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ABSTRACT

This paper presents a novel streaming automatic speech recogni-
tion (ASR) framework for multi-talker overlapping speech captured
by a distant microphone array with an arbitrary geometry. Our
framework, named t-SOT-VA, capitalizes on independently devel-
oped two recent technologies; array-geometry-agnostic continuous
speech separation, or VarArray, and streaming multi-talker ASR
based on token-level serialized output training (t-SOT). To combine
the best of both technologies, we newly design a t-SOT-based ASR
model that generates a serialized multi-talker transcription based
on two separated speech signals from VarArray. We also propose
a pre-training scheme for such an ASR model where we simulate
VarArray’s output signals based on monaural single-talker ASR
training data. Conversation transcription experiments using the
AMI meeting corpus show that the system based on the proposed
framework significantly outperforms conventional ones. Our system
achieves the state-of-the-art word error rates of 13.7% and 15.5%
for the AMI development and evaluation sets, respectively, in the
multiple-distant-microphone setting while retaining the streaming
inference capability.

Index Terms— Multi-talker automatic speech recognition, con-
versation transcription, microphone array, streaming inference

1. INTRODUCTION

Distant conversational speech recognition (DCSR), a task to tran-
scribe multi-talker conversations captured by a distant microphone
or a microphone array, has long been studied as one of the most
challenging problems for automatic speech recognition (ASR) [1-5].
Besides the acoustic distortion resulting from the long speaker-to-
microphone distance, speech overlaps significantly degrade the ASR
accuracy [6, 7] while they often happen in natural conversations and
are not negligible [8]. The linguistic characteristics are also complex
due to frequent turn-takings. Given these difficulties, most studies on
DCSR have been conducted based on strong prerequisites such as
the availability of utterance-level ground-truth segmentations (e.g.,
[9, 10]) or offline inference (e.g., [11-13]). To advance the DCSR,
innovations in both front-end signal processing and back-end ASR,
as well as their efficient integration, would be needed.

Continuous speech separation (CSS) is a front-end-based ap-
proach to DCSR with streaming inference [6, 14]. Unlike traditional
speech separation, CSS converts a long-form multi-talker speech sig-
nal containing overlapping speech into multiple overlap-free speech
signals with a fixed latency by using a sliding window. Each of
the separated signals can then be passed to a conventional ASR sys-
tem. VarArray, a recently proposed array-geometry-agnostic multi-
channel CSS model, showed impressive effectiveness in dealing with
the speech overlaps in real meetings [15]. VarArray can be applied
to arbitrary microphone array geometries without retraining and thus
enjoys a low adoption barrier. However, the simple front-end and

back-end concatenation leaves the back-end ASR system suscepti-
ble to the artifacts and errors caused by the CSS front-end.

On the other hand, a great deal of effort has been made to ex-
tend the back-end ASR models to directly cope with the overlap-
ping speech. One approach is using a neural network with multiple
output branches, where each output branch generates a transcrip-
tion for one speaker (e.g., [16-22]). Another approach is serialized
output training (SOT) [23], where an ASR model has only a single
output branch that generates multi-talker transcriptions one after an-
other with a special separator symbol. Recently, a variant of SOT,
named token-level SOT (t-SOT), was proposed for streaming infer-
ence, which achieved the state-of-the-art (SOTA) accuracies for sev-
eral multi-talker ASR tasks [24]. In the t-SOT framework, the ASR
model generates recognition tokens (e.g. words or subwords) spo-
ken by multiple overlapping speakers in chronological order with a
special separator token. These methods can produce highly accurate
transcriptions by modeling the multi-talker multi-turn speech signals
effectively in terms of both the acoustic and linguistic aspects [25].
However, most studies were conducted with monaural audio, and
the existing multi-channel-based studies employed modules that are
only applicable for offline inference [19, 26,27]. Also, less consid-
erate multi-channel extensions of the ASR models could suffer from
the high data transmission cost from the microphone array device to
the ASR server [28].

