
298

Explainable Program Synthesis by Localizing Specifications

AMIRMOHAMMAD NAZARI∗, University of Southern California, USA

YIFEI HUANG∗, University of Southern California, USA

ROOPSHA SAMANTA, Purdue University, USA

ARJUN RADHAKRISHNA,Microsoft, USA

MUKUND RAGHOTHAMAN, University of Southern California, USA

The traditional formulation of the program synthesis problem is to �nd a program that meets a logical
correctness speci�cation. When synthesis is successful, there is a guarantee that the implementation satis�es
the speci�cation. Unfortunately, synthesis engines are typically monolithic algorithms, and obscure the
correspondence between the speci�cation, implementation and user intent. In contrast, humans often include
comments in their code to guide future developers towards the purpose and design of di�erent parts of
the codebase. In this paper, we introduce subspeci�cations as a mechanism to augment the synthesized
implementationwith explanatory notes of this form. In this model, the usermay ask for explanations of di�erent
parts of the implementation; the subspeci�cation generated in response is a logical formula that describes the
constraints induced on that subexpression by the global speci�cation and surrounding implementation. We
develop algorithms to construct and verify subspeci�cations and investigate their theoretical properties. We
perform an experimental evaluation of the subspeci�cation generation procedure, and measure its e�ectiveness
and running time. Finally, we conduct a user study to determine whether subspeci�cations are useful: we
�nd that subspeci�cations greatly aid in understanding the global speci�cation, in identifying alternative
implementations, and in debugging faulty implementations.

CCS Concepts: • Software and its engineering→ General programming languages; Automatic pro-

gramming; • Theory of computation→ Semantics and reasoning.

Additional Key Words and Phrases: Program synthesis, program comprehension, explainability

ACM Reference Format:

Amirmohammad Nazari, Yifei Huang, Roopsha Samanta, Arjun Radhakrishna, and Mukund Raghothaman.
2023. Explainable Program Synthesis by Localizing Speci�cations. Proc. ACM Program. Lang. 7, OOPSLA2,
Article 298 (October 2023), 25 pages. https://doi.org/10.1145/3622874

1 INTRODUCTION

Program synthesis technology has made tremendous advances over the past two decades [Alur et al.
2013a, 2017; Feng et al. 2018; Jha et al. 2010; Reynolds et al. 2015; Solar-Lezama et al. 2006]. It has
been applied to diverse domains, including end-user programming [Gulwani 2011; Le and Gulwani
2014; Singh 2016], data science [Wang et al. 2021a], networking [Shi et al. 2021], robotics [Feniello
et al. 2014] and programmer assistance tools [Alur et al. 2013b; Singh et al. 2013].

∗Both authors contributed equally to this paper.

Authors’ addresses: Amirmohammad Nazari, nazaria@usc.edu, University of Southern California, USA; Yifei Huang,
yifeih@usc.edu, University of Southern California, USA; Roopsha Samanta, roopsha@purdue.edu, Purdue University, USA;
Arjun Radhakrishna, arradha@microsoft.com, Microsoft, USA; Mukund Raghothaman, raghotha@usc.edu, University of
Southern California, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/10-ART298
https://doi.org/10.1145/3622874

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0009-0000-5675-247X
HTTPS://ORCID.ORG/0009-0006-5675-4065
HTTPS://ORCID.ORG/0009-0000-2456-217X
HTTPS://ORCID.ORG/0000-0002-5559-5932
HTTPS://ORCID.ORG/0000-0003-2879-0932
https://doi.org/10.1145/3622874
https://orcid.org/0009-0000-5675-247X
https://orcid.org/0009-0006-5675-4065
https://orcid.org/0009-0000-2456-217X
https://orcid.org/0000-0002-5559-5932
https://orcid.org/0000-0003-2879-0932
https://doi.org/10.1145/3622874

298:2 Amirmohammad Nazari, Yifei Huang, Roopsha Samanta, Arjun Radhakrishna, and Mukund Raghothaman

Despite these developments, one aspect of program synthesis that is being examined only
recently concerns questions of trust and interpretability. In particular, most synthesis engines do
not explicitly report connections between the speci�cation and the synthesized code. In addition,
writing correct speci�cations is a non-trivial task, as has been long recognized by researchers
in model checking [Könighofer et al. 2009; Kupferman and Vardi 2003]. Even relatively simple
speci�cation mechanisms such as programming-by-example (PBE) are subject to omission, user
error and noise [Handa and Rinard 2020]. Finally, maintaining the synthesized implementation in
the face of changing requirements remains an outstanding problem.

