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Abstract
Combining control effects with global side-effects and ex-

ternal resources can lead to code which is hard to reason

about. We introduce the concept of control-flow linearity (in

contrast to data-flow linearity) as a tool for the programmer

to reason about control-flow in the presence of control ef-

fects. Through a novel combination of an effect system with

qualified types we track the control-flow linearity of each

effect as part of the effect type of a function. We formalize

control-flow linearity and prove soundness of our linearity

analysis.

Editorial Note
This technical report is the result of an internship of Jonathan

Brachthäuser at Microsoft Research, Redmond in 2018. While the

report is published in 2023, the paper reflects the work at the time

of writing.

1 Introduction
Control effects don’t go well with global side-effects and

external resources. Suppose we have a function that encap-

sulates opening and closing a file by giving an action that

works directly on a file handle h:

fun with-file( path, action ) {

val h = fopen(path)

val x = action(h)

fclose(h)

x

}

Unfortunately, in the presence of control effects, this pro-

gram is not correct. In particular, action may throw an ex-

ception in which case it never returns normally and therefore

the file handle might not be closed. To deal with the resource

safety, many solutions have been proposed ranging from

finally statements [1, 23], automatic destructors [50], defer

statements [15], finalizers [7], all the way to linear type

systems [2, 6, 21, 51]. Most of these solutions focus on one

particular effect: exceptions.

Algebraic effects [45] and handlers [47] are a a novel tech-

nique to structured programming with user defined effects

where handlers define the semantics of an operation. Instead
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of extending a compiler with builtin effects, like exceptions,

generators, or async/await, each of those can be library de-

fined in terms of effect handlers. However, algebraic effect

handlers exacerbate our trouble with the with-file function:

before, only the throw operation of the exception effect could

cause action to not return. Now, depending on its handler

definition, any effect operation might cause it to not return!

Even worse:

You can enter a room once, yet leave it twice. –

Landin, 1965

Landin wrote this in his seminal paper [32, 33] to highlight

that functions that use first-class continuations might return

more than once. This also holds for effect handlers. In our

example, this might result in closing the file multiple times.

To the best of our knowledge, only ad-hoc solutions exist to

deal with multiple resumptions and side-effects exist, like

dynamic-wind [19] or initially handlers [40].

The problem sketched above is in fact very general and

always occurs when control operators to manipulate the

control-flow are combinedwith external resources and global

side-effects. In this paper we propose a new perspective on

this old problem. The main idea is to annotate effects and

handlers with their linearity constraints. For example, the

with-file function may get a type like:

with-file: (string, (file-handle) → e a) → e a

with (e ≤ linear)

allowing us to locally reason about the correctness of with-file:
since the polymorphic effect type e restricted to be linear,

the action won’t throw exceptions or use other effects that

result in resuming more than once. More generally:

• We introduce control-flow linearity (in contrast to data-

flow linearity, that is, linear usage of resources) as a

tool for the programmer, Section 2. It states whether a

function will never return (abort), return exactly once

(linear), at most once (affine), or multiple times (wild).
Together these form a join semi-lattice as shown in

Figure 1. We formalize control-flow linearity opera-

tionally in Section 4.

• We introduce a general framework of qualified ef-
fect types which propagates constraints through ef-

fect types (Section 3). This is a general theory and

can be seen as a first step “to make algebraic effects



TR, November, 2018, Jonathan Brachthäuser and Daan Leijen

wild

affine

linear abort

Fig. 1. The control-flow linearity lattice.

algebraic again” since we can propagate arbitrary pred-

icates (like algebraic equations) to constrain handler

implementations and usage contexts. In this paper we

instantiate it to track control-flow linearity constraints

specifically.

• The strength of effect handlers is that they define the

semantics of effect operations completely within a

single handler. We use this to locally analyze a han-

dler and statically determine whether it satisfies the

promised control-flow linearity constraints. This anal-

ysis is independent of the general framework of qual-

ified effect types and can be instantiated differently

for other constraints. In this paper we use a simple

syntactic analysis (Sections 2.4 and 4.1).

• We prove that our analysis is sound: If the type of an
expressions states that it only uses linear effects, then

the control-flow will be linear at runtime (Section 4.2).

In particular, any handler for a linear effect preserves
the control-flow linearity of any expression using its

operations. Combining the type system guarantees

with effect handlers, we can now locally reason about

our programs to ensure that the usage constraints of

external resources are satisfied.

• The type system is built using three well established

components, namelyHindley-Milner style type rules [26,

43], row-based effect types [20, 25, 34, 41], and quali-

fied types [27, 29], and thus naturally supports type in-

ference and fits well into existing implementations. We

believe this has a high “power to weight” ratio where

we can reason about control-flow linearity without

needing complex type system extensions.

2 Effect Handlers and Control-Flow
Linearity

The problems of combining control-effects with external

resources and the idea of control-flow linearity are both gen-

eral and apply to any system with advanced control effects.

For concreteness though, we give all our examples in the

Koka language, a strict language with effect inference where

every function has a corresponding effect type [39].

2.1 Control-Flow Linearity
Combining control effects like exceptions or (delimited) con-

tinuations with global side effects like IO or external re-

sources makes it difficult to reason about the correctness of

a program. Consider the following function:

fun div(body : () → ⟨out|e⟩ ()) : ⟨out|e⟩ () {

print("<div>")

body()

print("</div>")

}

In Koka, all function types have three components: the input

types, the output type, and their effect type. Here, the type

of the body parameter, () → ⟨out|e⟩ (), shows that body is

a function that takes no arguments, returns a unit value (of

type ()), and it can have any side-effects e including the out

effect for printing to the console. The full type of div shows

that it uses no other effects besides the out effect (and e).

However, even with precise effect types, reasoning about

the correctness of the higher-order function div remains

difficult since it is polymorphic in the effects e. What if the

effect row e includes exception-like effects? This can lead to

a missing closing tag "</div>". Similarly, effects for proba-

bilistic choice or backtracking search that resume more than

once would result in printing multiple closing tags.

We identify the concept of control-flow linearity to reason

about this precisely. Our notion of control-flow linearity is

formalized in Section 4, but informally we say,

A function is control-flow linear if it returns ex-
actly once

Similarly, a function is control-flow abortive if it never re-
turns, control-flow affine if it returns at most once andwild if

it may never return or return many times. We use “linearity”

for the general concept subsuming linear, abortive, affine

and wild expressions.

In languages with algebraic effects and handlers, like Koka,

the only way to alter the control-flow is through the use of

effect operations. Also, if a function only uses effect opera-

tions that are handled by linear handlers, then the function

itself will be control-flow linear. That is, if we know the ef-

fects of a function and their linearity, we can reason about its

control-flow linearity! Koka already tracks effects in the type

system, we just need to slightly change the effect system to

also statically track the control-flow linearity.

