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ABSTRACT
Large language models (LLMs) are becoming attractive as few-shot
reasoners to solve Natural Language (NL)-related tasks. However,
there is still much to learn about how well LLMs understand struc-
tured data, such as tables. Although tables can be used as input to
LLMs with serialization, there is a lack of comprehensive studies
that examine whether LLMs can truly comprehend such data. In
this paper, we try to understand this by designing a benchmark to
evaluate the structural understanding capabilities (SUC) of LLMs.
The benchmark we create includes seven tasks, each with its own
unique challenges, e.g., cell lookup, row retrieval, and size detec-
tion. We perform a series of evaluations on GPT-3.5 and GPT-4. We
find that performance varied depending on several input choices,
including table input format, content order, role prompting, and
partition marks. Drawing from the insights gained through the
benchmark evaluations, we propose self-augmentation for effective
structural prompting, such as critical value / range identification
using internal knowledge of LLMs. When combined with carefully
chosen input choices, these structural prompting methods lead to
promising improvements in LLM performance on a variety of tabu-
lar tasks, e.g., TabFact(↑ 2.31%), HybridQA(↑ 2.13%), SQA(↑ 2.72%),
Feverous(↑ 0.84%), and ToTTo(↑ 5.68%). We believe that our open
source1 benchmark and proposed prompting methods can serve as
a simple yet generic selection for future research.
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1 INTRODUCTION
Structured data consists of plain text blocks organized by prede-
fined structures to compress recurring information. It makes data
more manageable and facilitates data analysis and processing by
machines. Table is one of such structured data types with many
applications such as Table-based Question Answering (TQA) [8, 21],
Table-based Fact Verification (TFV) [7, 39], Table-to-Text [37] and
Column Type & Relation Classification [11, 20]. The adoption of
structured data has significantly contributed to the advancement
of information retrieval and knowledge extraction in web mining
and content analysis [15, 34].

Prompt engineering has been proven as a highly effectivemethod
for in-context learning (ICL). Recent studies, such as “chain of
thoughts” (CoT) [38] and “self-consistency” [36] or hybrid approaches
using both generation and retrieval methods [1, 42] have demon-
strated that LLMs, e.g., GPT-X [4, 28] and FlanT5 [9], can solve
complex mathematical reasoning tasks in both zero-shot and few-
shot settings. Furthermore, Chen [6] illustrates that by using CoT
with LLMs, GPT-3.5 shows impressive performance with just one-
shot demonstration on several tabular tasks. These findings have
opened new possibilities for the use of LLMs in structured data.

However, previous work has not provided comprehensive stud-
ies that examined whether LLMs can truly understand tabular data
or given a detailed discussion of the extent to which LLMs have
already achieved structural understanding capabilities. Further-
more, despite the remarkable success of LLMs in handling natu-
ral languages, their application to tabular data modality presents
unique challenges: as different tables define structure and features
in distinct ways and often lack straightforward transformation into
sequential text (table serialization). Based on our survey, we be-
lieve that the process of table serialization, along with context and
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corresponding queries, is highly flexible. That is, there is a lack
of grounded consensus or comprehensive investigation on what
constitutes a common-sense or exhaustive input design for LLMs
on tabular tasks. Previous work used various input designs in an ad-
hoc manner [6, 14, 16, 18, 20, 25, 37]. For example, TaPEx [25] uses
special tokens to indicate components like headers <HEAD> and
rows <ROW>; TABBIE [20] serialize tables by both row-wise and
column-wise; while TableGPT [16] use a template-based method to
serialize attribute-value pairs in each table record, e.g., changing
“name: Elon Musk" to “name is Elon Musk." and concatenating all
the sentences according to the order of the records. The complex
landscape of varied input design further complicates the challenges
faced by researchers and developers in this field. Therefore, in this
paper, our aim is to address the question:What input designs and
choices are the most effective in enabling LLMs to understand tables?

In this paper, our goal is to address the chaotic landscape of
input designs and determine whether LLMs can truly comprehend
tabular data. We also aim to discuss the extent to which LLMs
have already achieved in terms of their structural understanding
capabilities. To achieve this, we propose a benchmark called SUC
(structural understanding capabilities) to compare various input
designs and create specific tasks in §3 that focus on each structural
understanding capability of LLMs. To assess the effectiveness of
multiple input choices, we conduct a series of experiments using
different prompt variants. These variants include input format, for-
mat explanation, role prompting, partition mark [13], and zero-shot
/ one-shot approaches. The SUC benchmark offers a comprehensive
comparison of multiple input designs, evaluating different aspects
of structural understanding capabilities over table(s) as illustrated
in §5. We then provide pragmatic guidance on how to better uti-
lize LLM in understanding structured data in §4. Specifically, we
propose a model-agnostic method called self-augmented prompting
to directly boost the performance of LLM in downstream tabular-
based tasks. This method motivates LLMs to generate intermediate
structural knowledge by internally retrieving their own knowledge,
e.g., motivates LLMs to generate critical value / range identifica-
tion by itself. These choices diverge from previous approaches like
CoT and Zero-shot-CoT [22] by focusing on identifying effective
methods for unlocking LLMs’ capabilities to correctly comprehend
structured information. We find that when combined with care-
fully chosen input choices, these structural prompting methods
lead to promising improvements in LLM performance on various
tabular reasoning tasks, e.g., TabFact(↑ 2.31%), HybridQA(↑ 2.13%),
SQA(↑ 2.72%), Feverous(↑ 0.84%), and ToTTo(↑ 5.68%) compared to
baseline methods. See the results in §5.

