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ABSTRACT

Simultaneous Speech-to-Text translation serves a critical
role in real-time crosslingual communication. Despite the ad-
vancements in recent years, challenges remain in achieving
stability in the translation process, a concern primarily man-
ifested in the flickering of partial results. In this paper, we
propose a novel revision-controllable method designed to ad-
dress this issue. Our method introduces an allowed revision
window within the beam search pruning process to screen
out candidate translations likely to cause extensive revisions,
leading to a substantial reduction in flickering and, crucially,
providing the capability to completely eliminate flickering.
The experiments demonstrate the proposed method can sig-
nificantly improve the decoding stability without compromis-
ing substantially on the translation quality.

Index Terms— Flickering reduction, simultaneous speech
translation, decoding stability, beam search

1. INTRODUCTION

Simultaneous Speech-to-Text translation (ST) incrementally
translates speech in a source language speech into text in a
target language, and has found wide-ranging applications in
numerous crosslingual communication scenarios such as in-
ternational travel and multinational conferences.

Unlike the full-sentence translation, which translates upon
the cessation of speech segments, and provides a complete
translation for an entire segment. Simultaneous ST requires
the generation of intermediate translations as the speech
continues. These partial results are of critical importance,
enabling the audience to keep pace with the content of the
speaker’s discourse in real time, fostering immediate compre-
hension and engagement.

In recent years, the end-to-end (E2E) approach has sur-
passed conventional cascaded methods in terms of perfor-
mance [1, 2]. Notably, the implementation of Transducer
models for the adaptive simultaneous translation for stream-
ing speech has significantly enhanced translation quality
[3, 4]. Despite these advancements, the stability issue re-
mains unaddressed in this task.

As the speech continues, a simultaneous ST system does
not inherently guarantee to append new words to the previ-

měiguó zhōng xī bù yǒu hěnduō guójiā gōngyuán
Source

Transcription 美国 的 西 部 有 很多 国家 公园
USA ’s west area have many national parks

Translation-Ref there are many national parks in western US

(a)
E2E Streaming

Translation

(audio and segment start)
[t1] American
[t2] Western US
[t3] Western US has many
[t3] there are many national parks in western US

(audio and segment end)

(b)
Revision-Free

Decoding

(audio and segment start)
[t1] American
[t2] American west
[t3] American west has many
[t3] American west has many national parks

(audio and segment end)

Fig. 1: A decoding example of E2E simultaneous ST. The
provided source transcription represents the content of the
source speech in Chinese, with the corresponding gloss also
displayed. Text in blue denote newly generated translation.
The standard approach showcases the possibility for interme-
diate translation to flicker with continuous speech input. In
contrast, our proposed revision-free decoding method strives
to maintain the intermediate translation unrevised.

ous partial result. As shown in Figure 1(a), words previously
displayed can be removed or altered. This instability in the
partial results can lead to frequent alterations on screen, caus-
ing the results to flicker. While permitting revisions has the
potential to improve translation quality, this flickering creates
an unfavorable user experience and can be distracting [5, 6].
It causes discomfort among audience members, who might
consequently lose track of the content. Given the reorder-
ing nature between different languages [7, 8], the experience
with flickering is substantially worse than that of Automatic
Speech Recognition (ASR) tasks, which maintain a mono-
tonic alignment.

Furthermore, simultaneous ST is usually succeeded by an
incremental Text-To-Speech (TTS) system that synthesizes
the text into speech in the target language [9]. Since the syn-
thesized speech display cannot be retroactively altered, flick-
ering poses significant challenges.

In contrast to the ASR task, which invariably aims for
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a single optimal outcome as the desired recognition result.
The ST can accommodate multiple valid translations for a
single input. For instance, as shown in Fig. 1, both “Amer-
ican midwest” and “West central US” can serve as suitable
translations for “美国的中西部”. Furthermore, the flexibility
of languages allows for multiple equivalent expressions [10].
Therefore, not all revisions are necessary. To maintain the sta-
bility of partial results, a continuous translation strategy can
be implemented, which builds upon the previously generated
prefix. As illustrated in Fig. 1(b), a revision-free decoding
approach, which refrains from modifying generated partial re-
sults, can also yield translations of considerable quality.