1. The main idea is to declare control-flow linearity as

part of an effect type, as in the following effect decla-

rations:

effect abort exn { throw(e: exception): a }

effect linear out { println(x : string): () }

effect wild amb { flip(): bool }

We also define the control-flow linearity of an entire

row of effects as the join of their individual effects.
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2. We use the general framework of qualified types [27–

29] to propagate control-flow linearity constraints on

effect types. For example, we can annotate div to guar-

antee that the body is well-behaved:

div : (body : () → ⟨out|e⟩ ()) → ⟨out|e⟩ ()

with e ≤ linear

This constrains all instantiations of div to satisfy the

e ≤ linear predicate. Inside div we can now reason

locally that body returns exactly once and that we print

exactly one closing tag. The framework of qualified

types is well understood and straightforward to imple-

ment as part of type inference.

3. Finally, we statically check that any particular han-

dler implementation for an effect actually satisfies the

control-flow linearity that the corresponding effect de-

clares. We use a simple syntactic check to restrict the

way in which a handler uses the captured continuation.

While this check is simple, it is independent of the rest

of our approach and can very easily be replaced by a

more involved variant in the future.

2.2 Linear Effect Handlers
The following example illustrates the powerful combination

of effect handlers and linear effect types. Suppose we have

the primitive file operations:

fun fopen( path : string ) : ⟨fileio,exn⟩ fhandle

fun fread( h : fhandle ) : ⟨fileio⟩ string

fun fclose( h : fhandle ) : ⟨fileio,exn⟩ ()

To provide a safe abstraction over these operations, using

linearity annotations, we can declare the following effect

effect linear file { read() : string }

and an effect handler that encapsulates the unsafe primitives:

fun with-file(path, action) {

val fh = fopen(path)

val result = handle(action) {

read() → resume(fread(fh))

}

fclose(fh)

result

}

The function first opens a file, executes action under a han-

dler that allows reads from that file, and finally closes the

file to then return the result of executing action. Our type

system supports full type inference, and it infers the follow-

ing type for the function with-file:

(string, () → ⟨file|e⟩ a) → ⟨fileio,exn|e⟩ a

with e ≤ linear

The e ≤ linear constraint is automatically inferred because

we define a handler for the file effect that was declared as

linear. The type checker guarantees that any action passed

to with-file only uses linear effects and thus is control-flow

linear. Our implementation of with-file is safe: by construc-

tion, action always returns exactly once with a regular value;

no exceptions or multiple returns are allowed!

The following instantiations are all rejected by the type

checker since e will instantiate to either ⟨exn,file⟩ or to
⟨amb,file⟩. Both do not satisfy the predicate since they con-

tain non-linear effects.

with-file("foo.txt") {
throw("ouch!") // rejected
read().length

}

with-file("foo.txt") {
flip() // rejected
read().length

}

The strength of effect handlers is that the full semantics of

the effect operations are defined all together in the handle

construct. That means we can locally reason inside with-file
whether we use our external fileio resources correctly. For

example, it is immediately apparent that the file handle fh

does not escape its context. Additionally, the type system

now guarantees that action is control-flow linear, which

allows us to conclude that the file is closed exactly once.

2.3 Example: Heaps and Multiple Resumptions
Another example, which was the original motivation of this

work, is to use heap allocated state and control-effects to-

gether. Let’s assume the following two effect declarations,

for now without linearity annotations:

effect amb { flip() : bool }

effect state⟨s⟩ { get() : s; set(v : s) : () }

The canonical handler implementation for ambiguity collects

all results in a list and we can use it to produce boolean

tables, where amb { flip() && flip() } returns the list

[True,False,False,False].

fun amb(action: () → ⟨amb|e⟩ a ): e list⟨a⟩ {

handle(action) {

return x → [x]

flip() → resume(True) + resume(False)

}

}

As an efficient alternative to the usual state-passing imple-

mentation of the state effect [39], we might want to use a

heap-allocated, mutable reference cell. The signature of such

a handler looks like:

fun state(init: a, f: () → ⟨state⟨a⟩|e⟩ r ): e r

Now, consider the following program that uses both the state

effect and the ambiguity effect.

amb {

state(0) {

flip()

set( get() + 1 )

get()

}

}
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According to the semantics of the handlers, the state effect

is locally handled under amb and it should not be shared

among the resumptions. Thus, the expected result is [1,1].

Unfortunately, the efficient implementation of state using a

real heap means, we can now observe the previous effects of

our earlier strand that already exited the state scope, and

the final result is [1,2] instead!

Again, annotating the effect declaration for ambiguity

with wild and changing the signature of state to

fun state(init: a, f: () → ⟨state⟨a⟩|e⟩ r ): e r

where e ≤ affine

solves this problem. Since flip has the wild amb effect, our

problematic example is statically rejected.

Note, that reordering the handlers to

state(0) {

amb { ... }

}

is neither operationally problematic, nor rejected by our type

system. The non-linear ambiguity effect is handled locally

and does not violate the linearity assumptions of our state

handler.

2.4 Checking Handler Linearity
The linearity annotations on effect declarations not only lead

to a stricter type when inferring the type of handlers, but

also require that any effect handler implementation needs

to respect the declared control-flow linearity. That is, the

declaration is a promise, and any handler needs to fulfill it.

In particular,

1. handlers may only use effects that have a linearity

lower or equal to the declared linearity of the handled

effect; and

2. handlers have to use resume (which represents the con-

tinuation after the call to the effect operation) accord-

ing to the declared linearity.

While the first property is very easy to check in a type sys-

tem, for the latter there are many approaches with varying

complexity. In this paper we use a simple syntactic check on

each operation clause in a handler – in particular:

• linear: each operation clause must resume exactly once

and in tail-call position (as in our with-file example);

• abort: each operation clause should never invoke re-

sume, i.e. not refer to resume at all;

• affine: each operation clause must either resume once

in a tail-call position or directly return a value;

• wild: no restrictions on the use of resume.

This poses a direct connection from syntactic restrictions on

the use of resume in handlers to the control-flow linearity

of the effect types. Together with the static type check, it

guarantees that the declared linearity of an effect type is

always respected by any specific handler implementation

(see our proof in Section 4.2).

firstLine :: FilePath → IOL 𝜔 ByteString

firstLine fp =

do { f ← openFile fp

; (f, Unrestricted bs) ← readLine f

; closeFile f

; resturn bs }

Fig. 2. Example program in Linear Haskell.

The syntactic check is quite simple but in our experience

already covers many practical instances. Importantly, our

system of qualified effect types to check control-flow linear-

ity is independent of the concrete check for linear resumption

usage. Developing more sophisticated implementations is

left for future research.

