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ABSTRACT

Large language models (LLMs) have achieved remark-
able success in the field of natural language processing, en-
abling better human-computer interaction using natural lan-
guage. However, the seamless integration of speech signals
into LLMs has not been explored well. The “decoder-only”
architecture has also not been well studied for speech pro-
cessing tasks. In this research, we introduce Speech-LLaMA,
a novel approach that effectively incorporates acoustic infor-
mation into text-based large language models. Our method
leverages Connectionist Temporal Classification and a sim-
ple audio encoder to map the compressed acoustic features to
the continuous semantic space of the LLM. In addition, we
further probe the decoder-only architecture for speech-to-text
tasks by training a smaller scale randomly initialized speech-
LLaMA model from speech-text paired data alone. We con-
duct experiments on multilingual speech-to-text translation
tasks and demonstrate a significant improvement over strong
baselines, highlighting the potential advantages of decoder-
only models for speech-to-text conversion.

Index Terms— decoder-only, LLaMA, LoRA, speech
translation

1. INTRODUCTION

In recent times, the large language models (LLMs) have
showcased remarkable achievements across various natu-
ral language benchmarks, encompassing question answer-
ing, machine translation, language understanding and more
[1, 2, 3, 4, 5]. By employing a Transformer-based architec-
ture [6] and training to anticipate forthcoming tokens within
a sequence, this language model excels in contextual learning
abilities. Not only does this significantly enhance its model-
ing prowess, but more importantly, it enables seamless user
interaction that effectively connects cutting-edge research
with real-world applications.

As speech represents the most innate and instinctive mode
of human communication, integrating speech and LLMs will
further boost the user experience of human-machine interac-
tion. Based on this intuition, several attempts in combining
speech signals and large language models were carried out

[7, 8, 9, 10]. Among them, the cascaded approach is the most
straightforward solution. In these systems, the speech sig-
nal is firstly transformed into word tokens through existing
automatic speech recognition (ASR) [11] models, and LLM
processes the recognized words for downstream tasks. Later,
inspired by the integration of image information to LLMs
[12, 13, 14, 15], researchers also explored the deep combi-
nation of speech signals [9, 10, 16, 17, 18, 19]. In [16], the
authors proposed to jointly model the speech and text tasks
through a unified decoder only network. Similarly, in [19],
the authors proposed to optimize the audio token conversion
module together with a off-the-shelf LLM. Instead of word
pieces, discrete tokens of speech representation from a self-
supervised model are used in [17].

While there have been promising outcomes, several cru-
cial challenges regarding the integration of speech and LLMs
still require further exploration. Initially, aligning the two
modalities (speech and text) using a pretrained LLM poses
challenges due to the typically longer sequence length of
speech signals compared to text sequences. Moreover, given
the costly nature of training LLMs, finding ways to minimize
the overall integration cost while maintaining exceptional
performance continues to be a challenging task. More impor-
tantly, considering the remarkable success of the LLMs, it is
crucial to explore the untapped potential of using a decoder-
only model [3, 16, 20, 21, 22] as the backbone network
architecture for speech to text processing.

In this study, we aim to tackle the aforementioned chal-
lenges by exploring an efficient end-to-end integration of
speech and language models. Our approach involves design-
ing a simple yet effective architecture where a large language
model that operates on text also incorporates acoustic em-
beddings. This integration enables the LM to condition its
transcription or translation of the acoustic information. More
specifically, our proposed method utilizes a pre-existing LLM
and incorporates a acoustic feature compressor and an acous-
tic encoder introducing only a small number of free parame-
ters. Diverging from previous approaches that convert speech
into discretized tokens, our model directly maps the continu-
ous representation of speech into the semantic space defined
by the LM. During the processing stage, the speech feature is



initially compressed by the acoustic compressor to reduce the
sequence length. Subsequently, the acoustic encoder trans-
forms the compressed speech signal into continuous vectors
in the same semantic space of the text that can be consumed
by the LLM. The final output is generated through the decod-
ing process of the LLM.