Our exploration leads us to believe that 1) LLMs have basic
structural understanding capabilities but are far from perfect, even
on trivial tasks, e.g., table size detection (detect the number of
columns and rows in a table); 2) Choosing the right combination
of input designs can significantly enhance LLMs’ understanding of
structured data. Different combinations of serialization functions
and input options demonstrate noticeable performance gaps in
downstream tasks (see §5). The disparity remains even when using
GPT-4, validating the effectiveness of our benchmarking approach;
3) Self-augmented prompting is a simple model-agnostic method
for better utilizing LLMs’ internal knowledge and unraveling new
possibilities to improve their structural understanding capabilities.

In summary, we propose using markup language like HTML with
certain structural features like format explanation and partition
mark, combined with self-augmented prompting, to fully leverage
LLMs’ internal knowledge and achieve better results in tabular
reasoning tasks. Our main contributions are:

• We propose the SUC benchmark to evaluate the multiple
structural understanding capabilities of LLMs.

• Through comprehensive experiments on the benchmark, we
provide insights and guidelines on tabular input choices for
future work (see §5).

• We propose self-augmentation as a method to enhance the
performance of LLMs by leveraging internal knowledge. We
verify the effectiveness of this simple but generic method on
five tabular reasoning datasets.

2 PRELIMINARIES
2.1 Table Structure
Tabular data exhibit remarkable flexibility in diverse structures,
as illustrated in [41]. These structures include relational tables,
entity tables, matrix tables, layout tables, and more. Tables can
have horizontal or vertical orientations and span the spectrum
from flat to hierarchical. In this paper, we mainly focus on flat
relational tables but also have some discussion on hierarchical
tables, such as ToTTo [29]. In these tables, each row corresponds to
a distinct record, while columns represent specific fields, without
any hierarchical arrangement.

Tabular data also exhibit various approaches for formatting val-
ues, including text, numbers, date/time, formulas, and other relevant
information. In particular, text plays a pivotal role in tables, cap-
turing meta-information such as headers, notes, captions, and cells
within the data region. On the other hand, numbers often involve
arithmetic relationships like summation and proportion, as well as
statistical attributes such as distribution and trends. Furthermore,
tables commonly present meticulously organized numerical data,
making it easy for reference and comparison. These structured
numerical values are often documented using spreadsheet formu-
las [12]. The flexibility of tabular data poses unique challenges for
LLMs, as different tables define structure and formatting in distinct
ways. The gap between tabular data and natural languages (NL)
hinders the application of NL reasoning to facilitate table reasoning.

2.2 Table Serialization & Splitting
Table serialization refers to the process of converting data from
tables into a linear, sequential text format. This adaptation is essen-
tial for training and utilizing LLMs, especially for tasks like masked
language modeling, where understanding and predicting language
patterns is crucial. A simple serialization function is to serialize
tables row-by-row. Many works such as TaPas [18], MATE [14],
TableFormer [26], TUTA [37], and TURL [11] use this method.
TaPEx [25] uses special tokens to indicate components like headers
<HEAD> and rows <ROW>. TABBIE [20] serialize tables both by
row-wise and column-wise. While TableGPT [16] use a template-
based method to serialize attribute-value pairs in each table record.
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Furthermore, most LLMs are inefficient in dealing with long
sentences due to the quadratic complexity of self-attention [33, 35]2.
However, structured data typically contains dozens of components,
which presents a significant challenge in terms of memory and
computational efficiency. While Herzig et al. [18], Liu et al. [25] use
naive methods to truncate the input based on a maximum sequence
length, this approach may result in the loss of critical information
and disrupt the structure of the entire table. In our experiments, we
have predefined certain constraints to meet the LLM call request.
For example, (1) to avoid potential disruption caused by truncation,
we employ a random row sampling strategy when the number of
tokens in the table exceeds a certain threshold, and (2) we append
a 1-shot example based on the estimated remaining token capacity.
Several meticulously crafted sequence serialization functions have
been proposed as common practices in table serialization, including
Dou et al. [13], Herzig et al. [18], Liu et al. [25], Shao et al. [31],
Wang et al. [37], Xie et al. [39]. In this paper, we gather various
commonly used serialization methods as baselines and conduct a
fair comparison in Sec §3.

3 SUC BENCHMARK
In this section, we aim to develop a benchmark for comparing dif-
ferent input designs and investigating the structural understanding
capabilities of LLMs. Specifically, we explore the following aspects:
1)What input designs and choices are most effective in enabling LLMs
to understand tables? ; 2) To what extent do LLMs already possess
structural understanding capabilities for structured data? Addition-
ally, we analyze the intricate trade-off of multiple combinations of
input designs. Find the benchmark collection and pre-processing
details in Sec §3.3.

