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ABSTRACT

Direct speech-to-speech translation (S2ST) is an attractive research
topic with many advantages compared to cascaded S2ST. However,
direct S2ST suffers from the data scarcity problem because the cor-
pora from the speech of the source language to the speech of the tar-
get language are very rare. To address this issue, we propose in this
paper a Speech2S model, which is jointly pre-trained with unpaired
speech and bilingual text data for direct speech-to-speech transla-
tion tasks. By effectively leveraging the paired text data, Speech2S
is capable of modeling the cross-lingual speech conversion from
source to target language. We verify the performance of the pro-
posed Speech2S on Europarl-ST and VoxPopuli datasets. Experi-
mental results demonstrate that Speech2S gets an improvement of
about 5 BLEU scores compared to encoder-only pre-training mod-
els, and achieves a competitive or even better performance than ex-
isting state-of-the-art models1.

Index Terms— Speech to speech translation, joint pre-training,
cross-lingual modeling.

1. INTRODUCTION

Direct speech to speech translation (S2ST) has gained more and
more attention from research and industry communities in recent
years [1–3]. Traditionally, cascaded S2ST consists of automatic
speech recognition (ASR), machine translation (MT), and text to
speech synthesis (TTS) tasks. Direct S2ST aims at integrating the
above three tasks into an end-to-end model, which translates the
speech of one language to the speech of another language directly.
Compared to cascaded S2ST, direct S2ST has the following advan-
tages: (1) it is able to alleviate the error propagation problem of
pipeline systems; (2) it can retain the emotion, pitch, and prosody
information of the speaker to the greatest extent; (3) it has faster
reasoning speed and takes up fewer storage resources.

However, data scarcity is the biggest problem of direct S2ST
tasks [4]. At present, there is very little parallel S2ST data though
lots of efforts [5–7]. To alleviate this problem, a line of work tries
to leverage pseudo data to improve direct S2ST [3, 8]. They usu-
ally convert the ASR data into speech to text translation data us-
ing an MT system, and then generate the target audio from the tar-
get text with a TTS system. Unfortunately, these methods do not
guarantee the accuracy of the generated pseudo S2ST data. An-
other line of work aims at boosting the performance of direct S2ST
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through pre-training methods [3, 9]. For example, the paper in [9]
explores pre-training the encoder with mSLAM objective [10], and
pre-training the decoder of Translatoron 2 [11] with MT task to gen-
erate phonemes. The authors in [3] propose to combine wav2vec
2.0 [12] encoder and mBART [13] decoder to a speech-to-unit trans-
lation (S2UT) model, which also can be further boosted by data aug-
mentation techniques.

Although the self-supervised pre-training method in [3] can ini-
tialize the direct S2ST model with the pre-trained wav2vec 2.0 en-
coder and mBART decoder, which are trained with discrete hidden
units [14] from unlabeled speech data. it still lacks an effective con-
nection between encoder and decoder, and ignores the cross-lingual
modeling capacity in pre-training. In the real world, speech data,
ASR data, and MT data are relatively much more than direct S2ST
corpora, and MT data can be utilized to learn the transformation abil-
ity from source text to target text. How to build the cross-lingual
bridge between speech encoder and unit decoder of direct S2ST with
bilingual text in the pre-training stage is not well explored.

In this paper, we propose a Speech2S model, which aims at mod-
eling cross-lingual information and alleviating data scarcity prob-
lems by jointly pre-training with unpaired speech and bilingual MT
text for the direct speech to speech translation task. More specially,
Speech2S consists of a speech encoder, unit encoder, and unit de-
coder. We propose two pre-training tasks to pre-train the three mod-
ules with unit encoder as the bridge between source speech and target
units. Like HuBERT [14], the first pre-training objective is to pre-
dict the clustered units based on the output of both speech encoder
and unit encoder, with unlabeled speech data. To take advantage
of bilingual machine translation corpus, we first leverage two text-
to-unit models to convert source/target text into source/target units,
with which, the cross-lingual unit encoder and decoder can be well
pre-trained through cross-entropy loss.

We evaluate the proposed model on Europarl-ST [15] and Vox-
Populi [5] S2ST datasets. Our contributions can be summarized as
follows. (1) We propose a joint pre-trained Speech2S model, which
can take advantage of bilingual text data to boost bilingual speech
conversion. (2) The proposed model achieves a significant improve-
ment of about 5 BLEU scores compared to the pre-trained model
without MT data. (3) Furthermore, we conduct a detailed analysis
about the effect of parallel data size, data augmentation of different
domains, and subjective evaluation.