We thoroughly investigate various practical aspects of
our proposed model, such as selecting the appropriate acous-
tic compressor, attention mask, and fine-tuning methods.
Additionally, we apply the proposed model to the task of
translating speech in 13 different languages into English
(EN) text and compare its performance against a strong base-
line on CoVoST dataset. Finally, we demonstrate that the
decoder-only model, even trained from scratch using only
speech-text paired data, exhibits significant potential and
several advantages over the commonly employed encoder-
decoder architecture in speech processing. In this work, our
contribution can be summarized as follows:

• We introduce an efficient end-to-end integration method
called Speech-LLaMA, which effectively integrates
existing text-based large language models with speech
processing. We have achieved substantial improve-
ments in translation performance compared to strong
baselines on various speech translation (ST) tasks.

• We investigate various practical aspects of the proposed
speech-LLM integrations that are crucial for enhancing
performance. These aspects include acoustic compres-
sion of the acoustic feature, attention mask selection,
and fine-tuning strategy.

• On large, diverse and real-world data, we show that the
decoder-only architecture can be as competitive as the
encoder-decoder architecture for speech-to-text tasks.
We show that decoder-only to also be more parameter
efficient.

2. RELATED WORK

Our model aims at integrating speech signals into large lan-
guage models, as well as relates to Connectionist Tempo-
ral Classification (CTC) feature length compression and low-
rank adaptation (LoRA). We discuss these topics in the fol-
lowing.

2.1. Large language models

LLMs are generally pre-trained on vast amounts of textual
data that span a wide variety of domains and languages. They
usually consist of a stack of transformer layers, following an
auto-regressive decoder-only architecture, where each output
token is used as the input to predict the next step token. In
this work, we select LLaMA-7B [5] as the backbone LLM
to build the proposed method. LLaMA-7B model consists of

32 Transformer encoder layers with 32 heads and 4096 atten-
tion dimension. The tokenizer from the LLaMA work has a
vocabulary size of 32,000 which covers a group of languages.

2.2. CTC compressor

Connectionist Temporal Classification (CTC) compressor
[23] was proposed to reduce the sequence length via remov-
ing the redundant information in the features. It was applied
in speech translation task and was shown to yield better mem-
ory consumption and performance. The method adds a linear
CTC branch in a middle layer of the encoder which is jointly
optimized with the main cross-entropy criteria . The hidden
representations of the CTC branch are then compressed ac-
cording to the distributions of the CTC posteriors and are
passed to the succeeding layers. The author investigated a
few variations within this method of sequence length com-
pression. They found that averaging the consecutive hidden
representations (corresponding to consecutive CTC predic-
tions belonging to the same class) gives the best performance.

2.3. LoRA

Low-Rank Adaptation (LoRA) [24] is a commonly used tech-
nology to adapt the large models for new datasets or tasks. It
introduces a small amount of free parameters to each Trans-
former layer of the source large model, while freezing all
the original model parameters. Specifically, for each weight
matrix W ∈ Rd×k in a Transformer layer, 2 new matrices
Wa ∈ Rd×r and Wb ∈ Rr×k are introduced such that r ≪
min{d, k}. For each matrix multiplication during training,
the input x is firstly multiplied with both original weight W
and its introduced low-rank approximation Wa, Wb, then the
two outputs are summed to form the output for later compu-
tation. Only Wa and Wb are updated during fine-tuning while
W keeps frozen, thus significantly reducing the memory foot-
print during training.

3. OUR APPROACH

In this work, we design an architecture named Speech-
LLaMA where a text-LLM can also accept acoustic embed-
ding as well as text as conditional prompts for text generation.
By converting the speech input to a sequence of acoustic em-
beddings within the same space of the text embeddings, in
the aspect of both length and semantics, the pre-trained text
LLM can leverage its in-context learning capacity to absorb
the speech signal and output corresponding text for speech
translation task.

Overall, given the text prompt p and audio signals x,
the generation of the corresponding text sequence y =
{y0, y1, · · · , yN−1} with a text-LLM is formulated as:

p(y|p,x; ΘLLM) =

N−1∏
n=0

p(yn|y<n,p,x; ΘLLM) (1)
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Fig. 1. High-level architecture of our proposed approach with
LLM. The green blocks indicate the part of the LLM. In this
work, we only learn parameters in the “Audio Encoder”, keep-
ing everything else frozen.

where y<n indicates the generated text sequence before yn.
Overview Our proposed neural model consists of three

distinct parts: a pre-trained text neural LLM, an audio en-
coder and a CTC compressor, as shown in Figure 1. The text-
LLM in our case is a LLaMA-7B [14] but this method can
be generalized to LLMs of any scale. The CTC compressor
reduces the sequence length of the input speech filter-bank to
match the length of the text, and the audio encoder transforms
the compressed speech signal into continuous vectors in the
LLM’s semantic space.

