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ABSTRACT

Speaker change detection (SCD) is an important feature that im-
proves the readability of the recognized words from an automatic
speech recognition (ASR) system by breaking the word sequence
into paragraphs at speaker change points. Existing SCD solutions
either require additional ensemble for the time based decisions and
recognized word sequences, or implement a tight integration be-
tween ASR and SCD, limiting the potential optimum performance
for both tasks. To address these issues, we propose a novel frame-
work for the SCD task, where an additional SCD module is built on
top of an existing Transformer Transducer ASR (TT-ASR) network.
Two variants of the SCD network are explored in this framework
that naturally estimate speaker change probability for each word,
while allowing the ASR and SCD to have independent optimiza-
tion scheme for the best performance. Experiments show that our
methods can significantly improve the F1 score on LibriCSS and
Microsoft call center data sets without ASR degradation, compared
with a joint SCD and ASR baseline.

Index Terms— Speaker Change Detection, Transformer Trans-
ducer, E2E ASR, F1 Score

1. INTRODUCTION

Speaker change detection (SCD) is a task to estimate the speaker
transition point in an audio stream that contains potentially more
than one active speaker. In modern speech processing applications,
a speaker change detection module usually provides two important
features. Firstly, accurate speaker change signal is crucial for im-
proving the display format of the conversational recognition system,
where the displayed transcription is expected to start a new line as the
active speaker changes. Secondly, SCD serves as an important front
end processing for speaker diarization applications [1, 2], where the
input speech is first segmented by speaker change points before fur-
ther processing, such as clustering.

Existing SCD systems can be roughly categorized into two
types, the time based detection [3, 4, 5, 6] and word based detection
[7, 8]. In the time based detection, SCD is usually designed to rely
on pure acoustic features from input speech, and the decision is
estimated on a frame basis. Although they enjoy a higher decision
resolution, the time based decision usually suffers from three limi-
tations. Firstly, it’s hard to locate the accurate speaker boundaries
due to the impact of the silence or noises [4]. Secondly, when
combining with ASR systems, a post processing step is required to
insert the speaker change label into the recognized word sequence
as the detected time based change points may not fall between word
boundaries. Finally, only acoustic information is explored although
the semantic information has been shown to be beneficial for the
SCD and diarization task [9, 10, 11].

Unlike the time based detection, the word based SCD directly
estimates the speaker change point between words. In this way, the
SCD decision naturally aligns with the ASR word sequences, re-
moving the synchronization steps required in the time based system.

More importantly, this method allows SCD to access both acoustic
and semantic information from the ASR module, leading to higher
potentially performance. On the other hand, with the recent advances
of the E2E ASR techniques [12, 13, 14], various tasks including
SCD [7] have been integrated with the ASR in the past, such as
endpoint detector [15], turn taking [16], speaker diarization [17, 18]
and multi-talker recognition [19], and shown the competitive results
compared with the modular approaches.

Although the word based SCD systems have shown promising
results, existing joint SCD-ASR [7] solution often suffers from two
limitations. Firstly, it’s hard to reach the optimal performance for
both tasks in a joint model architecture. In our investigation, a higher
word error rate (WER) is often observed when additional tuning to
improve SCD is included during training. Secondly, as SCD network
detects the acoustic change in speaker characteristics, longer latency
is needed to ensure the robustness of SCD module. However, due to
the streaming request of the ASR applications, the joint SCD-ASR
model often adopts a low latency setting, limiting the performance
for the SCD module.

To address these limitations, in this work, we propose a speaker
change detection method based on a existing Transformer Trans-
ducer ASR (TT-ASR) [20] network. Instead of directly incorporat-
ing SCD into ASR decoding, our model introduces an additional
network for SCD on top of the TT-ASR. Given the partial ASR
decoding word sequence, the SCD network predicts the word-level
speaker change probabilities. Specifically, two implementations of
proposed framework are investigated, namely SCD-ENC and SCD-
DEC, depending on whether the explicit alignments of recognized
word sequence from TT-ASR are available. Based on the proposed
SCD model, a chunk-wise streaming processing pipeline with flex-
ible latency during inference is introduced. We evaluate the models
in two data sets and the results show that compared to a joint SCD-
ASR baseline, the proposed SCD models achieve significant better
F1 scores in both sets without losing ASR accuracy.

