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ABSTRACT

We previously proposed contextual spelling correction (CSC) to cor-
rect the output of end-to-end (E2E) automatic speech recognition
(ASR) models with contextual information such as name, place, etc.
Although CSC has achieved reasonable improvement in the biasing
problem, there are still two drawbacks for further accuracy improve-
ment. First, due to information limitation in text only hypothesis or
weak performance of ASR model on rare domains, the CSC model
may fail to correct phrases with similar pronunciation or anti-context
cases where all biasing phrases are not present in the utterance. Sec-
ond, there is a discrepancy between the training and inference of
CSC. The bias list in training is randomly selected but in inference
there may be more similarity between ground truth phrase and other
phrases. To solve above limitations, in this paper we propose an im-
proved non-autoregressive (NAR) spelling correction model for con-
textual biasing in E2E neural transducer-based ASR systems to im-
prove the previous CSC model from two perspectives: Firstly, we in-
corporate acoustics information with an external attention as well as
text hypotheses into CSC to better distinguish target phrase from dis-
similar or irrelevant phrases. Secondly, we design a semantic aware
data augmentation schema in training phrase to reduce the mismatch
between training and inference to further boost the biasing accuracy.
Experiments show that the improved method outperforms the base-
line ASR+Biasing system by as much as 20.3% relative name recall
gain and achieves stable improvement compared to the previous CSC
method over different bias list name coverage ratio.

Index Terms— speech recognition, contextual spelling correc-
tion, contextual biasing, external attention

1. INTRODUCTION

Contextual biasing is a challenging task for end-to-end (E2E) au-
tomatic speech recognition (ASR) systems [1], which improves the
recognition performance by biasing the model to a specific domain
phrase list including a user’s contact names, songs, location, and
other contextual information. Prior works for contextual biasing of
E2E ASR system can be classified into three categories. The first
method is to represent the biasing phrases as a finite state transducer
(FST) and incorporate it into the beam-search decoding framework
of E2E model [2, 3, 4, 5, 6]. The second method is to directly in-
corporate the contextual information into the E2E model with a bias
encoder [4, 7, 8, 9, 10, 11]. To deal with the scalability issues [4]
when with large biasing phrase list and further improve the biasing
performance, the contextual spelling correction method is also pro-
posed by biasing the recognition hypothesis with an efficient and
small contextual spelling correction (CSC) model [12, 13], which
acts as a post processing module. Compared to the first two cate-
gories, due to the post processing nature, CSC can pre-select biasing

phrases with a filter mechanism, which reduces the effective number
of biasing phrases to avoid attention diffusion.

Autoregressive contextual spelling correction (CSCv1) [12] on
top of ASR model as a post processing method has shown improve-
ment on phrase biasing problems, which incorporates the contextual
information into an autoregressive (AR) spelling correction model
[14, 15], but the efficiency is poor due to its autoregressive nature.
[13] (CSCv2) introduces a new non-autoregressive (NAR) contex-
tual spelling correction model and incorporates context information
into the decoder by attending to the contextual hidden representa-
tions from the bias encoder with an attention mechanism [16], as
shown in Figure 1. In CSCv2, the decoder directly takes hidden
states from text encoder as input, attends to the bias phrase hidden
representations, and outputs a position-wise classification (CLS) tag
cls and context index cind for each input token. The CLS tag uses
”BILO” representation where ”B”, ”I”, and ”L” represent the begin-
ning, inside and last position of a context phrase, ”O” represents a
general position outside of a context phrase; cind is the expected
index of the ground-truth context phrase in the bias list for each po-
sition. The final correction output can then be determined by cls and
cind. CSCv2 greatly improves the inference efficiency especially
for low-end devices or resource limited systems but has similar bias-
ing performance like its AR counterparts.