3.1 Structural Understanding Capabilities
We categorize the essential abilities to comprehend table structures
from a human point of view into two distinct folds, as illustrated in
Figure 1.
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Figure 1: SUC Benchmark Overview

1) Partition & Parsing. Tabular datasets are always paired with
knowledge from other sources to provide more context and solve a

2The maximum sequence length of text-Davinci-003 is constrained to 4k tokens.

specific downstream task. For example, HybridQA [8] employs pas-
sage information, TabFact [7] and FEVEROUS [3] employs human
annotation, and MultiModalQA [32] employs image information.
However, the prerequisite for tackling these downstream tasks is
the accurate partitioning of the data, which in turn requires the
ability to distinguish tables from other supplementary information
and an elementary understanding of the structural layout of tables.

Input Designs

Serialization

NL+Sep

Markup Lan.

HTML

XML

Markdown

…

Partition Mark

Role Prompting

Order 
Permutation

Format 
Explanation

Figure 2: Input Designs for SUC Evaluation

Additionally, various table storage formats, including CSV, JSON,
XML, markdown, HTML [2] and XLSX, have different levels of
information compression and present different challenges for LLMs
in understanding the table content. For example, a table stored in
CSV format is organized in rows with column values separated
by commas, while a table stored in XML format is represented as
a nested set of tags. LLMs should first understand the format or
layout of the table and then grasp its content. To our knowledge,
no previous work has discussed the impact of these various storage
formats. We aim to determine whether LLMs have the ability to
correctly parse different formatting sources and identify which
type of input design is most suitable for LLMs. It is also possible
that LLMs already have the capability to handle all types of storage
formats. The specific input designs can be found in Figure 2.

2) Search & Retrieval. In addition to the capabilities mentioned
above, the ability to accurately search and retrieve information from
specific positions within structured data is crucial for LLMs. This
capability is highly relevant to a wide range of downstream tasks,
including but not limited to Table-QA and Column Type & Relation
Classification. It empowers LLMs to effectively identify and extract
relevant information from structured data based on user queries
or requests. For instance, consider a user asking, "For the Olympic
events that took place after 2014, which event had an older flag
bearer?" In order to answer this query, the LLM needs to first locate
all the Olympic events that satisfy the time criterion, then compare
the ages of the flag bearers associated with each event, and finally
determine and return the event with the oldest flag bearer. The
process of locating the relevant information within the structured
data is achieved through careful analysis of the data’s structure and
the identification of the target cell or cells. By disentangling the
search & retrieval capabilities from the downstream tasks of LLMs,
we gain valuable insights into the inner learning process of LLMs
when it comes to tabular data.
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3.2 Task Design
We have designed several specific tasks to assess the capabilities
of LLMs in understanding tables (See concrete prompt design in
Table 1). These tasks are designed in increasing difficulty.

Table Partition. This task assesses the capability of LLMs to iden-
tify the structure of tables. The LLM is required to detect the bound-
aries of the tables within a given user input design. This input
design may include various types of supplementary information,
such as “descriptions”, “context”, “statements” and “user queries”.
Formally, given an input design, 𝐷 = 𝑑1, 𝑑2, ..., where each part 𝑑𝑖
is a “versatile” sequence containing supplementary information
such as description, context, statement, or user queries. For easy
evaluation and comparison, we constrain LLMs to output a tuple of
table boundary with the head token 𝑏ℎ and the end token 𝑏𝑒 that
includes the table content, as 𝐵 = (𝑏ℎ, 𝑏𝑒 ).

Table Size Detection. This task is essential to reveal the LLM’s
capability to correctly parse structural information. The size of a
table is an important feature that is often overlooked. In fact, the
table size feature represents direct constraints to how many rows
and columns are encoded in a table. For instance, if a table only
has three columns, the output should not consider answers outside
this scope. Formally, given a table with𝑚 rows and 𝑛 columns, a
correct answer from a LLM should be (𝑚,𝑛).

Merged Cell Detection. This task assesses LLM’s capability to
parse structural information by detecting merged cells. Merged
cells are special structures in table construction where two or more
adjacent cells are combined to create a larger cell. To test the robust-
ness of LLMs, we consider merged cells as a feature in hierarchical
spreadsheet tables. Formally, given a table with some merged cells,
the LLM is required to detect the merged cell index (𝑟𝑖 , 𝑐 𝑗 ). Note
that any index in the merged cell that matches the condition will
be considered correct.

Cell Lookup & Reverse Lookup. This task reveals the capability
to search and retrieve structural information. The LLM is required
to accurately search and retrieve the cell value from a specific posi-
tion. This task relies on the capabilities of information partitioning
and parsing. In this task, if multiple cells with the same value are
found, the LLM should retrieve their positions (𝑝𝑖 , 𝑝 𝑗 ), · · · , (𝑝𝑛𝑖 , 𝑝

𝑛
𝑗
).

