑙𝑖
 ℎ𝑙𝑖

 𝑔𝐿𝑖
)))𝑁

𝑖=0                     (9) 

where 𝑙  is the layer number of multilingual transformer 

block. Only one 𝑔𝐿𝑖
 corresponding to the language 𝑖 in the 

language gate 𝐺𝐿 is set to 1 at the beginning of training, and 

all values in 𝐺𝐿  are set to 1 for the final stage of training 

(Note: we omit to draw 𝐺𝐿  for the transformer experts in 

Figure 2 to make the figure less complicated). During 

inference, the multi-hot LID vector with all its element value 

1 is passed to the LID gate by the system for multilingual 

speech recognition and there is no need for users to input any 

specific LID information. This training strategy also applies 

to linear experts of joint network described in Equation (8) in 

model training. 

 

4. EXPERIMENTAL SETUPS 

 

4.1 Language and data 

 

We develop our multilingual T-T models to support up to 

five languages which are English (EN), Spanish (ES), 

German (DE), Italian (IT), and French (FR). For all these 

languages, both training and test data are transcribed and 

anonymized with personally identifiable information 

removed. Test data includes both in-domain data sampled 

from the same distribution as training, and also out-of-

domain data that is different from training. The training 

and test data amount per language is summarized in Table 

1. 

 

4.2 Model structures and training configurations 

 

In our baseline T-T models, 18 basic transformer modules 

with 320 hidden nodes, 8 attention heads, and 2048 

feedforward nodes are used as the encoder; 2 LSTM layers 

with 1024-dimensional embedding and hidden layer are used 

in the prediction network. The basic transformer modules are 

also applied as the transformer experts in multilingual 

transformer blocks as shown in Figure 2 without any structure 

change. 80-dimensional log-Mel filterbank are used with 25 

milliseconds (ms) windows and 10ms shift. LID vectors are 

appended to input features in both model training and 



inference. Two convolutional layers are applied to get 

features with 40ms sampling rate. The input acoustic feature 

sequence is segmented into chunks with a chunk size of 4 and 

chunks are not overlapped. In addition, we also apply 18 left 

chunks to leverage history acoustic information. An 

Table 1: Train and test data per language (in hours) 

Language Train Test 

EN 23,035 208 

ES 3,770 33 

DE 2,893 38 

IT 3,345 19 

FR 3,176 33 

Total 36,219 331 

effective mask strategy to truncate history and allow limited 

future lookahead information has been designed as in [9]. The 

learning rate warmup strategy is the same as in [32]. Each 

training mini-batch consists of utterances from all languages, 

sampled according to their training data distributions. We 

train BPE models to generate token lists for each language 

separately, and then merge token lists together as the 

multilingual model output. For monolingual, bilingual, 

trilingual, quadrilingual, and pentalingual models, their 

output tokens are 4k, 7k, 10k, 12k, and 14k, respectively.  

Table 2: WERs (%) and parameter numbers (M) for English 

and Spanish bilingual models 

Model Params EN ES Avg 

Monolingual  78*2 13.2 16.2 15.1 

B1 Oracle LID       80 12.8 14.9 13.9 

B2 baseline without LID 80 14.9 17.1 16.0 

B3 fully seperated encoder     133 13.6 16.0 14.8 

B4 6 transformer blocks  100 13.1 15.5 14.3 

B5 3 transformer blocks  90 13.2 15.8 14.5 

B6    + joint linear expert  90.5 13.1 15.6 14.4 

B7       + CT for LID input 90.5 13.0 14.9 14.0 

 

 

5. RESULTS 

 

5.1 English and Spanish bilingual model 

 

We start investigating our methods proposed in Section 3 

from English and Spanish bilingual models. We train the 

baseline English and Spanish bilingual model by simply 

pooling all data from both languages without feeding any LID 

information to the model as B2 with parameter size of 80M 

in Table 2. We also train monolingual models as another 

baseline. In addition, model parameter information is also 

provided for different model structures. From Table 2, we can 

observe that B2 gets an average WER of 16.0% that is worse 

than the average WER of 15.1% from monolingual models. 

In addition, we also train the bilingual model with the oracle 

LID as input to the model during both training and inference 

to get the upper bound of bilingual model performance as B1 

which has 13.1% relative WER reduction over B2. Oracle 

LID is used as 1-hot vector that is appended to input features 

as in [16]. We then train the bilingual model with fully 

separated encoders as shown in Figure 1 as B3. In order to 

avoid the model divergence, one minor change is that the 

gating mechanism is not based on the top encoders’ output 

but on the last 3rd layer embeddings from both encoders and 

the last two layers are used as shared layers. This model 

obtains the WER of 14.8% that is 7.5% relative WER 

reduction than B2. However, its model size for encoder is 

almost doubled and the whole parameter number increases to 

133M which makes it not easy to extend to more languages. 