However, both CSCv1 and CSCv2 may fail on the cases that
hypotheses are totally irrelevant to the ground truth context phrase
or on the cases that have more biasing phrases with similar pronun-
ciation but dissimilar written format. On the other hand, although
[12, 13] use filter mechanisms for large context list to improve infer-
ence efficiency, its training hypotheses-reference pairs prepared with
synthesized[17] or human speech still have similarity gap in real sce-
nario and it’s not easy for a CSC model to distinguish similar phrases
with similar pronunciation or written format from limited hypothesis
information only.

Acoustics information has played an important role for ASR
post processing besides text hypotheses in recent research [18, 19,
20, 21, 22]. [23, 24] combine both acoustics and first-pass text
hypotheses for second-pass decoding, with an RNN-T or trans-
former model generating the first-pass hypotheses, then a deliber-
ation model attending to both acoustics and first-pass hypotheses
for a second-pass decoding. This shows improvement over text
hypotheses only post processing model and inspires us to take
acoustic information to improve CSC. The intuition is that if the
text hypotheses can’t provide useful information for bias correction,
acoustic information will help to complement the missing context.

In this paper, we proposed a new CSCv3 model, which combines
both acoustic and text hypothesis for contextual spelling correction.
Specifically, we introduce the designs as follows.

• we propose to combine acoustics and first-pass text hypotheses for
second-pass contextual spelling correction with biasing phrases
as input. The proposed CSCv3 model has a similar structure as
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Fig. 1. Model structure of CSCv2 and CSCv3. CSCv3 model leverages acoustic information with external acoustic attention. We propose two
architectures: CSCv3-EA incorporates acoustic information in text encoder, while CSCv3-DA incorporates acoustic information in decoder.

CSCv2 [13] except for the additional acoustic attention: a text en-
coder generates hidden vectors of the first-pass hypothesis from
ASR model conditioned on acoustics hidden from ASR audio en-
coder output by an acoustic attention, a bias encoder generates
contextual embeddings from biasing phrases, then a transformer
decoder attends to both hypothesis and contexts for a second-pass
decoding to generate phrase similarity and index for each encoder
input position.

• we use data augmentation for the context list construction dur-
ing training with more similar pronunciation phrases or irrelevant
phrases to improve the robustness of inference.

Our experiments show that the proposed method achieves 20.3%
relative name recall gain improvement compared to the baseline end-
to-end ASR+Biasing system, and significantly outperforms the pre-
vious CSCv2 model.

2. METHODOLOGY

2.1. Model Architecture

As shown in Figure 1, the proposed CSCv3 model consists of 4 com-
ponents: text encoder, bias encoder, acoustics adapter, and decoder.
The text encoder takes ASR hypothesis as input and encodes text
information into hidden states. The bias encoder converts the bi-
asing phrases into phrase level embeddings, which adopts a multi-
layer transformer encoder structure as in CSCv2. The decoder uses
the NAR (non-autoregressive) infrastructure which directly takes the
encoder outputs as input and outputs a position-wise classification
(CLS) tag cls and context index tag cind for each input token with
the same definition described in Section 1

2.1.1. External acoustic attention

The acoustic encoder hidden of ASR model is adapted by the acous-
tic adapter in CSCv3 and then fed into CSC model with external
attention. The acoustic adapter consists of two linear layers with
ReLU activation function and dropout in between.

We explore two different structures to leverage the acoustic in-
formation, as shown in Figure 1. In CSCv3-EA, the acoustic in-

formation is incorporated into the text encoder by a cross attention
which is added between the self-attention and feedforward module
in each encoder layer, the decoder follows the same transformer de-
coder structure as in CSCv2, with self-attention, bias cross attention,
and feedforward modules in each layer. For CSCv3-DA, the acoustic
information is incorporated into the decoder by cross attention which
is added between the self-attention and bias attention module in each
decoder layer, while the text encoder keeps the same structure as in
CSCv2. The comparison results between the two structures is shown
in Section 4.

Since the input audio feature sequence is typically long, we de-
fine an audio feature mask which masks audio features that are far
from the position that corresponds to the current word piece token.
For each token, we only attend to audio features corresponding to
the surrounding Sk words of this token. Sk is randomly sampled
from uniform distribution [1, Skmax], where Skmax is a pre-defined
parameter.

