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ABSTRACT

Neural transducer is now the most popular end-to-end model for
speech recognition, due to its naturally streaming ability. However,
it is challenging to adapt it with text-only data. Factorized neu-
ral transducer (FNT) model was proposed to mitigate this problem.
The improved adaptation ability of FNT on text-only adaptation data
came at the cost of lowered accuracy compared to the standard neu-
ral transducer model. We propose several methods to improve the
performance of the FNT model. They are: adding CTC criterion
during training, adding KL divergence loss during adaptation, us-
ing a pre-trained language model to seed the vocabulary predictor,
and an efficient adaptation approach by interpolating the vocabulary
predictor with the n-gram language model. A combination of these
approaches results in a relative word-error-rate reduction of 9.48%
from the standard FNT model. Furthermore, n-gram interpolation
with the vocabulary predictor improves the adaptation speed hugely
with satisfactory adaptation performance.

Index Terms— neural transducer model, factorized transducer
model, KL divergence, n-gram

1. INTRODUCTION

Recently, neural transducer based end-to-end (E2E) models [1–
11], such as recurrent neural network transducer (RNN-T) [1] ,
transformer-transducer (T-T) [4, 5] and conformer-transducer (C-
T) [12], have become the dominant model for automatic speech
recognition (ASR) in industry due to its natural streaming prop-
erty, as well as competitive accuracy with traditional hybrid speech
recognition systems [13–15].

However, one of the main challenges for neural transducer mod-
els is adaptation using only text data. This is because in neural trans-
ducer models, there are no separated acoustic or language model like
in traditional hybrid models. Although the prediction network could
be considered as an internal language model (LM) because the input
to it is the previously predicted token, it is not a real LM since the
prediction output needs to be combined with the acoustic encoder
in a non-linear way to generate posteriors over the vocabulary aug-
mented with a blank token. Adapting the prediction network using
text-only data is not as straightforward or effective as adapting the
LM in hybrid systems. Paired audio and text data is needed to adapt
a neural transducer model, however, collecting labeled audio data is
both time and money costly.

There are several types of methods proposed to address this is-
sue. One is to generate artificial audio for adaptation text instead of
collecting real audio. Audio generation method could be based on
multi-speaker neural text to speech (TTS) model [15–19] or spliced
data method [20]. The neural transducer model could then be fine-
tuned with artificial paired audio and text data. A major drawback
of these kinds of methods is the high computational cost. It takes

much longer for the TTS-based methods to generate audio even with
GPU machines, while the spliced-data method has very small cost
for generating audio. However, the adaptation step for both methods
involves updating part of the encoder, full prediction and the joint
network with the RNN-T loss. The result is high computational cost
for training, need for GPUs, and too much delay for scenarios in
which rapid adaptation is necessary.

Another class of text-only adaptation methods is LM fusion
[21–25], such as shallow fusion [21] where an external LM trained
on target-domain text is incorporated during the neural transducer
model decoding. However, there is already an internal LM in the
neural transducer model. Directly adding an external LM is not
mathematically grounded. To solve such an issue, density ratio
[26], hybrid autoregressive transducer model [27], and internal LM
estimation [28, 29] were proposed to remove the influence of the
internal LM contained in the neural transducer model. However,
the performance is often sensitive to the interpolation weight of
external LM for different tasks, and it needs to be well tuned based
on development data to get optimal results [30].

Different from aforementioned methods, factorized neural trans-
ducer model (FNT) [31] modifies the neural transducer model ar-
chitecture by factorizing the blank and vocabulary prediction so that
a standalone LM can be used for the vocabulary prediction. In this
way, various language model adaptation [32, 33, 34] techniques
could be applied to FNT. But based on results in [31], FNT degrades
the accuracy on general testing sets compared with the standard neu-
ral transducer model, although it significantly improves the accuracy
in the new domain after adaptation. Besides, it still needs significant
GPU time to finetune FNT with text only data for the adaptation,
which may not meet the fast adaptation requirement in some real
applications.