2.5 Linear Control-Flow vs. Linear Data-Flow
Contrast the previous with-file example with linear type

systems based on linear logic [21, 22, 51]: such systems focus

on the linear usage of specific resources (like the file handle).
Control-flow linearity by itself does not guarantee that the
file handle fh is used linearly. Instead, through the use of

effect handlers, we encapsulate the access to the file handle

inside the scope of the with-file handler. Then, in a second

step, by means of control-flow linearity we can locally reason

about the correct usage of external resources. In contrast,

linear types guarantee the linear usage of resources, but do

not express linear control-flow, per se. This is illustrated by

an example of Bernardy et al. [6] in Linear Haskell (Figure 2).

However, even though it guarantees that the file resource

f is consumed linearly, the file might still not be closed if

readLine throws an exception.

We are not proposing control-flow linearity as a replace-

ment for linear types. Instead, control-flow linearity offers a

different perspective on problems where traditionally linear

type systems would be considered as a solution. Instead of fo-

cusing on how a function uses its arguments and restricting

which function can be called, control-flow linearity focuses

on the context requirements of a function and restricts the

contexts in which the function can be called.

3 A Calculus of Qualified Effect Types
In this section, we give a formal definition of our effect

system with qualified effects. We build on a polymorphic

row-based effect system underlying the Koka language [39].

Extending the effect system with qualified types [27] only

affects the type system and thus the operational semantics

carries over unchanged. The type system and its properties

has been presented before in a similar form [39] but we

include it again here to make this article self contained –

necessarily keeping the description short.

Our effect system with qualified effects is parametric in

a join semi-lattice of annotations (A, ⩽ ) where elements

a ∈ A are called effect annotations. Without loss of generality,
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we specialize our presentation to the control-flow linearity

lattice A = { abort, linear, affine, wild } of Figure 1 with

linear < affine < wild, abort < affine

and often refer to a ∈ A as linearity annotations. The lattice
structure is only necessary to achieve a form of subtyping

relationship between different control-flow linearities. In

particular, we require it to be a join-lattice to be able to

compute the linearity of an arbitrary effect row by taking

the join of its components. Our calculus is a conservative

extension of the effect system presented by Leijen [39] in

the sense that instantiating A = { () } yields the original
calculus since all predicates are trivially satisfied.

3.1 Syntax
Figure 3a describes the syntax of expressions, types and

kinds. For the formal presentation we require that not only

the effect declarations but also the handlers are annotated

with their linearity. In practice these linearity annotations

will be inferred, but the source of these annotations and their

semantic implications are external to the type system itself.

We often omit the handler implementation h and for instance
write a linear state handler as handlestatelinear. Most of the syntax

immediately carries over from earlier presentations [39]. We

assume that all effect operations take just one argument and

use membership notation op(x) → e ∈ h to denote that h
contains a particular operation clause.

Well-formed types are guaranteed through kinds k which

we denote using a superscript, as in 𝜏k . Besides the usual

kinds for value types ∗ and type constructors → we also

have kinds for effect constants x and effect rows e. We omit

kinds when immediately apparent or not relevant.

We use meta variables l for effect labels, a for linearity

annotations, 𝜖 for effect rows, 𝜇 for effect variables and 𝛼 for

regular type variables. For the purposes of this paper effect

labels can just be single constants but in general Koka allows

type arguments too [39].

Effect types are defined as a row of effect labels l. A row is

either empty ⟨⟩, a polymorphic effect variable 𝜇, or an exten-

sion of an effect 𝜖 with a label l, written as ⟨l | 𝜖⟩. Effect labels
must start with an effect constant and are never polymorphic.

By construction, effect types are either a closed effect of the
form ⟨l1, . . ., ln⟩, or an open effect of the form ⟨l1, . . ., ln | 𝜇⟩.
Effect rows are considered equivalent up to permutation of

unequal labels as defined in Figure 3c. There exists a princi-

pal unification algorithm for such effect rows with possible

duplicate labels and enables type inference [34, 39].

Qualified Effect Types To account for linearity annota-

tions, we extend type schemes 𝜎 to include predicates on

effect rows. The predicate 𝜖 ⊑ a states that the effect row
𝜖 should have at most linearity a. Some examples of type

schemes are:

int
∀𝜇. (𝜇 ⊑ linear) ⇒ () → 𝜇 int
∀𝜇. (⟨out, exn | 𝜇⟩ ⊑ affine) ⇒ () → ⟨out | 𝜇⟩ int
That is, a pure expression of type int, a function that produces
an int potentially using linear effects 𝜇 and a function using

affine effects 𝜇 and out and exn. As another example, we can

write the type scheme of our example function with-file

from the introduction as:

∀𝜇 ⊑ linear. (string, () → ⟨file | 𝜇⟩ 𝛼) → ⟨fileio | 𝜇⟩ 𝛼
Since all effects are statically annotated with their linearity,

we can always simplify satisfiable predicates of the form

𝜖 ⊑ a to the form 𝜇 ⊑ a using the rules for linearity resolv-
ing in Figure 3d. For instance, we can resolve the predicate

⟨out, exn | 𝜇⟩ ⊑ affine to 𝜇 ⊑ affine, since we know that

lin(out) = linear and lin(exn) = abort.

3.2 Operational Semantics
The dynamic semantics of algebraic effects and handlers im-

mediately carries over unchanged from [39] but is included

in Figure 3b for easier reference and consists of just five eval-

uation rules. We use two evaluation contexts: the E context

is the usual one for a call-by-value lambda calculus. The Hl

context is used for handlers. In particular, it evaluates down

through any handlers that do not handle the effect l. This is
used to express concisely that the innermost handler handles
a particular operation.

Dot notation: Most of the definitions, lemmas and proofs

in the remainder of this paper involve arguments about the

evaluation context. For notational convenience we estab-

lish the following convention for evaluation contexts (rep-

resenting the runtime stack): We use the right-associative

operator · for context substitution where E · e � E[e] and
e · e′ � e(e′). That is, we write E1 · E2 · e · v instead of

the more common notation E1 [E2 [e(v)] ].
The first three reduction rules, (𝛿), (𝛽), and (let) are stan-

dard rules of call-by-value evaluation. The remaining two

rules evaluate handlers. Rule (return) applies the return

clause of a handler when the argument is fully evaluated.

The (handle) rule uses a Hl
context to ensure by construc-

tion that an operation opl (v) is handled by the innermost

handler for l. Evaluation continues with the expression e but
besides binding the parameter x to v, also the resume variable
is bound to the continuation: 𝜆y. handlelh · Hl · y. Apply-
ing resume results in continuing evaluation at Hl

with the

supplied argument as the result. Moreover, the continued

evaluation occurs again under the same handler h, effec-
tively implementing deep handlers – as opposed to shallow
handlers where the handler can change for each handled

operation [30, 42].