In this work, we present a novel streamable DCSR framework
which can leverage arbitrary microphone arrays with a limited data
transmission cost. Our framework is designed to achieve the best
combination of VarArray and t-SOT and thus named t-SOT-VA (t-
SOT with VarArray). To this end, we newly design a t-SOT-based
ASR model that takes in two separated speech signals from VarAr-
ray. To help this ASR model correct the errors made by the front-
end, we also propose a pre-training scheme for such ASR models
based on simulated erroneous separated signals, where these signals
can be simulated by using monaural single-talker ASR training data.
The VarArray front-end processing can be executed on the edge de-
vice, which allows the device to send only two audio streams to the
server, possibly with lossy compression. These improvements en-
able highly accurate streaming DCSR with arbitrary microphone ar-
rays. We conduct a comprehensive evaluation of the proposed frame-
work by using the AMI meeting corpus [2]. Our system based on the
proposed framework significantly outperforms various conventional
DCSR systems, achieving the SOTA word error rates (WERs) for
the AMI test sets while retaining the streaming inference capability.

2. RELATED WORKS

2.1. Array-geometry-agnostic CSS with VarArray

VarArray is a recently proposed neural network-based CSS front-
end that converts long-form continuous audio input from a micro-
phone array into K streams of overlap-free audio signals, where K
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Fig. 1. Proposed t-SOT-VA framework.

is usually set to two [15]. VarArray can cope with the input from
an arbitrary microphone array without retraining the model param-
eters. This “array-geometry-agnostic” property is enabled by in-
terleaving temporal-modeling layers and geometry-agnostic cross-
channel layers. The model takes a multi-channel short-time Fourier
transform as an input to output the time-frequency masks for K
speech sources and two noise sources, corresponding to stationary
and transient noise sources. The estimated masks are used to form
minimum variance distortion-less response (MVDR) beamformers
to produce K overlap-free signals. Streaming processing is realized
based on a sliding window, where T sec of K overlap-free signals
are generated for every T° sec by using a T -sec look-ahead. In
our experiment, both T and T were set to 0.4, thereby causing
the total algorithmic latency to be 0.8 sec. As a pre-processing step,
we apply real-time dereverberation based on the weighted prediction
error method [29]. We refer the readers to [15] for more details.

2.2. Streaming multi-talker ASR based on t-SOT

The t-SOT method was proposed to enable multi-talker overlapping
speech recognition with streaming processing [24]. With t-SOT, only
up to M speakers can be active simultaneously. The following de-
scription assumes M = 2 for simplicity. With t-SOT, the transcrip-
tions for multiple speakers are serialized into a single sequence of
recognition tokens (e.g., words or subwords) by sorting them in a
chronological order. A special token (cc), which indicates a change
of ‘virtual’ output channels, is inserted between two adjacent words
spoken by different speakers (such examples can be found in the
middle of Fig. 1). A streaming end-to-end ASR model [30] is trained
based on pairs of such serialized transcriptions and the correspond-
ing audio samples. During inference, an output sequence including
(cc) is generated by the ASR model in a streaming fashion, which is
then ‘deserialized’ to generate separate transcriptions by switching
between the two virtual output channels at each encounter with the
(cc) token (see the top of Fig. 1). The t-SOT model outperformed
prior multi-talker ASR models even with streaming processing. See
[24] for more details.

3. T-SOT-VA: A NEW DCSR FRAMEWORK

3.1. Framework design: VarArray x t-SOT

Fig. 1 shows the overview of the proposed framework. The input
multi-channel audio signals are first fed into the VarArray front-end,
which generates two audio streams in a streaming fashion. These
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Fig. 2. Proposed two-channel transformer transducer architecture.

audio streams are then provided to the two-channel-input streaming
end-to-end ASR model to generate the serialized transcription based
on the t-SOT approach. Finally, it is deserialized to produce multi-
talker transcriptions.

The proposed combination of VarArray and t-SOT ASR has
multiple advantages. Firstly, thanks to the array-geometry-agnostic
property of VarArray, the system is applicable to various microphone
arrays without retraining. Secondly, by executing the VarArray pro-
cessing on the microphone array device, we can limit the device-
to-ASR-server data transmission needs to only two audio signals,
which provides a large practical benefit. Thirdly, training our ASR
model is much simpler than other multi-channel multi-talker ASR
models as the latter ones require simulating multi-channel training
data with realistic phase information [19,26,27] while our model
does not. Finally, our ASR model can be easily fine-tuned by us-
ing the VarArray outputs for real multi-channel recordings and the
corresponding time-annotated reference transcriptions. This is not
the case with conventional systems that apply a single-talker ASR
model to each separated signal. This is because, in order to fine-tune
the single-talker model based on the separated signals, the reference
transcriptions must be generated so that they match the separated
signals, which can be tricky because the front-end may even split
one utterance into different streams.

