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ABSTRACT
Streaming automatic speech recognition (ASR) and speech
translation (ST) tasks have extensively utilized neural trans-
ducers. In this paper, we present our endeavor to construct
a Streaming Multilingual Speech Model (SM2), which em-
ploys a single neural transducer model for transcribing or
translating multiple languages into target languages. SM2 is
trained using weakly supervised data created by converting
speech recognition transcriptions with a machine translation
model. Leveraging 351 thousand hours of speech training
data from 25 languages, SM2 achieves impressive ST per-
formance. Furthermore, we demonstrate the truly zero-shot
capability of SM2 when expanding to new target languages,
generating high-quality zero-shot ST translation for {source-
speech, target-text} pairs that were not seen during training.

Index Terms— automatic speech recognition, speech
translation, multilingual, zero-shot, streaming

1. INTRODUCTION

With the advancement of end-to-end (E2E) modeling [1],
E2E models have emerged as the dominant model structure
in automatic speech recognition (ASR) [2, 3, 4, 5] and speech
translation (ST) [6, 7, 8, 9]. This trend has motivated many
efforts to develop a unified E2E model for multilingual ASR
[10, 11, 12] and multilingual ST [13, 14] tasks. Common E2E
techniques employed in ASR include Connectionist Temporal
Classification (CTC) [15], Attention-based Encoder-Decoder
(AED) [16], and recurrent neural network Transducer (RNN-
T) [17, 18, 19]. RNN-T, which eliminates the conditional
label independence assumption of CTC and provides a more
natural streaming solution than AED, is widely used for ASR
tasks in real-world streaming applications. Regarding E2E
ST, most previous models have relied on AED architectures
due to the attention mechanism’s ability to address the word
reordering challenge in ST. However, despite the introduction
of methods such as Monotonic Chunkwise Attention [20],
Monotonic Infinite Lookback Attention [21], and Monotonic
Multi-head Attention [22, 23], AED models may not be the
most suitable choice for streaming ST. In a recent study
[24, 25], the Transformer Transducer (T-T) model, which
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utilizes a streaming Transformer as the encoder in a neural
transducer model, has been shown to be a promising solu-
tion for streaming ST, offering high translation quality and
low latency. In this work, we also adopt the T-T model as
the foundational architecture due to its superior translation
quality and low-latency properties.

A recent development in the field of multilingual speech
modeling is the Whisper model [26], trained on 680 thousand
(K) hours of web data with careful elimination of machine-
generated transcriptions. It is an offline Transformer AED
model [27] capable of performing various tasks, including
ASR, ST, spoken language identification (LID), and voice
activity detection. The model exhibits good ASR and ST
performance when evaluated on tasks not encountered dur-
ing training, which has been referred to as its zero-shot ca-
pability in [26]. However, such a capacity is typically re-
garded as model robustness in previous studies [28], and zero-
shot translation is typically defined as translation between lan-
guage pairs whose data were not explicitly encountered dur-
ing model training [29]. Hence, an ST model with zero-shot
translation capability should be trained without exposure to
the source-language audio and target-language text pairs.

When building successful speech products in the indus-
try, several additional practical factors must be considered,
including streaming capability, inference cost, scalability of
language expansion, and scarcity of training data. In line
with the pursuit of practical speech product development, we
introduce the Streaming Multilingual Speech Model (SM2),
which can transcribe or translate multiple spoken languages
into the target language transcription without requiring source
language identification. SM2 differs from [26] in the follow-
ing key aspects:

1. SM2 is a streaming model that offers broader applica-
bility and significantly smaller model size, in line with
the principles of Green AI [30].

2. By eliminating the need for source LID, SM2 can
recognize and translate code-switched utterances with
high quality.

3. The ST training process in SM2 is entirely weakly su-
pervised, bypassing the reliance on human-labeled par-
allel corpora.
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4. With only a minimal increase in footprint, SM2 can be
seamlessly expanded to support additional target lan-
guages.

5. SM2 has a truly zero-shot ST capability, enabling it to
perform ST without prior training on {source-speech,
target-text} pairs.

2. STREAMING MULTILINGUAL SPEECH MODEL

In this section we begin by introducing SM2 as a model
which was originally designed to output texts in a single
target language. Following that, we describe the process of
expanding SM2 by incorporating additional output branches,
allowing it to generate texts in multiple target languages.
Additionally, we will explore how this design facilitates the
capability of SM2 to perform zero-shot ST.