Some techniques to address these challenges involve guidance from advanced interaction models,
speci�cation re�nement, and the use of explanatory artifacts [Mayer et al. 2015; Peleg et al. 2018;
Tiwari et al. 2020; Zhang et al. 2021, 2020]. However, these techniques focus either on disambiguating
the speci�cation, such as by augmenting input-output examples with user annotations, or using
their guidance to prune the search space and thereby accelerate synthesis. Notably, none of these
approaches provide explanations of how the synthesized program satis�es the speci�cation.
In contrast, when human programmers write code, they include comments and other forms of

documentation that indicate its design, purpose, and connection to the rest of the codebase. This
helps future developers to reason about the software system in question, and enables ongoing main-
tenance, bug �xes, feature additions, optimization, and porting. Research on modular veri�cation
also uses similar approaches, leveraging function summaries and other �ne-grained properties
instead of directly establishing properties about the program as a whole.
Inspired by these ideas, we introduce the concept of subspeci�cations as a general mechanism

to identify the constraints imposed by the global speci�cation on individual parts of the imple-
mentation. Consider for example the task of synthesizing a function 5 : Z × Z → Z such that
5 (1, 2) = 3 ∧ 5 (2, 3) = 5 ∧ 5 (1, 0) = 2. Say the synthesizer produces the solution:

51 (G,~) = ifG ≥ ~ then G + 1
︸︷︷︸

ℎ1

else G + ~
︸︷︷︸

ℎ2

. (1)

The user might now ask questions about di�erent parts of the program. For example, to understand
the subexpression marked ℎ1 in the then-branch, they might ask what other expressions could be
used instead. One can readily observe that alternative implementations exist, such as:

52 (G,~) = ifG ≥ ~ then ~ + 2 else G + ~, and

53 (G,~) = ifG ≥ ~ then G + ~ + 1 else G + ~,

among others. Further re�ection reveals that any function 5 ∗ : Z→ Z of the form:

5 ∗ (G,~) = ifG ≥ ~ then 61 (G,~) else G + ~

also satis�es the speci�cation i� the new subexpression 61 : Z × Z → Z satis�es the condition
61 (1, 0) = 2. The condition 61 (1, 0) = 2 therefore summarizes the constraints on the subexpression
labelled ℎ1 by the global speci�cation and the surrounding implementation. Subspeci�cations
formalize this process of reverse-engineering requirements on di�erent parts of the implementation
from the original speci�cation-implementation pair.

Subspeci�cations (or simply subspecs for short) can be used to connect parts of the implementa-
tion back to the original speci�cation, in a manner similar to requirements traceability in software
engineering [Gotel and Finkelstein 1994]. The user can also use them to re�ne the speci�cation
and gain insight into how the implementation works. For example, they might observe that the
then-branch of Equation 1 is under-constrained and this might lead them to provide additional
input-output examples to prune the space of feasible implementations. In addition, subspecs could
be used to determine connections between di�erent parts of the implementation: for example,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

Explainable Program Synthesis by Localizing Specifications 298:3

one might observe that the subexpressions marked ℎ1 and ℎ2—with subspecs 61 (1, 0) = 2 and
62 (1, 2) = 3 ∧ 62 (2, 3) = 5 respectively—have independent subspeci�cations and can therefore be
separately manipulated without interfering with global correctness.
Having introduced the concept of subspeci�cations, we turn our attention to investigating

their theoretical properties. First, we present an algorithm to obtain a simple subspec from a
speci�cation, implementation and subexpression of interest. This is a two-pass algorithm which
initially constructs a “seed” subspec and then simpli�es this into an optimized representation. In
experiments with two synthesis frameworks, SyGuS [Alur et al. 2013a] and DreamCoder [Ellis et al.
2021], our algorithm, which we call (3, is able to generate small subspecs in reasonable amounts
of time: Overall, the size of the resulting subspec is only 74% of the size of the beginning seed
subspeci�cations in over 74% of the SyGuS benchmarks and 59% of the size in 59% of the DreamCoder
benchmarks. Furthermore, 78% of the SyGuS and all of the DreamCoder subspeci�cation synthesis
tasks can be completed in less than one second, potentially enabling its application to interactive
program reasoning.
A second algorithmic problem involves determining the correctness of a proposed subspeci�-

cation. While this problem can be hard in general, we present an algorithm to verify correctness
for the speci�c case of point-wise speci�cations, an important category of synthesis problems in
which all calls to the target function in the spec are syntactically identical [Alur et al. 2017]. We
then investigate the simplifying power of subspeci�cations in di�erent situations, and identify
conditions under which point-wise specs lead to point-wise subspecs and under which PBE syn-
thesis tasks lead to PBE subspecs. Finally, we attempt to formalize the intuition that individually
understanding the parts of a program can lead to an understanding of its whole. While this recon-
struction theorem admittedly requires some technical assumptions, it naturally leads us to identify
connections between di�erent parts of the program and—analogous to the idea of joint probability
distributions—motivates the generalized concept of joint subspeci�cations.
To evaluate whether subspeci�cations are helpful to users of program synthesis tools, we con-

ducted a small user study with 20 graduate students. Across six tasks requiring users to assess and
manipulate the output of a program synthesizer, we determined that subspeci�cations lead to a
90% improvement in the accuracy of responses and a 34% reduction in the time needed to arrive at
conclusions. In post-study discussions, participants reported that subspecs helped in visualizing
the output of the synthesized implementation, and indicated a strong preference for having access
to subspecs while answering questions about synthesized implementations.

Contributions. In summary, we make the following contributions in this paper:

(1) We propose the concept of subspeci�cations as a general framework to facilitate user under-
standing in program synthesis systems.

(2) We develop algorithms to construct and verify subspeci�cations and investigate their theo-
retical properties.

(3) We conduct a user study to determine the value of subspeci�cations to users of program
synthesizers and conclude that subspeci�cations can help achieve a better understanding of
both speci�cations and implementations.