3.2. Two-channel transformer transducer

Fig. 2 shows the proposed architecture of the two-channel end-to-
end ASR model. Our model is a modified version of the transformer
transducer (TT) [31] and is obtained by splitting the transformer en-
coder to take in two audio signals. First, the audio input of each
channel is converted to the log mel-filterbank, followed by two con-
volution layers. The output from the last convolution layer is then
fed into a stack of transformer layers with cross-channel transforma-
tion. Let ;. denote the output of the [-th transformer layer in the
c-th channel, where ¢ € {0,1}. The cross-channel transformation
output, Z; ., is calculated in the following two different ways:

Scaling: Ble = Tre + 81 Ty (1-c); OF (L

Projection: &1, = x1,c + ¢(Wi - @1, (1—¢) + b1), ?2)

where s;, W, and b; are a learnable scalar, a weight matrix, and a
bias vector, respectively, for the [-th layer while ¢() denotes a rec-
tified linear unit activation function. The outputs of the N-th trans-
former layer are summed across the channels, which is further pro-
cessed by additional (L — N) layers of transformer, with L being
the total number of the transformer encoders. On top of the encoder,
arecurrent neural network transducer (RNN-T)-based decoder is ap-
plied to generate the serialized transcription described earlier.



Note that the parameters for the two-branched encoders, i.e., the
parameters of the convolution layers, the first IV transformer layers,
and the cross-channel transformations, are shared among the two
channels. Therefore, the parameter count of the two-channel TT is
almost the same as that of the conventional single-channel TT, where
the difference comes only from the cross-channel transformations.

3.3. Three-stage training

Although VarArray is supposed to produce clean overlap-free sig-
nals, the actual outputs contain different kinds of processing errors
and artifacts. In particular, two types of errors, called leakage and
utterance split, are unique to CSS and VarArray. The leakage refers
to generating the same speech content from both output channels.
The utterance split refers to splitting one utterance into two or more
pieces and generating them from different output channels. While
these errors have a detrimental effect on existing systems [15], we
can have the two-channel TT learn to handle such erroneous input.
For this purpose, we propose a three-stage training scheme as fol-
lows, which considers the fact that we have a limited amount of real
multi-channel training data while monaural single-talker ASR train-
ing data are available in large quantities. Below, let Sy denote the
large-scale single-talker ASR training set.

In the first stage, a conventional (i.e. single-channel) t-SOT
multi-talker TT is trained by using a large-scale monaural multi-
talker training set, S1, which is derived from Sy by simulation. By
following [25], each multi-talker training sample of S; can be gen-
erated by mixing randomly chosen two single-talker audio samples
from Sy with a random delay. During the model training, the sam-
ples are randomly picked from Sp and S; at a 50:50 ratio.

In the second stage, a two-channel TT is initialized by copy-
ing the parameters of the t-SOT TT trained in the first stage. The
parameters of the cross-channel transformation are randomly ini-
tialized. The two-channel TT is then trained by using a large-scale
two-channel training dataset, S2, which is obtained from Sy by the
following simulation method. (i) Randomly sample one utterance
uy from Sp, and put it in the c-th channel with ¢ being randomly
drawn from {0,1}. (ii) With a 50% chance, randomly sample an-
other utterance u2 from Sp, and put it in the (1 — ¢)-th channel after
prepending a random delay of d ~ (0, len(u,)), where U is the
uniform distribution. (iii) Randomly split the generated two-channel
audio into p-sec chunks, where p ~ U(5,50), and swap the sig-
nals of the even-numbered chunks. This simulates the utterance split
phenomenon. (iv) For each channel, randomly chop the audio into
g-sec chunks, where ¢ ~ U(1,5). Then, for each channel of the
even-numbered chunks, mix the audio signal of the other channel
after scaling the volume by v ~ U£(0,0.2). This step simulates the
leakage phenomenon.

In the third stage, the two-channel TT is further fine-tuned by
using real multi-channel data. VarArray is first applied to the multi-
channel training samples to generate two separated audio signals.
The two-channel TT from the second stage is then fine-tuned by us-
ing the two separated-signals and the corresponding transcription.
During the fine-tuning, the VarArray parameters are frozen.