CTC compressor Different from the prior work that
trained the CTC compressor jointly with the main task [23],
our CTC compressor is a pre-trained module, aiming to match
the audio and the text duration to the same scale by selecting
the representative frames from the audio signal. In this work,
we explore two ways to reduce the sequence length of the
acoustic features in the CTC compressor: “blank-removal”
and “frame-averaging”. For “blank-removal”, we simply dis-
card all the frames that predicted the blank symbol according
to the distribution of the CTC posteriors. On the other hand,
for “frame-averaging”, we average the hidden states of con-
secutive frames without blank frames removed, once their
CTC predictions belong to the same class.

Audio encoder The audio encoder is used to bridge rep-
resentations generated from the CTC compressor to the text
embeddings of the text-LLM. This module is designed to be
relatively small in size and is initialized with random weights.
During the fine-tuning process, the audio encoder is opti-
mized to effectively integrate the audio information within
the LLM, enhancing the overall performance of the system.
Different from the methods in [7, 19], where the audio en-
coder is trained to firstly map the speech signal into discrete
tokens, which is then consumed by LLM, the proposed audio
encoder is directly optimized to map the compressed acoustic
signal to the continuous semantic space of LLM, allowing a
deep integration between the audio encoder and the language
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Fig. 2. The architecture of the decoder-only model for the
from-scratch training. We use ⟨SOS⟩ token to indicate the
starting of the text generation.

model.
Instruct learning For each training sample, we prepend

a text prompt that briefly describes the task, e.g., “audio ⇒
English” and “transcribe the audio into English”.
The text prompt are sampled from a pre-defined list, where
some prompts contains the source language ID following the
format “translate [source] audio into English”. Dur-
ing evaluation, we fix the text prompt as “translate the

audio into English” for all testing samples.
LoRA fine-tuning On top of the proposed model, we

apply the LoRA to four attention matrices in each layer of
the LLaMA Transformer (e.g., Wq,Wk,Wv,Wo). To stabi-
lize the training, we adopt a two-stage training scheme which
means we train the audio encoder firstly with the CTC com-
pressor and LLaMA frozen and then introduce LoRA to the
well-trained model and perform the second stage optimiza-
tion. The entire system is still trained with cross-entropy loss
between the LLM output and the reference transcription se-
quence on the same training data.

From-scratch training To further explore the potential
of decoder-only architecture as a foundational architecture for
speech modeling, we also include a “from-scratch” training of
a decoder-only architecture. Here, we replace the text prompt,
audio encoder, and CTC compressor with a randomly initial-
ized convolutional 2D encoder. We also replace the pretrained
LLaMA network with a much smaller randomly initialized
autoregressive network. This architecture is shown in Figure
2. We add an ⟨SOS⟩ token at the end of the acoustic sequence
to indicate the starting of the generation. In this case, the gen-
eration of the text sequence y with a decoder-only model is
conditioned purely on audio signal x and previously gener-
ated text sequence y<n:

p(y|x; ΘDEC) =

N−1∏
n=0

p(yn|y<n,x; ΘDEC) (2)

where ΘDEC refers to the parameters of the decoder model.



4. EXPERIMENTS

The speech translation (ST) task [25, 26, 27, 28, 29] has been
chosen as the primary evaluation benchmark for assessing the
proposed methods. In this task, the goal is to develop a system
that can accurately translate spoken language from 13 source
languages to English.

4.1. Data and metric

The 13 source languages we want to translate to EN are Ger-
man (DE), Chinese (ZH), Arabic (AR), Spanish (ES), French
(FR), Italian (IT), Dutch (NL), Japanese (JA), Russian (RU),
Portuguese (PT), Estonian (ET), Swedish (SV) and Slovenian
(SL). We chose these languages based on availability of train-
ing and testing data. The training data for each language con-
tains 1K hours of in-house speech data. To make the model
more robust, we also include 1K hours of EN data, bringing
the total to 14K hours. The original source transcriptions for
non-English speech utterances are fed into an in-house trans-
lation service to generate the corresponding English transcrip-
tions with both punctuation and capitalization. Those pseudo-
label English transcriptions are used as the target transcription
for ST task training. All the training data was anonymized
with personally identifiable information removed.