3.3 Type Rules
Figure 4 presents the type system of Koka [39] extended with

qualified effect types. A type environment Γ maps variables.
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Syntax of Expressions:
Expressions e ::= e(e) application

val x = e; e binding

handlela { h }(e) handler

v value

Values v ::= x | c | op | 𝜆x . e

Clauses h ::= return x → e
| op(x) → e; h op ̸∈ h

Syntax of Types:
Types 𝜏k ::= 𝛼k type variable

| ck ⟨𝜏k1
1
, . . ., 𝜏

kn
n ⟩ c :: (k1, . . ., kn) → k

Kinds k ::= ∗ values

| e effect rows

| x effect constants

| (k1, . . ., kn) → k type constructor

Predicates p ::= 𝜖 ⊑ a single predicate

P,Q ::= (p1, . . ., pn) predicate set

Type scheme 𝜎 ::= ∀𝛼k . 𝜎 | P ⇒ 𝜏∗

Effect Annotations a ::= linear | abort
| affine | wild

Type Constants:
(), bool :: ∗ unit, booleans

(_→ _ _) :: (∗, e, ∗) → ∗ functions

⟨⟩ :: e empty effect

⟨_ | _⟩ :: (x, e) → e effect extension

exn, div, . . . :: x effect constants

Shorthands:
Effect labels l � cx

Effect rows 𝜖 � 𝜏e

Effect row variables 𝜇 � 𝛼e

(a) Syntax of expressions, types and kinds. Control-flow linearity related

syntax is highlighted in grey .

Evaluation Contexts:

E ::= □ | E(e) | v(E) | val x = E; e
| handlel

′
a { h }(E)

Hl
::= □ | Hl (e) | v(Hl) | val x = Hl

; e
| handlel

′
a { h } (Hl) if l ≠ l′

Reduction Rules:

(𝛿) c(v) ↦−→ 𝛿 (c, v)
if 𝛿 (c, v) is defined

(𝛽) (𝜆x . e) (v) ↦−→ e[x ↦→ v]
(let) val x = v; e ↦−→ e[x ↦→ v]

(return) handlela { h }(v)
↦−→ e[x ↦→ v]

where (return x → e) ∈ h

(handle) handlela { h } · Hl · opl (v)
↦−→ e[x ↦→ v, resume ↦→ r)]

where (op(x) → e) ∈ h
and r = 𝜆y. handlela { h } · Hl · y

(b) Operational Semantics.

𝜖 � 𝜖 [eq-refl]
𝜖1 � 𝜖2

⟨l | 𝜖1⟩ � ⟨l | 𝜖2⟩
[eq-head]

𝜖1 � 𝜖2 𝜖2 � 𝜖3

𝜖1 � 𝜖3
[eq-trans]

l1 ≠ l2
⟨l1 | ⟨l2 | 𝜖⟩ ⟩ � ⟨l2 | ⟨l1 | 𝜖⟩ ⟩

[eq-comm]

(c) Row equivalence

⊩ ⟨⟩ ⊑ 𝜙
[res-empty]

⊩ 𝜖 ⊑ ⊤
[res-top]

⊩ lin(l) ⩽ 𝜙 ⊩ 𝜖 ⊑ 𝜙

⊩ ⟨l | 𝜖⟩ ⊑ 𝜙
[res-hd]

(d) Linearity resolving.

Fig. 3. Syntax, operational semantics, row equivalence and linearity resolving.

Thus, if Γ′ equals Γ, x : 𝜎 , then Γ′ (x) = 𝜎 and Γ′ (y) = Γ(y)
for any x ≠ y. The judgment form P | Γ ⊢ e : 𝜏 | 𝜖 states

that under environment Γ and given the predicates in P
the expression e has type 𝜏 with possible effects 𝜖 . Infor-

mally speaking, the type system is a Hindley/Milner-style

polymorphic type system [26, 43] extended with (i) a poly-

morphic row-based effect system [35, 39] and (ii) qualified

types [27, 29]. Interestingly, the predicates in our qualified

type system range over effect rows, not types. Even though

it is not syntax directed, we can think of Γ as being inher-

ited and P , 𝜏 and 𝜖 as synthesized components of the typing

judgment.

The first four type rules are quite standard and just extend

the rules by Jones [29] with effect rows. The rule Var derives

the type of a variable x with an arbitrary effect 𝜖 and under

arbitrary predicates P . Operations op and constants c are also
looked up using the Var-rule assuming the types of those

are part of the initial environment Γ0. The Lam rule is similar
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Standard Rules:

P | Γ ⊢ e1 : 𝜎 | 𝜖 Q | Γ, x : 𝜎 ⊢ e2 : 𝜏 | 𝜖
P, Q | Γ ⊢ val x = e1; e2 : 𝜏 | 𝜖

[Let]

P | Γ, x : 𝜏1 ⊢ e : 𝜏2 | 𝜖′

P | Γ ⊢ 𝜆x . e : 𝜏1→ 𝜖′ 𝜏2 | 𝜖
[Lam]

Γ(x) = 𝜎

P | Γ ⊢ x : 𝜎 | 𝜖
[Var]

P | Γ ⊢ e1 : 𝜏2→ 𝜖 𝜏 | 𝜖 P | Γ ⊢ e2 : 𝜏2 | 𝜖
P | Γ ⊢ e1 (e2) : 𝜏 | 𝜖

[App]

Qualified Effect Types and Polymorphism:

P, Q | Γ ⊢ e : 𝜏 | ⟨⟩ 𝛼 ̸∈ ftv(Γ) ∪ ftv(P)
P | Γ ⊢ e : ∀𝛼. Q ⇒ 𝜏 | 𝜖

[Gen]
P | Γ ⊢ e : ∀𝛼. Q ⇒ 𝜏 | 𝜖 P ⊩ Q

P | Γ ⊢ e : 𝜏 [𝛼 ↦→ 𝜏] | 𝜖
[Inst]

Effect Handling:

S(l) = (a, {op
1
, . . ., opn}) · | Γ ⊢ opi : 𝜏i → ⟨l⟩ 𝜏 ′i | ⟨⟩

P | Γ, x : 𝜏 ⊢ er : 𝜏r | 𝜖 P | Γ, resume : 𝜏 ′i → 𝜖 𝜏r , xi : 𝜏i ⊢ ei : 𝜏r | 𝜖
P ⊩ 𝜖 ⊑ a′ a′ ⩽ a P | Γ ⊢ e : 𝜏 | ⟨l | 𝜖⟩

P | Γ ⊢ handlela′ { op1 (x1) → e1; . . .; opn (xn) → en; return x → er }(e) : 𝜏r | 𝜖
[Handle]

Fig. 4. Type rules - handling an effect adds a linearity predicate on the remaining effects.

to the Var rule in that it can freely assume any effect 𝜖 for

the result since the evaluation of a lambda is a value. The

predicates P which are assumed for type checking the body

propagate up to the lambda abstraction. This rule also shows

how the effect derived for the body of a lambda 𝜖′ shifts to
the effectful function type 𝜏1→ 𝜖′ 𝜏2. Rule App derives an

effect 𝜖 requiring that its premises derive the same effect as

the function effect. Additionally, all involved predicates for

type-checking the function and the argument are required

to unify. As usual in a polymorphic Hindley/Milner style

type system, the rule Let type checks the bound expression

against a type scheme 𝜎 . The derived effects 𝜖 are required

to be the same for bound expression e1 and body e2.
Rules Inst and gen instantiate and generalize types. In-

stead of having separate introduction and elimination rules

for qualified types [27], we combine the standard rule for

instantiation with elimination and the rule for generalization

with introduction of qualified effect types. For instantiation,

rule Inst requires Q to be entailed by P . That is, P should

at least contain all linearity constraints guaranteed by Q.
Generalization requires the derived effect to be total. This

immediately corresponds to value restriction in ML [39].