In this paper, we proposed several methods to advance FNT for
effective and efficient adaptation with text only data. These methods
include: 1) Adding Connectionist Temporal Classification (CTC)
[32] criterion for the encoder network during training to make it
work more like an acoustic model. Then, the combination of en-
coder output and vocabulary predictor output is similar to the combi-
nation of acoustic and language model in hybrid models. 2) Adding
Kullback-Leibler (KL) divergence between the outputs of adapted
model and baseline model to avoid over fitting to the adaptation data.
3) Initializing the vocabulary predictor with a neural LM trained with
more text data. 4) Replacing the network fine-tuning with more ef-
ficient adaptation method using n-gram interpolation. Experimental
results showed that on general testing sets, these methods help the
modified FNT to get even a little better accuracy than the baseline
neural transducer model. On adaptation sets, the word error rate
(WER) after the adaptation of modified FNT is reduced by 9.48%
relatively from the standard FNT model, and reduced by 29.21% rel-
atively from the baseline C-T model. Besides, n-gram interpolation
results in much faster adaptation speed.



The rest of this paper is organized as follows: Section 2 in-
troduces the neural transducer model and FNT model. Section 3
presents the proposed methods for modified FNT in detail. Section
4 shows the experimental results and analysis. Section 5 gives the
conclusions.

2. STANDARD NEURAL TRANSDUCER AND FNT MODEL

2.1. Standard neural transducer

A neural transducer model [1] consists of encoder, prediction, and
joint networks. The encoder network is analogous to the acoustic
model in hybrid models, which converts the acoustic feature xt into
a high-level representation ft, where t is the time index. The predic-
tion network works like a neural LM, which produces a high-level
representation gu by conditioning on the previous non-blank target
yu−1 predicted by the RNN-T model, where u is output label index.
The joint network combines the encoder network output ft and the
prediction network output gu to compute the output probability with

zt,u = W ∗ relu(ft + gu) + b

P (ŷt+1|xt
1, y

u
1 ) = softmax(zt,u) (1)

To address the length differences between the acoustic feature
xT
1 and label sequences yU

1 , a special blank symbol, ϕ, is added to
the output vocabulary. Therefore the output set is {ϕ∪V}, where V
is the vocabulary set.

2.2. Factorized neural transducer

Two prediction networks are used in FNT [31], as shown in figure
1. One (Predictor b) is for the prediction of the blank label ϕ, and
the other (Predictor v) is vocabulary prediction (rightmost orange
part in figure 1). The vocabulary predictor could be considered as a
standard LM. The combination methods with encoder output ft for
these two prediction outputs are different. For the blank prediction,
it is the same as in standard neural transducer models.

zbt,u = W b ∗ relu(ft + gbu) + bb (2)

For the vocabulary prediction, it is firstly projected to the vocabulary
size and converted to the log probability domain by the operation of
log softmax. After this, it is added with the encoder output.

dvt = W v
enc ∗ relu(ft) + bvenc

dvu = W v
pred ∗ relu(gvu) + bvpred

zvu = log softmax(dvu)
zvt,u = dvt + zvu (3)

Two combination outputs are concatenated and softmax is applied to
get the final label probability

P (ŷt+1|xt
1, y

u
1 ) = softmax([zbt,u; z

v
t,u]) (4)

The loss function of FNT is

Jf = Jt − λ logP (yU
1 ) (5)

where the first term is the standard neural transducer loss and the
second term is the LM loss with cross entropy (CE). λ is a hyper-
parameter to tune the effect of LM loss.

Fig. 1. Flowchart of factorized neural transducer

3. IMPROVEMENT OF FNT

In this section, we will propose several methods to improve the ac-
curacy and efficiency of FNT.