(4) We implement the subspeci�cation generation algorithm for two synthesis frameworks,
SyGuS and DreamCoder, and present experiments showing that it is able to e�ciently
generate small subspeci�cations for a range of synthesis tasks.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

298:4 Amirmohammad Nazari, Yifei Huang, Roopsha Samanta, Arjun Radhakrishna, and Mukund Raghothaman

2 FORMALLY DEFINING SUBSPECIFICATIONS

Consider the following speci�cation i which describes an integer-valued function 5 : Z × Z→ Z:1

5 (G,~) = 5 (~, G) ∧ 5 (G,~) ∈ {G − ~,~ − G}.

The goal is to �nd a function 5 which satis�es this speci�cation for all values of the free variables,
G and ~. Given this speci�cation, a synthesizer such as EUSolver [Alur et al. 2017] may produce the
following implementation:

51 (G,~) = ifG ≥ ~
︸︷︷︸

ℎ1

then G − ~
︸︷︷︸

ℎ2

else ~ − G
︸︷︷︸

ℎ3

. (2)

The function 51 computes the absolute value of the di�erence between its inputs, i.e., |G−~ |. An SMT
solver can verify that the synthesized function 51 satis�es the speci�cation i . However, the user
may �nd it hard to trust the synthesis process: To be con�dent in the implementation, they must
�rst be sure that the speci�cation i they have written accurately captures their intent. Second, not
only must they be convinced that the implementation 51 satis�es i , but they must also understand
the obscured connection between the implementation and speci�cation in order to maintain and
modify it in response to changing requirements in the future.
Let us attempt to understand the reasoning behind choosing G ≥ ~ as the subexpression ℎ1 in

the implementation. We can see that any function 5 ∗ of the form:

5 ∗ (G,~) = if61 (G,~) then G − ~ else ~ − G

satis�es the speci�cation i i� 61 satis�es the property:

G ≠ ~ =⇒ 61 (G,~) ≠ 61 (~, G). (3)

Therefore, the following alternative implementation also satis�es i :

52 (G,~) = ifG < ~ then G − ~ else ~ − G . (4)

This new implementation 52 computes −|G − ~ |. This observation surprised one of the authors of
this paper, who initially believed that the intent of the speci�cation was to determine the absolute
value of the di�erence, |G − ~ |. Mismatches of this kind between speci�cations and user intentions
become more likely as the problem complexity increases.

Our thesis is that requirements on subexpressions (such as Equation 3 on 61 (G,~)) can help users
achieve a better understanding of the speci�cation and the implementation, and can provide them
with a mechanism to interrogate the synthesizer. We call these requirements on subexpressions
subspeci�cations. We will formally de�ne subspeci�cations in the rest of this section, and consider
several examples in Section 3.

Synthesis problems. We begin by recalling that a synthesis problem % = (5 , i (5 , x)) consists of:
(a) an uninterpreted function 5 with appropriate type signature, and (b) a quanti�er-free formula
i (5 , x) with free variables x . The goal of the synthesizer is to �nd a function expression 5 such
that i (5 , x) holds for all values of the free variables x .

Remark 2.1. Many synthesis frameworks additionally constrain the space of possible implementa-
tions, either through grammars [Alur et al. 2013a], components [Jha et al. 2010], or DSLs [Ellis et al.
2021] that may be used to construct well-formed programs. However, because subspeci�cations are
de�ned and computed as post-hoc explanations for an already synthesized implementation, we
will ignore these constraints in the following discussion.

1Problem named diff.sl in the CLIA track of the 2018 SyGuS competition.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

Explainable Program Synthesis by Localizing Specifications 298:5

We say that a SyGuS speci�cation is point-wise if all calls to the function 5 to be synthesized
have syntactically identical arguments [Alur et al. 2017]. For example, the speci�cation 5 (G,~) =

5 (~, G) ∧ 5 (G,~) ∈ {G − ~,~ − G} is not point-wise as 5 is called both with the arguments (G,~)
and (~, G). On the other hand, 5 (G,~) ≥ G ∧ 5 (G,~) ≥ ~ is a point-wise speci�cation. The presence
of higher-order functions in DreamCoder makes a general de�nition of a point-wise speci�cation
challenging.

Program locations and holes. Given a function expression 5 , a program location ℎ in 5 is a node in
its abstract syntax tree (AST). The subexpression at ℎ is the expression corresponding to the subtree
rooted at ℎ, which we denote by 5 ↓ℎ. Given an alternative expression 6, we write 5 [6/ℎ] to denote
the expression obtained by replacing the subexpression at ℎ with 6. We say two holes ℎ1 and ℎ2 are
independent if neither is an ancestor of the other. Given multiple pairwise-independent holes ℎ1,
. . . , ℎ= and expressions 61, . . . , 6= , we de�ne 5 [61/ℎ1, . . . , 6=/ℎ=] to be the expression obtained by
simultaneously replacing each expression at ℎ8 with 68 .

Example 2.2. Consider the implementation 51 (G,~) = ifG ≥ ~
︸︷︷︸

ℎ1

then G − ~
︸︷︷︸

ℎ2

else ~ − G from

Equation 2 with the holes ℎ1 and ℎ2 given by the highlighted locations. We have that 51 ↓ℎ1 = G ≥ ~

and 51 ↓ ℎ2 = G − ~. If 61 (G,~) = G < ~ then we have 51 [61/ℎ1] = ifG < ~ then G − ~ else ~ − G .