2.1. Streaming Multilingual Speech Model with Single
Language Output

Our initial objective in developing SM2 was to create a single
streaming E2E speech model that can transcribe utterances
in the target language, such as English, while also is able to
translate various spoken languages (excluding English) into
the target language (English). In this way, regardless of the
language spoken by the user, the system would consistently
provide text output in the target language. Our approach dif-
fers from the one described in [26], which relies on user input
to determine whether to use ASR or ST. Another distinction is
that [26] leverages offline processing to identify the language
spoken by the user by analyzing the entire utterance. Such
LID information is then utilized to guide both ASR and ST
processes. The incorporation of LID information plays a cru-
cial role in enhancing the overall quality of speech modeling
[11, 31]. Nevertheless, streaming speech model is not able
to achieve this functionality due to latency constraints. Addi-
tionally, relying on LID information poses challenges in accu-
rately processing code-switched utterances within the system.

The work in [24] demonstrates that a neural transducer
is a effective solution for streaming ST tasks, offering both
high translation quality and low latency. One notable advan-
tages of utilizing a neural transducer is its innate ability to
address the reordering challenge. By dynamically determin-
ing read and write operations at each input feature frame, a
neural transducer naturally handles the issue of reordering in
the context of ST. The neural Transducer has three compo-
nents: an encoder network, a prediction network, and a joint
network. When the encoder network is an RNN or a Trans-
former, the neural Transducer is called RNN-T or T-T, respec-
tively.

We build SM2 with T-T which is shown in Fig. 1. The
encoder takes speech input xt to produce high-level speech
representation henc

t while the prediction network takes previ-

Fig. 1. Illustration of a Transformer-Transducer

ous non-blank output label yu−1 from T-T to generate high-
level representation hpre

u . t and u denote the time and label
steps, respectively. The joint network is a feedforward net-
work which combines henc

t and hpre
u , and finally outputs the

probability P (yu ∈ Y∪∅|x1:t, y1:u−1), where Y is the vocab-
ulary list and ∅ denotes the blank output.

We apply the attention mask proposed in [32] for the
T-T to work in streaming mode. An example is shown in
Fig. 2. We divide the speech inputs into chunks along time
with chunk size U . Each frame can see fixed numbers of left
chunks, and the left reception field increases linearly with
the number of layers, enabling the model to use long history
information for a better performance with much less compu-
tational cost than the model which uses full history at every
layer. Within a chunk, all frame can see each other, but cannot
see any frames in future chunks. Therefore, the algorithmic
latency of such a T-T is the chunk size U .

In the experiment section, we will employ a chunk size
U to regulate the accessibility of future speech frames for the
T-T model. Adjusting the chunk size will influence the ASR
and ST qualities. A larger chunk size provides the model with
more information at each time step, ultimately resulting in
improved ASR and ST performance.

During the training of SM2, we aggregate speech data
from various languages into a single pool. When a speech
sample belongs to the target language, it is considered as an
ASR task, while samples from other languages are treated as
ST tasks. SM2 does not require explicit information regard-
ing whether the task is ASR or ST. Additionally, the system
operates without relying on LID information, enabling it to
naturally process code-switched utterances with high quality.
It is important to acknowledge that acquiring a large-scale hu-
man labeled training set for ST is considerably more chal-
lenging compared to ASR. To overcome the scarcity of ST
training data, we employ a weakly supervised approach [33]
by calling a text based machine translation service to translate
the ASR transcriptions into the target language. By utilizing



Fig. 2. The reception field of a streaming T-T for generating
output f10. The chunk size is 3 and the number of left chunks
is 1.

Fig. 3. Illustration of language expansion.

this method, we eliminate the need for any human-labeled ST
data during the model training process.

2.2. Language Expansion with Zero-Shot Capability

Scaling to more output languages is challenging to multilin-
gual E2E ST models including SM2. Suppose we have S
source languages and the target language is English, we only
need to use S language pairs to train a SM2. However, if
we want to support all S-language outputs, we need to have
S2 language pairs in the training set, introducing formidable
training cost. Furthermore, after expanding to more output
languages, we would like to avoid degrading the model per-
formance on the original target language.

We propose a language expansion technique as shown in
Fig. 3. We first train a SM2 with one target language using
the method described in Section 2.1. When expanding to a
new output language, we reuse and freeze the speech encoder
from the previous model, and add new prediction and joint
networks. Since prediction and joint networks have much
less parameters compared with the encoder, the model size
increase for adding a new target language is small. The ST
training data is again synthesized from the same ASR train-
ing corpus as what has been done for the first target language.