3.1. Adding CTC criterion in training

As showed in section 2.2, the encoder output and the vocabulary
predictor output are combined by sum operation. The predictor out-
put is log probability, but the encoder output is not. According to
Bayes’ theory, the acoustic and language model scores should be
combined by weighted sum in log probability domain. Therefore we
refine FNT by converting the encoder output to the log probability
by adding log softmax

Furthermore, to force the encoder part act more like the acoustic
model, CTC criterion is added for the encoder output as shown in the
blue frame part in figure 2. The reason we choose CTC instead CE is
that it’s not easy to get the sentence piece level alignment for training
data, while sentence piece unit is commonly used as the output unit
for neural transducer E2E model.

With such changes, the combination of encoder output and vo-
cabulary predictor output is shown in below equations.

zvt = log softmax(dvt )
zvt,u = zvt [: −1] + γ ∗ zvu (6)

where γ is a trainable parameter, which could be taken as LM
weight. One thing needs to be mentioned is after adding CTC, the
dimension of dvt and zvt become vocabulary size+1 because CTC
needs one extra output “blank”. Here we put “blank” as the last
dimension. and it’s excluded when zvt is added with zvu.

The final loss function can be written as

Jf = Jt − λ logP (yU
1 ) + βJctc (7)

where Jctc is CTC loss and β is a hyper-parameter to be tuned in
the experiments.

3.2. Adding KL divergence in adaptation

To adapt FNT model with text data, the most straightforward way is
to finetune the vocabulary predictor with the adaptation text based
on cross-entropy loss. But this may degrade model performance on
general domain. To avoid this, KL divergence between the vocabu-
lary predictor outputs of adapted model and baseline model is added
during the adaptation as shown in the orange frame part in figure 2.



Fig. 2. BLUE FRAME: adding CTC criterion for FNT training. OR-
ANGE FRAME: adding KL divergence loss for FNT adaptation

The adaptation loss with KL divergence is

Jadapt = CE(Zv
u, Yadapt) + αKL(Zv

u, Z
′v
u ) (8)

where Yadapt is the adaptation text data, Zv
u is the log softmax of

adaptation text from the adapted model and Z
′v
u is the log softmax

of adaptation text from the baseline model. α is the KL divergence
weight to be tuned in the experiments.

3.3. External language model

Since the vocabulary predictor in FNT is designed to be an LM, we
explore the possibility of training it independently on a much larger
text corpus than the transcriptions in the FNT training data. The pa-
rameters of this pre-trained external LM could be further updated to
potentially improve accuracy. In principle, we could choose a variety
of architectures for the external LM. In this paper, we limit ourselves
to an architecture that is very close to that of the standard prediction
network for a fair comparison with the baseline system. The vocab-
ulary of the external LM is the same as that of the FNT system, and
is trained using the conventional cross-entropy loss. Experimental
results in Section 4 show that external LM trained with more data
improves model accuracy, and updating the external LM parameters
during FNT model training further improves the results.

3.4. N-gram interpolation

As noted before, fine-tuning the vocabulary predictor is one of the
straightforward adaptation method for FNT. Although updating vo-
cabulary predictor is much faster than updating the whole FNT net-
work, it could not meet the immediate adaptation requirement for
some applications. In this paper, we propose to use n-gram integra-
tion for fast adaptation of FNT.

In this method, a n-gram based language model is firstly trained
with the adaptation text data. Then it is interpolated with the proba-
bility output from the vocabulary predictor during the decoding. The
vocabulary log probability after interpolation with n-gram probabil-
ity P (yu|yu−1

1 )ngram is calculated as

zvu = log((1− w) ∗ P (yu|yu−1
1 )pred + w ∗ P (yu|yu−1

1 )ngram)
(9)

where P (yu|yu−1
1 )pred = softmax(dvu) is the label probability out-

put from vocabulary predictor. Then zvu is plugged into Equation (6)
to calculate zvt,u which is used to generate the final output of FNT.

testing set adaptation data testing data
task1 6,135 6,269
task2 193,047 21,960

Librispeech 18,740,565 210,246

Table 1. Word count for testing sets.