Subspeci�cations. Let % = (5 , i (5 , x)) be a synthesis problem instance, and let 50 be an implemen-
tation which satis�es i . For a given hole ℎ of 50, we say that a formulak (6, x) is a subspeci�cation
for ℎ in 50 if every alternative subexpression 60 satis�esk i� the modi�ed implementation 50 [60/ℎ]

satis�es the global speci�cation i . Formally, we want that for all 60, 60 |= k ⇐⇒ 50 [60/ℎ] |= i .
Similarly, we can de�ne joint subspeci�cationsk (61, . . . , 6=, x) for multiple pairwise-independent
holes ℎ1, . . . , ℎ= by requiring for all 61, . . . , 6= , (61, . . . , 6=) |= k ⇐⇒ 50 [∀8, 68/ℎ8] |= i .

Note that subspeci�cations are not necessarily unique and multiple formulas may satisfy all the

required conditions. We use the notation i |
5

ℎ
to denote some arbitrary subspeci�cation for ℎ in 5 ,

and i |
5

ℎ1,...,ℎ=
to denote some arbitrary subspeci�cation for multiple holes ℎ1, . . . , ℎ= in 5 .

Example 2.3. Continuing from Example 2.2, the expression G ≠ ~ =⇒ 6(G,~) ≠ 6(~, G) from
Equation 3 is a valid subspeci�cation of ℎ1 in 51. Intuitively, we want that (G,~) and (~, G) to take
di�erent branches of the if construct whenever G and ~ are di�erent.

3 MOTIVATING EXAMPLES

We will now present examples to show how subspeci�cations can be used to aid in understanding
and debugging the output of program synthesizers. We hope to show the breadth of potential
applications and the value of algorithms that can automatically generate subspecs. We adapt our
�rst two examples from Figures 1B and 11B respectively of [Ellis et al. 2021]:

Example 3.1 (Sort). Say the user wishes to synthesize a function 5 which sorts the list of numbers
provided as input. They specify this function using the following input-output example:

5 ([9; 2; 7; 1]) = [1; 2; 7; 9]. (5)

The implementation produced by DreamCoder may be transcribed as follows:

5 (;) = map (fun= → 615 (;, 1 + =)) (range(len(;))), where

615 (;, =) = 613 (filter (fun I → = > len (filter (funD → I > D) ;)) ;), and

613 (;) = hd (filter (fun~ → isnil (filter (fun I → I > ~) ;)) ;).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

298:6 Amirmohammad Nazari, Yifei Huang, Roopsha Samanta, Arjun Radhakrishna, and Mukund Raghothaman

Notice that the implementation is cryptic and the intermediate functions, 615 and 613 have uninfor-
mative names. In fact, in order to supplement their narration, the authors supply these functions
with the more informative names =-th smallest element and maximum respectively. As we will
observe in Task 5 of our user study, recovering descriptive names from an unannotated codebase
is challenging. On the other hand, the global speci�cation, Equation 5, induces the following
subspeci�cation for the concept 613:

613 ([1]) = 1 ∧ 613 ([2; 1]) = 2 ∧ 613 ([2; 7; 1]) = 7 ∧ 613 ([9; 2; 7; 1]) = 9,

which immediately suggests that its purpose is to determine the largest element of the input list.

The reader might wonder whether the user could simply request an explanation from a language
model such as ChatGPT [OpenAI 2022] or Codex [Chen et al. 2021]. We note that there are qualita-
tive di�erences between the two approaches: while LLMs present explanations in natural language,
subspeci�cations are formal objects which potentially lend themselves to further deductive analy-
sis. Furthermore, the lack of guarantees and instability of LLM outputs inhibits their immediate
applicability: for example, the online ChatGPT interface to the GPT-4 language model proposed the
name find_smallest_element, which is the opposite of the purpose revealed by its subspec above.

Example 3.2 (List di�erence). In our second example, the user seeks a function 5 which computes
the element-wise di�erence of two lists of numbers supplied as input. They begin with the following
example of its behavior:

5 ([10; 11; 8], [1; 7; 5]) = [9, 4, 3]. (6)

The synthesizer produces the following implementation as a solution:

5 (;1, ;2) = 61 (;1,(-), ;2), where

61 (;1, op, ;2) = map (fun= → op(62 (=, ;1), 62 (=, ;2))) (range(len(;1))), and

62 (=, ;) = hd (fold (funD, E → tl(D)) (range(=)) ;).

As before, the purpose of the intermediate functions 61 and 62 is non-obvious. On the other hand,
the subspeci�cation for 62 turns out to be the following:

62 (0, [10; 11; 8]) − 62 (0, [1; 7; 5]) = 9 ∧

62 (1, [10; 11; 8]) − 62 (1, [1; 7; 5]) = 4 ∧

62 (2, [10; 11; 8]) − 62 (2, [1; 7; 5]) = 3.

This hints that 62 (=, ;) computes the =-th element of the list ; . Moreover, observe that even though
the original speci�cation, Equation 6 was a PBE, the subspeci�cation is not. In particular, the
subspeci�cation can be used to identify semantically distinct alternative implementations of 62,
including 6′2 (=, ;) = 62 (=, ;) + 2 , for an arbitrary constant 2 .