The rest of the paper is organized as follows. The TT-ASR and
SCD methods are introduced in Section 2 and 3, respectively. Ex-
perimental setups including the data, model, and training details are
described in Section 4. The results are discussed in Section 5. Sec-
tion 6 mentions the future work and concludes the paper.

2. TRANSFORMER TRANSDUCER ASR

Our TT-ASR is based on the neural transducer structure [21] while
a stack of the Transformer [22] encoder is used with a streaming so-
lution [20] for high-accuracy and low-latency. The output of the
i-th (1 < ¢ < L) encoder layer Z; is calculated with the pre-

normalization as in the following equations
Zifl = Z;_1 -+ MHSA; (ln(Z¢,1)) , "
Zi=Zi—1 +FFN; (1n(Zi—1)),

where 1n(-) denotes the layer normalization. MHSA;(-) and FFN;(-)
represent the i-th layer multi-head self-attention (MHSA) block and
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Fig. 1. Illustration of our TT-ASR based SCD method. The green blocks indicate the pure ASR modules and the yellow round squares
represent runtime algorithms. SCD-ENC and SCD-DEC implementations are shown by blue and purple blocks in the right, respectively.

feed-forward network (FFN), respectively. The learnt relative po-
sition encoding is adopted in the MHSA implementation. Zy is
calculated as Zo = CONV(X) given the T-frame acoustic feature
X = [zo, - ,z7r—1] and CONV(-) represents a 2D convolutional
subsampling layer which is used to reduce the frame rate before the
Transformer encoder.

Regarding to the decoder in TT-ASR, we use long short-term
memory (LSTM) as the prediction network and a linear layer as the
joint network. Given the estimated non-blank token o, and hidden
state h.,, the predictor’s output g,,+1 at u + 1 step is wrote as

Ju+1, hu+1 = LSTM (Embed(ou), hu) (2)

and Embed(-) means the token embedding layer. The one-best de-
coding token (sentence piece) sequence O = oo, - ,0u—1] (or
N-word sequence W = [wo, ..., wn—1]) of length U are obtained
by the beam search algorithm over the probability distribution output
from the joint network.

3. METHOD
3.1. Feature Design

The hidden representations extracted from ASR encoder are used
as the basic acoustic feature for SCD network. Apart from Z;, the
weighted-sum Z,, = ZiLzl wi—1Z; over the encoder layer outputs
{Z1,---,Zr} is also investigated. Similar to [23], the learnable
weights w are constrained as ), w; = 1. Regarding to the semantic
features, different representations from TT-ASR are adopted in dif-
ferent implementations, which will be discussed in the next section.

3.2. SCD Network Implementation

Taking acoustic feature Z, € {Zi,---,Zr,Z.} and word se-
quences W as input, the SCD decision network is designed to align
the information from both modality, explicitly or implicitly, and
estimates the final speaker change point for each word, as shown in
Figure 1. Specifically, we explore two implementations, SCD-ENC
and SCD-DEC, depends on whether alignment based word bound-
aries [24] are available through our TT-ASR model. In SCD-ENC,
an explicit forced alignment step is included to obtain the word
boundary from recognized word sequence. The acoustic features
Zy are then averaged and transformed into the word based repre-
sentations Z;V , which is further processed by a stack of transformer
encoders to produce the final speaker change decision. On the other
hand, in SCD-DEC, we utilize Transformer decoders, which include
the source-target attention mechanism between the token sequences
O and acoustic features Z,, to directly estimate the word based
speaker change without explicit word boundary information.
SCD-ENC As we have the ASR decoding word sequence
W = [wo,...,wn—1] as well as their word boundaries B =
[(so,€0), -+, (sn=1,en—1)] through forced alignment, a stack of