Our proposed method enables zero-shot ST, reducing the
number of language pairs required during training, and thus
drastically improve the training efficiency. Fig. 4 shows the

Fig. 4. Illustration of the zero-shot mechanism. Z → N is
not observed during training.

mechanism facilitating the zero-shot capability of SM2. For
a many-to-one SM2 trained using {X,Y, Z} → M data
where X,Y, Z,M are different languages, we denote the
shared representation space from the speech encoder as a
blue circle, in which utterances in different languages have
the same semantic meaning. Such inter-lingual space [29] can
be obtained when we have a large amount of speech training
data in multiple languages. For a new language output N ,
since we use the same multilingual ASR corpus to generate
the transcriptions for M and N and we reuse and freeze the
original speech encoder, its inter-lingual space represented
by the green circle is the same as that of {X,Y, Z} → M .
Therefore, when we train the model for the new target lan-
guage N only with {X,Y } → N data, utterances in the
inter-lingual space can also perform Z → N translation.
Because of this calibration in the inter-lingual space and en-
coder freezing, Z → N translation can generalize to other
utterances in language Z shown in the dashed area in Fig. 4,
thus enables zero-shot translation.

3. EXPERIMENTS

To train SM2, we use ASR training data from 25 languages:
English (EN), Chinese (ZH), Portuguese (PT), Spanish (ES),
Italian (IT), German (DE), French (FR), Japanese (JA), Rus-
sian (RU), Korean (KO), Polish (PL), Norwegian (NB),
Hungarian (HU), Greek (EL), Czech (CS), Romanian (RO),
Swedish (SV), Danish (DA), Finnish (FI), Dutch (NL), Slove-
nian (SL), Slovak (SK), Lithuanian (LT), Estonian (ET), and
Bulgarian (BG). As shown in Table 1, the corpora cover
lower-, medium-, and high-resource languages containing
[0.1K, 1K), [1K, 10K), and [10K, 100K] hours of training
data, respectively. The total number of training data is 351K
hours. All the training data is anonymized with personally
identifiable information removed. A text based machine
translation (MT) service is used to convert the ASR transcrip-
tions into texts of the target language for ST training.

We first trained several models based on the T-T structure
described in Section 2.1 with same model structure but dif-
ferent algorithmic latencies (encoder lookahead). The above
25 languages are source input language and English is the tar-



hours languages
[0.1K, 1K) SL, SK, LT, ET, BG
[1K, 10K) RU, KO, PL, NB, HU, EL, CS, RO, SV, DA, FI, NL

[10K, 100K] EN, ZH, PT, ES, IT, DE, FR, JA

Table 1. Training data amount of 25 languages.

get language. The encoder has 36 Transformer blocks, each
contains 512 hidden nodes, 8 attention heads, and 4096 feed-
forward nodes. The prediction network has 2 LSTM layers
with 1024 embedding dimension and 1024 hidden nodes. The
joint network is a single feedforward layer with 512 nodes
and the vocabulary size is 5K. The total number of parame-
ters is 211 million (M). We investigated several chunk sizes as
0.32s, 1s, and 30s. We also trained another larger model with
30s chunk size, which has 24 Transformer blocks, each con-
tains 1024 hidden nodes, 16 attention heads, and 4096 feed-
forward nodes. The total number of parameters for this model
is 343M. The models with 30s chunk size are not feasible in
a streaming system. We train such models as comparisons to
see the up limit of the accuracy when we keep increasing the
latency of the system. The 25 language to ZH model is based
on the 211M model with 0.32s latency. The additional num-
ber of parameters added specifically for ZH output is 27M.

3.1. Generating English Transcription from 25 Spoken
Languages

To compare the ST performance with the model in [26], we
take CoVoST 2 [34] as the benchmark and evaluate BLEU
scores for both systems. The initial purpose of our SM2 work
is to build an in-house multilingual speech model, therefore
we did not select the same language set as in CoVoST 2 and
did not include any CoVoST 2 data in training. We can
only evaluate a subset of 12 language pairs that are observed
in our training, as shown in Table 2. The BLEU scores of the
MT service which we used to generated the training data are
listed in the last column of the Table. The low-latency stream-
ing SM2 with 211M parameters and 0.32s chunk size has a
BLEU score of 28.7 on average, much better than the small
model in [26] which has 244M parameters and 30s chunk
size1. As we keep the model size but increase the chunk size,
the SM2 get better BLEU scores, 31.3 for the one with 1s
chunk size, and 32.8 with 30s chunk size. Finally, increasing
the number of parameters to 343M and the chunk size to 30s,
the SM2 reaches 33.7 BLEU score, slightly better than the
largest model in [26], which has 1550M parameters and 30s
chunk size.