Our speech translation models are evaluated on the 13 lan-
guages from the above list. The corresponding test sets are
selected from CoVoST 2 dataset [30]. We evaluate the BLEU
[31] scores for the performance comparison.

4.2. Models configuration

4.2.1. CTC compressor

The CTC compressor contains 2 convolution-2D layers fol-
lowed by 4 Transformer layers for a 4-times subsampling with
15.8M parameters in total. Each transformer layer has a 512-
dimensional self-attention module with 8 heads and a 2048 di-
mensional feed-forward network (FFN). Each convolution 2D
layer has a stride size of 2 and kernel size of 3. We pre-trained
CTC compressor with the paired speech and text data (i.e.,
ASR task) from 13 languages using the CTC objective func-
tion because that in our preliminary experiments, the BLEU
score with ASR task training is much better than the one with
the ST task training. Once CTC compressor is trained, the
parameters are frozen during later training stages.

For comparison, we include a convolution-based subsam-
pling module as a baseline, which shares the same architec-
ture with the CTC compressor but with additional 3 1D con-
volution layers on top, allowing 4 × 8 = 32 times feature
length reduction in total. The convolution-based subsampling
is jointly trained with the audio encoder parameters.

4.2.2. Audio encoder

The audio encoder consists of 4 Transformer layers, where
each layer has the same setting as in the CTC compressor
except that the output tensor of the last layer is converted to
the dimension of 4096, in order to match the dimension of
semantic embedding in LLaMA.

For each training sample, we concatenate the embeddings
of the text prompt and representations from the audio encoder
along the time axis and use that as the prefix feature sequence
to feed to the LLaMA model to generate the target language
(EN) transcriptions.

Two attention mask strategies are explored within the
LLaMA model. The first follows the language model train-
ing, where a causal, i.e., lower triangle attention mask is ap-
plied for each transformer layer to constrain the self-attention
to not look into the future. As the proposed model is “non-
streaming” in nature, we also explore a non-causal full at-
tention mask strategy for the prefix part only [32], i.e., text
prompt and audio encoder representations, to enable the full
context learning on the acoustic information.

4.2.3. LoRA fine-tuning

We simply choose rank value of 2 for LoRA fine-tuning ex-
periments according to the results of the LoRA work [24], i.e.,
8 rank-2 matrices in the shape of 2 × 4096 are introduced to
each LLaMA Transformer layer as an adaptor, which results
in 2.1M more parameters in total. The LoRA fine-tuning is
conducted on a well-trained Speech-LLaMA model, where
the CTC compressor and the LLaMA parameters are frozen.
We still update the audio encoder to learn better representa-
tions together with the adapted LLaMA.

4.2.4. Baseline

We adopt a seq2seq [33, 34] based speech translation model
as a baseline. More specifically, we use the Whisper [35]
architecture with 240M parameters and train it on the 14K
hour data mentioned in Section 4.1. It contains a 12-layer
audio Transformer encoder and a 12-layer text Transformer
encoder, where the attention dimension and head number
is 768 and 12, respectively. We optimize the model using
cross-entropy as the primary objective function but also aug-
ment this architecture with a CTC loss on the encoder. We
train the whole network end-to-end in a multi-task fashion.
Please note that, for a fair comparison, we start the seq2seq
training from scratch and do not initialize with pretrained
open source Whisper weights. During beam search inference,
we do a joint-decoding (prefix-decoding) [36] with CTC. To
make the comparison with LLaMA boot-strapped models
more appropriate, we also present results with n-best rescor-
ing of the seq2seq model with LLaMA. To accomplish that,
we do a simple log-linear interpolation between the scores
from seq2seq and LLaMA for each of the n-best hypotheses



Table 1. BLEU scores of the 13 languages on the baseline and the proposed models.
Model Seq2seq Decoder-only Speech-LLaMA

ID B1 B2 D1 E0 E1 E2 E3 E4 E5 E6
Compressor − − − × CTC (remove) CTC (average)

Learnable #Param. 240M 150M 29M 14M 14M 16.1M 14M 16.1M
Prefix Non-causal Mask − − ✓ × × ✓ × × ✓ ✓