Transformer encoder layers are used to predict the speaker change
probability of each word, as shown in the purple blocks of Figure 1.
The audio embedding 2" of word wy, is calculated by averaging
the corresponding parts in Z, matrices given the word boundary
Sn, €n )l 1ot

(s, n) 2y ™ = Mean ZLS"’S"] , 3)
where s, and e, is calculated based on the subsampling rate and
kernel size of the convolution layer. We can further utilize the TT-
ASR’s predictor outputs Go = [go, - , gu—1] to compensate the
missing semantic information in 2. In this work, we use the last
token representation of the word as the text feature of each word and
concatenate it with the original 2™ to form a new one:

zy™ = Concat ([z;’" , gwn]) , “)
where g.,,, is the predictor’s last token representation for word ws,.
Finally the audio embedding sequences Z} = [2%0, .-+, 2V ']

are feed to Transformer encoder layers to estimate the word-level
speaker change probability Pw = [po,- - ,pN—1]:

Py =0 (TransformerEnc(Z)‘:v)) , (5)

where o (-) is the sigmoid function.

SCD-DEC As the forced alignment introduces additional com-
putation cost, we can also adopt Transformer decoder structure
to avoid explicitly aligning the acoustic features and text units,
which predicts token-level speaker change probability Po =
[po,- - ,pu—1] directly conditioned on acoustic feature Z, and
token embeddings Eo = [Embed(op), - - - , Embed(oy )] from ASR.
We write them as

Zy = TransformerEnc (Z,),
Po =0 (TransformerDec (ZX, Eo)) .

Here we add several Transformer encoder layers to further process
acoustic features Z, as Z, instead of feeding them directly into
Transformer decoder layers. As Po is a token-level probability vec-
tor, we map it to the final word-level results Py by choosing the
maximum value of the token probability within each word.

(6)

3.3. Objective Function

Based on the previous discussions, the word-level (or token-level)
speaker change detection is a typical classification problem with two
classes. Considering the well-known sample balance issue, we adopt
focal loss for the network optimization [25]. Given Y. = {Yw, Yo}
as the speaker change labels on the word or token sequences, the loss
function is wrote as

L(P.,Y.) == hiyilog(p:) + ¢i(1 — i) log(1 — pi), (7)

where ¢); = a(1 — p;)” and ¢; = (1 — a)p]. o and ~ are tune-
able hyper-parameters to adjust the weight on positive & negative
examples and easy & difficult samples, respectively.



3.4. Chunk-wise Inference

To address the SCD for long-form audio, we propose a chunk-wise
processing scheme for our models. During runtime, each input long-
form audio is firstly recognized by the streaming TT-ASR. Similar to
the continuous speech separation in [26], the decoded word sequence
is then segmented into overlapped chunks with N. words as chunk
length, Nj, words as the look back and Ny words as the future con-
text. Later, speaker change points are estimated for each chunk by
applying the proposed SCD networks that takes the word chunk and
its corresponding acoustic feature frames as input. In SCD-DEC, the
word emission time is employed to locate the boundary of acoustic
feature for each chunk which is available once the beam search fin-
ishes. In SCD-ENC, the segmentation is applied directly on feature
Z;V . Finally, the chunk-wise decisions are merged to form the de-
cision for the entire long-form audio. In this way, the latency of the
SCD network can be flexibly adjusted by changing the value of Np,
N, and Nj. Meanwhile, the ASR still remains a low latency setup
regardless of the SCD setting. This flexibility allows the latency of
SCD and ASR to be separately adjusted, which is beneficial to the
performance of both tasks.