4. EXPERIMENTS

4.1. Data and metric

We used the AMI meeting corpus [2] for the fine-tuning and eval-
uation of the proposed system. The corpus contains approximately
100 hours of meeting recordings, each containing three to five partic-
ipants. The audio was recorded with an 8-ch microphone array. We
adopted the text formatting and data split of the Kaldi toolkit [32].

There are training, development and evaluation sets, each of which
contains 80.2 hr, 9.7 hr, and 9.1 hr of recordings. The training set
was used for the ASR model fine-tuning. The development and eval-
uation sets were used for the WER calculation. We applied causal
logarithmic-loop-based automatic gain control (AGC) to normalize
the significant volume differences among different recordings. AGC
was applied after the front-end processing.

In addition to the AMI corpus, we used 64 million anonymized
and transcribed English utterances, totaling 75K hours [25], as Sy for
the first- and second-stage pre-training. The data consist of monaural
audio signals from various domains, such as voice command and
dictation, and their reference transcriptions. Each training sample is
supposed to contain single-talker speech while it could occasionally
contain untranscribed background human speech.

In the evaluation, we followed the utterance and utterance-group
segmentations proposed in [25]. The utterance group is defined as
a set of adjacent utterances that are connected by speaker overlap
regions. By following [25], the utterance segmentation was used
for the the single-talker ASR model evaluation while the utterance-
group segmentation was used for the multi-talker ASR model evalua-
tion. For the WER calculation, we used the multiple dimension Lev-
enshtein edit distance calculation implemented in ASCLITE [33].!

4.2. Model configuration
4.2.1. VarArray

VarArray consists of a set of multi-stream conformer blocks, a set of
transform-average-concatenate (TAC) layers (optional) [34], a mean
pooling layer, a set of single-stream conformer layers, and a mask
prediction layer. The model input is a rank-3 tensor where the three
axes correspond to the channels, time frames, and features. The
multi-stream conformer blocks are applied to each of the channel-
wise slices of the input tensor for temporal modeling while the TAC
layers are used to process each frame-wise slice for cross-channel
modeling. They are interleaved with each other. The mean pool-
ing layer averages the features across the channels and is followed
by the single-stream conformer layers for additional transformation.
The mask prediction layer is a fully connected layer with softmax
activation. See [15] for further details.

Two VarArray models with different sizes were used to examine
the impact that the front-end quality might have on the multi-talker
ASR accuracy. They had 56M and 2M parameters with the latter tar-
geted for resource-constrained edge processing. The bigger model
had 3 multi-stream conformer blocks, where each block consisted
of 5 conformer layers, each with § attention heads, 512 dimensions,
and 33 convolution kernels. The second block was sandwiched by
512-dim TAC layers. The model had 20 additional single-stream
conformer layers having the same size as the multi-stream ones. The
smaller model had one multi-stream block consisting of 3 conformer
layers with 3 attention heads, 48 dimensions, and 33 convolution
kernels, plus 8 additional single-stream conformer layers without
TAC layers. It also performed 2x decimation and interpolation at
the start and end of the model for processing cost reduction. Both
models were trained on the 3K-hr simulated multi-channel data of
[15], where the number of microphones were randomly chosen be-
tween 3 and 7 for each mini-batch during training.

1To reduce the computational complexity, unlike the original way of using
ASCLITE where the multiple references are aligned with a single sequence of
time-ordered hypothesis, we calculated the WER by aligning the two hypoth-
esis streams with a single sequence of time-ordered reference words obtained
based on the official time stamps of the corpus. This procedure allowed the
WER to be calculated for all utterance-group regions within reasonable com-
putation time.



Table 1. WER (%) for AMI development and evaluation sets with distant microphones. For B3 and B6, VarArray-based speech enhancement
was applied by forming one MVDR beamformer generating monaural audio to perform only noise reduction without speech separation.