LoRA − − − × × × × E3 × E5
LLaMA Rescore − ✓ − − − − − − − −

AR 22.8 24.9 21.2 16.9 24.6 24.7 24.6 26.3 25.9 28.2
DE 22.6 23.6 21.3 16.9 22.6 22.8 24.3 26.0 25.4 27.1
ZH 7.0 7.2 6.7 3.4 9.6 10.1 10.1 11.4 10.8 12.3
ES 23.7 24.9 22.7 19.6 23.5 24.0 25.4 27.3 26.2 27.9
FR 21.8 22.7 20.6 15.4 20.9 21.1 22.6 24.5 23.2 25.2
IT 20.7 21.6 19.8 16.7 21.4 21.0 23.7 25.3 24.0 25.9
NL 34.6 36.0 35.2 28.3 32.4 35.0 34.1 36.0 34.9 36.5
JA 15.3 15.7 16.3 10.3 17.5 17.1 17.7 19.8 19.2 19.9
RU 26.4 27.7 26.0 22.8 31.0 32.0 33.3 35.5 34.3 36.8
PT 28.9 30.2 27.2 22.8 26.8 27.7 29.2 31.3 30.2 32.0
ET 9.4 9.4 7.4 15.4 17.0 18.3 17.2 18.1 18.0 18.7
SV 24.4 25.6 27.5 26.3 25.3 28.8 26.7 27.4 27.2 29.0
SL 13.3 12.7 13.3 22.2 20.3 22.9 22.8 22.2 22.1 22.7

Average BLEU ↑ 20.8 21.7 20.4 18.2 22.5 23.5 24.0 25.5 24.7 26.3

and then re-rank accordingly. We use n = 5 for seq2seq
beam-search decoding and the re-ranking experiments.

4.2.5. From-scratch training

In this setting, the structure of the convolutional 2D encoder
contains 2 convolutional layers which is the same as the one in
the CTC compressor, which introduces a 4-times subsampling
rate. For the Transformer decoder, we follow the implemen-
tation of LLaMA, where pre-normalization, SwiGLU activa-
tion function [37] and rotary positional embeddings (RoPE)
[38] are adopted. Similar to the configuration of the seq2seq
baseline, each decoder layer contains a 12-head self-attention
module with the 768 attention dimension. The dimension of
the feed-forward network is set as 4076.

4.3. Training and evaluation

We extract an 80-dim log mel-filterbank using 25 msec win-
dow and 10 msec hop size as the acoustic features. Global
mean and variance normalization is applied. All models were
trained with AdamW optimizer [39] with β1 = 0.9 and β2 =
0.98 on 16 V100 GPUs and a warmup and linear decay learn-
ing rate strategy is used. Batch size varies with the model size.
CTC compressor was trained for 100K steps with source lan-
guage transcriptions, tokenized by LLaMA’s tokenizer. The
peak learning rate was set to 0.001. In the first stage training
of Speech-LLaMA, We perform a 500K step training with

a peak learning rate of 0.015 while in the later LoRA fine-
tuning stage, we use additional 100K optimization steps with
a peak learning rate of 2e−4. The from-scratch decoder-only
models were trained with a peak learning rate of 0.001 for at
most 300K steps. We use the beam search algorithm with a
beam size 4 for the decoding of all the decoder-only models,
unless noted otherwise. Both seq2seq and decoder-only mod-
els use English-only byte pair encoding (BPE [40]) model for
the tokenization which has a vocabulary size of 5,857 while
the Speech-LLaMA models keep using LLaMA’s tokenizer.

5. RESULTS AND DISCUSSIONS

The results of the experiments are presented in Table 1, where
several observations can be gleaned.

5.1. Baselines

For baselines, we report results on 2 systems. B1 is a seq2seq
model described in Section 4.2.4 and B2 is B1 with LLaMA
n-best rescoring. As expected [41], a 0.9 better BLEU score
can be observed from B2 system over B1. This suggests that
shallow integration with LLM can still bring benefits to the
speech models.

5.2. Deeper integration with LLaMA

While shallow integration can boost performance, the gains
using a deep integration technique like Speech-LLaMA



should be much higher. Systems E1 ∼ E6 describe Speech-
LLaMA models in various configurations. We can find all
Speech-LLaMA configurations significantly outperform the
baselines with the limited learnable parameters, resulting in
up to 4.6 absolute BLEU score improvement (21.2% relative).
These results show the efficacy of the proposed system and
also suggests the necessity for deeper integration between the
speech models and text-LLMs.