The last and most interesting rule handle types effect han-

dlers.We assume that all operations have unique names, such

that given the operation names, we can uniquely determine

to which effect l they belong. We also assume that every ef-

fect declaration is annotated with a linearity a. We require a

signature environment S inwhichwe can lookup the effect sig-
nature of some effect label l, giving us the effect annotation

and the set of effect operations: S(l) = (a, { op
1
, op

2
, . . . }).

As an example, assuming the effect declaration

effect linear state⟨s⟩ { get(): s; put(v : s): () }

then S(state) = (linear, { get, put }). We use lin(l) to im-

mediately access the linearity component in the signature

environment. That is, lin(state) = linear.
The rule handle requires that all operations in the signa-

ture S(l) are part of the handler, and we reject handlers that

do not handle all operations of the effect l. By means of

S(l) = (a, {op
1
, . . ., opn}) · | Γ ⊢ opi : 𝜏i → ⟨l⟩ 𝜏 ′i | ⟨⟩

we look up the type of every operation clause opi in the envi-

ronment as 𝜏i → ⟨l⟩ 𝜏 ′i . We then type check the return clause

𝜖r and all operation clauses opi (xi) → ei. All clauses are ex-
pected to type check under the same linearity predicates P
using the same effects 𝜖 and resulting in the same return

type 𝜏r . To type check the operation clauses, we extend the

environment with the continuation resume : 𝜏 ′i → 𝜖 𝜏r and

the operation argument xi : 𝜏i. Finally, we require that the

linearity constraint 𝜖 ⊑ a′ is entailed by P and that the lin-

earity declared on the handler a′ is less than the linearity

declared on the effect signature a. Again, the type system
does not perform any checks here to assert that the handler

conforms to linearity a′. Thus, annotating the handler with

the correct linearity is external to our type and effect system.

Summarizing, a handler respects the linearity require-

ments a of the handled effects if itself is annotated with

at most a and the remaining effects in 𝜖 satisfy the handler’s

requirement 𝜖 ⊑ a′. In particular, the handler itself might

only use effects in 𝜖 to implement the operation clauses.
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As described in earlier work [36], type inference is straight-

forward based on Hindley-Milner [26, 43], and is sound and

complete with respect to the declarative type rules. Inference

extends naturally with qualified types as shown by Jones

[27].

3.4 General Properties of the Type System
It is shown in [39] using techniques from [53] that well-

typed effectful programs cannot go wrong. From the theory

of qualified types [27, 29] it follows directly that the original

proof is naturally applicable in the presence of qualified types

too.

Theorem 1. (Semantic soundness)
If P | . ⊢ e : 𝜏 | 𝜖 and P satisfiable then either e ⇑ or we
have e ↦−→∗ v where P | . ⊢ v : 𝜏 | 𝜖 .
where we use the notation e ⇑ for divergence. An impor-

tant property of our system is that effects are tracked faith-

fully [39]:

Lemma 1. (Effects are meaningful)
If P | Γ ⊢ Hl · opl (v) : 𝜏 | 𝜖 and P satisfiable, then l ∈ 𝜖 .
This is a powerful lemma as it states that effect types cannot

be discarded (except through handlers). This lemma also

implies effect types are meaningful, e.g. if a function does

not have an exn effect, it will never throw an exception.

3.5 Control-Flow Linearity Properties of the Type
System

Equipped with our type system we can establish some ter-

minology.

Definition 1. (Effect Linearity)
We say an expression e has linearity a if the following holds:
P | Γ ⊢ e : 𝜏 | 𝜖 , P is satisfiable and P ⊩ 𝜖 ⊑ a.

An expression e is effect linear if e has linearity linear.

Definition 2. (Well Typed Contexts)
We call a context E well typed for some expression e if

P | Γ ⊢ E[e] : 𝜏 | 𝜖 and P is satisfiable.

The terminology allows us to state an important property of

our type system, related to control-flow linearity:

Lemma 2. (Soundness of Linearity)
If e is well typed, then e ↦−→∗ E′ · handlela · Hl · opl (x)
implies, that for all handlel

′
a′ ∈ Hl

it follows a ⩽ a′.

Proof. We proceed by induction over the structure of Hl
. If

Hl = handlel
′
a′ · . . ., then by Handle for some effect 𝜖′ the

predicate 𝜖′ ⊑ a′ must be entailed by P . By lemma 1, l ∈ 𝜖′
and thus lin(l) ⩽ a′. Since Handle, requires a ⩽ lin(l) we
have a ⩽ a′. □

This lemma expresses a runtime guarantee: Each l-handler
that is applied during the evaluation of e respects the linearity
constraints of all l′-handlers it dynamically encloses.

We believe the effect system presented in this section

has a good “power-to-weight ratio”. The small operational

semantics of effect handlers is unchanged, and the main

ingredients of the type system, namely Hindley-Milner style

type inference, row-based effect types, and qualified types,

are all well understood and easy to implement.

4 Control-Flow Linearity, Formally
In this section, we capture our notion of control-flow lin-

earity more formally. In particular, we say an expression is
control-flow linear if it can be evaluated using a restricted
reduction relation of linear reductions ( ↦−→1 ) as defined by

the rules in Figure 5. The linear reduction rules capture the

essence of what one intuitively understands as control-flow

linearity. Later we prove that any expression that is typed as

effect linear can be reduced using linear reduction, and thus

is control-flow linear. In this paper, we formally exercise the

relationship between linear effects and control-flow linear-

ity. Extending the treatment to abortive and affine effects is

straightforward and doesn’t pose any additional challenges.

The rules of the linear reduction relation capture two impor-

tant aspects of linearity. Reducing a linear expression only

involves either context preserving reductions (Kong1), or re-

ductions of effect operations where the handler is guaranteed

to resume exactly once (Handle1).

Context preservation. The rule Kong1 can be thought of as

the “boyscout rule”: leave your context as you have found it.