While greedy decoding is widely utilized in simultaneous
translation to guarantee stability [11], it often compromises
the overall translation quality [12]. In this work, we pro-
pose two strategies aimed at mitigating the flickering issues
observed in simultaneous ST. We identify the root cause of
flickering in the ranking process of beam search decoding.
It presents a potential avenue for reducing the frequency of
intermediate translation commitments and thereby prevent-
ing unnecessary revisions. Furthermore, to fundamentally
address the flickering issue with beam search, we introduce
a novel revision-controllable approach that actively man-
ages revisions during the translation decoding process. Our
primary idea is to modify the beam search pruning process
through the introduction of an allowed revision window. It
can filter out candidates that may induce extensive revisions.
Our method can completely prevent flickering during decod-
ing with only a minor reduction in translation quality.

By adjusting the allowed revision window, our proposed
method is capable of achieving performance comparable to
existing methods in terms of translation quality, while signifi-
cantly enhancing both latency and stability. This dual strategy
presents a promising solution for enhancing the performance
and user experience of simultaneous ST.

2. PRELIMINARY

We first briefly review end-to-end simultaneous speech trans-
lation to set up the notations.

2.1. End-to-End Speech Translation

Regardless of the specific model architecture employed, the
novel paradigm of E2E ST delineates an objective: to trans-
form a speech feature sequence x = (x1, x2, ..., xT ) into a
series of text tokens y in a different language, where each xi

represents the frame-level feature with a certain duration.
The conventional cascaded system uses an ASR model

to convert speech to text in the source language, which is
subsequently fed into a machine translation (MT) model
to get the translation in the target language. Unlike this
method, the E2E ST model incorporates a singular, integrated
model which does not need an intermediate recognized result,

𝒄𝟏 𝒄𝟑𝒄𝟐 𝒄𝟒

Fig. 2: TT encoding at position f10, utilizing an attention
mask. The process is characterized by a specified chunk size
of 3 and the number of left chunk 1.

thereby alleviating the issue of error propagation [13]. The
model can be formalized as:

pfull(y | x;θ) =
|y|∏
t=1

p(yt | x,y<t;θ)

2.2. Simultaneous End-to-End Speech Translation with
Transducer Model

Simultaneous E2E ST system translates concurrently with
continuous source speech. Formally, the prediction of y can
be defined as,

psimul(y | x;θ) =
|y|∏
t=1

p(yt | x<τ(t),y<t;θ)

where τ(t) denotes the timestamp to decode target token yt.
Recently, the neural transducer model [14] presents a

compelling fit for simultaneous E2E ST [3, 4]. Its design
considers all potential alignments between speech and text
throughout the training process, and it shows the capacity to
adaptively translate speech into text in a streaming manner
[15]. In [3], the authors proposed to leverage the Transformer-
Transducer (T-T) [16, 17] for simultaneous ST. To realize the
low-latency high-accuracy streaming T-T, they use the speech
encoder design in [18], shown in Fig. 2.

To uphold low latency and minimize computational costs,
the input speech frames x are segmented and sequentially fed
into the encoder in distinctive chunks c. Each chunk ci com-
prises several speech frames, the quantity of which aligns
with the chunk size u . The incorporation of the attention
masks [18] facilitates processing in a chunk-wise streaming
fashion. Every frame has a predetermined number of visible
left chunks, and the size of the left reception field grows pro-
portionally with the number of layers. This allows the model
to leverage extensive historical information for improved per-
formance while significantly reducing computational require-
ments compared to models that consider the entire history at
each layer. Within a chunk, all frames can observe one an-
other, but they cannot access frames in subsequent chunks.



2.3. Decoding with Beam Search

In order to achieve a fluent translation, the application of
beam search is crucial during the decoding process. We de-
note Bi to be the beam at time step i, which is an ordered list
with a beam size of b, and it expands to the next beam Bi+1

with the same size:

B0 =[⟨<s>, psimul(<s> | x1;θ)⟩]
Bi = topb(next(Bi−1, i))

next(B, i) ={⟨y ◦ yi, psimul(yi | x≤τ(i),y;θ)⟩ |
⟨y, p⟩ ∈ B, yi ∈ V }

ŷi = top1(next(Bi−1, i))[0]

The best hypothesis ŷi is usually used as the intermediate
generated result [19]. Intermediate result revision happens
when the top candidate ŷi in Bi is neither identical to nor a
prefix of the top candidate ŷi+1 in Bi+1.