5.3. CTC compressor

Results from system E0, E1 and E3 describe the importance
of CTC compressor for audio length reduction, in our design.
Comparing E1 over E0, we obtain consistently better perfor-
mance showing the effectiveness of CTC compressor over
the convolution one. This gain is despite the fact that CTC
compressor is frozen during the training while the convolu-
tion compressor was fine-tuned with the rest of audio encoder.
One hypothesis for the better performance of CTC compres-
sor is that it leverages the transcription of each source lan-
guage during pre-training stage as we also observe that replac-
ing the current CTC compressor model with the one trained
with ST labels brings worse BLEU scores in our preliminary
experiments. This observation also suggests that a potentially
better performance might be obtained if the source transcrip-
tion is also used during the training stage. We leave this line
of exploration for future works.

Within the CTC compressor, comparing system E3 over
E1, the “frame-averaging” strategy shows a 1.5 better average
BLEU score over “blank-removal” strategy. We believe that
it is because the CTC compressor can’t very reliably distill
all relevant information into non-blank representations. Thus
the frames selected by the CTC compressor might lose some
acoustic information which cause the degradation of the per-
formance. The averaging strategy is more robust to this com-
pression error which aligns with the prior work [23].

5.4. Effect of non-causal attention mask

It is expected that the full attention mask over text prompt
and acoustic representations would usually result in better
speech representation, and consequently better results. For
each type of CTC compression strategy, our experiments
demonstrate that using a non-causal attention mask over a
causal mask can indeed bring gains. Comparing system E2
over E1, we see that switching to a non-causal mask brings
an additional gain of 1.5 average BLEU score when using the
“blank-removal” strategy within CTC compressor. Similarly,
comparing systems E5 over E3, we again observe a gain of
0.7 average BLEU score, when using the “frame-averaging”
strategy within CTC compressor. The gain with non-causal
mask is understandably larger in “blank-removal” strategy,
since future acoustic information can help compensate for
potential loss of information caused due to removal of frames
corresponding to the blank symbol of the CTC loss. Even

in LoRA fine-tuning systems, e.g., comparing E6 and E4,
we can still observe a gain of 0.8 average BLEU score with
non-causal mask applied.

5.5. LoRA fine-tuning

E4 and E6 represent our systems with LoRA fine-tuning.
Comparing E4 over E3 shows the gains using LoRA fine-
tuning when using a causal attention mask while comparing
E6 over E5 show corresponding gains when using a non-
causal attention mask. We can obtain an additional increase
of 1.5 and 1.6 average BLEU score, respectively. Note that
only 2.1M additional parameters are added as adaptors. Po-
tentially better performance might be observed when larger
rank is used. We leave this exploration for future works.

5.6. Decoder-only vs Encoder-Decoder

Finally, the results for the randomly initialized decoder-only
model are shown as system D1 in Table 1. This model
achieves only slightly worse (0.4 lower BLEU score) per-
formance compared to the seq2seq baseline. But the total
parameter for the decoder-only model in our study is also
significantly lower than the seq2seq baseline. We think that
decoder-only architecture can be more parameter efficient
than the encoder-decoder architecture. This is because a sin-
gle module is used to learn representations for both source
and target sequences in the former while separate modules
(encoder and decoder) are used to generate representations
for source and target sequences in the latter. This sharing of
parameters to process input and output jointly can bring out
better parameter efficiency in the decoder-only architecture.
Our results do seem to validate this theory. In future, we will
conduct more extensive analysis of how model size effects
performance in these 2 architectures.

6. CONCLUSION & FUTURE WORK

In this work, we propose a method to infuse an off-the-
shelf large language model with acoustic information. The
proposed model presents a deep integration between the
audio with the LLM by directly mapping acoustic repre-
sentation into the semantic space of LLM. We also explore
several practical aspects of the proposed model for better
performance including compression of the acoustic fea-
ture, attention mask design and adapter fine-tuning. We
show that on a 13 language to English speech translation
task, the proposed model significantly outperforms a strong
sequence-to-sequence baseline model. We also show that the
decoder-only architecture, trained from scratch, can achieve
comparable performance with around 40% fewer parame-
ters, which verifies the potential of decoder-only models for
general speech-to-text modeling.
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