2.1.2. Semantic aware data augmentation

The training pairs of CSCv3 are constructed randomly with the of-
fline prepared data during training. To generate the biasing phrase
list for each utterance, CSCv2 randomly samples Nb biasing phrases
from an existing large biasing phrase list besides the reference con-
text phrase. Nb is randomly sampled from uniform distribution
[1, Nbmax], where Nbmax is the pre-defined max biasing phrase list
size, which doesn’t consider irrelevant hypotheses or pronunciation
similar phrases. As shown in the following table, CSCv3 improves
the sampling strategy with the prepared reference-hypotheses pairs
by two ways:

(1) Except for the raw ASR hypothesis of each utterance, we also
randomly replace hypothesis of the context phrases with the prepared
reference-hypotheses pairs, which improves the data varieties.

(2) To deal with anti-context cases where all biasing phrases are
not present in the utterance, we randomly add two types of train-
ing data with probability Panti: for the first type, the ground-truth
context phrase is simply removed from the bias list, and the corre-
sponding model output is also modified as non-context case; for the
second type, we not only remove the ground-truth context phrase,



but also add similar phrases into the biasing phrase list. These sim-
ilar phrases come from the hypotheses in the prepared reference-
hypotheses pairs.

Reference Call John at ten a.m.
ASR hypothesis Call Joe at ten a.m.
bias list {Sam, John, Dong, ...}
Context ref-hyp pair John – {Jane, Jon, June, Joe}

(1) Replace hypothesis with ref-hyp pair:
Hyp x Call Jane at ten a.m.
Ref y Call John at ten a.m.

(2.1) Remove ground-truth context phrase:
Hyp x Call Joe at ten a.m.
bias list {Sam, John, Dong, ...}
Ref y Call Joe at ten a.m.

(2.2) Add similar phrases into bias list:
Hyp x Call Joe at ten a.m.
bias list {Sam, John, Dong, Jane, Jon, ...}
Ref y Call Joe at ten a.m.

2.1.3. Fast partial adaptation

CSCv3 leverages both acoustics and text hypotheses information for
better context biasing. Training from scratch is time consuming, for
quick adaptation, we train the CSCv3 model based on a baseline
CSCv2 model and only update new components in CSCv3, which
includes audio adapter and acoustic attention layers. This strategy
“inserts” acoustic information into the raw CSCv2 model and we
will show its effectiveness in Section 4. We also use a parameter r to
incorporate the acoustic information into the model. In each encoder
layer of CSCv3-EA and decoder layer of CSCv3-DA, the data flow
of acoustic attention layer can be expressed as:

x = x0 + r · dropout(AcousticAtt(norm(x0))), (1)

where x0 and x are the input and output of acoustic attention layer.
r is randomly sampled from a uniform distribution [0.0, 1.0], which
represents the incorporation ratio of acoustic information in the
model.

2.2. Training Optimization

2.2.1. Loss Objectives

Like CSCv2, the loss function is the sum of CLS tag loss and context
index loss:

L = H(ŷcls, ycls) +H(ŷcind, ycind). (2)

We also use teacher-student learning [25, 26] to make the model
smaller and more efficient. The loss function of the student model
contains a hard loss Lhard which is the loss of student model output
yS to reference y, and a soft loss which is KL-divergence of yS to
teacher model output yT :

L = αLsoft + (1− α)Lhard (3)

Lhard = H(yS , y) (4)

Lsoft = DKL

(
softmax(

yS
T

), softmax(
yT
T

)
)
· T 2 (5)

where T is a temperature hyper-parameter to adjust the smoothness
of output probabilities, α determines the proportion of hard loss and
soft loss.