As with the previous example, we once again asked GPT-4 to generate a suitable name for the
function 62. It responded with the suggestion remove_first_n_charswhich is once again incompati-
ble with its real purpose. Although we are excited by the possibilities of LLMs in program synthesis
and associated tasks, their responses remain unreliable in our experience, especially when dealing
with unidiomatic code.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

Explainable Program Synthesis by Localizing Specifications 298:7

Example 3.3. Consider the following speci�cation i1 from the 2018 SyGuS competition:2

0 ≤ 5 (G,~) ≤ 2
∧ 5 (G,~) = 0 =⇒ G = ~

∧ 5 (G,~) = 0 ∧ 1 ≤ 8, 9 ≤ 2 =⇒ |G − ~ | ≤ (G − ~) (9 − 8) ∨ 5 (G + 8, ~ + 9) = 0
∧ 5 (G,~) ≠ 0 =⇒ 5 (G + 5 (G,~), ~ + 5 (G,~)) ≠ 0 ∧ |G − ~ | > 0.

(7)

Observe that the speci�cation is hard to understand because it spans several lines and has com-
plex Boolean structure. On the other hand, EUSolver produces the following remarkably simple
implementation:

5 (G,~) = ifG = ~ then 0
︸︷︷︸

ℎ1

else 1
︸︷︷︸

ℎ2

. (8)

Let us manually construct a subspeci�cation for ℎ1, ℎ2 in 5 . We examine all implementations
of the form 5 ∗ (G,~) = ifG = ~ then 61 (G,~) else 62 (G,~). From the second and fourth clauses
of the global speci�cation, it follows that 5 (G,~) = 0 i� G = ~. From this, we can see that any
function which satis�es the second and fourth clauses will automatically satisfy the third clause as
setting G = ~ in the consequent of the third clause will make it trivially true. The �rst clause of
the speci�cation i1 may be equivalently written as 5 (G,~) ∈ {0, 1, 2}. From our observations, it

follows that 5 ∗ (G,~) satis�es i1 i� 61 (G,~) and 62 (G,~) together satisfy i1 |
5

ℎ1,ℎ2
, where:

i1 |
5

ℎ1,ℎ2
≡ G = ~ =⇒ 61 (G,~) = 0

∧ G ≠ ~ =⇒ 62 (G,~) ∈ {1, 2}.

In other words, this formula is the subspeci�cation of ℎ1 and ℎ2 under i1.

Observe that thei1 |
5

ℎ1,ℎ2
is signi�cantly smaller than the original speci�cationi1. In addition, note

that i1 |
5

ℎ1,ℎ2
is a point-wise speci�cation, even though the global speci�cation i1 included multiple

syntactically unequal calls to 5 , including 5 (G,~), 5 (G + 8, ~ + 9), and 5 (G + 5 (G,~), ~ + 5 (G,~)) and

was therefore not a point-wise speci�cation. We claim that it is easier to understand i1 |
5

ℎ1,ℎ2
than

to understand i1 and, by suggesting alternative implementations, provides additional insight into
the constraints imposed by i1. We empirically verify these claims in Task 1 of the user study in
Section 6, where we observe that users are faster and more accurate in answering questions about
this speci�cation-implementation pair when they have access to subspeci�cations.

Example 3.4 (Traceability). Consider the following PBE speci�cationi2, adapted from the problem
named LinExpr_inv1_ex.sl from the 2017 SyGuS competition.

5 (11, 4) = 1 ∧ 5 (25, 3) = 1 ∧ 5 (7, 21) = 1 ∧ 5 (2, 38) = 1 ∧
5 (26, 1) = 3 ∧ 5 (75, 1) = 3 ∧ 5 (1, 38) = 3 ∧ 5 (1, 48) = 3.

Given this speci�cation, EUSolver responds with the following implementation:

5 (G,~) = ifG ≤ 1 then 3G
︸︷︷︸

ℎ1

else if~ ≤ 1 then 3~
︸︷︷︸

ℎ2

else 1
︸︷︷︸

ℎ3

.

2Problem named jmbl_fg_VC22_a.sl in the CLIA track.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

298:8 Amirmohammad Nazari, Yifei Huang, Roopsha Samanta, Arjun Radhakrishna, and Mukund Raghothaman

Given this implementation, the subspeci�cations for the locations marked ℎ1, ℎ2, and ℎ3 are:

i2 |
5

ℎ1
≡ 61 (1, 38) = 3 ∧ 61 (1, 48) = 3,

i2 |
5

ℎ2
≡ 62 (26, 1) = 3 ∧ 62 (75, 1) = 3, and

i2 |
5

ℎ3
≡ 63 (11, 4) = 1 ∧ 63 (25, 3) = 1 ∧ 63 (7, 21) = 1 ∧ 63 (2, 38) = 1,

respectively. Computing the subspeci�cations immediately reveals which examples in the PBE
problem are handled by which branches of the if-then-else expression. This shows the distribution
of the training data between di�erent parts of the implementation, and clari�es the choice of each
of the individual subexpressions 5 ↓ ℎ1, 5 ↓ ℎ2, and 5 ↓ ℎ3. For example, focusing only on 5 ↓ ℎ1

using i2 |
5

ℎ1
it is easy to see why 3G is a valid expression for ℎ1.