3. METHODS

As the simultaneous ST model processes continuous speech,
it generates intermediate translation results. In the context
of online decoding utilizing beam search, the intermediate
translation is typically represented by the best candidate ŷ
in the beam. However, as discussed in Sec. 2.3, these best
candidates may not always serve as the prefix for the subse-
quent translation. This discrepancy arises due to the inherent
reranking property of the beam search algorithm, which can
modify the candidate order based on their evolving scores as
the decoding process advances.

3.1. Chunk Preservation

In conventional methods for text-based simultaneous MT,
such as the widely-used wait-k method [11], the model com-
mits a single target token each time it receives a new source
token. However, this approach may not be the most efficient
for Speech-to-Text translation, where the input granularity is
at the frame level. Individually, frames often lack sufficient
semantic information, and their length generally exceeds that
of the target text sequence.

Adopting the chunk-based model, as detailed in the
Sec. 2.2, allows the input to be processed chunk-by-chunk.
In this approach, it is not necessary to commit results at the
frame level. Committing at the chunk level is more logical
given the characteristics of ST. This modification offers two
primary advantages:

• It reduces the frequency of commitments, thereby pre-
venting unnecessary revisions within each chunk.

• It streamlines the process for committing outputs, sav-
ing computational efforts and reducing system commu-
nication overhead.

Therefore, we proposed a method called Chunk Preser-
vation (CP). For instance, as depicted in Fig. 2, the pro-
posed method refrains from committing intermediate transla-
tions for individual frames such as f10. Instead, it only com-
mits the best candidates as the intermediate translation at the
end frame of each chunk, such as f12 in the example. It can
be formalized as,

commit(ŷi, u) =

{
True if i mod u = 0

False otherwise.

By committing results at the chunk level rather than the frame
level, the translation process aligns more closely with the nat-
ural input processing pattern of ST, greatly enhancing the de-
coding stability.

It is important to note that while this method modifies the
commitment approach, it leaves the translation quality unaf-
fected. The translation accuracy remains consistent with that
achieved through standard frame-level commitment.

3.2. Revision Window Control

However, chunk preservation cannot fundamentally address
the issue of revision. Given that revisions originate from the
ranking process in beam search, we can maintain a beam
where the revisions applied to subsequent translations from
all candidates are kept within a specified limit. Thus, we
design a revision-controllable decoding method, rooted in
the beam search process, in which we incorporate a Revision
Window (RW). This value regulates the maximum number of
tokens that can be revised in subsequent decoding. Specifi-
cally, every time we commit the intermediate translation (at
the end of each chunk), we prune the beam with this revision
window control strategy in effect.

The proposed beam pruning method can be described as,

accept(x,y,RW) =

{
True, if x:|y|−RW = y:|y|−RW

False, otherwise

Bi = topb∗(next(Bi−1, i))

∀⟨y, p⟩ ∈ next(Bi−1, i), accept(y, ŷi,RW).

In essence, all the surviving candidates within the beam
must maintain an identical prefix, with the length being sub-
ject to the provided revision window. Otherwise, they will be
pruned, regardless of their scores. RW denotes how many to-
kens at the end of the intermediate translation are permitted
to be revised in the beam search process due to the progress
and reranking stemming from the ongoing translation. An
extreme case occurs when RW = 0. In this case, all candi-
dates employ the best candidates as the prefix 1, ensuring that
subsequent translations will not revise the previous intermedi-
ate translation. In scenarios that do not require strict controls
on revision, RW can be adjusted to strike a balance between
translation quality and stability.

1it is possible that fewer than b candidates survive.



4. EXPERIMENTS

4.1. Data and Model

Language DE ES IT FR NL ZH

Hours 15k 17k 16k 14k 5k 65k

Table 1: Statistics of training speech corpora for each source
language.

To demonstrate the effectiveness of our proposed method,
we conducted experiments on multiple translation directions.

Following [20], we trained a multilingual ST model that
effectively translates speech from various languages into En-
glish. In the experiment, we used a collection of anonymized
internal speech corpora intended for ASR. The specific lan-
guages covered, along with their corresponding durations of
training data, are shown in Table 1. The training translation
references were annotated with a MT service. The model is
constructed with a direct translation framework, allowing it to
seamlessly process speech in a set of languages, specifically
German (DE), Spanish (ES), Italian (IT), French (FR), Dutch
(NL), and Chinese (ZH), into English (EN) without necessi-
tating any language-specific configuration.