Conversely, given a specific cell position (𝑝𝑖 , 𝑝 𝑗 ), the LLM should
retrieve the corresponding cell value 𝑐𝑖 .

Column & Row Retrieval. This task assesses the LLM’s capability
to search and retrieve structural information by listing cell values.
For column retrieval, the LLM is required to list the cell values 𝑐 𝑗 ,
𝑐𝑛
𝑗
of a specific column name 𝐶𝑖 from the given table. Similarly, for

row retrieval, the LLM should list the cell values of a specific row
index. In the evaluation process, we consider the prediction to be
correct if the predicted value list matches the ground truth value
list. We expect the performance of column/row retrieval tasks to be
better than that of cell lookup and reverse lookup tasks, as using
column/row indices to locate specific value lists is more common.

3.3 Data Collection and Reformatting of SUC
We collect structured data from various public datasets, e.g., Tab-
Fact [7], FEVEROUS [3], SQA [21], HybridQA [8] and ToTTo [29].

Table 1: Input design of each task in our benchmark

Task Input

Table Partition What is the first token (cell value instead of separator |) of
the given table? What is the end token (cell value instead
of separator |) of the given table? Answer questions one by
one and use | to split the answer.

Cell Lookup What is the position of the cell value cell_value? Use row
index and column index to answer

Reverse Lookup What is the cell value of row index, column index ? Only
output the cell value without other information

Column Retrieval What is the column name with the index column_idx of
the following table? Only give the column name without
any explanation

Row Retrieval What are the cell values of the row_idx row in following
table? Only list the cell values one by one using | to split
the answers

Size Detection How many rows in the table? How many columns in the
table. Answer the questions one by one and use | to split
the answer

Merged Cell De-
tection

What is the column index of the cell which span is over 1.
use | to split the answer (e.g., 3 | 4), the column index starts
from 0. If there’s no answer, return None

All the tables are from Wikipedia. We only consider the structural
portions of the original datasets, which are labeled with "table,"
"rows," or "headers," and exclude the other parts like "ID," "Answer,"
"Question," "FileName,". To identify a specific value within the struc-
tured data, we append each parsed sample with a unique question.
Most of these questions are one sentence long, with a median length
of 15 words. For example, “How many rows (columns) are in the
table?” Each question is accompanied by a set of reference answers
(“groundtruth”) sourced from the original datasets. For better evalu-
ation, most of these questions are paired with some constraints such
as "Answer the questions one by one and use "|" to split the answer.".
We evaluate these questions using GPT-3.5 (Text-Davinci-003)3 and
manually eliminate any question that the model consistently an-
swers correctly when multiple random samples are generated at a
nonzero temperature4. For the merged cell detection task, we only
sample from ToTTo dataset since this is the only source paired with
the merged cell. For each task setting, we randomly sample 1,500
tables for testing with a guaranteed table distribution.

One-shot Setting. The SUC benchmark is designed as a one-shot
in-context learning benchmark for tabular tasks. This means that
the model can access one example from the SUC and may gain
some context when generating the answers. Large Language Mod-
els (LLMs) have shown impressive capability in following few-shot
prompts to accomplish unseen tasks without any fine-tuning [23].
This emergent capability is not captured by small language models.
SUC leverages this property to better reveal the potential capabili-
ties that LLMs may lack. We also conduct experiments using the
zero-shot setting for comparison (See Table 3).

3We perform the experiments through the public playground of OpenAI GPT-3.5 in
https://beta.openai.com/playground/.
4Temperature controls the randomness of the generation process. As the temperature
approaches zero, the model becomes more deterministic and repetitive with very
limited variation. Here, we set the temperature to 0.7 when creating the question and
set the temperature to 0 when performing other experiments

https://beta.openai.com/playground/


Table Meets LLM: Can Large Language Models Understand Structured Table Data? A Benchmark and Empirical Study WSDM ’24, March 4–8, 2024, Mérida, Yucatán, Mexico.

Year Team Driver Races … Pos

1983 Swit… Antoine… 1 … 29th

… … … … … …

1989 Swit… Antoine… 2 … 7th

Intermediate Output

The table contains… Antoine Salamin's
results in… from 1983 to 1989. The most 
critical values in the table are the number of 
races. The range of races is from 1 to 4…. 
The range of podiums is from 0 to 3… The 
range of points is from 3 to 42…

1st <request>

Identify critical values and ranges of the table

Table & Other info

Title: Antoine Salamin

LLM

Final Output
In 1989, Antoine Salamin drove a Porsche 
962C for the Swiss Team Salamin, powered 
by a Porsche turbo Flat-6 engine. He 
competed in two races, achieving one 
podium and 17 points, finishing 7th overall.

2nd <request>

Generate NL description for highlighted parts

Figure 3: Illustration of self-augmented prompting. This process consists of two phases: 1) using self-augmented prompts to ask
the LLM to generate additional knowledge (intermediate output) about the table; 2) incorporating the self-augmented response
into the second prompt to request the final answer for a downstream task. As depicted in the figure, the LLM is able to identify
important values in the table, which assists in generating a more accurate answer for the downstream task.