Because [26] uses in-house training data, there is no
apple-to-apple comparison between these models. However,
we observe that

• State-of-the-art ST results can be achieved using weakly

1The models in [26] are offline models, but are operated in 30s chunks
during inference.

Whisper SM2 MT
model size (M) 244 1550 211 343 NA

chunk size 30s 30s 0.32s 1s 30s 30s NA
DE→EN 25.3 36.3 32.3 34.0 36.4 37.8 45.6
ZH→EN 6.8 18.0 15.9 18.0 19.8 21.6 30.5
JA→EN 17.3 26.1 20.1 21.6 23.5 25.4 28.4
RU→EN 30.9 43.3 36.8 39.8 43.3 44.8 57.4
NL→EN 28.1 41.2 36.1 38.5 42.2 43.4 48.5
ET→EN 2.4 15.0 15.3 17.9 21.3 22.3 30.7
SV→EN 29.9 42.9 33.6 37.1 36.5 33.8 56.2
SL→EN 9.2 21.6 15.3 22.4 18.1 20.4 43.9
ES→EN 33.0 40.1 32.9 34.7 36.8 37.3 45.8
FR→EN 27.3 36.4 31.5 33.0 34.9 35.9 48.0
IT→EN 24.0 30.9 31.7 33.4 35.0 36.1 44.5
PT→EN 40.6 51.6 42.4 44.7 45.6 45.8 55.0
Average 22.9 33.6 28.7 31.3 32.8 33.7 44.5

Table 2. BLEU score comparison of different models on
CoVoST 2 tasks with languages→EN observed during train-
ing. The bold numbers indicate the best BLEU score for a
specific language pair.

SM2 ASR
model size 211M 343M 211M 343M
chunk size 0.32s 1s 30s 30s 0.32s 0.32s

WER 8.81 8.18 7.55 7.27 7.72 7.36

Table 3. WERs of SM2 and ASR models on 1.8M word test
sets

supervised ST training data, which is obtained by trans-
lating ASR transcriptions to texts of the target language
with an MT system, without the need of any human la-
beled ST data.

• T-T based streaming multilingual ST models can yield
very high translation quality even with a small model
size and low latency, and without source LID informa-
tion.

We compare different SM2 variations in Table 3 using
our in-house ASR test set, which contains 1.8M words from
various tasks. We also trained two ASR models as compar-
isons, with 0.32s chunk size and different model sizes, which
can only transcribe English utterances. The 211M-parameter
and 343M-parameter ASR models have the same T-T model
structures as the SM2 variations with the same model size,
except that the chunk size may be different. For SM2, both
the 1s and 30s chunk size models are significantly better than
the 0.32s model, showing the advantage of larger encoder
lookahead. The ASR models with 0.32s chunk size outper-
form the corresponding SM2 with the same chunk size in
terms of WERs. This indicates that simply merging the tran-
scriptions of ASR and ST together to train a single model is
not optimal because the goal of ASR task is to precisely tran-
scribe every word in the spoken utterance, whereas the goal
of ST task is to convey the semantic meaning of an utterance.



# source languages 1 3 12 21 25
DE→ZH 2.2 21.0 21.8 22.5 21.3
EN→ZH 0.1 28.9 29.2 29.3 28.2
JA→ZH 4.5 11.4 20.0 20.2 20.2
RU→ZH 8.9 20.1 27.8 28.3 26.8
NL→ZH 3.5 18.4 22.6 24.5 23.9
ET→ZH 3.9 9.7 12.4 14.0 13.1
SV→ZH 5.8 19.3 22.4 23.4 23.1
SL→ZH 2.1 6.3 8.1 8.5 8.7
ES→ZH 2.0 17.3 22.3 22.8 25.0
FR→ZH 2.9 16.0 20.7 21.7 23.8
IT→ZH 2.3 16.4 21.0 22.2 24.2
PT→ZH 5.1 21.6 26.4 27.0 28.8
Average 3.6 17.2 21.2 22.0 22.3

Table 4. BLEU score comparison among Chinese-output
models trained with different numbers of source languages.
The bold numbers indicate zero-shot evaluations, i.e., the
{source-speech, target-text} pairs are not observed during
training.