2. RELATED WORK

Conventional speech to speech translation is usually composed of
cascaded ASR, MT and TTS modules [16, 17]. On this basis, to
avoid error transmission caused by cascade models, researchers ex-
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plore the combination of ASR and MT modules [18, 19], as well
as TTS modules [1, 20], namely direct S2ST. This paper focuses on
exploring direct S2ST with improved pre-training methods.

2.1. Direct Speech to Speech Translation

S2ST, which directly translates the source speech to the target
speech, has attracted a lot of attention recently [1, 2, 20–22]. Trans-
latotron [1] is the first work to achieve direct speech-to-speech
translation by using a sequence-to-sequence model. This system
uses an encoder to model the log-mel spectrogram and predict the
target spectrogram by the decoder, combined with the speaker in-
formation. Then, a vocoder is used to convert spectrogram into
waveform. This work in [11] improves Translatotron system by
utilzing a duration-based spectrogram synthesizer enhanced with
target phoneme from decoder. Unlike Translatotron, the authors
in [2] propose a novel direct speech to speech translation system,
which employs discrete hidden units instead of spectrogram as
model target before vocoder. They also expand it without using
any text data on real-world S2ST tasks [23]. However, real speech
to speech translation data is very limited due to the high cost of
obtaining such data [5, 6]. Our work is to leverage a pre-training
approach to alleviate data dependence on direct S2ST dataset.

2.2. Pre-Training for Direct S2ST

Recent years have witnessed a great progress on pre-training tech-
niques for direct S2ST tasks [3,9]. The work in [9] employs speech-
text joint model from mSLAM as the encoder, to generate phoneme
sequence with MT task and generate spectrogram with S2ST task.
The most related work to our paper is [3], which enhances the
speech-to-unit translation (S2UT) model by a wav2vec 2.0 [12] en-
coder and a decoder from pre-trained unit mBART [24]. In this
S2UT model, wav2vec 2.0 is pre-trained on unlabeled audio data,
and mBART leverages reduced discrete units tokenized from unla-
beled audio data to train a denoised encoder-decoder model, and fi-
nally uses the mBART decoder to initialize the S2UT decoder. How-
ever, the simple combination of wav2vec 2.0 encoder and mBART
decoder lacks cross-language modeling capabilities, which is partic-
ularly important for translation tasks. Motivated by this, we propose
to bridge the language gap by utilizing machine translation corpus to
improve model pre-training for direct speech to speech translation.

3. THE PROPOSED METHOD

Our goal is to leverage paired machine translation corpora to bridge
the semantic gap between source speech and target speech. In this
section, we will first introduce the model architecture of Speech2S,
and the details of the model pre-training and fine-tuning methods.

3.1. Structure of Speech2S

As shown in Figure 1, Speech2S consists of a speech encoder Es,
a unit encoder Eu and a unit decoder Du. Speech encoder and unit
encoder employ standard Transformer network [25] with the same
Transformer layers, except that a 5-layer CNN network in speech en-
coder is used to pre-process the original audio signal. Unit decoder
is a multi-layer Transformer decoder layer which is composed of
a multi-head self-attention mechanism, cross-attention mechanism,
and a FFN network.

Formally, we denote unpaired speech as S, and denote bilingual
text as (X,Y ). After applying the speech and text discretization
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Fig. 1: The overall framework of the proposed Speech2S.

modules (as introduced in Section 3.2.1), we obtain the speech units
Su from S and bilingual units (Xu, Yu) from (X,Y ). Briefly speak-
ing, Es is used to encode the source audio sequence S into a sequence
of vector representation Hm. Following the mixing mechanism pro-
posed in [26], we also adapt it to improve alignment learning by ran-
domly replacing part of Hm with the corresponding unit embedding.
Eu can transform speech representation Hm into final hidden states
Hf , or transform source unit sequence Xu into unit hidden states
Ue. Besides, Du reads the encoder representations and generates a
target unit sequence Yu.

3.2. Model Pre-Training

Before pre-training, we first use two discretization modules to tok-
enize speech and text into shared discrete tokens. Then the model
can be optimized by two pre-training objectives, including speech to
units task using speech encoder and unit encoder, and source units
to target units task using unit encoder and unit decoder.