We adopt the Transformer-Transducer as the foundational
architecture for our model, with a chunk size of 4 and masked
attention, as detailed in Sec. 2, to enable the ability to pro-
cess streaming input. We set the chunk size u = 4 (i.e., 4
frames per chunk and the frame span is 40ms) and set the left
chunk value to 18. More specifically, the encoder consists of
a Transformer architecture with 18 layers with 2048 hidden
size, each having 8 attention heads with an attention dimen-
sion of 256. For the prediction network, we use a 2-layer
stacked LSTM [21], with a hidden size of 1024, thus allow-
ing for efficient sequence prediction. We set the embedding
size to 320. The model is trained with AdamW optimizer [22]
for 1.6 million steps.

The efficacy of our proposed method is evaluated on the
CoVoST2 [23] X→En translation set, with individual assess-
ments conducted for each respective language pair. Our eval-
uation metric encompasses three core dimensions: translation
quality, latency, and stability.

For translation quality, we report the case-sensitive detok-
enized BLEU using sacreBLEU2 [24]. In terms of latency,
we employ Average Lagging (AL) [11] in milliseconds. This
crucial measure enables us to understand the real-time appli-
cability of our method in practical scenarios. Given that the
AL metric is traditionally intended for decoding processes
wherein intermediate results remain unrevised, and typically
employed for greedy decoding methodologies, we adjust its
application for our research context. In this study, we con-
duct an offline evaluation of AL by analyzing the timestamps

2https://github.com/mjpost/sacreBLEU
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Fig. 3: Revision count comparison across three decoding
methods. This bar chart presents the comparison of decoding
steps (y-axis) of the number of tokens been revised (x-axis)
with three different decoding methods. It allows for a direct
comparison of how often specific numbers of revisions occur
in each method.

corresponding to each decoded token. Specifically, we iden-
tify the moment when a decoded token is finalized and subse-
quently remains unchanged for the rest of the decoding pro-
cess. We leverage the index of the frame in which the in-
termediate result is committed to measure the latency (AL).
This differs from using the end frame of each chunk, which
represents real non-computation aware latency. Our chosen
method is adopted to effectively account for the latency intro-
duced by computational processes and display time. Finally,
for assessing the stability of our method, we employ the met-
ric of Normalize Erasure (NE) [25]. This metric quantifies
the number of partial target tokens that are erased relative to
each final target token.

4.2. Evaluation

Throughout the experimentation with our proposed method,
we consistently employ a beam size b = 7. It is notewor-
thy that conventional beam search algorithms tend to favor



DE → EN ES → EN IT → EN FR → EN NL → EN ZH → EN

BLEU ↑ AL ↓ NE ↓ BLEU ↑ AL ↓ NE ↓ BLEU ↑ AL ↓ NE ↓ BLEU ↑ AL ↓ NE ↓ BLEU ↑ AL ↓ NE ↓ BLEU ↑ AL ↓ NE ↓
b = 1 19.55 1317 0.00 18.96 1239 0.00 17.94 1270 0.00 19.04 1112 0.00 21.17 1183 0.00 2.02 3140 0.00
b = 7 26.28 1057 1.49 26.68 1054 1.74 26.50 1052 1.59 26.30 1061 1.60 28.28 967 1.37 10.97 1418 2.56

+ CP ~ 1110 1.00 ~ 1105 1.15 ~ 1106 1.08 ~ 1035 1.07 ~ 1045 0.92 ~ 1122 2.08
+ RW = 0 25.13 689 0.00 24.28 549 0.00 25.18 648 0.00 24.99 591 0.00 27.11 756 0.00 10.32 748 0.00
+ RW = 3 26.33 800 0.11 26.61 730 0.11 26.55 768 0.11 26.41 707 0.11 28.27 842 0.12 11.07 922 0.12

Table 2: Performance metrics on the CoVoST2 test set across various translation directions. ~ denotes that the value is the
same as the one in the row above. Chunk preservation does not change the decoding results, it yields the same BLEU score as
the standard frame-level beam search decoding.

shorter hypotheses, a characteristic often encountered in ma-
chine translation scenarios. To counterbalance this inherent
bias towards brevity, we incorporate a Word Reward [26] pa-
rameter set to 1 in beam search where revision window con-
trol is not employed.