3.4 Evaluation
We evaluate the benchmark using common input designs for ta-
ble reasoning tasks and apply the methods to different LLMs for a
deeper analysis. Specifically, we consider CSV, JSON, XML, mark-
down, HTML [2], and XLSX as different format options. Each for-
mat represents a different level of information compression and
poses different challenges for LLMs to understand the table content.
we also consider using the most common way of concatenating
a special token [39, 40] as a separator, such as "|", as the baseline.
The comparison numbers can be found in Table 2. We also explore
other input design options, such as grammar explanation, partition
mark [13], role prompting [25], and format explanation, as aug-
mentations for input designs. More details can be found in Figure 2
and Table 3. In particular, we consider using the accuracy for each
task’s evaluation. To ensure better evaluation, we have added some
constraints to the output format. For example, in the table partition
task, we include the instruction "Answer questions one by one and
use ’|’ to split the answer." Based on empirical observations, over
90% of the answers follow these specific format instructions. For the
remaining 10% of samples, we apply a semantic-parsing strategy
using regular expressions (Re) 5 to parse the answers.

4 STRUCTURAL PROMPTING
Our findings and insights over the SUC comparisons (See Sec §5)
have led us to the discovery that 1) LLMs have the basic structural
understanding capabilities but are far from perfect, even on some
trivial tasks, e.g., table size detection; 2) Correctly choosing the
combination of input designs is a potential factor in boosting LLMs
understanding over tabular data. In this section, we propose a sim-
ple and generic method, self-augmented prompting, to generate
additional constraints using LLMs’ self-knowledge. We find that

5https://docs.python.org/3/library/re.html

when combined with carefully chosen input choices, these struc-
tural prompting methods lead to promising improvements on a
variety of tabular downstream tasks (See Table 4).

Recently, CoT [38] has been discovered to empower LLMs to
perform complex reasoning over text and lead to a long line of
work [10, 22, 24, 36]. By providing the model with several exem-
plars of reasoning chains, LLMs can learn to follow the template to
solve difficult unseen tasks. Inspired by these works, we propose a
simple, generic, and effective method, self-augmented prompting, to
generate intermediate structural knowledge based on the internal
retrieving of LLMs’ self knowledge base. We design several ways
to squeeze knowledge from LLM (see Table 4). For example, we ask
LLM to generate the format specification, which intends to clarify
the input format pattern by LLM itself. These choices diverge from
previous approaches like CoT and Zero-shot-CoT [22] by focusing
on identifying effective methods for unlocking LLMs’ capabilities
to correctly comprehend structured information. Additionally, this
method is model-agnostic, that is, any standard structural data rea-
soning tasks can be used as the backbone, and can also be integrated
with other prompting-based methods like self-consistency [36].

Formally, self-augmented prompting is a simple idea that utilizes
prompting twice to leverage the capabilities of LLMs in understand-
ing structured data, as shown in Figure 3. In the first prompt, the
original task of “requesting” information is replaced with a sim-
ple demand to “Identify critical values and ranges of the last table
related to the statement”. Each demand represents an important
aspect of structural information. The purpose of this replacement
is to unlock the reasoning abilities of LLMs for complex reason-
ing over structured data. The prompted text is then fed into the
LLM model, which generates a subsequent sentence containing
specific structural information. In the second prompt, the gener-
ated subsequent sequence is appended to the task request and fed
into the LLM model to generate the final answer. Refer to Table 4
for a comparison of the experiment results using self-augmented
prompting.

https://docs.python.org/3/library/re.html
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Table 2: Micro results of the benchmark. Change order [39] refers to put external text (like questions, statement) ahead of
tables. Noted that "GPT-4" refers to the evaluation outcomes utilizing the GPT-4 model. Given the resource-intensive nature of
GPT-4 calls, we only conducting the GPT-4 inference test on a subset of 300 samples (randomly sampled) from each task set.
Each column follows the roles of graded color scale, i.e., the deeper color refers to better perf.

Format
Table Partition Cell Lookup Reverse Lookup Column Retrieval Row Retrieval Size Detection Merged Cell Detection

Acc GPT-4 Acc GPT-4 Acc GPT-4 Acc GPT-4 Acc GPT-4 Acc GPT-4 Acc GPT-4

NL + Sep 93.00% 96.78% 39.67% 72.48% 52.00% 59.12% 60.67% 66.32% 31.00% 48.67% 42.00% 73.12% 71.33% 74.98%
Markdown 92.33% 98.32% 43.33% 71.93% 51.00% 57.32% 35.33% 60.12% 42.33% 49.98% 40.67% 82.12% 78.00% 82.64%
JSON 94.00% 97.12% 42.67% 68.32% 54.33% 58.12% 54.33% 64.32% 29.00% 48.32% 42.67% 76.43% 73.33% 78.98%
XML 96.00% 97.64% 43.33% 72.28% 55.00% 60.32% 41.33% 68.28% 41.00% 50.28% 43.67% 80.21% 75.00% 80.32%
HTML 96.67% 98.32% 44.00% 73.34% 47.33% 59.45% 63.33% 69.32% 42.00% 50.19% 67.00% 83.43% 76.67% 81.28%

Table 3: Micro ablation results of the input designs over benchmark.