4. EXPERIMENTS SETUP
4.1. Data

The Microsoft in house data was used to train the ASR and SCD
models. The data included 65 thousand (K) hours of anonymized
speech with personal identifiable information removed. On-the-fly
data simulation was performed to create the speaker turns for train-
ing of the SCD models. M utterances from different speakers were
concatenated together where M is uniformly sampled from 2 to 4 for
our proposed SCD models and 1 to 4 for joint SCD-ASR baselines.
The training labels {Yw, Yo } in equation 7 are defined by assigning
the last word and token position of each speaker utterance as 1 and
other positions 0, respectively.

An evaluation set containing 1.8 million (M) words, covering
multiple application scenarios was constructed for ASR evaluation.
For SCD, we collected two test sets: non-overlapped sessions from
LibriCSS recording style (LS-ST) data [26, 27] and Microsoft ven-
dor collected call center (MS-CC) data for evaluation. The LS-ST
consisted of 114 16kHz recordings with a total duration of 13.6
hours. The MS-CC set included 400 8kHz audio sessions and the
total duration was 24 hours. The total number of the speaker turns in
LS-ST and MS-CC set were 4,834 and 9,409, respectively. During
testing, the 8kHz audios were upsampled to 16kHz beforehand.

4.2. Model Structures

Our TT-ASR model used in this paper had a 2-layer convolutional
network with kernel size 3 and stride size 2, a 18-layer Transformer
encoder, a 2-layer 1024 dimensional LSTM predictor and a 512-dim
joint network. The attention dimension of the MHSA layer in each
encoder block was set to 512 with 8 heads and the 2048-dim FFN
layer was adopted with the Gaussian error linear unit (GELU). 4035
word pieces are used as the ASR units together with blank and end-
of-sentence symbol (eos).

The joint SCD-ASR method in [7] was selected as baseline in
this paper where a speaker change symbol (sc) was added to the
original TT-ASR output units to indicate the speaker change. Our
proposed SCD-ENC model consisted of 6 non-causal Transformer
encoders whose MHSA and FFN parameters were the same as TT-
ASR’s while SCD-DEC had a 2-layer non-causal Transformer en-
coder followed by 4 Transformer decoder layers. The total parame-
ter size was 19.3M and 24.0M, respectively.

4.3. Training and Evaluation Details

The 80-dim log mel-filterbank using 25 msec window and 10 msec
hop size was extracted as the input feature for TT-ASR. Global mean
and variance normalization as well as volume perturbation were ap-
plied on each utterance. TT-ASR was trained on 16 GPUs for 300K
steps with a regular linear decay learning rate scheduler. 25K warm-
up steps was used and the peak learning rate was set to 1.6e 5. We
used chunk size 4 for the streaming mask [20] in TT-ASR, resulting
a latency of 160 msec. The context-independent (CI) phone branch
[24] for forced alignment process was trained based on the 9-th en-
coder layer output (Zg). In SCD-ASR baseline, speaker change to-
ken (sc) was inserted between the original transcriptions once there
were multiple utterances sampled. For proposed SCD models, we
performed training on 8 GPUs with 175K steps and 40K-frames
batch size while freezing the ASR parameters. The peak learning
rate was used as 1e ~* with 25K warm-up steps. « and -y in Equation
7 were set to 0.8 and 0.5, respectively. All the models in this work
were optimized with the AdamW optimizer. For streaming evalua-
tion of proposed SCD network, we kept N}, + N, + Ny = 16 in this
work to illustrate the effectiveness of our method.

4.4. Evaluation Metric

F1 score was adopted to evaluate the quality of speaker change mod-
els and we used a similar way as [16]. The speaker change denoted
hypothesis and reference transcriptions were firstly formed, where a
(sc) tag was inserted to the hypothesis and reference word sequence
at every speaker change point. Then, the denoted reference and hy-
pothesis were aligned and the F1 score was calculated on those po-
sitions where the reference word was (sc). For TT-ASR and SCD-
ASR baselines, we directly used the output (eos) and (sc) symbol as
speaker change decision for each sample, respectively. Regarding to
SCD-ENC and SCD-DEC, the word position with a speaker change
probability that is greater than a threshold of 0.5 was selected as the
changing point.