Pure expressions or expressions where effects are handled

locally by handlers within e are reduced using Kong1without
modifying the context. To be able to precisely define context

preservation, we need to separate the expression e from the

context E it is evaluated in. To this end, we introduce a special
evaluation context #[E] that acts as boundary marker. We

thus write E · # · e to separate e from its context E. The
boundary marker only occurs in linear reductions and there

are no rules to introduce or eliminate it. In particular, it does

not occur in any contexts E or Hl
as defined in Figure 3b.

Effect operations resume exactly once. The second rule

Handle1 models the requirement that handlers should im-

plement effect operations by resuming exactly once. Note

that this is only a requirement for handlers outside of #[E],
modeled by the handler context Hl

#
� Hl · # · Hl

which

is a handler context that does not contain l handlers, but
contains exactly one boundarymarker. Effect operations han-

dled by handlers within e are instead reduced using Kong1

and the regular (handle) rule. To handle an effect operation,

we capture the continuation and proceed with normal evalu-

ation using the reduction relation ↦−→. However, we require

the reduction to end in a continuation call. The freshness

condition on k requires that k does not occur anywhere in
the expression that is being reduced. By choosing a fresh k
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e ↦−→ e′

E · # · e ↦−→1 E · # · e′
[Kong1]

op(x) → e ∈ h k fresh k ̸∈ E′, w
E · e[x ↦→ v, resume ↦→ k] ↦−→∗ E′ · k(w)

E · handlel { h } · Hl
#
· opl (v) ↦−→1 E′ · handlel { h } · Hl

#
· w
[Handle1]

Fig. 5. Linear Reductions.

and requiring that it does not occur in the result of the evalu-

ation step, we operationally guarantee that the continuation

can only be called exactly once.

Definition 3. (Control-Flow Linearity)
We call an expression e control-flow linear in a context

E if and only if it can be evaluated using linear reduction,

E · # · e ↦−→∗
1
E′ · # · v, or it diverges, E · # · e ⇑.

Here, ↦−→∗
1
is the reflexive, transitive closure of ↦−→1 . The

relation ↦−→1 has a few interesting properties. It guaran-

tees that the evaluation context always contains exactly one

occurrence of #, the boundary between the linear expression

and its context. Also, # can never occur in a term evaluated

by ↦−→∗ . However, the evaluation using ↦−→1 can get stuck:

The premise of Handle1 requires the expression to evaluate

to a resumption of the very same continuation k. It will get
stuck if it evaluates to either a value (by ignoring the contin-

uation) or to a resumption of another continuation k′ which
has been introduced in a previous application of Handle1

(e.g. resuming more than once). These are exactly the two

cases that lead to non-linear control-flow.

Coming up with the right operational definition of control-

flow linearity was surprisingly tricky. For example, requiring

the context E to be fixed as in E · e ↦−→∗ E · v is both very

restrictive (the context is not allowed to change at all) and

wrong: during the evaluation of e to v the context can arbi-

trarily be duplicated, discarded, reconstructed – as long as it

is equal in the end. Also, only restricting every continuation

to be resumed at most once is wrong too, as inside e arbitrary
effects are allowed (as long as they are handled locally in e).

Some further interesting properties are:

Lemma 3. (Completeness of linear reduction)
E · # · e ↦−→∗

1
E′ · # · v implies E · e ↦−→∗ E′ · v.

This lemma states that we can also use normal reduction

↦−→∗ instead of linear reduction, while resulting in the same

context E′ and value v.

Lemma 4. (Linear reduction preserves pure contexts)
We define pure contexts F [3] which only contain applications
and bindings, but no handlers as:

F ::= □ | F(e) | v(F) | val x = F; e

Now, if E · F · # · e ↦−→∗
1
E′ · e′ then:

a. E′ = E′′ · F and,

b. for any other well-typed pure context F′, we have

E · F′ · # · e ↦−→∗
1
E′′ · F′ · # · e′.

This is a powerful lemma as it captures the notion that a

control-flow linear expression cannot modify its enclosing

pure context up to its first handler. Moreover, no handler

can capture the pure context F since the lemma is stated

parametrically over any other context F′.
Our presentation of linear reduction in general, and the

Handle1 rule in particular is specialized to the setting of

algebraic effects and handlers. However, the concept is very

general and can easily be translated to other control opera-

tors like shift/reset [11, 17, 39, 48].

4.1 Syntactic Linearity
As we have seen earlier, it is transparent to our type system

how handlers are annotated with their linearity. All anno-

tations could be provided by the user without any further

automated checks. While this is very flexible, to state our

main theorem precisely we require handlers to only be an-

notated as linear if they are syntactically linear. Syntactic
linearity was defined informally in Section 2.4, but now we

can define it formally as follows.

Definition 4. (Syntactic Linearity)
We call a handler syntactically linear if all operations have

the shape (op(x) → resume(e)) ∈ h with resume ̸∈ fv(e).
Syntactically abortive and affine handlers can be defined

analogously.

4.2 Effect Linearity Implies Control-Flow Linearity
We are now ready to state our main theorem. Under the

requirement that only syntactically linear handlers are an-

notated with linear:

Theorem 2. (Effect linearity is sound)
For any expression e and a corresponding well typed con-

text E, if P | Γ ⊢ E · e : 𝜏 | 𝜖 and P ⊩ 𝜖 ⊑ linear then e
is control-flow linear in E (Definition 3)

Proof. (Of Theorem 2). For any expression e and a corre-

sponding well typed context E, where P | Γ ⊢ E · e : 𝜏 | 𝜖
and P ⊩ 𝜖 ⊑ linear we need to show that e is control-flow
linear under E (Definition 3). By soundness of our type sys-

tem (Theorem 1) we have that either E · e ↦−→∗ v or it

diverges E · e ⇑. We can always choose a point in the re-

duction sequence such that

E · e ↦−→∗ E′ · w︸                   ︷︷                   ︸
should reduce linearly

↦−→∗ v

or where it diverges before or after evaluating a subexpres-

sion to w. Of course there usually are many intermediate
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Extended Syntax:

Kinds k ::= . . .

| a control-flow linearity

Predicates p ::= . . . | 𝜓 ⩽ a

Extended Shorthands:

Linearity variable 𝜑 � 𝛼a

Linearity type 𝜓 � a | 𝜑
Short hand ⟨l | 𝜖⟩ � ⟨𝜑 l | 𝜖⟩ for some fresh 𝜑

Extended Type Constants:

Type constants . . .

a , . . . :: a lin. annotation constants

⟨_ _ | _⟩ :: (a, x, e) → e annotated effect extension

Modified linearity resolving:

⊩ 𝜓 ⩽ a ⊩ 𝜖 ⊑ a

⊩ ⟨𝜓 𝜏 | 𝜖⟩ ⊑ a
[lin-hd]