Examining these subspeci�cations might also indicate to the user which parts of the implementa-
tion have insu�cient numbers of examples and suggest ways to strengthen the speci�cation. They
might also observe that although there are only two groups of examples, of the form 5 (_, _) = 1 and
5 (_, _) = 3 respectively, there are three branches, and that both branches ℎ1 and ℎ2 are responsible
for ful�lling examples of the form 5 (_, _) = 3. Users can use these observations to con�rm that the
division of data between di�erent branches is consistent with their intent and knowledge of the
problem domain. This reasoning naturally mirrors the way users often conceptualize their code,
distinguishing its behavior on general cases from its behavior on exceptional corner cases.

We used a more elaborate version of this speci�cation-implementation pair in Task 2 of our user
study. We broadly observed that participants with subspeci�cations are able to more readily under-
stand the relevance of individual examples, and that subspeci�cations aid in better understanding
possible user intent.

From the examples presented so far, the reader might object that subspeci�cations merely convey
information that developers can already obtain by embedding print statements to code. We note
however that the main distinction between the two approaches is that print statements describe
the behavior of the speci�c implementation under consideration (i.e., the behavior of the code, “as
it is”), while the subspeci�cation constrains the space of possible alternative implementations. As
we argue in the following example, subspeci�cations describe the code “as it should be”.

Example 3.5 (Unconstrained subexpressions). We adapt the following PBE speci�cation i from
the problem named univ_4_short.sl from the 2017 SyGuS competition:

5 ("NYU", "New York, New York, USA") = "New York, NY, USA" ∧

5 ("UCLA", "Los Angeles, CA") = "Los Angeles, CA, USA".
(9)

Given this speci�cation, CVC5 synthesizes the following implementation:

5 (F1,F2) = if endswith(F2, "USA") then · · · else (replace(F2, "New York", "PA"
︸︷︷︸

ℎ

) + ", USA").

Anecdotally, synthesizers such as EUSolver and CVC5 are prone to producing unusual fragments
such as replace(F2, "New York", "PA") in the implementation above. Our subspeci�cation synthesis
algorithm concludes that the subspeci�cation for location marked ℎ is true. In other words, ℎ can
be replaced by any other well-formed expression of the same type and is otherwise unconstrained.
Furthermore, note that this is true even though the subexpression at ℎ is executed upon evaluating
the second input-output example.

Upon further investigation of the code, one notices that the input examples that reach ℎ do not
contain "New York" as a substring. As a result, the replace statement has no e�ect on the input

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

Explainable Program Synthesis by Localizing Specifications 298:9

string and changing the replacement string ℎ to any other expression would not alter the global
behavior on the input-output examples.
Finally, observe that while subspeci�cations immediately draw attention to such anomalous

subexpressions, traditional debugging techniques such as printing the values of subexpressions do
not transparently reveal these phenomena. In any case, as we will remark in Section 6.2, participants
in our user study were hesitant to rely on print statements and other experimental observations
while making judgments about the behavior of code.

Example 3.6 (Debugging synthesizers). We draw our �nal example, i3, from the PBE SLIA track
of the 2017 SyGuS competition:3

5 ("Ducati100") = "Ducati" ∧ 5 ("Honda125") = "Honda" ∧

5 ("Ducati125") = "Ducati" ∧ 5 ("Honda250") = "Honda" ∧

5 ("Ducati250") = "Ducati" ∧ 5 ("Honda550") = "Honda".

(10)

EUSolver solves this problem with the following implementation:

5 (G) = substr(G, 0, 5)
︸ ︷︷ ︸

ℎ1

+ strat(substr(G, 5, 4), 0)
︸ ︷︷ ︸

ℎ2

. (11)

Unfortunately, CVC5 rejects this same implementation as being inconsistent with the examples.
In order to diagnose this discrepancy, we used CVC5 to compute the subspeci�cations of the holes

labelled ℎ1 and ℎ2 in Equation 11, which results in i3 |
5

ℎ1
= false and the following formula, i3 |

5

ℎ2
,

respectively:
5 ("Ducati100") = "i" ∧ 5 ("Honda125") = "" ∧

5 ("Ducati125") = "i" ∧ 5 ("Honda250") = "" ∧

5 ("Ducati250") = "i" ∧ 5 ("Honda550") = "".

This indicates that there is no expression61 that can be substituted in6(G)+strat(substr(G, 5, 4), 0)
to obtain a valid solution, and hence hints that CVC5 and EUSolver understand the expression
strat(substr(G, 5, 4), 0) di�erently. Further investigation reveals that there was a discrepancy
between the two SyGuS solvers—CVC5 and EUSolver—in the semantics of the substr function:
In general, the function substr(F, 8, 9) returns the �rst 9 characters in F starting from index 8 ,
however, when 8 + 9 exceeds the length of the string, CVC5 returns the entire su�x starting from
position 8 , whereas EUSolver returns the empty string. Ignoring parts of the program with false

subspeci�cations allowed us to rapidly localize the problem to the second subexpression in the
concatenation. This is the one of the few implementations produced by EUSolver for which we
encounter the inconsistent subspeci�cation false.
In Tasks 3 and 4 of the user study, we presented participants with this faulty implementation

and asked them to identify the bug. Participants with access to subspecs had a higher success rate
than the control group, although most of them were admittedly confused about the meaning of
false subspeci�cations. We nevertheless believe that experience with logical speci�cations can
eventually make users familiar with unintuitive speci�cations of this form.