3.2. Language Expansion to Chinese with Zero-Shot Ca-
pability

We evaluate the zero-shot capability when expanding the tar-
get language to ZH. We defined 5 training sets with differ-
ent numbers of source languages as shown in Table 4. The
models were trained by reusing and freezing the encoder of
the 25→EN model which has 211M parameters and 0.32s la-
tency. Then we train a new joint network and a new prediction
network for ZH, which has the same structure as the 25→EN
model except that the vocabulary size is 15K. The model in
the 1-source column was trained with only ZH speech data,
and that in the 3-source column used ZH, EN, and DE speech
data. For the 12-source column, the model was trained with
ZH, EN, DE, CS, EL, HU, NB, PL, RO, RU, JA, and KO.
The model in the 21-source column used the speech from all
languages except ES, FR, IT, and PT. All these setups have
missing {source-speech, target-text} pairs, indicated by the
bold font in Table 4. The language pairs used for training are
selected randomly. We leave the investigation on language
selection for zero-shot ST as future work. The model in the
25-source column was trained with the speech from the full
25-language set.

As the number of source languages increases, the average
BLEU scores keep improving. When the training data only
has ZH speech, the ST quality is low, with an average BLEU
score of 3.6. In contrast, with only 3 source languages, SM2

can already obtain 17.2 average BLEU score, close to the 22.3
score obtained using all 25 languages in training. When a half
set of languages are observed during training (the 12-source
column), the resulting average BLEU score is 21.2, only 1.1
away from the model trained with the full set of 25 languages.
Note that in this 12-source setup, 8 out 12 test language pairs

model size 211M 343M
chunk size 0.32s 1s 30s 30s

AP 0.69 0.76 1.0 1.0
AL 1443 1870 5766 5766

DAL 1423 1811 3458 3454

Table 5. Latency comparisons of SM2 models on Covost2
sets, where AL and DAL values are in milliseconds (ms)

are not observed during training. Going from the 12-source
column to the 21-source column and then the 25-source col-
umn, we observed that new language pairs for training only
give very limited BLEU score boosts from the zero-shot se-
tups, e.g., 22.6 to 24.5 for NL→ZH and 22.8 to 25.0 for
ES→ZH. This clearly demonstrates the zero-shot power of
our models.

3.3. Latency Measurement

To assess the inference latencies of our SM2 models, we uti-
lize three metrics: average proportion (AP), average lagging
(AL), and differentiable average lagging (DAL), as proposed
in [35]. Table 5 provides an overview of the latency results,
with all numbers representing averages across the CoVost2
sets mentioned in Table 2. It is worth noting that the models
with a chunk size of 30 seconds effectively function as offline
models, given that the average audio length in the test set is
approximately 5.7 seconds.

4. CONCLUSIONS

This paper introduces our development of the Streaming
Multilingual Speech Model (SM2), a unified model that
handles both ASR and ST tasks without necessitating ex-
plicit task specifications from users. To achieve streaming
capability, We adopted the Transformer Transducer as the
underlying model architecture and regulated the model la-
tency by adjusting the chunk size in the speech encoder.
Notably, no human-labeled ST data was employed during
training. It was purely weakly supervised ST data generated
by converting 351K hours of anonymized ASR data from
25 languages using text based machine translation service.
We designed a language expansion strategy that introduces
a minimal number of parameters to the original model. This
strategy empowers the model with true zero-shot capabil-
ity, allowing it to handle previously unseen {source-speech,
target-text} pairs by leveraging interlingua representations.
The incorporation of these representations enables effective
translation between languages without requiring prior train-
ing on specific language pairs.

For the task of generating English translations, the SM2

with 0.32s algorithmic latency obtained much better BLEU
score as the model with similar size (211M parameters vs.
244M parameters) in [26], which is not streaming. The best



SM2 got similar BLEU score as the largest model in [26],
but model size is less than 1/4 of that model. Finally, we
demonstrated the strong zero-shot capability of SM2 when
expanding to support the Chinese output. The model trained
with only half of language pairs is only 1.1 BLEU score be-
hind the model trained with the full language pairs.

Based on our experiments, we observed that directly
merging ASR and ST texts to train a single model may not
yield optimal results due to the distinct objectives of ASR
and ST. In our future endeavors, we aim to investigate more
effective training methods that can tackle this challenge and
drive further advancements in SM2.
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