
EmFore: Online Learning of Email Folder Classification Rules
Mukul Singh

Microsoft
Delhi, India

singhmukul@microsoft.com

José Cambronero
Microsoft

Redmond, USA
jcambronero@microsoft.com

Sumit Gulwani
Microsoft

Redmond, USA
sumitg@microsoft.com

Vu Le
Microsoft

Redmond, USA
levu@microsoft.com

Gust Verbruggen
Microsoft

Keerbergen, Belgium
gverbruggen@microsoft.com

ABSTRACT

Modern email clients support predicate-based folder assignment
rules that can automatically organize emails. Unfortunately, users
still need to write these rules manually. Prior machine learning
approaches have framed automatically assigning email to folders as
a classification task and do not produce symbolic rules. Prior induc-
tive logic programming (ILP) approaches, which generate symbolic
rules, fail to learn efficiently in the online environment needed
for email management. To close this gap, we present EmFore, an
online system that learns symbolic rules for email classification
from observations. Our key insights to do this successfully are:
(1) learning rules over a folder abstraction that supports quickly
determining candidate predicates to add or replace terms in a rule,
(2) ensuring that rules remain consistent with historical assign-
ments, (3) ranking rule updates based on existing predicate and
folder name similarity, and (4) building a rule suppression model
to avoid surfacing low-confidence folder predictions while keeping
the rule for future use. We evaluate on two popular public email
corpora and compare to 13 baselines, including state-of-the-art
folder assignment systems, incremental machine learning, ILP and
transformer-based approaches. We find that EmFore performs sig-
nificantly better, updates four orders of magnitude faster, and is
more robust than existing methods and baselines.

CCS CONCEPTS

• Computing methodologies→ Online learning settings; Rule
learning; • Information systems→ Email.

KEYWORDS

Email Classification, Online Learning, Learning by Examples

ACM Reference Format:

Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, and Gust Verbruggen.
2023. EmFore: Online Learning of Email Folder Classification Rules. In
Proceedings of the 32nd ACM International Conference on Information and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0124-5/23/10. . . $15.00
https://doi.org/10.1145/3583780.3614863

KnowledgeManagement (CIKM ’23), October 21–25, 2023, Birmingham, United
Kingdom. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3583780.3614863

1 INTRODUCTION

Email remains one of the most important forms of digital com-
munication. Professional users receive over 100 emails per day on
average [1]. With storage becoming cheaper, these emails are rarely
deleted [9]. Managing both unread and read emails in an inbox
thus becomes a time-consuming task. Furthermore, spending more
time on email has been found to correlate with lower perceived
productivity and higher measures of stress in professionals [30].

Most email services provide tools—backed by research—that help
users manage their inbox. Spam prediction reduces inbox clutter.
Estimating email importance [1] helps users focus on important
emails in the Focused inbox in Outlook and Priority inbox in Gmail.
Search helps users to quickly find specific emails [28].

To enable more efficient folder management, modern email
clients allow users to create rules for moving emails into folders
based on simple properties, for example, the subject containing a
specific phrase. These rules are a powerful tool for email manage-
ment, but authoring them manually can be difficult for novices and
tedious for advanced users.

Automatically categorizing emails in folders has attracted at-
tention in research [10, 14, 15, 17]. Early systems were based on
learning over a training set and freezing the models for infer-
ence [7, 18, 31]. More recent systems [10, 17] allow for updating
rules but these are over large batches and not real time. Many of
these same approaches frame categorization as classification and
fail to generate a symbolic rule, which users can inspect and in-
tegrate into their email client. On the other hand, inductive logic
programming based approaches [14, 15] do support symbolic rule
generation, but they have not supported online learning (i.e., up-
dating rules after every incoming email) as required in the email
management setting. We hypothesize that these limitations have
contributed to such functionality being absent in email clients.

In this paper, we introduce the first online system to learn rules
for email folder classification by demonstration. Our system, called
EmFore, observes a user moving emails into folders and learns a
rule for each folder. EmFore can update rules in real time with
each new incoming email, allowing incremental improvements in
performance. This approach draws inspiration from the successful
application of the programming by example paradigm in commercial
products like Excel [23] and Visual Studio [32].

2280

https://doi.org/10.1145/3583780.3614863
https://doi.org/10.1145/3583780.3614863
https://doi.org/10.1145/3583780.3614863
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583780.3614863&domain=pdf&date_stamp=2023-10-21

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, and Gust Verbruggen

Inspired by the rule language in popular email clients, the rules
learned by EmFore consist of propositions describing email proper-
ties. EmFore uses generalization and specialization to inductively
update these rules after each new email. To do this efficiently, we
(1) create an abstraction of the state of the inbox, (2) devise an
updating algorithm based on greedily ranking candidate predicates,
and (3) use rule suppression to reduce the number of false positives.

In addition to generating symbolic rules and supporting online
rule updates, EmFore also addresses the following gaps highlighted
in a recent survey on automated email classification [34]:

(1) Dynamic updating of the feature space. We do not use a fixed
feature representation of emails. New propositions are gen-
erated for each incoming email and the feature space is thus
automatically extended, when necessary.

(2) Reducing the false positive rate. We show that rule length is
an effective proxy for folders not having an intended rule.
EmFore can use this information to abstain from suggesting
predictions made by these rules.

(3) Concept drift. Users can change the scope of folders over
time, which leads to concept drift. As soon as a wrong classi-
fication is detected by the user, EmFore instantly updates the
associated rule to be consistent with all mails in the folder.
We thus address cases of concept drift where the scope be-
comes more general.

(4) Deep learning.We introduce four transformer-based approaches
as neural baselines, an approach missing in the email clas-
sification task literature, and show that our symbolic rule
learner outperforms these baselines.

In summary, we make the following contributions:

• We present a novel online algorithm for learning email folder
classification rules from a few email examples.
• We perform an extensive evaluation of EmFore on two
datasets, both in online and offline settings. We find that it
outperforms the next best system (Alecsa) by up to 9 points in
correct decision rate in the online setting, while learning up
to 3 orders of magnitude faster. We release EmFore-labeled
results for future use at https://github.com/microsoft/prose-
benchmarks/tree/main/Emfore.
• In addition to comparing to existing approaches, we address
an existing gap in the literature and implement four neu-
ral approaches based on related tasks. EmFore outperforms
these approaches by 10 - 15 points in correct decision rate,
while learning up to 4 orders of magnitude faster.
• We show that we can configure rule suppression and mail
retention in EmFore to reduce false positive rates and adapt
to concept drift. In addition, EmFore is adaptable to different
email clients (based on expressiveness of rules).

2 PROBLEM STATEMENT

We consider an online setting in which an ordered stream of mail
and their associated folder (𝑚1, 𝑓1), . . . , (𝑚𝑡 , 𝑓𝑡) are given and the
model has to predict the folder 𝑓𝑡+1 associated with mail𝑚𝑡+1. If
this prediction is incorrect—as indicated by the user—the model is
allowed to relearn. Any method can be evaluated in this setting by
learning the model from scratch after incorrect predictions.