In this method, no neural network training is involved, and n-
gram LM model training is super fast with the adaptation text data.
Experimental results in section 4.3 show it has much lower compu-
tational cost compared to the fine-tuning based method.

4. EXPERIMENTS

In this section, the effectiveness of the proposed methods are eval-
uated based on conformer-transducer (C-T) model [12] for several
adaptation tasks with different amount of adaptation text data.

In the baseline C-T model, the encoder network contains 18 con-
former layers. The prediction network contains 2 LSTM [33] layers,
and 1024 nodes per layer. The output label size is 4000 sentence
pieces. We use the low-latency streaming implementation in [10]
with 160 milliseconds (ms) encoder lookahead. The standard FNT
model has the same encoder structure and output label inventory as
the baseline C-T model. The blank and vocabulary predictor each
consists of 2 LSTM layers, also 1024 nodes per layer. The acoustic
feature is 80-dimension log Mel filter bank for every 10 ms speech.

The training data contains 30 thousand (K) hours of transcribed
Microsoft data, mixed with 8K and 16K HZ sampled data [34]. All
the data are anonymized with personally identifiable information re-
moved. The general testing set covers different application scenar-
ios including dictation, conversation, far-field speech and call center
etc., consisting of a total of 6.4 million (M) words. For the adapta-
tion testing sets, we selected 2 real application tasks with different
size of adaptation text data, as well as Librispeech sets for better ref-
erence. The data size of the testing sets are listed in table 1. The
model training never observes the data from these adaptation tasks.

The external LM has the same model structure as the vocabulary
predictor in the FNT and was trained with text data containing about
1.5 billion words, which includes the transcription of 30k training
data mentioned above for C-T and FNT model training.

We first evaluate the FNT model’s accuracy on general testing
set with the proposed methods, including adding CTC criterion, ini-
tializing the vocabulary predictor from a well trained external LM.
Then we examine the performance of above FNT models on adapta-
tion sets by fine-tuning the vocabulary predictor with text adaptation
data. Finally, n-gram interpolation adaptation method is evaluated
based on the best FNT model from above experiments.

4.1. Results on general testing set

All results on general testing set are given in table 2. The baseline
model is a standard C-T model. The standard FNT model is with
the same structure as in [31], and it is trained with 30k training data
from scratch. Compared with the baseline C-T model, the standard
FNT model got 1.29% relative WER increase. To reduce the accu-
racy degradation, FNT model is refined by adding the CTC criterion
based on equation 6 and 7. The CTC loss weight β is 0.1. We can
see that adding CTC decreases WER from 11.01 to 10.97, but is still
worse than the baseline C-T model. The degradation is reduced fur-
ther by initializing vocabulary predictor from an external language
model. Two recipes are examined: one is the external LM is fixed



during the FNT model training, and the other is the external LM is
updated together with other parts of FNT model. Updating the ex-
ternal LM got the best result, which is even better than the baseline
C-T model.

Model General set
Baseline C-T (B0) 10.87
Standard FNT (F0) 11.01

+CTC (F1) 10.97
+ext. LM fix (F2) 10.89

+ext. LM update (F3) 10.70

Table 2. WER(%) on the general testing set.

4.2. Results on adaptation testing sets

In this section, We first evaluated the impact of KL divergence using
Librispeech set based on standard FNT model. The results are given
in table 3. The results showed the adapted model without KL di-
vergence degraded the accuracy on general testing set largely. FNT
adaptation with KL divergence helped to recovered the loss on gen-
eral testing set obviously with very small WER increase on adapta-
tion set compared to the standard FNT adaptation. In the following
adaptation experiments, KL divergence weight α is always set to 0.1.