3.2.1. Speech/text discretization

We use HuBERT k-means cluster as the speech discretization mod-
ule, which is learned from the HuBERT iter-1 hidden states, and can
tokenize unlabeled speech into discrete hidden units. To tokenize
text into the same space as speech, we introduce two text-to-unit
models like [26] with the same model architecture, which are trained
by using two small ASR corpus with paired speech and transcription.
More specifically, we first use speech discretization to convert paired
speech into hidden units, and obtain the ⟨text, unit⟩ data by com-
bining it with paired text. Then we utilize a sequence-to-sequence
model to achieve the text-to-unit models trained on the paired text
and unit data. Once obtaining the discrete models, we can tokenize
unlabeled speech S into hidden units Su, and tokenize bilingual text
(X,Y ) into bilingual units (Xu, Yu), respectively, all of which can
be used to optimize the model in pre-training stage.

3.2.2. Pre-training objects

When the input audio S is fed into the speech encoder Es, it is
partially masked and encoded into middle hidden states Hm =
{hm

1 , hm
2 , ..., hm

T }, namely Es(S), which also be sent to unit en-
coder Eu to get final hidden states Hf = {hf

1 , h
f
2 , ..., h

f
T } from

Eu(H
m). Based on Hm and Hf , the speech pre-training object can

be designed on the masked positions as,

Lspeech = −
∑
t∈M

(
log p(ut|hm

t ) + log p(ut|hf
t )
)

(1)



where ut ∈ Su is the target hidden units, and the p(.) is parameter-
ized as the same way with HuBERT [14].

Unit encoder Eu also takes Xu as input in pre-training stage, and
use Eu(Xu) to output the encoded unit hidden state Ue. The unit
decoder Du will generate a series of hidden states Ud = Du(U

e) ac-
cording to the encoder representation of source units. The objective
function of unit pre-training is formalized as,

Lunit = −
Yu∑
i=0

|log p(yu,i|Yu,<i , U
e) (2)

where yu,i ∈ Yu, Yu,<i denotes {yu,0, yu,1, ..., yu,i−1}, and p(.)
is a softmax layer. Finally, we pre-train Speech2S under multi-task
learning framework with L = Lspeech + Lunit.

3.3. Speech2S Fine-Tuning

In the fine-tuning stage, we can fine-tune Speech2S with speech en-
coder, unit encoder, and unit decoder to a direct speech-to-speech
translation model. Leveraging the cross-entropy loss, we simply
employ direct S2ST corpus as the fine-tuning dataset to optimize
the model, where the target speech needs to convert into target units
using speech discretization module. Finally, we utilize a unit-based
HiFi-GAN [23] to generate the target waveform from target units.

4. EXPERIMENTS

4.1. Datasets

We conduct our experiments on two directions of the same language
pair: Spanish-English (es-en) and English-Spanish (en-es). For pre-
training, we use VoxPopuli dataset, a large-scale multilingual corpus
providing 100K hours of unlabelled speech data in 23 languages, as
speech pre-training data. The ASR subset of Voxpopuli (VoxPopuli-
ASR) in each language is used to train the textual discretization
module, namely sequence-to-sequence based text-to-unit model. We
use machine translation data between English and Spanish from Eu-
roparl v10 [27] as the bilingual text data to generate paired text
units for textual unit pre-training. Meanwhile, the speech-to-speech
paired data VoxPopuli-S2S is used for our S2ST fine-tuning stage.
We use the dev set split from VoxPopuli and the dev/test set of
Europarl-ST dataset to verify the effect of speech to speech transla-
tion models. In order to avoid duplication with the corpus of the test
set, we deleted the data of 2012 and earlier in the VoxPopuli train-
ing set. To avoid errors caused by audio itself, all audio is unified to
the 16 kHz ogg format. In addition, we use the training sets text of
CoVoST-2 and Europarl-ST datasets for additional analysis experi-
ments on data augmentation for different domains. Data details are
shown in Table 1.