In order to support integration in popular email clients, we con-
sider the model to consist of rules that are supported by such clients.
A rule is a formula in propositional logic where propositions are
interpreted with respect to emails. If a rule 𝑅 evaluates to true for
an email𝑚, we say that the email satisfies the rule and write𝑚 |= 𝑅.

Example 1. The rule InFrom(“straw”) ∨ InTo(“straw”) consists
of two propositions and is satisfied by emails with “straw” in at least
one of the sender or receiver fields.

By imposing an order on different rules for different folders,
each email is placed into exactly one folder. Letℛ = [(𝑅𝑖 , 𝑓𝑖)] be an
ordered list of rule–folder pairs with 𝑅𝑖 denoting a rule for folder
𝑓𝑖 . A mail 𝑚 is assigned to the first folder 𝑓𝑖 such that 𝑚 |= 𝑅𝑖
and we write ℛ(𝑚𝑖) = 𝑓𝑖 . If no rule holds for a mail, it defaults
to the special inbox folder. The last element of ℛ is thus always
(true, inbox). We say that ℛ is consistent with emails {(𝑚𝑖 , 𝑓𝑖)} if
ℛ(𝑚𝑖) = 𝑓𝑖 for all 𝑖 . Rules are thus an extension of decision lists
where the assigned value is not restricted to booleans [38].

3 APPROACH

Our system takes inspiration from mathematical induction. Let ℛ
be a set of rules consistent with the current emails. If the prediction
ℛ(𝑚★) = 𝑓 for a new email𝑚★ is wrong, as indicated by the user
moving the email to folder 𝑓 ★, we update the rule to be consistent
with all previous emails and the new email. We introduce three
components for doing so: a state 𝒮 that tracks candidate proposi-
tions for each folder, a space of rules over which ℛ is learned, and
an algorithm for updating ℛ. We will describe each component in
detail in the following subsections.

3.1 State

The state keeps track of the candidate propositions 𝑆𝑓 for each
folder 𝑓 and ensures that every proposition 𝑝 ∈ 𝑆𝑓 is satisfied by
an email𝑚𝑖 in (𝑚𝑖 , 𝑓𝑖) if and only if 𝑓𝑖 = 𝑓 . A proposition consists
of a logical predicate that can be evaluated on a mail and form the
building blocks of our rules. Not every proposition must satisfy
all mails in the folder. Any folder with an empty set of candidate
propositions cannot be covered by a rule. All propositions that are
constructed but not part of the state (because they are satisfied by
emails in multiple folders) are kept in a stateful variable called 𝑃all.

Candidate propositions are generated for an email from a set of
templates by substituting a placeholder 𝑒 with a string constant.
Table 1 shows a list of supported templates and how they generate
propositions. These templates were selected as the union of those
supported by different popular email clients.

Example 2. Some propositions for an email with receiver line
“strawbale@crest.org, absteen@dakotacom.net” are
To(“strawbale@crest.org”) To(“absteen@dakotacom.net”)
InTo(“strawbale”) InTo(“crest”)

· · ·
InFromOrTo(“strawbale”) InFromOrTo(“dakotacom”)

Candidate propositions for each folder are ranked to allow greedy
selection of promising ones when building rules. This ranking takes
into account: (1) the similarity between the string constants in the
proposition and the folder name, (2) the average similarity to string
constants of the current rule for that folder, and (3) the type of

2281

https://github.com/microsoft/prose-benchmarks/tree/main/Emfore
https://github.com/microsoft/prose-benchmarks/tree/main/Emfore

EmFore: Online Learning of Email Folder Classification Rules CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Covers mails uniquely covered by
p6 but not new mail.

p1

p5

p6

Rules

folder2

folder3

folder1 p2 ^ p3 p4

p7

SubjectContains("folder3")

p8 p6

replace

p1 p2 ^ p3 p8 Covers new mail and mails
uniquely covered by p4.

extend
p1 p2 ^ p3 p4 Covers new mail.p8

Generalize

Specialize

p9 p7

p6 ^ p9 p7

replace

extend
Covers mails uniquely covered by p6,

but does not cover new mail.

p5

p1 p2 ^ p3 p4

p6 p7

Figure 1: Generalization and specialization steps for a mail that should satisfy folder1 but instead satisfies folder3. First, we try

to replace propositions with candidates from the state such that folder1 satisfies the mail (generalize) and folder3 does not

(specialize). If no replacements are found, we extend the rule with new disjuncts (generalize) or conjuncts (specialize).

proposition. Similarities are computed with Jaro-Winkler string
similarity. Each of these properties yields a score, which are summed
to obtain a final score. The heuristic scores of proposition templates
are shown in Table 1. Finally, we compute the final proposition score
as a weighted sum of the individual scores. Section 4.5 explains how
these weights are learned. The learned weights show that folder
name similarity is the most important feature, followed by rule
constants similarity. Template score contributes least to the final
predicate rankings.

Example 3. Given the rule in Example 1 for a folder “straw” the
candidates from Example 2 are ranked as follows (from better to
worse).

InTo(“strawbale”) > InFromOrTo(“strawbale”) >

To(“ strawbale@crest.org”) > InTo(“crest”) >

To(“ absteen@dakotacom.net”) > InFromOrTo(“dakotacom”)

Whenever an email (𝑚𝑖 , 𝑓𝑖) comes in, propositions 𝑃𝑖 are exhaus-
tively generated, we add these propositions to 𝑆𝑓𝑖 while maintaining
the ranking and remove them from 𝑆𝑓𝑗 where 𝑓𝑖 ≠ 𝑓𝑗 . This pro-
cess happens before our rule updates, described in the next section,
which then handles necessary changes to existing rules.

3.2 Rule Space

We limit each folder 𝑓 to a single rule 𝑅𝑓 , which must be in disjunc-
tive normal form (DNF). As every logical formula can be written
in DNF, we do not lose expressivity. However, some email clients
cannot represent all logical formulas and thus will not be able to
represent all rules. Our algorithm can be easily adapted to sup-
port other forms, for example, we can disallow negation. We study
expressivity in our evaluation (RQ5).

To learn these DNF rules, EmFore relies on generalization and
specialization. Let 𝑐1 ∨ 𝑐2 be a rule with 𝑐1 = 𝑝1 ∧ 𝑝2 and 𝑐2 = 𝑝3.
Adding disjuncts (𝑐𝑖) generalizes a rule, as this allows it to match
more emails, adding conjuncts (𝑝𝑖) on the other hand specializes it,
as it will match fewer emails. In a rule with the fewest disjuncts
consistent with all mails in a folder, there are emails uniquely sat-
isfied by each of the disjuncts. We denote these emails with 𝑢 (𝑐𝑖).

Table 1: Proposition templates supported by EmFore, in-

spired by six popular email clients. A generator substi-

tutes 𝑒 with a string constant to obtain a proposition. Con-

stants are produced by a tokenizer that splits on all non-

alphanumerical characters. The score column shows the

heuristic value used for this proposition type when rank-

ing candidate propositions for a folder.