Input Design
Table Partition Cell Lookup Reverse Lookup Column Retrieval Row Retrieval Size Detection Merged Cell Detection

Acc Δ Acc Δ Acc Δ Acc Δ Acc Δ Acc Δ Acc Δ
Markup Lan. HTML 96.67% 0.00% 44.00% 0.00% 47.33% 0.00% 63.33% 0.00% 42.00% 0.00% 67.00% 0.00% 76.67% 0.00%
w/o format explanation 92.00% -4.67% 52.00% 8.00% 52.33% 5.00% 64.33% 1.00% 36.00% -6.00% 78.00% 11.00% 77.67% 1.00%
w/o partition mark 98.00% 1.33% 59.00% 15.00% 53.00% 5.67% 66.00% 2.67% 39.67% -2.33% 72.00% 5.00% 70.33% -6.33%
w/o role prompting 95.00% 3.00% 40.67% -11.33% 44.67% -7.67% 59.00% -5.33% 39.33% 3.33% 69.00% -9.00% 76.00% -1.67%
w/o change order 96.67% 0.00% 52.33% 8.33% 40.67% -6.67% 55.67% -7.67% 31.67% -10.33% 52.67% -14.33% 65.67% -11.00%

w/o 1-shot 63.00% -33.67% 9.33% -34.67% 17.33% -30.00% 50.00% -13.33% 30.00% -12.00% 16.67% -50.33% 38.00% -38.67%

GPT-4 w/ Lan. HTML 98.32% 1.65% 73.34% 29.34% 59.45% 12.12% 69.32% 5.99% 50.19% 8.19% 83.43% 16.43% 81.28% 4.61%

Based on the empirical observations, it is evident that struc-
tural information plays a crucial role in comprehending a table.
Researchers such as Aghajanyan et al. [2], Xie et al. [39], Yin et al.
[40] have made progress by incorporating prompts with special
tokens to encode different structural information. Building on their
work and the findings from the SUC benchmark results, we ex-
plore the concept of manual prompt engineering as an additional
technique for self-augmented prompting. Specifically, we consider
extracting structural information from the raw input and incorpo-
rating it into the input itself. This can involve using cell addresses
and clearly indicating the number of rows and columns in the
table. Such augmentation aims to provide additional knowledge
and constraints, thereby improving the LLM’s ability to reason in
tabular downstream tasks. We have observed that the LLM per-
forms poorly in the task of table size detection (refer to Section 3),
which motivates us to include structural features in the input. For
example, we append information about the table size and merged
cell positions to create a more structure-aware in-context learning
environment for downstream tasks. Our ablation study in Sec §5.2.1
shows that appending table size and merged cell position leads to
an improvement in the LLM’s performance on downstream tasks.

5 EXPERIMENTS
5.1 Experiment Settings
Models. In this study, we evaluate the performance on GPT-3.5 [28]
and GPT-4 [27]. Unless otherwise specified, we utilize text-davinci-
003 in all experiments. Specifically, we set the hyper-parameter
temperature to 0, top_p to 1, with n set to 1 when performing
the experiments; Downstream Tasks and Datasets. In addition
to evaluate LLMs’ capabilities toward understanding structured

data through our benchmark. We also conduct experiments on
five typical tabular downstream tasks. The datasets are shown as
follows, and the evaluation number can be found in Table 4.

Specifically, we use (1) SQAwhich is composed of 6,066 question
sequences (2.9 questions per sequence on average), constructed by
decomposing a subset of highly compositional WTQ questions; (2)
HybridQA which requires reasoning on heterogeneous informa-
tion rather than homogeneous information alone, which involves
62,682 questions. Each question is aligned with a Wikipedia table
and multiple free-form corpora linked with the entities in the table.
The questions are designed to aggregate both tabular information
and text information, i.e., lack of either form would render the ques-
tion unanswerable; (3) ToTTowhich is a high-quality English table-
to-text dataset with more than 100,000 examples in which a table
fromWikipedia with highlighted cells is paired with a sentence that
describes the highlighted cells. The task is like given a Wikipedia
table with row names, column names and table cells, with a subset
of cells highlighted, generate a natural language description for
the highlighted part of the table; (4) FEVEROUS which is a fact
verification dataset consisting of 87,026 verified claims. Each claim
is annotated with evidence in the form of sentences and/or cells
from tables in Wikipedia, as well as a label indicating whether this
evidence supports, refutes, or does not provide enough information
to reach a verdict; (5) TabFact which is a fact verification dataset
in which the tables were extracted from Wikipedia and sentences
were written by crowd workers.

5.2 Results
5.2.1 Benchmark Highlights. Comprehensive evaluations of dif-
ferent structural understanding tasks with various input designs
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Table 4: Downstream tasks evaluation. SA. refers to Self-augmented Prompting.