ID Front-end configuration Back-end configuration Back-end training Test WER (%)
In Out Param. Latency Model In Cross Param. Latency 1ch-PT 2ch-PT FT segment dev  eval
B1 - - - - Single-talker TT18 1 - 82M 0.16 sec 75K - - utt 38.0 40.8
B2 - - - - Single-talker TT18 1 - 82M  0.16 sec 75K - AMI  utt 273 303
B3 8 L. M O8sec  SingletalkerTT18 1 . 82M  Olésec K T AMI utt 258 279
B4 - - - - t-SOT TT18 1 - 82M  0.16 sec 75K-sim - - utt-gr 355 403
B5 - - - - t-SOT TT18 1 - 82M  0.16 sec 75K-sim - AMI  utt-gr 21.6 253
B6 8 1 2M 0.8 sec t-SOT TT18 1 - 82M 0.16 sec 75K-sim - AMI  utt-gr 20.7 23.0
P18 2 2M 0.8 sec t-SOT 2¢h-TT18 2 - 82M  0.16 sec 75K-sim - AMI  utt-gr 19.3 217
P2 8 2 2M 0.8 sec t-SOT 2ch-TT18 2 - 82M  0.16 sec 75K-sim  75K-sim  AMI  utt-gr 18.6 21.1
P3 8 2 2M 0.8 sec t-SOT 2ch-TT18 2 Eq. (1) 82M 0.16 sec 75K-sim  75K-sim  AMI utt-gr 18.5 21.0
P4 8 2 OM 08sc  tSOT2h-TTIS 2 Eq.()  84M Olésec  T5K-sim 75K-sim AMI utgr 183 206
P5S 8 2 2M 0.8 sec t-SOT 2ch-TT36 2 Eq.(2) 142M 0.64 sec 75K-sim  75K-sim  AMI utt-gr 153 174
P6 8 2 2M 0.8 sec t-SOT 2ch-TT36 2 Eq.(2) 142M 2.56 sec 75K-sim  75K-sim  AMI utt-gr 144 16.5
P7 8 2 56M 0.8 sec t-SOT 2ch-TT36 2 Eq.(2) 142M 2.56 sec 75K-sim  75K-sim  AMI  utt-gr 137 155
422 1-SOT two-channel TT Table 2. WER (%) of P7 system applied for 2—-8 microphones. Nei-

We used a TT with chunk-wise look-ahead proposed in [35]. The
number of layers L was set to 18 or 36. We refer to the model with
L = 18 as TT18 and the model with L = 36 as TT36. For the
two-channel TT model, N was set to 9 for TT18 while it was set to
12 for TT36 based on our preliminary experiment. Each transformer
block consisted of a 512-dim multi-head attention with 8 heads and
a 2048-dim point-wise feed-forward layer. The prediction network
consisted of two layers of 1024-dim long short-term memory. 4,000
word pieces plus blank and (cc) tokens were used as the recogni-
tion units. We used 80-dim log mel-filterbank extracted for every 10
msec. As proposed in [35], the algorithmic latency of the model was
controlled based on the chunk size of the attention mask.

In the first-stage pre-training, we performed 425K training it-
erations with 32 GPUs, each of which processed mini-batches of
24K frames. We used a linear decay learning rate schedule with
a peak learning rate of 1.5e-3 after 25K warm up iterations. In
the second-stage pre-training, we performed 100K training iterations
with 8 GPUs, each of which processed mini-batches of 24K frames.
We used a linear decay learning rate schedule starting from a learn-
ing rate of 1.5e-4. Finally, in the fine-tuning stage, we performed
2,500 training iterations with 8 GPUs, each processing mini-batches
of 12K frames. We used a linear decay learning rate schedule with
an initial learning rate of 1.5e-4.

4.3. Evaluation results

Table 1 shows the WERs for various combinations of the VarArray-
based front-end and back-end ASR configurations. The systems with
IDs staring with B were built to clarify the contributions of indi-
vidual configurations in a baseline setting. Systems B1 to B3 were
based on single-talker ASR?. System B4 to B6 used t-SOT for multi-
talker ASR. First, we can see that the AMI-based fine-tuning yielded
significant WER improvements (B1—B2, B4—B5). Especially, the
t-SOT TT18 obtained noticeably larger WER reductions, resulting
in lower WERSs than the single-talker TT18 (B2 vs. B5), which was
consistent with prior reports [25]. Applying a single-output (i.e.,
traditional) multi-channel front-end, the WER was further improved
from 25.3% to 23.0% for the evaluation set (B5—B6).