Proposition Generator Score

From(𝑒) Full email addresses in sender field. 5
InFrom(𝑒) Tokens in sender. 4
To(𝑒) Full addresses in receiver, cc and bcc

fields.
5

InTo(𝑒) Tokens in receiver, cc and bcc fields. 4
InFromOrTo(𝑒) Tokens in sender, receiver, cc and bcc

fields.
3

SubjectContains(𝑒) Tokens in subject field and name of the
folder.

5

BodyContains(𝑒) Tokens in email body and name of the
folder.

1

InSubjectOrBody(𝑒) Tokens in subject and email body, and
name of the folder.

2

Note that this means 𝑢 (𝑐𝑖) \ ∪𝑗≠𝑖𝑢 (𝑐 𝑗) is not empty, otherwise we
could remove 𝑐𝑖 and obtain a shorter rule for the folder.

3.3 Updating Rules

When a new email (𝑚★, 𝑓
★) comes in, each of the rules 𝑅𝑓 ∈

ℛ may be updated. The full algorithm is shown in Figure 2. If
𝑚★ ̸ |= 𝑅𝑓 ★ , meaning the email is not covered by the current rule
for folder 𝑓 ★, then it requires generalization (the cover function,
lines 12–28). Any rule 𝑅𝑓 with 𝑓 ≠ 𝑓 ★ and 𝑚★ |= 𝑅𝑓 , meaning
a rule from a different folder 𝑓 incorrectly covers the new email,
requires specialization (the uncover function, lines 30–51). The
ideas around specialization and generalization for learning rules
based on examples have been explored in ILP [33]. We extend these
ideas to work in an online learning system for the email domain.

2282

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, and Gust Verbruggen

1 function update(Map[Folder → Set[Predicate]] S,
2 Map[Folder → Set[Set[Predicate]]] R,
3 Set[Predicate] Pall,
4 Mail m,
5 Folder f):
6 if m ̸ |= Rf:
7 Rf ← cover(Sf, Rf, m, f)
8 foreach (f' → P) in S:
9 if m |= Rf’:
10 Rf’ ← uncover(Sf’, Rf’, Pall, m, f')
11
12 function cover(Set[Predicate] P,
13 Set[Set[Predicate]] R,
14 Mail m, Folder f):
15 // candidate replacements that cover m
16 cands ← {(p, c) | p ∈ 2𝑃 , c ∈ R, m |= p,
17 ∀ m' ∈ u(c): m' |= p}
18 // if any are found , apply shortest one
19 // that is ranked highest
20 if cands is not empty:
21 short ← {(p, c) | |p| = min(p, c) ∈ cands |p|}
22 p, c ← argmax(p, c) ∈ short rank(p, P \ c, R, f)
23 return (R \ Set([c])) ∪ Set([p])
24 // add the best shortest new disjunct
25 preds ← {p | p ∈ 2𝑃 , m |= p }
26 short ← {p | |p| = minp∈preds |p|}
27 p ← argmaxp∈ short rank(p, P, R, f)
28 return R ∪ Set([p])
29
30 function uncover(Set[Predicate] P,
31 Set[Set[Predicate]] R,
32 Set[Predicate] Pall,
33 Mail m, Folder f):
34 foreach (c ← { c | c ∈ 𝑅, m |= c})
35 // candidate replacements that do not cover m
36 cands ← {p | p ∈ 2𝑃 , m ̸ |= p,
37 ∀ m' ∈ u(c): m' |= p}
38 // if any are found , apply shortest one
39 // that is ranked highest
40 if cands is not empty:
41 short ← {p | |p| = minp∈ cands |p|}
42 p ← argmaxp ∈ short rank(p, P \ c, R, f)
43 R ← (R \ Set([c])) ∪ Set([p])
44 else
45 // add from rejected predicates
46 cands ← {p | p ∈ 2𝑃all ,
47 m ̸ |= p,
48 ∀ m' ∈ u(c): m' |= p}
49 short ← {p | |p| = minp∈ cands |p|}
50 p ← argmaxp∈ short rank(p, P \ c, R, f)
51 R ← (R \ Set([c])) ∪ Set([c ∪ p])

Figure 2: Rule update. In practice, the shortest elements are

lazily generated from the power sets 2𝑃 and 2𝑃all . For brevity
we use a set of predicates to denote a conjunction and a set of

set of predicates to denote a disjunction over conjunctions.

Both steps follow the same pattern of first trying to replace exist-
ing propositions (lines 15–23 and 36–43) and only adding disjuncts
(generalize) or conjuncts (specialize) if replacement fails (lines 24–
28 and 45–51). Candidates for replacement or addition are greedily
selected from the ranking stored in the state. Since replacement
guarantees a rule with minimal disjuncts, for generalization of a
disjunct, we only need to consider candidates 𝑝 for disjunct 𝑐 if
𝑚 |= 𝑝 for all𝑚 ∈ 𝑢 (𝑐) and𝑚★ |= 𝑝 (line 16) or just𝑚★ |= 𝑝 (line
25). During specialization of a conjunct 𝑐 , we only need to consider
𝑝 such that𝑚 |= 𝑝 for all𝑚 ∈ 𝑢 (𝑐) and𝑚★ ̸ |= 𝑝 (lines 36 and 46).

Example 4. An overview of generalization and specialization is
shown in Figure 1. The new mail is assigned to folder3, but it should

1 function predict(Map[Folder → Set[Predicate]] S,
2 Map[Folder → Set[Set[Predicate]]] R,
3 Mail m):
4 cov ← []
5 foreach (f → P) in S:
6 if m |= Rf:
7 cov ← cov ∪ m
8 if len(cov) = 1 and not suppress(S, cov[0], m)
9 return f
10 return null

Figure 3: EmFore prediction. If predict returns null, the
email remains in the default (inbox) folder.

have been in folder1, as detected by the user correcting this mistake.
Both replace and extend steps are shown, but we only extend if no
replacement is found.

While updating rules, when possible, EmFore ensures that they
remain consistent with all past predictions. If consistency cannot be
guaranteed, for example, because of concept drift or the usermaking
a mistake, the rule is not updated. Any risk of overfitting on past
predictions is by design—this reduces the number of false positives,
and the rule can be generalized on the next email that is moved into
the folder. The update algorithm is linear in the number of folders
(𝑓) and rule length (𝑅) and exponential in the number of predicates
(𝑃). Theoretically, this can exhibit exponential complexity but since
the power set construction is done lazily the observed complexity
is much lower as indicated in our latency experiments (Section-5.1).

3.4 Suppressing Rules

Tomitigate low-confidence predictions, for each incoming email, we
explicitly predict whether a folder assignment should be suppressed
or not. Our suppression model uses a linear combination of five
features with sigmoid activation to make predictions. The model
features are rule length, number of consecutive correct predictions
by the rule, running accuracy for the folder, average running ac-
curacy of specific disjuncts that the mail satisfied, and folder size.
Weights are optimized using gradient descent. Suppression is re-
lated to learning with rejection [3], but in our setting we employ the
model described to suppress predictions made by rules. Algorithm 3
describes how EmFore predicts folder assignment for a new mail.