5. RESULTS

5.1. Balance between SCD and ASR

The SCD and ASR results of the proposed model and the baselines
were shown in Table 1, where various observations can be made.
Although similar ASR performances were obtained by all systems,
their performances in SCD tasks varied drastically. As TT-ASR was
trained with only single speaker utterances, a (eos) based speaker
change detection failed to capture the characteristics of speaker dif-
ference, resulting in low F1 score for both data sets. With speaker
turns included in the training data, a better F1 score was obtained
by SCD-ASR while keeping a similar WER as TT-ASR. However,
the F1 score is still far from satisfactory. One potential reason could
be attributed to the low latency setting in streaming ASR, i.e., it is
challenging to obtain high-quality speaker change detection under
such low latency. Better F1 scores can be obtained for SCD-ASR
by updating the parameters of the top 10 encoder layers. However,
under this setup, the WER increased from 8.64% to 8.75%. This ob-
servation verifies that it is challenging for a tight integration between
ASR and SCD to obtain optimum performances on both tasks.

On the other hand, both proposed methods achieved a signif-
icantly better SCD results than TT-ASR and SCD-ASR baselines.
Specifically, the SCD-ENC achieved 91.3% and 81.7% in F1 score,
which is 22.6% and 14.3% relative higher than the best SCD-ASR
system, showing the efficacy of the proposed system. Within the pro-
posed framework, the SCD-ENC demonstrated a slightly better per-
formance over the SCD-DEC as the alignment based word bound-



Table 1. WER (%) of our 1.8M test set and F1 score (%) of LS-ST
and MS-CC data set with TT-ASR and SCD-ASR. The best perfor-
mance of our proposed SCD-ENC and SCD-DEC methods are also
listed for the comparison.

WER (%) F1 (%) 1

Method Seed Update ASR Enc. T’M [SST T MS-CC
TT-ASR X v 8.65 28.9 20.0
X 8.80 54.2 38.8
SCD-ASR | TT-ASR v 8.64 60.7 66.7
Top-10 8.75 74.5 71.5
SCD-ENC | TT-ASR X 8.65 91.3 81.7
SCD-DEC | TT-ASR X 8.65 86.4 81.7

Table 2. F1 score (%) on LS-ST and MS-CC data sets with our
proposed methods. Different acoustic features and word boundary
cues are explored. N., Ny, Ny are set as 8, 4, 4, respectively

Feature F1 (%) 1
Method Word Boundary Acoustic | Text | LS-ST | MS-CC
Zo X 84.7 66.0
Z4 X 91.3 81.7
Zy X 88.2 76.9
alignment Zy, X 83.8 71.3
SCD-ENC Z X 85.6 74.2
Zy X 90.5 80.3
Zy G 91.2 80.4
emission Zy X 72.2 75.4
- Zy G 76.0 76.4

Zo Eo 71.8 75.3
Zy Eo 79.7 81.7
emission Zo Eo 84.2 796
SCD-DEC Z1, Eo 82.8 73.0
L FEo 84.6 78.6
Z Eo 86.4 81.7
alignment Lo Eo 90.4 82.3

aries were provided. However, SCD-DEC enjoyed a simpler imple-
mentation and a lower inference cost because the forced alignment
step in SCD-ENC was usually computational costly. More discus-
sions between two implementations are in the following sections.

5.2. Feature Investigation

We compared the effectiveness of the acoustic feature candidates
Zy € {Zo,Z4,Z9,Z1,, Z0,, Z+} and the alternative semantic fea-
ture Gw for SCD-ENC method, where the results were shown in
Table 2. Z, means that we use fixed weights w; = Y, Z;/L.