4 ALGORITHMIC SYNTHESIS OF SUBSPECIFICATIONS

We note that our de�nition of subspeci�cations in Section 2 is purely descriptive, and does not
explain their construction or even guarantee their existence. We will focus on these algorithmic
issues in this section. We �rst note that a simple but potentially large subspeci�cation may be easily
constructed, and our procedures will rely on various algorithmic manipulations of this seed subspec.

3File named bikes_small.sl from the PBE strings track.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

298:10 Amirmohammad Nazari, Yifei Huang, Roopsha Samanta, Arjun Radhakrishna, and Mukund Raghothaman

4.1 The Seed Subspecification

As a running example for this section, we consider the following simple speci�cation i4 of a
function 5 : Z × Z→ Z:

5 (G,~) ≥ G ∧ 5 (G,~) ≥ ~. (12)

Note that the speci�cation is satis�ed by the function that returns the larger of its two inputs:

5 (G,~) = ifG ≥ ~ then G
︸︷︷︸

ℎ

else ~. (13)

Say the user probes the subexpression G that appears in the then-branch of the above function
expression and consider all potential alternative implementations of the form:

5 ∗ (G,~) = ifG ≥ ~ then 6(G,~) else ~,

where 6 is a fresh uninterpreted function. Observe that 5 ∗ (G,~) satis�es i4 i� 6(G,~) satis�es the
following speci�cation, obtained by substituting 5 ∗ into Equation 12:

(ifG ≥ ~ then 6(G,~) else ~) ≥ G ∧

(ifG ≥ ~ then 6(G,~) else ~) ≥ ~.
(14)

Equation 14 is a subspeci�cation of ℎ under the global speci�cation i4.
Observe that this technique is quite general: We begin by replacing the subexpression at the site

of the hole ℎ in the implementation 5 with a call to a fresh uninterpreted function 6. The return
type of 6 would be the same as the type of the subexpression currently residing at ℎ. In addition,
the newly inserted call to 6 would have the same arguments as the formal parameters of 5 . We can
express this construction as:

seed(i, 5 , ℎ) = _6.i (5 [6/ℎ], x). (15)

Note that seed(i, 5 , ℎ) is itself a speci�cation of 6 and contains the same free variables x as i . From
construction, it follows that:

Lemma 4.1. For all global speci�cations i (5 , x), implementations 50 and program locations ℎ,

seed(i, 50, ℎ) is the subspeci�cation of ℎ under i .

We call this formula the seed subspec of ℎ under i . Note that even though this construction
is a valid subspeci�cation, it is often very large—especially when the global speci�cation is long
or makes multiple invocations of the synthesis target. In fact, in our experiments in Section 7,
we observe that the seed subspec is, on average, 5× the combined size of the speci�cation and
implementation. In these situations, the seed subspec constructed in Equation 15 provides limited
insight, especially when compared to optimized representations, such as G ≥ ~ =⇒ 6(G,~) ≥ G .

4.2 From (Sub-)Specifications to Indicator Functions

At its heart, our algorithm begins with the seed subspeci�cation and attempts to simplify it into a
more compact representation. Themain challenge in this process is the presence of the uninterpreted
synthesis function 6(G,~), whose second-order quanti�er makes it di�cult directly simplify. Our
key insight is to replace calls to the synthesis function 6(G,~) in speci�cations such as Equation 14
with a fresh �rst-order logical variable C , resulting in the Boolean-valued indicator function:

indi4 (G,~, C) = (ifG ≥ ~ then C else ~) ≥ G ∧ (16)

(ifG ≥ ~ then C else ~) ≥ ~.

Notice that the indicator function can be used to test whether a given implementation 6(G,~) locally
satis�es the speci�cation at (G = G0, ~ = ~0) by evaluating indi4 (G0, ~0, 6(G0, ~0)). In other words,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

Explainable Program Synthesis by Localizing Specifications 298:11

6 |= i4 i� for all values of the inputs G and ~, indi4 (G,~, 6(G,~)) evaluates to true. Our goal is to
obtain a simpli�ed representation of indi4 and convert this back into a speci�cation for 6.
We begin by formally showing how to formally construct indicator functions. First, �x a map:

C = {5 (G) ↦→ C5 (G) , 5 (~) ↦→ C5 (~) , . . . , (17)

5 (0) ↦→ C5 (0) , 5 (1) ↦→ C5 (1) , . . . ,

5 (G + ~) ↦→ C5 (G+~) , 5 (5 (G)) ↦→ C5 (5 (G)) , . . . }

from all syntactically distinct calls to the synthesis target 5 (· · ·) to their corresponding test variables
C5 (·· ·) . Ensure that all test variables C• are fresh, and do not occur in the speci�cation i in question.