4 EVALUATION SETUP

In this section, we describe the datasets and setup used to evaluate
EmFore, and the various existing and adapted baseline systems.

4.1 System Specifications

All experiments and studies have been carried out using Python
(version 3.8.7) on an Intel Core i7 processor (base at 1.8 GHz) and a
K80 GPU, a 64-bit operating system, and 32 GB RAM.

4.2 Datasets

We use two datasets in our evaluation. The first (and most popular)
is the Enron dataset [25]. After removing duplicates and outgoing
folders, we are left with 46,096 emails in 2,612 folders across 150
users. The second is the Avocado dataset [35] with 88,172 emails in
3,423 folders across 277 users after similar processing.

2283

EmFore: Online Learning of Email Folder Classification Rules CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Previous work often evaluates on the Enron–Bekkerman (EB)
subset, which consists of seven users in the Enron corpus with
a high number of mails. We report one result on this subset for
completeness, but our approach is less reliant on having a large
number of examples and does not discriminate on number of mails.

4.3 Setup

We evaluate EmFore in both the offline setup used in previous
work [10, 17] and an online setup. For both cases, all mails are
ordered chronologically for each user. In the offline setup, 𝑘% of
mails are used for training and either all remaining mails or the
next 10% of mails is used for testing. In the former case, 𝑘 is set to
different values (30, 60 and 90) and the results are averaged to get a
single score. The latter setup was introduced with Alecsa [17] to
take concept drift into account during evaluation.

Our online setup is aimed at more accurately reflecting how a
user would experience the system. For every mail, the system either
correctly places it in a folder, incorrectly places it in a folder or neu-
trally leaves it in the inbox whereas it should have been in a folder.
The proportion of correct decisions (+) and incorrect decisions (−)
are both recorded—everything else is a neutral decision. Whenever
an incorrect or neutral decision is made, the system is allowed to
retrain with the groundtruth label. To avoid large folder bias, we
average results first by folder and then across folders.

4.4 Baselines

We compare EmFore against a mixture of published systems that
perform folder classification and custom baselines that use popular
NLP and classification approaches that we adapted for this task.
• Decision trees [18], Support Vector Machines [7], Naive
Bayes [31] and Winnow [4] were among early methods ap-
plied to the problem of email folder classification.
• Alecsa [17] and ABC-DynF [10] are recent systems specifi-
cally designed for email folder classification. Unlike EmFore,
these systems do not generate rules for folders. We imple-
ment these systems as described by the authors in [17] and
[10] respectively. For Alecsa, since the consultation cost,
reward and punishment hyper-parameters used by the au-
thors are not available we perform a grid search and report
the best performance across all parameter values tested. The
systems are described in more detail in Section 7.
• Popper is a state-of-the-art inductive logic programming
system [16].We use Popper to learn a rule over our predicates
for each folder. Popper shares the ideas of generalization and
specialization that we extend in EmFore for online learning.
• Incremental Decision trees [42] are decision trees that are in-
crementally learned over sequential batches of data. Similar
to EmFore it is also an online learning system.
• Constrained clustering is a semi-supervised clustering tech-
nique which uses labelled data to generate linkage con-
straints that later guide the clustering of unlabelled samples.
We use COP-KMeans [44] which is a popular constrained
clustering technique based on K-Means [29].
• SentenceBERT is a popular sentence embeddingmodel trained
for multiple downstream language tasks [37]. We add a clas-
sification layer on top and fine-tune it end-to-end.

• KNN-BERT is a recent method that uses a KNN classifier to
optimize BERT embeddings for text classification using an
end-to-end model [27]. We fine-tune the KNN-BERT model
for our classification task. We set𝜙 = 0.5 balancing the linear
and KNN component in the final prediction. We test with 3,
5 and 10 neighbours and report the best performance.
• Contrastive learning optimizes the separation between exam-
ples of different classes. We implement the contrastive loss
as described in [41] and train BERT embeddings followed by
classification. Positive samples are emails from a folder and
negative samples are taken from other folders.
• T5 [36] is an encoder-decoder transformer pre-trained on
language. We fine-tune T5 to generate the target folder name
given the email header, body and available folder names.
• GPT-3.5 [8] is state-of-the-art language model. Like T5, we
prompt the model using the header, body and available folder
names and generate the target folder name.

4.5 Model Training

Optimizing weights for our method (ranking and suppression) and
pre-training of supervised baselines needs data. Training on other
users from the same dataset can bias results, as emails in the two
corpora are from within single companies. We therefore train on
one dataset and evaluate on the other.

To generate data for optimizing suppression weights, we run the
online learning setup without suppression to obtain (rule, correct-
ness) pairs. Since EmFore still performs well without suppression,
this process is repeated multiple times for shuffled folders and a
balanced set of correct and incorrect decisions is sampled. Neutral
decisions are counted as incorrect.

In the offline setting, all baselines are trained on the seen emails
for each user and evaluated on the rest of the emails. In the online
setting, for the neural baselines, we continue training the models
with new data. Alecsa and ABCDynF already define an update
method over batches. For all other baselines, in the online setup,
we retrain from scratch after each incorrect email classification.

5 RESULTS

We perform an extensive evaluation to answer the following re-
search questions.
Q1. Can EmFore quickly and accurately learn folder rules?
Q2. Can EmFore learn rules for folders with diverse emails?
Q3. Can EmFore suppression reduce false positives?
Q4. How does expressivity of rules affect performance?
Q5. How many emails need to be stored per folder to update

rules without sacrificing performance?

5.1 Performance (Q1)

Our symbolic learner makes more correct decisions (+) and fewer
incorrect decisions (−) than all baselines in the online evaluation, as
shown in Table 2. EmFore obtains a higher correct decision rate than
baselines in the offline evaluation used in previous work [10, 17].
We highlight how EmFore’s design enables this performance.

EmFore ensures that rules remain consistent on all historical
emails. This consistency, in combination with suppression, keeps
the incorrect decision rate low, even when learning rules for noisy

2284

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, and Gust Verbruggen

Table 2: System comparison. Rules denotes if a system can yield symbolic folder rules. In the online setup, EmFore makes more

correct decisions (+) and and fewer incorrect decisions (−) than baselines. For completeness, we also show correct decision rate

for five offline setups aggregated over Enron and Avocado datasets, as done in prior work [10, 17]. EmFore outperforms all

baselines in the offline setup as well. Asterisks (*) denote per-user timeout after five minutes.