2.2.2. Data processing

To generate the training data for CSCv3, we first decode the E2E
ASR model for utterances with person names which are extracted
from ASR model training set. The top-one hypothesis, audio en-
coder outputs, and forced alignment of the hypothesis and audio are
needed for training. Then we locate and tag the positions of per-
son names in each transcript, which is used to construct reference
outputs during training.

Despite the raw ASR hypothesis, we also used a text to speech
(TTS) system to generate synthetic audios for the person names.
These synthetic audios are then fed into the ASR model to get hy-
potheses with more varieties. In this way we construct a set of
reference-hypotheses pairs for the person names.

2.3. Inference

Like CSCv2, we use an edit distance-based relevance ranker
(rRanker) to pre-select biasing phrases from the raw biasing phrase
list and deal with the possible scalability issue:

W j
r = −mini(edit distance(cj , ei))

len(cj)
, (6)

where ei is the segment cut off from input ASR hypothesis with the
same length of the context phrase cj from the i-th word. The final
relevance ranker weight is the minimum value of these edit distance
normalized by the length of cj .

The E2E ASR model decodes in a streaming way, we use the
intermediate results and their corresponding decoding positions to
estimate the rough alignment between audio and hypothesis. This
alignment is then converted to the audio feature mask as model input.

3. EXPERIMENT

3.1. Data sets

Training set We use a small set and a large set as the training data,
which include 0.2 thousand (K) hours and 17K hours of Microsoft
in-house en-US data respectively. We do a full decoding of the train-
ing data with the baseline E2E ASR model to get hypothesis and
audio encoder hidden for CSCv3 training.
Test set The test set consists of 12 Microsoft Teams meetings. Each
meeting corresponds to a name list which consists of 600 person
names, this list is expanded to a larger bias list with around 1500
phrases during inference. To evaluate the model performance on
anti-context cases where the ground-truth name does not appear in
the bias list, we also prepared 4 sets of bias lists with 25%, 50%,
75%, and 100% name coverage for each meeting. All the training
and test data is anonymized with personally identifiable information
removed.

3.2. Model settings

ASR model The baseline ASR model is a Conformer-Transducer
(C-T) [27] model with the efficient low-latency implementation
[28], trained with 64K hours Microsoft anonymized data. The di-
mension of audio encoder output is 512 and we only use top-1 text
hypothesis for CSCv3 input.
Teacher model For the teacher model, each transformer layer con-
tains a multihead-attention with 8 heads, and a 2048-dim feedfor-
ward layer. The text encoder, bias encoder and decoder all consist of
6 transformer blocks. The acoustic adapter consists of a 2048-dim



Table 1. Model performance with different bias list name coverage

Model 25% Coverage 50% Coverage 75% Coverage 100% Coverage

Recall WER Recall WER Recall WER Recall WER

C-T 50.2 12.5 50.2 12.5 50.2 12.5 50.2 12.5

C-T+Biasing 58.0 12.6 59.0 12.6 61.4 12.6 64.1 12.6

+CSCv2 60.4 12.7 63.7 12.6 70.3 12.6 75.1 12.6

+CSCv3-EA-S0-nAnti-r1.0 58.0 12.8 60.4 12.7 70.1 12.7 74.3 12.7

+CSCv3-EA-S0-nAnti-r0.1 61.0 12.6 64.1 12.6 70.3 12.6 75.1 12.6

+CSCv3-EA-S0 61.8 12.7 64.7 12.7 71.3 12.6 75.3 12.6

+CSCv3-EA-full 61.8 12.8 64.9 12.8 72.3 12.8 76.9 12.7

+CSCv3-EA 62.7 12.7 65.9 12.7 72.7 12.7 77.1 12.6

+CSCv3-DA 62.7 12.7 64.1 12.7 71.3 12.7 75.9 12.7

+CSCv3-EA-student 62.7 12.7 65.3 12.7 72.3 12.6 77.7 12.6

feedforward layer followed by layer normalization. For text encoder
of CSCv3-EA, an acoustic attention layer with 8 heads is inserted
after the self-attention layer. While for the decoder of CSCv3-DA,
an acoustic attention layer with 8 heads is sandwiched between the
self-attention layer and biasing cross attention layer in each decoder
block.
Student model For the student model, the text encoder, bias encoder,
and decoder all consist of 3 transformer blocks. The embedding
dimension is set to be 192, all the multi-head attentions have 4 heads,
and dimension of feedforward layers is 768. The feedforward layer
in the audio feature adapter is composed of a 512-dimension and a
192-dimension linear layer.