Type Choice
TabFact HybridQA SQA Feverous ToTTo

Acc Acc Acc Acc BLEU-1 BLEU-2 BLEU-3 BLEU-4

1-shot 1-shot 72.04% 46.07% 73.81% 75.56% 72.43% 44.36% 27.01% 17.24%
1-shot w/o table size 71.33% 45.52% 72.91% 74.66% 72.30% 44.23% 27.14% 17.25%
1-shot w/o partition mark 71.25% 45.48% 73.09% 75.11% 71.18% 43.17% 26.36% 16.34%
1-shot w/o format explanation 70.87% 45.39% 71.69% 75.97% 70.54% 43.59% 26.52% 16.74%
1-shot w/o role prompting 71.35% 46.05% 73.39% 75.52% 70.61% 43.10% 26.02% 16.15%

SA self format explanation 72.23% 46.12% 73.91% 76.15% 74.18% 45.25% 27.32% 18.34%
SA self critical values and ranges identification 74.35% 48.20% 76.53% 76.32% 80.83% 47.96% 30.68% 22.92%
SA self structural information description 73.42% 46.97% 75.97% 77.28% 78.93% 46.91% 28.94% 19.32%

over SUC are presented in Table 3. The results show that the sys-
tem’s overall accuracy gets highest when using the HTML markup
language with format explanations and role prompts, and without
order change, achieving a 65.43% overall accuracy on seven tasks. It
indicates that the LLM has significant potential for understanding
the structural information of tables in this specific format. However,
it is also evident that the LLM’s performance is negatively impacted
when certain features are removed, especially when the prompt
example is removed. We give some highlights associated with the
benchmark results as follows:

NL+Sep vs. Markup Lan. We compare the use of natural language
with specific separators (NL+Sep) and markup languages such as
HTML, XML, and JSON. Even “NL+Sep” is commonly used in tabu-
lar downstream tasks [6, 18, 25, 40], however, our results show that
using markup languages, specifically HTML, outperforms “NL+Sep”
with a 6.76% improvement. We assume that the training process
of the LLMs involves code tuning and that the training dataset
contains a significant amount of web data. As a result, the LLM
is more familiar with HTML and XML formats when interpreting
tables. (For more information about the GPT-3.5 training, see [28]).

Table 5: Main results of the downstream tasks ablation study

Format
TabFact HybridQA SQA Feverous ToTTo

Acc Acc Acc Acc BLEU-4

NL + Sep 70.26% 45.02% 70.41% 75.15% 12.70%
Markdown 68.40% 45.88% 66.59% 71.88% 8.57%
JSON 68.04% 42.40% 70.39% 73.84% 8.82%
XML 70.00% 47.20% 70.74% 73.14% 8.82%
HTML 71.33% 47.29% 71.31% 75.20% 12.30%

GPT-4 w/ HTML 78.40% 56.68% 75.35% 83.21% 20.12%

1-shot vs. 0-shot. A notable finding is that the system’s perfor-
mance drops significantly when it is in a zero-shot setting, with
an overall accuracy decrease of 30.38% on all tasks using HTML
format. This indicates that learning structural information is highly
dependent on in-context learning. This is particularly significant
for tasks such as size detection and merged cell detection, which
are closely related to the ability to parse structural information.

External information should appear ahead of tables. In order to
understand the impact of the order on the input design, we ob-
served that when we manually placed external information such
as questions and statements behind the table, there was an overall
6.81% decrease in performance across all tasks. One possible expla-
nation for this is that placing external information ahead of tables
could assist LLM in better generalization and gaining more context
regarding the structural information of tables.

Partition mark and format explanation may undermine Search
and Retrieval capability. Partition mark [13] is commonly used in
input designs. Inspired by the partition mark, we propose another
similar choice called "format explanation". It provides an additional
explanation of the adopted format. For example, in the case of
HTML format, we explain that "Each table cell is defined by a <td>
and a </td> tag; Each table row starts with a <tr> and ends with
a </tr> tag; th stands for table header." However, when it comes
to the task of Cell Lookup, adding partition marks and format ex-
planations actually results in a decrease in performance across all
input designs. This suggests that such additional structural infor-
mation may bias the searching and retrieval process of LLM over
the tabular structure. However, adding partition marks or format
explanations does show some benefits for specific tasks such as
merged cell detection. To provide a clearer understanding of the
impact of adding additional explanations or special tokens, we con-
ducted experiments as shown in Table 4. The results reveal that
while they may undermine the search and retrieval capability of
LLMs, they still improve overall performance in downstream tasks.

The SUC benchmark provides a comprehensive comparison us-
ing multiple input designs to evaluate the structural understanding
capabilities of tables. Based on the findings, guidelines are proposed
to address the questions mentioned in Sec §3:

• 1) LLMs have basic structural understanding capabilities, but
are far from perfect, even for some trivial tasks, e.g., table
size detection;

• 2) Choosing the right combination of input designs is a po-
tential factor in improving the performance of LLMs when
working with structured data.