4.2. Implementation Details

Discretization We use released k-means cluster model2 from multi-
lingual HuBERT (mHuBERT), which trained with VoxPopuli 100k
subset [23], to extract units from speech data. For text discretiza-
tion, we first extract the units of Voxpopuli-ASR speech using mHu-
BERT cluster and normalize the units using the same 1h English or
Spanish speech normalizer as [23]. Then we train the text-to-unit
discretization model using the normalized units and transcripts of
the corresponding speech of the units. The text-to-unit model has

2https://github.com/facebookresearch/fairseq/blob/main/examples/speech
to speech/docs/textless s2st real data.md

Table 1: Statistics of datasets (train/dev/test splits), including pre-
training, fine-tuning, and tokenizing datasets.

data samples source(hrs) target(hrs)
pre-train, en-es
VoxPopuli 1.8M 14k -
Europarl v10 1.9M - -
pre-train, es-en
VoxPopuli 2.0M 16k -
Europarl v10 1.9M - -
fine-tune, en-es
VoxPopuli-S2S 120k/6k/- 394/20/- 403/21/-
fine-tune, es-en
VoxPopuli-S2S 153k/6k/- 513/19/- 495/18/-
Europarl-ST 31.6k/1.3k/1.3k 75.6/3.0/2.9 76.5/3.0/-
CoVoST-2 78.9k/13.3k/13.2k 112.0/22.0/22.7 81.0/14.4/-
tokenize, en
VoxPopuli-ASR - 1.3k -
tokenize, es
VoxPopuli-ASR - 261 -

6 Transformer layers as encoder and 6 layers for decoder, each has
512 nodes with 4 attention heads. Pairs of translation text in Eu-
roparl v10 are pre-extracted offline using this discretization model
and the extracted units are applied in the pre-training stage.

Pre-training Our Speech2S is composed of a 6-layer Trans-
former speech encoder, a 6-layer Transformer unit encoder a 6-layer
Transformer decoder and an output FFN layer of 1024 units. Each
Transformer layer has 768 nodes with 4 attention heads and rela-
tive positional attention bias [28]. We pre-train with the same 400k
training steps for all models.

Fin-tuning The fine-tuning model structure is basically the same
as the pre-training model structure. The normalized units of tar-
get language used in fine-tuning stage are extracted using the same
extractor as the text-to-unit model. After generating units, we use
unit-based HiFi-GAN [23] to generate target speech. English and
Spanish use recognition models wav2vec3 and microsoft speech-to-
text tookit4 to transcribe into text, respectively. The SacreBLEU
toolkit [29] is used to calculate the final BLEU score.

Baselines For comparison, we design two strong baselines for
the experiment. The first one employs HuBERT encoder to initialize
the encoder of speech-to-unit translation model, and the other is ex-
isting S2UT model [3], which is initialized with HuBERT encoder
plus 6-layer unit level mBART decoder. The two models use the
same speech data as our model for pre-training and fine-tuning. The
parameters of the S2UT base model and our Speech2S model are
almost the same.

4.3. Experimental Results

Table 2 shows the BLEU scores of S2UT systems [3] and our
Speech2S systems. By comparing the model fine-tuned from Hu-
BERT and our proposed model, results show that our model achieves
more than 4 BLEU value gains on the S2ST tasks in both directions
(#5 vs. #3). Compared to S2UT base model fine-tuned from Hu-
BERT encoder and mBART decoder, the proposed Speech2S model
still has an improvement of more than 3 BLEU scores (#5 vs. #4).
This result proves that our model can better incorporate text in-
formation into the language model through pre-training, and learn
the corresponding relationship between source language speech and

3https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self
4https://azure.microsoft.com/zh-cn/products/cognitive-services/speech-

to-text



Table 2: Speech to speech translation performance (BLEU) on VoxPopuli dev set and Europarl-ST dev/test sets. For the S2UT systems, the
results on VoxPopuli are reproduced by ourselves, and the results of Europarl-ST are reported in the paper.

# System Pre-trained Model Parameters en-es
VoxPopuli Europarl-ST

es-en
VoxPopuli Europarl-ST

1 S2UT [3] w/o pre-training Large (827M) - -/21.8 - -/18.8
2 wav2vec 2.0+mBART 24.3 25.7/26.0 21.4 25.7/23.8
3

Ours
HuBERT

Base (157M)
20.5 20.2/19.1 18.7 21.1/19.2

4 HuBERT+mBART [3] 22.5 21.8/20.9 20.1 23.2/21.1
5 Speech2S 24.6 25.3/25.6 23.3 26.8/24.4

target language units through shared unit encoder. Furthermore, we
compare our model with S2UT Large model from their paper (#5
vs. #2), our method achieves almost the same results as S2UT Large
on the English-Spanish task with a smaller number of parameters,
while on the Spanish-English test set, it achieves results that exceed
those of the larger model, which also verifies the above conclusion.