Table 4 shows the adaptation results for different FNT models
on all adaptation sets. For each task, the results in “base” column
are WER before adaptation, and the results in “adapt” column are
WER after adaptation. Simple average WERs are also reported by
averaging the WERs from all three tasks. Comparing “base” re-
sults for B0 and F0, we could find the accuracy gap between the
baseline C-T model and the standard FNT model on these adapta-
tion set is much larger than that on general set, especially for task1
and task2. The possible reason is that the domains in the training
data may have some coverage for the general testing set, but they
are totally irrelevant to these adaptation sets. With the proposed re-
finements for FNT, this gap is decreased step by step, the best FNT
model F3, which is with full combination of the proposed methods,
could get the similar accuracy as the baseline C-T model. The same
trend could be also observed for the “adapt” results. Each method
contributes accuracy improvement to the adapted FNT model. Com-
pared with the adapted standard FNT model (F0), the adapted model
F3 reduces WER for three adaptation sets by relatively 9.48% in av-
erage (from 12.80% to 11.59% ). And compared with the baseline
C-T model, the adapted model F3 gets 29.21% relative WER reduc-
tion (from 16.37% to 11.59%).

Standard KLD weight
FNT 0.0 0.1 0.2 0.3

General set 10.87 12.78 11.69 11.52 11.4
Librispeech 8.32 7.17 7.17 7.25 7.33

Table 3. WER(%) for Librispeech with different KLD weights.

4.3. Results of n-gram interpolation

In this section, we evaluated n-gram interpolation performance based
on the best FNT model (F3) for three adaptation tasks. For each
task, a 5-gram LM is trained with the adaptation text. To make the
interpolation simple and efficient, sentence piece instead of word is
used as the basic unit for the 5-gram LM. The interpolation weight

Model Task1 Task2 Librispeech Simple average
Base Adapt Base Adapt Base Adapt Base Adapt

B0 16.59 - 24.19 - 8.32 - 16.37 -
F0 17.45 11.8 25.21 19.43 8.44 7.17 17.03 12.80
F1 17.21 10.89 25.05 19.04 8.43 7.07 16.90 12.33
F2 17.63 10.8 24.96 18.55 8.41 7.16 17.00 12.17
F3 16.38 10.19 24.44 17.7 8.33 6.87 16.38 11.59
F3+n-gram 16.38 11.49 24.44 19.89 8.33 7.39 16.38 12.92

Table 4. WER(%) on adaptation testing sets.

w is always set as 0.3. The results are shown in the last row of
table 4. Compared with the adaptation of fine-tuning vocabulary
predictor, n-gram interpolation based adaptation got a little higher
WER, but the relative WER reduction over the baseline C-T model
is still satisfying, which is 21.04% (from 16.37% to 12.92%). More
importantly, the adaptation speed is improved hugely. Experiments
show that for fine-tuning method, the adaptation process cost about
10 seconds per 1,000 words on GPU and the cost is formidable when
adapting with CPU. In contrast, it only needs about 0.002 seconds
per 1,000 words on CPU for n-gram LM training. This is very useful
for those application scenarios which need immediate adaptation.

5. CONCLUSIONS

In this paper, several methods are proposed to improve the accuracy
and efficiency for FNT adaptation with text-only data. These meth-
ods include: 1) during the FNT model training, adding CTC criterion
to make the encoder act more like an acoustic model and initializing
vocabulary predictor with a well trained external LM to use more
text data. 2) during the FNT model adaptation, adding KL diver-
gence to avoid over fitting to the adaptation data. 3) using n-gram
interpolation with the vocabulary-prediction LM module inside FNT
instead of fine-tuning the vocabulary-prediction LM module to im-
prove the adaptation speed. The experimental results proved that,
compared with standard FNT, the proposed methods could get better
accuracy on general testing set, and decrease the adaptation WER by
9.48% percent relatively. In total, compared with the baseline C-T
model, the adaptation WER is decreased by 29.21% relatively. Be-
sides, n-gram interpolation could get much faster adaptation than the
fine-tuning method, enabling the scenarios which require immediate
adaptation.
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