System Description Online (+ and −) Offline (+)

Name Prior Work Rules Enron Avocado Train/test 30/60/90 + 10

+ − + − 10/90 50/50 90/10 All EB

Decision Tree Yes Yes 63.7 13.6 67.2 12.6 49.9 60.6 73.9 79.6 70.0
Incremental Decision Tree Yes Yes 64.3 10.2 68.8 11.3 49.6 60.4 73.7 79.3 69.8
Support Vector Machine Yes No 64.6 13.4 67.5 12.5 50.2 61.5 74.0 80.3 72.5
Naive Bayes Yes Yes 58.6 14.6 61.8 13.6 46.3 55.4 68.7 76.8 68.3
Moving Winnow Yes Yes 61.8 14.0 64.9 13.0 48.6 58.5 73.8 79.3 69.5
Popper No Yes * * * * 52.8 62.8 76.2 81.5 70.3
Constrained Clustering No No 60.1 14.3 64.3 13.1 47.2 56.3 72.5 79.5 69.7
Sentence BERT + Classification No No 60.4 14.3 62.7 13.4 46.9 57.8 70.7 77.6 68.8
T5 No No 61.9 14.0 65.3 12.9 47.1 59.6 75.2 78.3 69.7
GPT-3.5 No No * * * * 61.7 64.0 65.3 75.6 68.1
BERT K-Nearest Neighbours No No 67.4 12.8 71.7 11.7 53.4 64.8 77.1 80.6 72.3
Contrastive Learning No No 65.1 13.3 69.8 12.1 50.6 61.9 76.1 80.4 71.6
ABC-DynF Yes No 74.2 11.6 78.1 10.7 55.3 67.7 76.7 82.3 70.6
Alecsa Yes No 74.8 11.4 78.4 10.4 55.1 68.2 77.3 83.4 74.1
EmFore Yes 83.4 4.2 87.1 3.7 66.7 78.3 84.1 87.0 78.7

folders. By first performing a replacement step to bias towards short
rules and ranking candidate propositions, EmFore prevents heavy
overfitting on these historical assignments. Approaches with strong
generalization (like neural networks) or that are too greedy (like
decision trees) fail to keep the incorrect decision rate low.

Because EmFore is designed to favour precision over recall, the
ability to learn from each mistake causes the correct decision rate
to be higher than baselines. Focusing on each mistake also helps
to tackle concept drift, an example of which is shown in Figure 4.
When the user decides to expand the scope of a folder from FedEx
to delivery in general, a single email is sufficient for EmFore to
update its rule. Figure 5 shows the cumulative correct decision
rate (+) when updating after 1, 2, 5 or 10 emails. Especially when
the number of mails is small and the user is deciding the scope of
a folder, updating the rule more frequently significantly impacts
performance of future classifications.

EmFore is fast enough to carry out such rule updates after every
iteration. Figure 6 shows the learning time as a function of the
number of mails for EmFore, the best neural baseline and the best
existing method. Since EmFore is an online system, we show both
the cumulative time and the time taken at each iteration. Updating
the rule only takes a fraction of a second—four orders of magnitude
faster than relearning in Alecsa. Even cumulatively, EmFore is an
order of magnitude faster than Alecsa.

Table 3 shows some examples of the simple and interpretable
rules learned by EmFore for the user arnold-j from the Enron corpus.
Rule interpretability is crucial for deployment because users should
be able to easily verify and edit folder rules generated by EmFore.

5.2 Variety in Emails (Q2)

One advantage of neural methods is the ability to make semantic
classifications, where the user has a clear intent but there is no rule

C
or

re
ct

 D
ec

is
io

n
R

at
e

 ("FedEx")

 ("Delivery")SubjectContains

SubjectContains

Figure 4: Concept drift for Enron user arnold-j, who initially

only added FedEx mails to the fedex folder but later added

everything related to delivery. EmFore adapts to this change

after a single email.

Table 3: Examples of simple, inspectable, and understandable

EmFore rules for Enron user “arnold-j"’s first 5 folders.

Folder EmFore Rule

Avaya SubjectContains(“Avaya”)

Compaq InFrom(“Compaq”) ∨ SubjectContains(“Compaq”)

EBS InFromOrTo(“EBS”)

Airline InFrom(“Continental”) ∧ SubjectContains(“Flight”)

Colleen InFromOrTo(“colleen”)

that captures it. As an example, KNN-BERT achieves 68% folder
accuracy on folders named “personal” compared to 61% (EmFore)
and 54% (Alecsa). The average number of propositions for these

2285

EmFore: Online Learning of Email Folder Classification Rules CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Figure 5: Cumulative CDR of EmFore when updating after 1,

2, 5 or 10 mails on the Enron dataset. Updating at every iter-

ation allows EmFore to resolve concept drift when detected.

1 50 100 150 200 250 300 350 400 450 500
Number of mails

10−3
10−2
10−1
100
101
102
103

Ti
m

e
(s

ec
on

ds
)

EmFORE Cumulative
EmFORE Update

BERT-KNN Update
Alecsa Update

Figure 6: Learning time for increasing number of mails. For

EmFore we show both per-update and cumulative rule learn-

ing time. We plot the first 500 emails for better visualization,

however the same trend persists across additional emails.

folders is 13, which provides some indication that EmFore is not
capturing the correct intent. Figure 7a shows that correct decision
rate deteriorates with the number of propositions in the rule.

1 5 10 15 20 25 30 35
Length of Rule

0.2

0.4

0.6

0.8

1.0

C
or

re
ct

 D
ec

is
io

n
R

at
e

(a) Correct decision rate

1 5 10 15 20 25 30 35
Length of Rule

−0.5

0.0

0.5

1.0

Si
lh

ou
et

te
 S

co
re

(b) Silhouette score

Figure 7: Correct decision rate and Silhouette score by length

of EmFore rule. Folders with lower performance and Silhou-

ette score have longer rules.

We estimate the variety of emails in folders by treating folders
as clusters within a user and computing their Silhouette score [39].
We define similarity between two emails as the Hamming distance
between all propositions generated for them. Figure 7b shows how
the Silhouette score decreases as learned rules get longer. However,
Figure 8 shows that EmFore is more robust on folders of different

quality compared to the next-best baseline for each folder —scoring
between 10 and 15 absolute percentage points higher within the
Silhouette score range that contains most of the folders.

−0.75 −0.50 −0.25 0.00 0.25
Silhouette Score

0.4

0.6

0.8

1.0

C
or

re
ct

 D
ec

is
io

n
R

at
e

EmFORE
Best Baseline

(a) Correct decision rate (CDR).

−0.75 −0.50 −0.25 0.00 0.25
Silhouette Score

0.00

0.05

0.10

0.15

0.20

Pe
rf

or
m

an
ce

 D
iff

er
en

ce

(b) Difference in CDR.

Figure 8: Comparing EmFore and the best baseline for each

folder as a function of Silhouette score. Performance is com-

parable at the edges, but EmFore performs better overall.

Figure 9 shows the correct decision rate for a clean (williams-w3)
and noisy (beck-s) user based on the Silhouette score. Each red line
represents a new folder being created. For the clean user, EmFore
quickly learns a good representation. For the noisy user, EmFore
quickly learns reasonable rules for some folders, but as the user
adds folders without consistent topics, performance decreases.

5.3 Suppression (Q3)

To reduce false positives it is important that EmFore can suppress
unreliable classifications. In addition to our trained suppression
model, we also evaluate the following suppression strategies.
• No suppression.
• Only predict with rules shorter than a specified length.
• Only predict with rules for which the previous 𝑘 predictions
were correct.
• Neural suppression, which encodes the incoming email and
10 last emails with T5, combines them with cross-attention,
concatenates themanual features and passes the result through
a linear layer with sigmoid activation.