The evaluation results are shown in Table 2. It is evi-
dent that utilizing a beam size b = 1 ensures no revision
in decoding. However, it markedly compromises the perfor-
mance. This approach typically generates hypotheses shorter
than expected, primarily because shorter hypotheses tend to
have better scores. The availability of only a single candi-
date as the prefix throughout the entire decoding process hin-
ders the growth of the sequence in subsequent decoding, given
that transducer decoding follows a frame-level synchronized
style, As a result, it incurred a severe brevity penalty, leading
to both poor quality and increased latency. This underscores
the critical role of beam search in decoding with transducer
models, unlike in the case of sequence-to-sequence models.
The use of chunk preservation in our model effectively mit-
igates flickering and improves stability, as indicated by the
NE scores. Despite this minor latency increase, the gains in
stability make this a beneficial trade-off.

The introduction of a controlled revision window plays a
pivotal role in our method. In contrast to pruning the beam
to a size of 1, our revision-controllable method is capable of
maintaining multiple candidates in the beam as long as they
do not introduce flickering beyond the given revision window
in subsequent decoding. The method can fundamentally pre-
vent unnecessary revisions and achieves enhanced latency (as
reflected with RW = 0). Moreover, our model exhibits sig-
nificant flexibility, facilitated by the adjustability of the revi-
sion window. With RW = 3, the model is able to achieve
translation quality comparable to that of beam search with-
out revision window control. And it still leads to significant
enhancements in both latency and stability. Especially, the
enhanced stability, indicated by the lower NE scores, ensures
the model’s output consistency, reinforcing the reliability of
the translations produced. This clear improvement in both
latency and stability, without compromising the translation
quality, underlines the effectiveness of our proposed method.

4.3. Analysis on Revision

While our proposed methods yield a notable improvement, to
assess the stability of decoding at a more granular level, we
performed an analysis of the frequency count for each speci-
fied number of tokens revised during the decoding process.

As demonstrated in Figure 3, the chunk preservation
method significantly mitigates the flickering issue for both
DE→EN and NL→EN translation, leading to fewer revi-
sions during decoding and thereby enhancing NE. Despite
these improvements, chunk preservation is unable to prevent
extreme cases of long-range revisions where a large num-
ber of previously generated tokens are revised, drastically
undermining stability.

In contrast, our proposed revision-controllable method ef-
fectively counteracts this problem. By implementing an al-
lowable revision window (RW), we establish an upper limit
to the number of tokens that can be revised. This is accom-
plished via a novel pruning method within the beam search
process (as detailed in Sec. 3.2), significantly bolstering the
stability of the decoding process.

5. RELATED WORKS

The conventional approach to preventing flickering during the
decoding process involves the use of greedy decoding, a tech-
nique frequently employed in text-based simultaneous MT
[11, 27]. However, for transducer-based streaming decoding,
this method proves unsatisfactory due to its inherent limita-
tions on output quality. For re-translation-style simultaneous
translation models, a biased beam search approach has been
utilized to enforce the decoding of previously generated text
as a prefix [25].

The most relevant study to our work is [28], the authors
propose an altered approach to hypothesis selection within
the beam during partial generation. Instead of always select-
ing the highest-ranked hypothesis from the beam, they intro-
duce a method to select the partial result, sticking a balance
between flickering, quality, and latency. This method is em-
ployed in steaming ASR not simultaneous ST, which contains
long-distance reorderings. And it does not modify the beam
search process.



6. CONCLUSION

In this work, we presented a simple and effective method to
address the issue of decoding stability in E2E simultaneous
ST, particularly, the flickering of partial translation results.
We propose two methods for reducing flickering. First, we
introduce a straightforward technique, called chunk preserva-
tion, which significantly reduces flickering while maintaining
the translation quality. Second, we proposed a novel revision-
controllable method that introduces an allowed revision win-
dow within the beam search pruning process. This approach
effectively filters out candidate translations that could lead to
extensive revisions, thereby significantly reducing flickering
and enhancing the stability of the translation. Moreover, by
limiting the maximum number of tokens that can be revised,
our method successfully prevents extreme instances of insta-
bility, thereby significantly improving user experience. Im-
portantly, these improvements were achieved without a sig-
nificant compromise on translation quality.
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