4. RESULTS

Baseline We use a C-T model as the baseline, and the C-T model
with FST biasing [5] which uses the same biasing phrase list as a
strong baseline (C-T+Biasing). In Table 1, we compare the name
recall and WER of the models with different bias list name coverage.
Where s% name coverage means there are s% of the ground truth
names appear in the bias list while the rest are missing. We can see
FST biasing has already achieved large name recall improvement
compared to the C-T model.
Data augmentation It should be noted that CSCv3-EA-S0-nAnti-
r0.1 and CSCv3-EA-S0-nAnti-r1.0 are the same model decoded with
different parameters r = 0.1 and r = 1.0. It’s trained with the
small training set and without anti-context cases mentioned in Sec-
tion 2.1.2. It shows that a small incorporation ratio of acoustic in-
formation (r = 0.1) leads to better performance. When the acoustic
information is fully incorporated (r = 1.0), the model performance
becomes worse. We have investigated the decoding results and found
that when r is large, the model becomes more “biasing” and anti-
context related errors are more likely to appear. This condition is not
preferred because we hope the model be more stable on such cases.
However, when anti-context data augmentation is added, as shown
in CSCv3-EA-S0 which is trained with the same small set, this prob-
lem is gone and we find whether to add incorporation ratio r during
training or inference does not influence the decoding results much,
and the name recall is also improved. Which indicates that data aug-
mentation leads to more stable results and better performance.

External acoustic attention CSCv3-EA-S0 shows that the model
achieves name recall gain even with a small training set. CSCv3-EA
is trained with the large training set, which shows significant perfor-
mance improvement when the training set becomes larger compared
to CSCv3-EA-S0. The comparison of CSCv3-EA and CSCv3-DA
indicates that incorporating the acoustic information into the text
encoder achieves larger performance improvement. We also fully
trained a CSCv3-EA model with all parameters updated with the
large training set, which is called CSCv3-EA-full model. We ob-
serve that CSCv3-EA-full does not perform as well as CSCv3-EA
which is partially trained. One of the reasons is that CSCv3-EA
can still benefit from the baseline CSCv2 model which was trained
with richer text-based data; another reason is that the current training
set lacks general utterances without person names, which makes the
model more biasing. It should be noted that CSCv2 shows limited
improvement when the bias list name coverage is small (e.g., 25%
and 50%), one of the reasons is that it wrongly corrects some anti-
context cases where the bias list does not contain the ground truth
name but with some other phrases with similar pronunciation. With
the external acoustic information, CSCv3 can deal with such issues
and achieve stable improvement among different name coverage.
Model size and latency In Table 1, CSCv3-EA-student is the stu-
dent model of CSCv3-EA, which shows similar performance com-
pared to CSCv3-EA but with smaller model size. We also tested
the latency of different models on the test set on a machine with
2.60GHz CPU using single thread regardless of baseline ASR model.
The quantized onnx student model of CSCv2 is 5.4MB with 45.0ms
latency per utterance, while CSCv3 is 6.2MB with 51.5ms per utter-
ance, which indicates slight increase of model size and latency due
to the external acoustic attention.

5. CONCLUSION

In this work, we propose an improved non-autoregressive (NAR)
spelling correction model for contextual biasing in end-to-end
transducer-based ASR systems with external acoustic attention and
semantic aware data augmentation. The proposed model is proved to
outperform the baseline ASR+Biasing system by as much as 20.3%
relative name recall gain and achieves stable improvement compared
to the traditional CSC method over different bias list coverage ratio.
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