As proposed in Section 3.2, B4 is trained with 6 multilingual 

transformer blocks (defined in dotted lines of Figure 2) to 

avoid the explosion of model size. There are two shared 

layers in each multilingual transformer block and no  

shared layers applied at the bottom layer before the 

multilingual transformer blocks. B4 not only has the more 

compact structure with 100M model parameters, but also 

encourages the speech and language information sharing 

among different languages. B4 achieves 10.6% and 3.4% 

relative WER reductions over B2 and B3, respectively. In 

order to further reduce the model size, we change the number 

of multilingual transformer blocks from 6 to 3 and add 9 

shared transformer layers before the multilingual transformer 

blocks to train model B5 that is only 1.4% relative WER 

worse but with 10M less model parameters than B4. We also 

try adding transformer blocks to different locations and 

model B5’s structure to add them near model output is the 

most effective. Based on B5, we further train B6 model with 

joint linear experts as proposed in Section 3.3 and get a 

slightly improved model by reducing the average WER from 

14.5% to 14.4% with only 0.5M model parameter increase 

while getting a much stabler model training recipe, especially 

when more languages are involved in the multilingual model 

building. We finally applied the curriculum strategy (CT) for 

LID input to guide the language dependent transformer and 

linear experts to learn their own languages and get model B7 

that is 12.5% and 7.3% relative WER reductions over B2 

baseline and monolingual models, respectively. It can even 

get the similar average result as the upper model of B1 

(14.0% vs. 13.9%). In addition, we also increase the number 

of parameters for B2 to the same parameter number as B7, 

and the small parameter increase does not get a significant 

WER change.     

We also measure the model performance on a 

Spanish/English code-switching test set in which English 

words are included for entity names based on model B2 and 

B7. Results in Table 3 show that B7 can achieve 9.3% relative 

WER reduction over B2 baseline that further verifies the 

effectiveness of our methods for multilingual ASR.   

 

5.2 Extension to more languages 

 

Based on the success of developing English and Spanish 

bilingual models, we extend our methods to build



Table 4: WERs (%) and parameter numbers (M) for trilingual, quadrilingual, and pentalingual models 

Languages Params EN ES DE IT FR Avg 

Monolingual 78*n (n=3,4,5) 13.2 16.2 15.7 13.2 16.5 15.1 

T1  Trilingual Oracle LID 82 12.8 14.5 15.5 - - 14.3 

T2  Trilingual without LID 82 14.9 17.2 16.0 - - 16.0 

T3  Gated Expert Trilingual 100.5 12.9 14.6 15.4 - - 14.3 

Q1  Quadrilingual Oracle LID 84 12.9 14.6 15.2 12.0 - 13.7 

Q2  Quadrilingual without LID 84 15.0 17.6 16.2 14.7 - 15.9 

Q3  Gated Expert 

Quadrilingual 

110.5 13.0 14.8 15.4 12.2 - 13.9 

P1  Pentalingual Oracle LID 86 12.9 14.5 15.3 12.0 15.2 14.0 

P2  Pentalingual without LID 86 15.2 18.2 16.5 15.6 16.6 16.4 

P3  Gated Expert Pentalingual  120.5 13.2    14.8 15.5 12.1 15.5 14.2 

Table 3: Spanish/English code-switching test set results 

Model WER 

B2 28.1% 

B7 25.5% 

 

multilingual models with more languages such as German, 

Italian, and French. The model structure is similar to bilingual 

model B7 but with the addition of the corresponding 

transformer and linear experts for each new language. More 

specifically, for each added language, 3 more language-

dependent experts are applied in the transformer blocks of 

model B7 and the number of model parameter increases 10M 

as shown in Table 4. We still provide monolingual models as 

a reference to measure the performance of the multilingual 

models. In addition, we only provide the baseline model 

results without leveraging any LID information, and also 

upper bound results from the models trained and inferred with 

oracle LID to compare with our proposed models as shown 

in Table 4. When adding more languages, the baseline 

models’ parameter size also slightly increases due to more 

token labels in the output layer. When adding more 

languages, our models with gated experts can always get 

significant improvement as relative 10.6%, 12.6% and 13.4% 

average WER reductions over the corresponding trilingual, 

quadrilingual, and pentalingual baseline models without LID, 

respectively. Compared to the upper bound models with 

oracle LID, our models can achieve the similar WERs as 

14.3% vs 14.3%, 13.7% vs. 13.9%, and 14.0% vs. 14.2% for 

trilingual, quadrilingual, and pentalingual models, 

respectively. If we look at individual languages, when adding 

more languages, the WERs for Spanish without LID are 

becoming worse and worse as 17.2%, 17.6% and 18.2% for 

trilingual, quadrilingual, and pentalingual models. The 

similar patten also applies for German and Italian. However, 

for our models, adding more languages in multilingual 

models almost does not make the model performance 

degrade, which shares the consistent views as the model 

trained and inferred with the oracle LID information as input. 

Finally, our gated expert based trilingual, quadrilingual, and 

pentalingual models can always obtain similar or better 

WERs over monolingual models. 

 

6. CONCLUSIONS 

 

In this paper, we propose to use gated language experts and 

auxiliary LID loss to improve the multilingual T-T model 

performance without any LID input from users during model 

inference. We construct multilingual transformer blocks 

including the gated transformer experts and shared layers in 

encoders to make the model share common speech and 

acoustic information through shared layers while transformer 

experts can learn language-dependent knowledge. We also 

apply linear experts to joint network output to better 

regularize the joint speech acoustic and token label 

information and greatly improve the stability of model 

training. To guide the language dependent experts to learn 

their corresponding languages even better, we also propose a 

curriculum training strategy for LID input. On English and 

Spanish bilingual models, we achieve 12.5% and 7.3% 

relative WER reductions on average over the bilingual model 

baseline without leveraging LID information and 

monolingual models. Our method can even achieve very 

similar model performance as the model trained and inferred 

with oracle LID. When extending our method up to five 

languages, we obtain similar patterns as we get from bilingual 

models. 
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