2In addition to B1-B3, we also evaluated a system that generated two sep-
arated signals with VarArray and then performed ASR for each separated sig-
nal with a single-talker model. However, due to the difficulty in fine-tuning
the single-talker ASR model based on the separated signals (see Section 3.1),
this system produced 25.1% and 29.2% for the development and evaluation
sets, respectively, which were on par or even worse than the other baselines.

ther VarArray nor t-SOT models were retrained. Monaural t-SOT
TT36 was applied for single-microphone case.

# of mics. 1 2 3 4 5 6 7

AMI-dev 166 164 151 142 139 139 138 137
AMl-eval 197 188 172 164 159 158 157 155

We then evaluated the systems based on the proposed t-SOT-
VA framework (P1-P7). By comparing B6 and P1, we can see that
the proposed two-channel TT achieved a relative WER reduction of
5.7-6.8% compared with the conventional single-input model. Intro-
ducing the 2nd-stage pre-training further reduced the WERs by rel-
ative 2.8-3.6% (P1—P2). Finally, the cross-channel transform (P3
and P4) further produced relative WER gains of 1.6-2.4%. Over-
all, compared with the baseline B6, the proposed system achieved
relative WER improvements of 10.4-11.6%.

Systems P5-P7 were evaluated to investigate the WER impact
of the model size and latency. As expected, the WERs were further
improved by increasing the model size and the ASR latency. The
largest system, P7, achieved the WERSs of 13.7% and 15.5% for the
development and evaluation sets, respectively. To the best of our
knowledge, these results represent the SOTA WERs for the AMI
distant microphone setting by significantly outperforming previously
reported results [10,25,36] while retaining the streaming inference
capability.

Finally, Table 2 shows the WERs of P7 for different microphone
numbers. We used the microphones indexed as [0], [0,1], [0,1,2],
[0,2,4,6], [0,2,4,6,7], [0-3,5,6], [0-6], or [0-7] for each microphone
number setting. The experimental result confirms that the proposed
system can make use of different numbers and shapes of micro-
phones without retraining.

5. CONCLUSION

This paper proposed t-SOT-VA, a novel streaming DCSR framework
for arbitrary microphone arrays, by integrating VarArray and t-SOT-
based multi-talker ASR. To achieve the best combination of both
technologies under practical settings, we designed a t-SOT-based
ASR model that takes in two separated speech signals from VarAr-
ray. The evaluation using the AMI meeting corpus showed that the
system based on the proposed framework significantly outperformed
conventional DCSR systems while retaining the streaming inference
capability.
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A. IMPACT OF SPEECH OVERLAPS AND
SPEAKER-TO-MICROPHONE DISTANCE

Table 3 shows the WERs for different types of input signals. This
experiment was carried out to analyze the impacts of speaker-to-
microphone distances and speech overlaps. In this experiment, we
used TT36 with 2.56 sec latency by using the most appropriate train-
ing and testing framework for each input type. The first row shows
the WERSs obtained with the independent headset microphone (IHM)
signals and a single-talker TT36, where the model was pre-trained
on the 75K-hour data and fine-tuned on the AMI IHM training data.
The second row shows the WERs obtained by using the mixture of
the IHM signals (a.k.a. IHM-MIX) as input, where we used a t-SOT
TT36 that was pre-trained on the 75K-hour data based simulation
data and fine-tuned on the AMI IHM-MIX training data. Finally, the
third row shows the WERs of our P7 system applied to the multiple
distant microphone (MDM) signals.

By comparing the first and second rows, we can see a 32-35%
WER increase due to the speech overlaps. This degradation is at-
tributed partly to our setting of M = 2, which inevitably degraded
the WER for speech regions where more than two speakers overlap.
Comparing the second and third rows shows a further 14-16% degra-
dation due to the speaker-to-microphone distance. Overall, we still
observed noticeable WER degradations resulting from the speech
overlaps and speaker-to-microphone distances, which calls for fur-
ther technology improvement.

Table 3. WERs (%) for various input types. TT36 with 2.56 sec la-

tency was used with the most appropriate training and testing frame-

work for each input type.

Model Input Test Speech  Spk-to-mic. WER (%)
segment gyerlaps distance  quv  eval

dev eval
Single-talker TT36 ITHM utt no close 9.1 99
t-SOT TT36 IHM-MIX utt-gr yes close 12.0 134

t-SOT-VA TT36 MDM utt-gr yes distant 13.7 155