0 1000 2000 3000
Number of mails

0.5

0.6

0.7

0.8

0.9

1.0

C
or

re
ct

 D
ec

is
io

n
R

at
e

(a) Clean user (williams-w3)

0 1000 2000 3000
Number of mails

0.5

0.6

0.7

0.8

0.9

1.0

C
or

re
ct

 D
ec

is
io

n
R

at
e

(b) Noisy user (beck-s)

Figure 9: Cumulative correct decision rate of EmFore for a

noisy and clean user (based on Silhouette score) from the

Enron-Bekkerman dataset. There is a clear performance gap

between clean and noisy users.

2286

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, and Gust Verbruggen

Table 4 shows that training a suppression model based on fea-
tures of the rules clearly minimizes the number of incorrect moves
(−) without significantly sacrificing correct ones (+). Allowing only
one proposition per rule reduces the proportion of incorrect moves
(-4.5%) but affects the correct moves even more (-18%). Waiting
for correct classifications before moving a mail shows even more
drastic reduction in incorrect moves but with a significant drop in
correct decision rate. Neural suppression model reduces the propor-
tion of incorrect moves (-0.3%), but it relies on a huge model (60M
parameters) which makes inference 20 times slower than EmFore.

Table 4: Average suppression time, correct (+) and incorrect

(-) decision rates for different rule suppression strategies. Em-

Fore’s suppression model barely impacts correct decisions

and is comparable to neural while significantly faster.

Suppression Strategy Time Enron Avocado

+ − + −

No suppression 0ms 83.7 7.2 87.5 6.6
Rule length = 1 4ms 64.8 2.7 68.5 1.8
Rule length ≤ 3 4ms 76.9 3.6 81.1 3.0
Last email correct 12ms 70.5 4.3 74.1 3.9
Last two emails correct 12ms 66.5 0.8 70.3 0.6
Neural suppression 576ms 83.1 3.9 86.8 3.5
EmFore 25ms 83.4 4.2 87.1 3.7

Figure 10 shows how the correct, neutral and incorrect decision
rates evolve as more mails are seen for different suppression meth-
ods. We see that EmFore predicts neutral (No Move) for relatively
fewer emails (7.3%) and thus does not sacrifice coverage to reduce
false positives (Wrong Move) unlike other variations. Requiring the
last move to be correct and only allowing rules with three or fewer
propositions both keep the incorrect decision rate low, but also sac-
rifices a lot of correct decisions. Our suppression model decreases
the incorrect decision rate, without reducing correct decisions or
blowing up the inference time. Suppression based on last moves
highlights that EmFore makes effective use of each mistake, as the
correct decision rate without suppression is much higher (+13%).

5.4 Expressivity (Q4)

Different email clients support different rules, all of which can be
translated into DNF over a predicate space. Table 5 shows the cor-
rect (+) and incorrect (−) decision rates of EmFore with restricted
grammars and examples of clients that support these rule sets.

Negatives are rarely required and not allowing them does not
substantially impact performance (−1.2%). Not using conjunctions
causes worse propositions to be used as disjuncts (−3.5%). When
not allowing disjunctions, EmFore becomes worse at coping with
folders with a wider scope (−7%). In practice, all clients support
disjunctions by creating multiple rules for each folder.

5.5 Information Retention (Q5)

We investigate the effect of storing a subset of the folder’s mail. In
practice, email clients do not store all mails locally because of space
constraints, and only a subset is available locally at any instant. For

Table 5: Correct (+) and incorrect (-) decision rates for EmFore

with different rule grammars along with popular mail clients

that use these grammars. Full grammar performs the best.

Grammar Client Enron Avocado

+ − + −

Full Grammar Outlook 83.4 4.2 87.1 3.7
No Negatives Thunderbird 82.1 8.0 86.0 5.6
No Conjunction Gmail 79.7 9.4 83.7 7.0
No Disjunction 76.3 11.5 79.8 9.4

EmFore to be deployed in clients, it needs to maintain performance
without access to the entire history while updating a rule.

For this experiment, we compare EmFore against the best base-
line (Alecsa) and restrict both systems to only have access to the
latest 𝑘 emails. Figure 11 shows how the correct and neutral deci-
sion rates evolve as a function of the number of retained emails. We
find that EmFore consistently outperforms Alecsa by 10 absolute
percentage points in correct decision rate. Additionally, EmFore
sees diminishing returns from storing more emails faster (20 versus
40). These results show that EmFore can effectively update rules
without accessing the entire mail history.

6 DISCUSSION

Unfortunately, much of the research on email classification has
been carried out on private industrial datasets [6]. Our experiments
are carried out on two public datasets: Enron and Avocado, which
to the best of our knowledge remain the only public email corpora
actively used in research. As a result, performance on corpora that
have substantially different characteristics may be different.

As common in programming-by-example (PBE), EmFore as-
sumes the user provides accurate examples from which to learn.
Prior work on neural methods for PBE have explored learning from
noisy examples [19]. More recently, weighted finite-tree automata
have been applied to (symbolically) learn programs from noisy
examples [24]. Extending these ideas and evaluating them in the
context of email classification rule learning remains future work.

The approach underlying EmFore may be applicable to other
domains. Specifically, domains that require (1) simple rules learned
in an online fashion and (2) rules can be generated based on simple
syntactic predicates over meta-data or content. Exploring such
domains (e.g. document/folder classification) remains future work.

7 RELATEDWORK

RIPPER [13], which is based on a greedy keyword search, was the
first text classifier evaluated on email folder classification. Later,
many popular classification methods were applied to this domain:
Naïve Bayes, support vector machines and Winnow based tech-
niques [5]; neural networks [12]; random forests and ensembles
[26]. More recent work includes Alecsa [17] and ABC-DynF [10].
Alecsa uses an attention control mechanism to determine which
structural properties of emails should be used to assign emails to
folders. ABC-DynF uses Iterative Bayes [21] to update the weights
over a dynamic feature space when receiving batches of emails.

2287

EmFore: Online Learning of Email Folder Classification Rules CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

(a) EmFore suppression (b) No Suppression (c) Last move correct (d) Rule length 3

Figure 10: Evolution of correct, neutral and incorrect decision rates for different suppression methods. EmFore suppression

keeps the number of correct decisions high and reduces the number false positives. Requiring a correct classification (c) and

limiting the rule length (d) achieves even fewer false positives, but they achieve significantly fewer correct predictions.

5 10 20 30 40 50
Mails retained (m)

0.5

0.6

0.7

0.8

0.9

D
ec

is
io

n
R

at
e

Skip
Correct

(a) EmFore

5 10 20 30 40 50
Mails retained (m)

0.5

0.6

0.7

0.8

0.9

D
ec

is
io

n
R

at
e

Skip
Correct

(b) Alecsa

Figure 11: Correct (+) decision rate keeping𝑚 most recent

mails. EmFore maintains performance retaining only 20.