Updated linearity polymorphic handle rule:
S(l) = {op

1
, . . ., opn} ·| Γ ⊢ opi : 𝜏i → ⟨_ l⟩ 𝜏 ′i | ⟨⟩

P | Γ, x : 𝜏 ⊢ er : 𝜏r | 𝜖 P | Γ, resume : 𝜏 ′i → 𝜖 𝜏r , xi : 𝜏i ⊢ ei : 𝜏r | 𝜖
P ⊩ 𝜖 ⊑ a P | Γ ⊢ e : 𝜏 | ⟨ a l | 𝜖⟩

P | Γ ⊢ handlela{ op1 (x1) → e1; . . .; opn (xn) → en; return x → er }(e) : 𝜏r | 𝜖
[Handle]

Fig. 6. Extension to support linearity polymorphism.

points where the reduction results in a value but we can

show there is a particular one that is the result of reduc-

ing e linearly, i.e. E · # · e ↦−→∗
1
E′ · # · w (or where it

diverges), which proves control-flow linearity of e under E.
We prove this using induction over the reduction steps

considering the possible positions of the boundary marker

#. In particular, for each step, or sequence of steps, in the

reduction sequence E · e ↦−→∗ E′ · e′, we show that we

can also reduce linearly as

E1 · # · E2 · e ↦−→1 E′
1
· # · E′

2
· e′

where E = E1 · E2 and E′ = E′
1
· E′

2
. We are done when

reducing to a value as E · # · v.

case application If the initial reduction step is application,

we have:

E · (𝜆x . e) v ↦−→ E · e[x ↦→ v] (1)

There are two cases for the boundary marker. We are done,

if E · (𝜆x . e) · # · v : the initial expression is evaluated

linearly and we pass it on as an argument. Otherwise, we

have E = E1 · E2 and we can use congruence to show:

E1 · # · E2 · (𝜆x . e) v
↦−→1 { Kong1, (1) }
E1 · # · E2 · e[x ↦→ v]

Note, that since the original reduction (1) also used con-

gruence, thus it is sound to replace this reduction step with

linear congruence. The cases for 𝛿 , let, and return are similar.

case handler With an initial reduction step for the Handle

rule, we have

E · handlela{h} · Hl · op(v)
↦−→ (2)
E · e[x ↦→ v, resume ↦→ r]

where op(x) → e ∈ h and r = 𝜆y. handlela{h} · Hl · y.
Again, we consider two cases for the position of the bound-

ary marker. If it occurs outside the handle context, with

E = E1 · E2, we can apply congruence directly as before:

E1 · # · E2 · handlela{h} · Hl · op(v)
↦−→1 { kong1, (2) }
e[x ↦→ v, resume ↦→ r]

Otherwise, the boundarymarkermust be part of the captured

handler context itself, as in:

E · handlela · Hl
1
· # · Hl

2
· opl (v)

Proving this case is more involved. First, Lemma 1 gives us

that l ∈ 𝜖 . By premise P ⊩ 𝜖 ⊑ linear and linearity resolv-
ing we have lin(l) ⩽ linear. Due to the type rule Handle

we also know a ⩽ lin(l) and thus a ⩽ linear. Hence, the
handler must itself be linear and fulfill the syntactic linearity

requirements, which gives us:

op(x) → resume(e) ∈ h, resume ̸∈ fv(e) (3)
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With Hl = Hl
1
· Hl

2
we would like to apply the Handle1

rule. We can first derive:

E · handlela{h} · Hl
1
· # · Hl

2
· op(v)

↦−→ { (2), (3) }
E · (resume(e)) [x ↦→ v, resume ↦→ r]

= { resume ̸∈ fv(e) }
E · r · e[x ↦→ v]

From the Handle type rule, we know resume(e) is linear, and
thus by the App rule e is linear too. Using this, we can invoke

the induction hypothesis to show:

E · r · # · e[x ↦→ v]
↦−→∗

1
{ induction }

E′′ · # · w
= { Lemma 4 (a) }

E′ · r · # · w
Applying Lemma 4 (b), we can now conclude we can do the

same reduction by using an abstract pure context k instead

of using the concrete r context, and derive

E · k · # · e[x ↦→ v] ↦−→∗
1
E′ · k · # · w

Using completeness of linear reduction (Lemma 3) we can

derive our needed premise:

E · k · e[x ↦→ v] ↦−→∗ E′ · k · w
Together with (3), this fulfills all needed premises to apply

the Handle1 rule, and we finally derive

E · handlela{h} · Hl
1
· # · Hl

2
· op(v)

↦−→1

E · handlela{h} · Hl
1
· # · Hl

2
· w

□

This concludes our proof of soundness of effect linearity.

While it appears involved, it is a good example of how to

reason about control-flow linearity of an expression. In par-

ticular, it shows how the boundarymarker # is used to delimit

the linear expression from its context and how Lemma 4 can

be used to move pure contexts in and out of our linearity

reasoning.

5 Type System Extensions
The qualified effect system presented in the Section 3 only

requires simple extensions to an already existing type and

effect system. Yet, it already provides powerful guarantees

about control-flow linearity. In this section, we continue to

explore the design space of a qualified effect system.

5.1 Control-Flow Linearity Polymorphism
Sometimes, fixing the linearity of an effect up front on decla-

ration of the effect is too restrictive. For instance, we might

want to type check programs like:

handleamb
linear · handle

state
linear · flip()

In the previous system this is not possible since the effect

declaration of amb fixes its linearity to be wild. However,

a handler implementation might choose to implement the

amb effect linearly to be able to cooperate with state.
In this section, we show a generalization of linearity pred-

icates on effect rows by introducing linearity polymorphism.

Instead of annotating effect declarations with the required

linearity, effect operations are polymorphic in the linearity.

The actual linearity then is determined by particular effect

handler implementations – while potentially being subject to

predicates and linearity constraints. This allows us to assign

types to programs like the above example.

Figure 6 extends the syntax of kinds and predicates to

account for linearity variables 𝜑 . Since the linearity is no

longer declared as part of an effect, we track it individually

for each effect label in an effect row: effect extension ⟨_ | _⟩
is replaced by annotated effect extension ⟨_ _ | _⟩ and we use
the shorthand ⟨l | 𝜖⟩ to mean ⟨𝜑 l | 𝜖⟩ for some fresh linearity

variable 𝜑 . Effect operations opi are now assumed to have

the type scheme:

opi : ∀𝜑 𝜇. 𝜏→ ⟨𝜑 l | 𝜇⟩ 𝜏 ′

As before, they are polymorphic in the effect row 𝜇. However,

they are also polymorphic in the linearity 𝜑 of effect type l.
In addition to predicates on effect rows, we now also in-

clude predicates on linearity types 𝜓 . Take the following

example predicate set:

{ ⟨𝜑1 state, linear file | 𝜇⟩ ⊑ affine }

Using the modified linearity resolving from Figure 6 we can

simplify the predicates to:

{ 𝜑1 ⩽ affine, linear ⩽ affine, 𝜇 ⊑ linear }

Also discharging the predicate linear ⩽ affine on linearity

constants, we finally obtain

{ 𝜑1 ⩽ affine, 𝜇 ⊑ linear }

Figure 6 also updates the Handle type rule accordingly. In-

stead of looking up the linearity using the signature environ-

ment, the body e is now immediately type checked against

the effect row ⟨a l | 𝜖⟩. In consequence all linearity annota-

tions of unhandled uses of effect l in e are required to unify

with the linearity annotation a on the handler.