4.4. Analysis

4.4.1. Effect of Parallel Data Size

An interesting question is how well does the model perform if we
only have very little fine-tuning data. Here, we verify the effect of
varying parallel data size for Speech2S and baselines. We evaluate
the proposed Speech2S and baseline from HuBERT on 10 hour, 50
hour, and 100 hour supervised data sets respectively. These training
data are randomly sampled from all data of VoxPopuli-S2S.

Table 3: BLEU scores for Speech2S and baseline trained with 15-hr,
50-hr, and 100-hr subsets.

Pre-trained Model hours en-es
dev test

es-en
dev test

HuBERT
Speech2S (Ours)

10
10

0.3
12.3

0.5
11.9

0.5
20.1

0.5
19.4

HuBERT
Speech2S (Ours)

50
50

10.2
19.4

11.2
18.8

12.6
26.8

12.9
24.4

HuBERT
Speech2S (Ours)

100
100

12.9
23.2

13.7
23.5

15.7
24.6

14.1
23.1

From Table 3, we can find that even if there is only 10 hours of
supervised data, through our joint pre-training with speech and bilin-
gual text, the BLEU can reach more than 10. On the 100 hour super-
vised data set, the fine-tuning results are close to those of hundreds of
hours of supervised data fine-tuning. From the results of weak super-
vision, we can draw a conclusion that the Speech2S model can learn
the unified mapping of speech and unit well through pre-training,
thus reducing the dependence on supervised S2ST data.

4.4.2. Effect of Data Augmentation

In this section, we explore the effect of data augmentation for dif-
ferent domain datasets. As shown in Table 4, we first evaluate the
performance on CoVoST-2 dev/test sets using the model trained with
VoxPoluli train set. In terms of absolute performance, the BLEU
scores of CoVoST-2 underperform significantly that of Europarl-ST
(#3 vs. #1). A potential reason is that the pre-training and fine-
tuning data domains are consistent for Europarl-ST test set, but it
has a domain mismatch problem between VoxPopuli and CoVoST-2.

We conduct data augmentation experiments by adding the paired
source speech and target unit data from Europral-ST and CoVoST-2
speech-to-text translation dataset. Based on the training data, which

Table 4: BLEU scores with data augmentation for different domain
datasets. vp train means the VoxPopuli training set, Eur train means
the Europarl-ST training set, and Cov train means the CoVoST-2
training set.

# Fine-tuning Data Evaluation Data dev test
1
2

vp train
vp train+Eur train Europarl-ST 26.8

29.3
24.4
26.1

3
4

vp train
vp train+Cov train CoVoST-2 15.7

24.2
17.6
26.9

consists of source speech and target text, we use the text-to-unit
model trained on VoxPopuli-ASR data to convert the text of the tar-
get language into units, and then enlarge the training set with the
speech and generated target units, as shown in the line 2 and 4 of
Table 4. With data augmentation, the Speech2S can achieve big-
ger improvements on CoVoST-2 than Europarl-ST, which confirms
our suspicions. Experimental results also demonstrate that this data
augmentation method is very effective for domain adaption.

4.4.3. Subjective Evaluation

To further compare the speech quality generated by different models,
we select 50 samples from the Europarl-ST dev set and test the nat-
uralness score of these samples. Table 5 lists the naturalness score
of different models, including S2UT model and our Speech2S mod-
els without and with data augmentation. The results show that our
proposed Speech2S achieves the naturalness score of 4.1, outper-
forming S2UT model fine-tuned from HuBERT and mBART. With
data augmentation, the Speech2S model obtains the best naturalness
score of 4.3. Experiments demonstrate that our proposed method not
only significantly improves the translation quality of S2ST tasks, but
also enhances the naturalness of generated speech. In addition, we
can find from this experiment that more accurate units will also help
to improve the quality of the final synthesized speech.
Table 5: The naturalness score for different models. DAT means
data augmentation method.

Model S2UT Speech2S Speech2S+DAT
naturalness score 4.0±0.1 4.1±0.1 4.3±0.1

5. CONCLUSION

This paper proposes a novel pre-training method with unlabeled
speech and paired text data for direct speech to speech translation.
The core of the proposed Speech2S is to enhance the cross-lingual
speech conversion capability by modeling the transformation from
source units to target units, which are extracted from bilingual text
data using a discrete tokenizer. Experimental results and analyses on
common VoxPopuli and Europarl-ST speech-to-speech translation
tasks demonstrate the effectiveness and superiority of the proposed
Speech2S model.
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