Past work in Inductive Logic Programming (ILP) have explored
the ideas of generalization and specialization used by EmFore to
represent hypotheses and data using first-order logic [33]. [15] uses
n-grams to learn first-order rules for classification. [14] extends
this idea by making the rules more readable. Incremental learning
has been studied in ILP as Theory Revision [33], which requires a
full history pass and become progressively more expensive. Like
ILP systems, EmFore uses symbolic predicates over emails that
are interpretable and can be inspected by the user. EmFore shares
motivation and ideas from these systems but there are two key
differences. First, EmFore is an online learning system that uses a
novel state abstraction for efficient updates to the ruleset after each
new email. Second, EmFore uses predicate ranking and suppression
that allow it to update efficiently in an online setting.

Related tasks like category prediction, spam detection and pri-
ority modeling have used graph neural networks [11], deep belief
networks [40] and word embeddings [2] trained on corpora of la-
belled mails for classifying new incoming emails. Another related
area of work is to group emails regarding their topic of discussion
into email conversation threads [12]. These systems classify mails
into predefined categories that are common for all users and known
ahead of time. Unlike these problems, EmFore handles dynamic
categories unique to each user that the user can modify over time.

Grbovic et al. [22] explore the possibility of automatically clas-
sifying emails into a limited set of latent folders, rather than user-
defined folders. Di Castro et al. [20] learn to predict the next action
(read, delete, reply, etc) for an email upon receipt. EmFore is explic-
itly designed to learn user-defined folder rules, which in turn may
be complementary as features for next-action prediction.

Surveys in email folder classification [34, 45] have pointed out
challenges such as false positives, concept drift, the need for an
evaluation that more closely mirrors user experience, lack of neural
baselines, and onerous classification time. We designed EmFore
and its evaluation to address these concerns. Bendersky et al. [6]
surveyed recent work in search and discovery in personal email;
EmFore’s PBE-approach complements the work detailed there.

Transformer-based models [43] have led to state-of-the-art per-
formance on a broad set of natural language processing (NLP) tasks.
We adapt T5, KNN-BERT [27] and contrastive learning [41] on top
of BERT for the task of email folder classification and use these as
baselines to evaluate EmFore.

8 CONCLUSION

We introduce EmFore, an online system for learning email folder
classification rules by observation. Unlike prior machine learning
approaches that treat this as a pure classification task, EmFore gen-
erates symbolic rules that are supported by modern email clients.
Unlike prior inductive logic programming (ILP) approaches, Em-
Fore learns rules in an online fashion by using an abstraction
of folder states to efficiently update rules. To mitigate low confi-
dence predictions, EmFore uses a suppression model. We carry out
extensive experiments on two datasets and show that EmFore out-
performs 14 baselines that represent state-of-the-art email classifi-
cation systems, machine learning approaches, incremental learning
approaches, ILP approaches, and neural models. Our results show
EmFore learns orders of magnitude faster than competitive base-
lines, while producing rules that more accurately classify emails.

9 ACKNOWLEDGEMENTS

We thank Siba Panigrahi for initial investigations on these datasets.

2288

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, and Gust Verbruggen

REFERENCES

[1] Tarfah Alrashed, Chia-Jung Lee, Peter Bailey, Christopher Lin, Milad Shokouhi,
and Susan Dumais. 2019. Evaluating user actions as a proxy for email significance.
In The World Wide Web Conference. Association for Computing Machinery, New
York, NY, USA, 26–36.

[2] EmanM. Bahgat, Sherine Rady,Walaa Gad, and Ibrahim F.Moawad. 2018. Efficient
email classification approach based on semantic methods. Ain Shams Engineering
Journal 9, 4 (2018), 3259–3269. https://doi.org/10.1016/j.asej.2018.06.001

[3] Peter L Bartlett and Marten H Wegkamp. 2008. Classification with a Reject
Option using a Hinge Loss. Journal of Machine Learning Research 9, 8 (2008),
1823–1840.

[4] R. Bekkerman, A. McCallum, and G. Huang. 2004. Automatic Categorization of
Email into Folders: Benchmark Experiments on Enron and SRI Corpora. CIIR
Technical Report, IR-418, University of Massachusetts, Amherst, USA.

[5] Ron Bekkerman, Andrew McCallum, and Gary B. Huang. 2005. Automatic Cate-
gorization of Email into Folders: Benchmark Experiments on Enron and SRI Corpora.
Technical Report. University of Massachusetts Amherst.

[6] Michael Bendersky, Xuanhui Wang, Marc Najork, and Donald Metzler. 2022.
Search and discovery in personal email collections. In Proceedings of the Fifteenth
ACM International Conference on Web Search and Data Mining. Association for
Computing Machinery, New York, NY, USA, 1617–1619.

[7] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. 1992. A training
algorithm for optimal margin classifiers. In Proceedings of the fifth annual work-
shop on Computational learning theory. Association for Computing Machinery,
New York, NY, USA, 144–152.

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot
Learners. In Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Asso-
ciates, Inc., USA, 1877–1901. https://proceedings.neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[9] David Carmel, Guy Halawi, Liane Lewin-Eytan, Yoelle Maarek, and Ariel Raviv.
2015. Rank by time or by relevance? Revisiting email search. In Proceedings of the
24th ACM International on Conference on Information and Knowledge Management.
Association for Computing Machinery, New York, NY, USA, 283–292.

[10] José M Carmona-Cejudo, Gladys Castillo, Manuel Baena-García, and Rafael
Morales-Bueno. 2013. A comparative study on feature selection and adaptive
strategies for email foldering using the ABC-DynF framework. Knowledge-Based
Systems 46 (2013), 81–94.

[11] Sharma Chakravarthy, Aravind Venkatachalam, and Aditya Telang. 2010. A
Graph-Based Approach for Multi-folder Email Classification. In 2010 IEEE In-
ternational Conference on Data Mining. IEEE Computer Society, USA, 78–87.
https://doi.org/10.1109/ICDM.2010.55

[12] James Clark, Irena Koprinska, and Josiah Poon. 2003. A neural network based
approach to automated e-mail classification. In Proceedings IEEE/WIC interna-
tional conference on web intelligence (WI 2003). IEEE, IEEE Computer Society,
USA, 702–705.

[13] William W Cohen et al. 1996. Learning rules that classify e-mail. In AAAI spring
symposium on machine learning in information access, Vol. 18. Stanford, CA, AAAI,
USA, 25.

[14] Elisabeth Crawford, Judy Kay, and Eric McCreath. 2002. Automatic Induction of
Rules for e-mail Classification. Elsevier 1, 1 (04 2002).

[15] Elisabeth Crawford, Judy Kay, and Eric McCreath. 2002. IEMS - The Intelligent
Email Sorter. In Proceedings of the Nineteenth International Conference on Machine
Learning (ICML ’02). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
83–90.

[16] Andrew Cropper and Rolf Morel. 2021. Learning programs by learning from
failures. Machine Learning 110, 4 (2021), 801–856.

[17] Mostafa Dehghani, Azadeh Shakery, andMaryam SMirian. 2016. Alecsa: attentive
learning for email categorization using structural aspects. Knowledge-Based
Systems 98 (2016), 44–54.