6 Discussion
While algebraic effects and effect handlers seem to compli-

cate reasoning about control flow at first sight, we embrace

the concepts and use them to solve the problem. In particular,

effect systems with support for effect handlers are centered

around two important concepts:

1. Effect types on a function inform the caller about the

possible side effects the function might have on the

world. In particular, if a certain effect is absent in the

effect type, the caller can rest assured that the function

will not use that effect.
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2. Effect handlers allow to factor code with control effects

into two separate components. Code that uses effect

operations, and handler definitions that specify the

semantics of the effect operations. In consequence,

reasoning about the correctness of the implementation

of effect operations can often be localized to the effect

handler.

We extend the effect systemwith qualified effect types and use
predicates to collect further information about effect types.

This effectively groups effects into separate effect classes. In

particular:

• Instead of reasoning about the absence of a single

effect, we can now reason about the absence of a whole
class of effects. Importantly, this extends to the case of

effect polymorphic expressions.

• At the same time, handler definitions can use predi-

cates to restrict the handled function to only use a cer-

tain class of effects. This restriction is essential when

reasoning about the handler implementation locally

in order to verify whether the handler itself satisfies

some predicate.

The choice of predicates and the particular classes is arbitrary.

In this paper, we focused on grouping effects according to

their linearity. We reduced the problem of verifying that an

expression fulfills a certain property to two smaller problems:

does the expression only use effects of a certain class? Does

every handler for effects in that class maintain the desired

property?

7 Related Work
Algebraic effects [45] and their extension with handlers [46,

47] can express many control-flow mechanisms in program-

ming languages without needing to extend the compiler or

language. Examples are iterators, async-await, concurrency,

exceptions, etc.[12, 25, 30, 38, 54]. Recently, there are vari-

ous implementations of effect handlers, either embedded in

languages like Haskell [30, 54], Java [9], Scala [8], or C [37],

or built into a language, like Eff [4], Links [25], Frank [42],

Koka [39], and Multi-core OCaml [12, 52].

Multi-core OCaml [13, 14] implements a restricted form

of algebraic effects and handlers where every continuation

can only be resumed at most once; i.e. all effects are affine.

This is partially done for efficiency, but also because ML has

global state, it is generally unsafe to usemultiple resumptions

anyhow. This is also observed in other implementations

of algebraic effects and handlers embedded in imperative

host systems, like the Effekt library for Java and Scala [8, 9],

where the library must be written carefully to not itself use

mutation where multiple resumptions might interact.

Implementing monadic regions with freer monads, Kise-

lyov and Ishii [31] remark that all possible effects r of a

Eff r computation “need to be checked whether the effect

is known to be benign”. The present paper can be seen as an

attempt of formalizing the notion of “being benign” as being

control-flow linear and tracking this well-behavedness in

the type system.

The Scheme language always supported delimited con-

tinuations and also has struggled with initialization- and

finalization for continuations that exited early or resumed

more than once. The unwind-protect in Scheme is like a

finally clause, while dynamic-wind is like initially /

finally with a pre- and postlude [10, 16, 19, 44]. Sitaram

[49] describes how the standard dynamic-wind is not good
enough:

While this may seem like a natural extension of

the first-order unwind-protect to a higher-order

control scenario, it does not tackle the pragmatic

need that unwind-protect addresses, namely, the

need to ensure that a kind of ‘clean-up’ happens

only for those jumps that significantly exit the
block, and not for those that are aminor excur-
sion. The crux is identifying which of these two

categories a jump falls into.

Interestingly, this is exactly what is addressed by our notion

of control-flow linearity where “significant exit”s are affine

(or abort), while “minor excursions” are linear operations.

Hieb et al. [24] proposes control-filters which are invoked

when they are captured as part of a continuation. They

are more expressive than dynamic-wind in that they can

also modify or replace the captured continuation. However,

like dynamic-wind they are a dynamic solution without any

static guarantees about control-flow linearity.

Many modern languages support a fixed set of control-

flow operations which are usually linear, with the exception

of exceptions. Just for the single exception effect, most lan-

guages provide a range of special constructs to guarantee re-

source cleanup on exceptions, like finally statements [1, 23],

automatic destructors [50], defer statements [15], and final-

izers [7]. We believe that these constructs can be generalized

to apply for arbitrary affine effects [40] together with control-

flow linearity checking.

Linear type systems [2, 6, 21, 51] can be used to check

linear resource usage. As discussed in Section 2.5, such sys-

tems provide different guarantees as offered by control-flow

linearity. Linear type systems typically focus on how often a

function might use its argument, while control-flow linearity

centers around how often a function might return. These

two concepts are not mutually exclusive.

Previous work used linear types on continuations to cap-

ture CPS-translations and control effects more precisely [5,

18]. Filinski [18] introduces the notion of linear control, refer-
ring to “the very skeleton around which non-linear features are
built”. This is a tool for language implementors: restricting

the expressiveness of the target language, linear types on

continuations allow better reasoning about the translation

itself and give back some precision that is otherwise lost by
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the CPS-translation. In contrast, qualified effect types are

designed as a tool for programmers. Similarly, our notion

of control-flow linearity is not based on linear types, but

on the operational resumption behavior. Reasoning about

control-flow linearity helps the programmer to reason about

resource safety. Still, we believe that linear types on continua-

tions could also bear fruit in the source language. With linear

types we could replace our syntactic check of handler linear-

ity by a linear type check: for a handler that returns results of

type 𝜏r , we could type the operation clause opi (x : 𝛼 i) : 𝜏i as
opi : (𝜏i → 𝜏r )⊸ 𝛼 i → 𝜏r . That is, a linear handler imple-

ments its operations as linear in the resume continuation and

consumes it exactly once. While we believe this approach

is well worth exploration, it is unclear how well that would

integrate with effect polymorphism and type inference. In

contrast, qualified effect types integrate very well with the

Hindley-Milner style type and effect system of Koka.

8 Conclusion
We described a new perspective on an old problem using

the concept of control-flow linearity. By encapsulating ac-

cess to external resources in effect handlers we can now

locally reason about the safe usage of an external protocol.

We introduced qualified effect types to check control-flow

linearity. Qualified effect types are a lightweight addition to

languages with row-polymorphic effect types and ML style

inference, yet offer powerful guarantees. Going forward, we

like to investigate further extensions with effects and han-

dlers that are polymorphic in their linearity to enable more

usage scenarios.
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