5.2.2 Downstream Tasks. Table 4 gives the comparison using self-
augmented prompting with the trick of structural feature detection.
We find one notable insight that the models perform better using
self-augmented prompting than 1-shot, as seen in the "SA" rows
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where the models are given self-generated information: format
explanation, key range and values identification, and structural
information description. These rows have higher accuracy and
BLEU scores than the "1-shot" rows. Especially for generating key
range and values identification gives an overall 3.26% performance
improvement than 1-shot setting on all the tasks. Furthermore, man-
ually prompting structural features like “table size” from the input
has a slight impact on the model’s performance on downstream
tasks. The drop of table size option gives an overall 0.4% decrease,
as seen by the small difference between the “1-shot” row and the
“1-shot w/o table size” row.

Table 6: Format explanation example from FEVEROUS

Manual Prompt Self-augmented Prompt Generation

Each table cell is
defined by a <td>
and a </td> tag.
Each table row
starts with a <tr>
and ends with a
</tr> tag.
th stands for table
header.

’15 rows and 4 columns, with the first col-
umn being an index, the second column be-
ing empty, the third column being the name
of the Marshal, the fourth column being the
date of promotion, and the fifth column be-
ing the defence branch.\nThe table is defined
by HTML tags, with each table cell being de-
fined by a <td> and a </td> tag, and each ta-
ble row starting with a <tr> and ending with
a </tr> tag.\nThe table header is denoted by
the th tag.’

Based on the comparison between the "1-shot w/o format expla-
nation" row and the "SA self format explanation" row, we observe
that manually labeling the format explanation may have a nega-
tive impact on downstream tasks like FEVEROUS. This is because
the table structure in FEVEROUS is more irregular, with numer-
ous segments and subtables. These structural complexities pose
significant challenges for GPT-3.5. Additionally, manually-crafted
knowledge is more general and cannot cover detailed information
of this nature. On the other hand, self-augmented prompting can
learn patterns independently and generate more comprehensive
and helpful cues to address the questions. We provide an example
of a format explanation from FEVEROUS using two prompt designs
in Table 6.

6 RELATEDWORK
In-context Learning with LLMs. Large language models, such
as GPT-3 [4], Instruct-GPT, and Codex [5], have demonstrated
their capability as few-shot reasoners in natural language-related
tasks. The effectiveness of this capability is influenced by factors
such as the model size, the amount of data used, and the available
computing power. Recent studies [9, 10, 30] have proposed various
methods for training these large language models (LLMs). These
models have exhibited an impressive ability to perform tasks that
they haven’t been specifically fine-tuned for, which is an emergent
capability not observed in smaller language models.

Intermediate of Prompt Engineering. Recently, several in-
termediate prompt engineering methods have been proposed fol-
lowing "CoT" [38]. CoT provides a few examples with explanations
of the reasoning process. This step-by-step reasoning approach

helps LLMs generate more accurate results. However, according to
[38], "CoT only yields performance gains when used with models
of nearly 100B parameters." Smaller models tend to produce illog-
ical chains of thought, resulting in lower accuracy compared to
standard prompting. Typically, the performance boost from CoT
prompting is proportional to the model’s size. Zero-shot chain of
Thought (Zero-shot-CoT) prompting is a follow-up to CoT that in-
troduces an incredibly simple zero-shot prompt. By appending the
words "Let’s think step by step." to the end of a question, LLMs can
generate a chain of thoughts that answers the question. Extracting
answers from this chain of thought leads to more accurate results.
Another follow-up to CoT is Self-consistency [36], which gener-
ates multiple chains of thoughts and selects the majority answer
based on a voting strategy as the final answer. Self-consistency has
shown improvements in arithmetic, commonsense, and symbolic
reasoning tasks. Even when regular CoT is found to be ineffective,
self-consistency can still enhance results. In addition, Liu et al. [24]
propose the generated knowledge approach, which prompts the
LLM to generate potentially useful information about the question
before generating a response.

7 CONCLUSION
In this paper, we propose a benchmark to compare various input
designs in order to study the structural understanding capabilities
of LLMs on tables. Surprisingly, we obtain some insights of the
input designs and the comparison reveal that LLMs have the ba-
sic capabilities towards understanding structural information of
tables. We also give some guidance on how to apply our benchmark
insights on downstream tasks and propose a simple, generic but
effective method, i.e., self-augmented prompting, by generating
additional knowledge with LLMs self-knowledge. We believe this
study will be beneficial for table-based, even structured data based
research, or serve as a auxiliary tool to help better understand the
table(s) from structural perspectives.

ETHICAL CONSIDERATIONS
Structured data often includes metadata, which provides additional
information about the data and helps to provide context (e.g., col-
umn names, data types, etc.). Interpreting and utilizing metadata
is a challenge when the meaning and significance of the struc-
tured data may not be immediately apparent and must be inferred
from the metadata and other contextual clues. This capability is
highly dependent on downstream tasks, such as column type pre-
diction [19] and dimension/measure classification [17]. We believe
that understanding this challenge is an important area of research.
However, due to space limitations, we will leave this section for
further exploration. Furthermore, our method is primarily designed
for languages with limited morphology, such as English. The scala-
bility of our approach to longer texts is a topic that we will explore
in more detail.
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