[18] Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. 1997. Inducing
features of random fields. IEEE transactions on pattern analysis and machine
intelligence 19, 4 (1997), 380–393.

[19] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman
Mohamed, and Pushmeet Kohli. 2017. Robustfill: Neural program learning under
noisy i/o. In International conference on machine learning. PMLR, Association for
Computing Machinery, New York, NY, USA, 990–998.

[20] Dotan Di Castro, Zohar Karnin, Liane Lewin-Eytan, and Yoelle Maarek. 2016.
You’ve got mail, and here is what you could do with it! analyzing and predicting
actions on email messages. In The 9th ACM conference on web search and data
mining. Association for Computing Machinery, New York, USA, 307–316.

[21] Joao Gama. 2003. Iterative bayes. Theoretical Computer Science 292, 2 (2003),
417–430.

[22] Mihajlo Grbovic, Guy Halawi, Zohar Karnin, and Yoelle Maarek. 2014. How
many folders do you really need? classifying email into a handful of categories. In
Proceedings of the 23rd ACM International Conference on Conference on Information
and Knowledge Management. Association for Computing Machinery, New York,
NY, USA, 869–878.

[23] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. ACM Sigplan Notices 46, 1 (2011), 317–330.

[24] Shivam Handa and Martin C Rinard. 2020. Inductive program synthesis over
noisy data. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
Association for Computing Machinery, New York, NY, USA, 87–98.

[25] Bryan Klimt and Yiming Yang. 2004. The enron corpus: A new dataset for email
classification research. In European conference on machine learning. Springer,
Springer, Berlin, Heidelberg, 217–226.

[26] Irena Koprinska, Josiah Poon, James Clark, and Jason Chan. 2007. Learning to
classify e-mail. Information Sciences 177, 10 (2007), 2167–2187.

[27] Linyang Li, Demin Song, Ruotian Ma, Xipeng Qiu, and Xuanjing Huang. 2021.
KNN-BERT: fine-tuning pre-trained models with KNN classifier. arXiv preprint
arXiv:2110.02523 1, 2110 (2021), 8 pages.

[28] Joel Mackenzie, Kshitiz Gupta, Fang Qiao, Ahmed Hassan Awadallah, and Milad
Shokouhi. 2019. Exploring user behavior in email re-finding tasks. In The World
Wide Web Conference. Association for Computing Machinery, New York, NY,
USA, 1245–1255.

[29] J MacQueen. 1967. Classification and analysis of multivariate observations. In
5th Berkeley Symp. Math. Statist. Probability. ACM, online, 281–297.

[30] Gloria Mark, Shamsi T Iqbal, Mary Czerwinski, Paul Johns, Akane Sano, and
Yuliya Lutchyn. 2016. Email duration, batching and self-interruption: Patterns of
email use on productivity and stress. In Proceedings of the 2016 CHI conference
on human factors in computing systems. Association for Computing Machinery,
New York, NY, USA, 1717–1728.

[31] Andrew McCallum, Kamal Nigam, et al. 1998. A comparison of event models
for naive bayes text classification, In AAAI-98 workshop on learning for text
categorization. AAAI 752, 41–48.

[32] Anders Miltner, Sumit Gulwani, Vu Le, Alan Leung, Arjun Radhakrishna, Gustavo
Soares, Ashish Tiwari, and Abhishek Udupa. 2019. On the fly synthesis of edit
suggestions. Proceedings of the ACM on Programming Languages 3, OOPSLA
(2019), 1–29.

[33] Stephen Muggleton and Luc de Raedt. 1994. Inductive Logic Programming:
Theory and methods. The Journal of Logic Programming 19-20 (1994), 629–679.
https://doi.org/10.1016/0743-1066(94)90035-3 Special Issue: Ten Years of Logic
Programming.

[34] Ghulam Mujtaba, Liyana Shuib, Ram Gopal Raj, Nahdia Majeed, and Mo-
hammed Ali Al-Garadi. 2017. Email classification research trends: review and
open issues. IEEE Access 5 (2017), 9044–9064.

[35] Douglas Oard, William Webber, David A. Kirsch, and Sergey Golitsynskiy. 2015.
Avocado Research Email Collection. https://catalog.ldc.upenn.edu/LDC2015T03.

[36] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine
Learning Research 21, 140 (2020), 1–67. http://jmlr.org/papers/v21/20-074.html

[37] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP). Association for Computational
Linguistics, Hong Kong, China, 3982–3992. https://doi.org/10.18653/v1/D19-1410

[38] Ronald L Rivest. 1987. Learning decision lists. Machine learning 2, 3 (1987),
229–246.

[39] Peter J Rousseeuw. 1987. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied mathematics
20 (1987), 53–65.

[40] Ahmad Sallab and Mohsen Rashwan. 2012. E-mail classification using deep
networks. Journal of Theoretical and Applied Information Technology JATIT, 37
(03 2012).

[41] Xi’ao Su, Ran Wang, and Xinyu Dai. 2022. Contrastive Learning-Enhanced Near-
est Neighbor Mechanism for Multi-Label Text Classification. In Annual Meeting
of the Association for Computational Linguistics. Association for Computational
Linguistics, Dublin, Ireland, 672–679.

[42] Paul E. Utgoff, Neil C. Berkman, and Jeffery A. Clouse. 1997. Decision Tree
Induction Based on Efficient Tree Restructuring. Machine Learning 29, 1 (oct
1997), 5–44. https://doi.org/10.1023/A:1007413323501

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc., Long Beach, US. https://proceedings.neurips.cc/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

2289

https://doi.org/10.1016/j.asej.2018.06.001
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1109/ICDM.2010.55
https://doi.org/10.1016/0743-1066(94)90035-3
https://catalog.ldc.upenn.edu/LDC2015T03
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1023/A:1007413323501
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

EmFore: Online Learning of Email Folder Classification Rules CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

[44] KiriWagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. 2001. Constrained K-
Means Clustering with Background Knowledge. In Proceedings of the Eighteenth
International Conference on Machine Learning (ICML ’01). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 577–584.

[45] Xiao-Lin Wang and Ian Cloete. 2005. Learning to classify email: a survey. In 2005
International Conference on Machine Learning and Cybernetics. IEEE, Online, 5716
– 5719 Vol. 9. https://doi.org/10.1109/ICMLC.2005.1527956

2290

https://doi.org/10.1109/ICMLC.2005.1527956

	Abstract
	1 Introduction
	2 Problem Statement
	3 Approach
	3.1 State
	3.2 Rule Space
	3.3 Updating Rules
	3.4 Suppressing Rules

	4 Evaluation Setup
	4.1 System Specifications
	4.2 Datasets
	4.3 Setup
	4.4 Baselines
	4.5 Model Training

	5 Results
	5.1 Performance (Q1)
	5.2 Variety in Emails (Q2)
	5.3 Suppression (Q3)
	5.4 Expressivity (Q4)
	5.5 Information Retention (Q5)

	6 Discussion
	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