In SCD-ENC, the shallow layer output Z4 outperformed the
other candidates, which verified that the shallow layer could cap-
ture more speaker characteristics. From Z4 to Z,, we observed the
trend that the upper layer output gave worse F1 score, from 91.3%
and 81.7% to 83.8% and 71.3%, which means that the best acoustic
representation for ASR is not necessarily the best feature for SCD
task. The weighted-sum feature Z,, also showed competitive but
slightly worse results than Z,4 and by analyzing the learnt weight of
each layer, the shallow layers, especially the first four layers were as-
signed higher weights. Using fixed weights degraded the F1 scores
significantly, indicating that the features of the different layers were
not equally informative for the SCD task. Incorporating the text em-
bedding features Gw to the Z4 based acoustic features didn’t yield
additional improvement. The pure acoustic features Zs were shown
good enough for SCD-ENC network once the high-quality alignment
based word boundaries were provided.

Regarding to SCD-DEC, Z,, showed better performance than
others on LS-ST data set and achieved the same F1 score on MS-
CC data as Z4. The weights of Z,, had a similar distribution with

Table 3. F1 score (%) on LS-ST and MS-CC data sets with different
history and future context size. We choose the best models in Table 2
(row 2 and 15) for the evaluation and constraint N, +Ny+N. = 16.

N &N LS-ST MS-CC
h f [TSCD-ENC | SCD-DEC | SCD-ENC | SCD-DEC

0 30.0 795 73.6 76.6

1 88.6 83.1 78.4 79.9

2 89.8 84.4 80.0 80.8

3 90.5 85.4 81.1 81.5

4 91.3 86.5 81.7 81.7

the values learned by SCD-ENC, illustrating the shallow layer out-
puts contributed more in our word based SCD method. Feature Zg
and Z7, still gave worse results, degrading from 86.4% & 81.7% to
71.8% & 75.3% and 82.8% & 73.0% , respectively. Compared with
SCD-ENC, the best SCD-DEC model showed 5.4% relatively worse
F1 score on LS-ST data set. It was possibly due to the inaccurate au-
dio chunking caused by the word emission time and we did analysis
on this topic in the next section.

5.3. Word Boundary Comparison

In SCD-ENC, we adopted the accurate word boundaries from forced
alignment to form the audio embedding feature for each word thus
the performance highly relied on the quality of the provided bound-
ary information. In Table 2, replacing the alignment based word
boundary with the word emission time from beam search in SCD-
ENC leaded to serious performance degradation, especially on LS-
ST data set, from 91.2% to 72.2%, because of the latency between
the real word ending time and the word emission time [28]. In this
case, adding word embedding feature G'yy improved the F1 score to
some extent but the effect was still limited. On the contrary, to figure
out the reason that caused the performance gap between SCD-ENC
and SCD-DEC, we tried to use the high-quality alignment based
word timing for the audio chunking in SCD-DEC and get further
improvement from 86.4% and 81.7% to 90.4% and 82.3% on LS-ST
and MS-CC data sets, respectively. Thus if we can further reduce the
latency of the word emission time, hopefully we can obtain similar
performance as the SCD-ENC through SCD-DEC.

5.4. Context Size for Inference

The effect of the chunk size for inference was explored for both im-
plementations and the results were shown in Table 3, where we kept
Np + Ny + N. = 16 and chose 0 ~ 4 for N and Ny. Obviously
compared with zero context results in the first row, even using small
context, e.g., N, = Ny = 1, can significantly improve the perfor-
mance. And the trend was that the larger context we have, the better
F1 scores were achieved but meanwhile, the higher computation cost
we need to afford because of the larger overlap between chunks. We
will try to reduce the model parameters and inference computation
cost in the future work.

6. CONCLUSIONS

This paper presents a speaker change detection method with two im-
plementations and they can work together with our previously stud-
ied streaming TT-ASR model asynchronously without losing ASR
accuracy. The hidden output representations from the ASR encoder
are shown to be the effective acoustic feature for SCD task. Com-
pared with the prior joint SCD-ASR model, our method brings sig-
nificant F1 score improvement on two data sets. Our future work will
explore the potential system fusion, the compression of the model
size, the reduction of the computation cost and the extension of the
multi-talker scenarios to support the speaker diarization task.
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