Now construct the indicator expression indi by replacing all calls to the synthesis function 5 (· · ·)

in the speci�cation i with the corresponding test variable C5 (·· ·) . For example, the speci�cation
5 (G) > G would result in the indicator expression C5 (G) > G , and the speci�cation 5 (5 (G)) > 5 (G)

would result in the indicator expression C5 (5 (G)) > C5 (G) .
Note that we �x the map C• from syntactically di�erent function calls to their corresponding

test variables globally across all speci�cations. Hence, one should conceptualize the indicator
function as taking the in�nitely long vector of) valuations of all test variables as input, accessing
the (necessarily �nite) subset of relevant test variables, and discarding the remaining useless inputs.
For example, consider the speci�cations i (5 , G) = 5 (G) ≥ G and k (5 , G) = 5 (5 (G)) ≥ G . They
would result in the indicator functions:

indi (G, C5 (G) , . . . , C5 (0) , C5 (1) , . . . , C5 (5 (G)) , . . .) = C5 (G) ≥ G, and

indk (G, C5 (G) , . . . , C5 (0) , C5 (1) , . . . , C5 (5 (G)) , . . .) = C5 (5 (G)) ≥ G

respectively. Because the mapping into test variables C• de�nes a bijection, it is possible to exactly
recover the function speci�cation i from its indicator representation indi .

Lemma 4.2 forms the heart of our algorithmic development:

Lemma 4.2. If two speci�cations i (5 , x) andk (5 , x) have equivalent indicator functions, indi and

indk , then for all potential implementations 5 , 5 |= i i� 5 |= k .

Proof. Assume otherwise. WLOG, assume that 5 6 |= i but 5 |= k . Therefore, there exists a
valuation x = v of free variables such that ¬i (5 , v). Let vC be the instantiation of the test variables
C• according to the values of 5 at the corresponding input points. Observe that indi (v, vC) = false =

indk (v, vC). It follows that ¬k (5 , x), which contradicts the assumption that 5 |= k . �

4.3 Simplifying Specifications

We illustrate the end-to-end subspeci�cation synthesis pipeline in Figure 1. We start with the
seed subspeci�cation and apply a sequence of simpli�cation passes to the corresponding indicator
function. We recover the �nal subspeci�cation from this optimized representation. In the rest of
this section, we focus on the simpli�cation process for implementations obtained from SyGuS
solvers, which we describe in Algorithm 1. In contrast, the subspeci�cation synthesis procedure
for DreamCoder implementations simpli�es the indicator function using a set of rewrite rules. We
brie�y describe this procedure in Appendix A.

It can be proved by induction on 4 that Simplify(4, c) is identically equal to 4 on all inputs that
satisfy the predicate c . As a straightforward consequence of Lemma 4.2, we then have:

Lemma 4.3. Let i be a speci�cation, and letk be the speci�cation associated with the simpli�ed form

of its indicator function, indk = Simplify(indi , true). Then, the speci�cations i andk are equivalent.

Our implementation includes two notable optimizations over the procedure described in Lemma 4.3.
First, instead of requiring global equality between the original and simpli�ed indicator functions,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

298:12 Amirmohammad Nazari, Yifei Huang, Roopsha Samanta, Arjun Radhakrishna, and Mukund Raghothaman

i

5

ℎ

kseed = seed(i, 5 , ℎ) indseed Pre Simplify indopt kopt

Fig. 1. The subspecification synthesis process using our system (3. We first construct the seed subspecification

using Equation 15, and simplify its indicator representation, indseed using Algorithm 1 to obtain an optimized

indicator indopt. From this optimized indicator, we recover the final output subspecification.

Algorithm 1 Simplify(4, c). Recursively simpli�es the expression 4 under the assumptions that
its inputs satisfy the condition c .

The following cases arise based on the syntactic form of the expression 4:

(1) If 4 = 2 , for some constant 2 in the theory: Return 2 .
(2) If 4 = E , for some formal input variable E : Return E .
(3) If 4 = if 41 then 42 else 43, for some sub-expressions 41, 42, 43, let:

4′ = if 4′1 then 4′2 else 4′3, where

4′1 = Simplify(41, c),

4′2 = Simplify(42, c ∧ 4′1), and

4′3 = Simplify(43, c ∧ ¬4′1).

(4) Otherwise, if 4 = op(41, 42, . . . , 4:) for some operator op, let:

4′ = op(4′1, 4
′
2, . . . , 4

′
:), where

4′8 = Simplify(48 , c), for each 8 .

(5) Synthesize a function 4′′ which is equal to 4′ on all points which satisfy c :

4′′ = Sygus(4′′ | ∀x, c (x) =⇒ 4′′ (x) = 4′ (x)).

(6) Return 4′′ if synthesis was successful and |4′′ | < |4′ |. Otherwise, return 4′.

indi and indk , we only require equality over a more restricted space of inputs, thereby permitting
more aggressive simpli�cation. Second, in order to reduce load on the SyGuS solver, we perform a
preprocessing pass that performs optimizations such as constant folding. We now describe these
optimizations in some detail. We describe the preprocessing passes in Appendix A.

Relaxing global indicator equality. Note that even though Lemma 4.2 holds even for non-pointwise
speci�cations, the requirement that indi and indk coincide everywhere sometimes limits the
e�ectiveness of simpli�cation. As an example, consider the speci�cation,

i ≡ ~ = I =⇒ 5 (G + ~) = 5 (G + I).

Note that this speci�cation is satis�ed by all functions 5 : Z→ Z, and is equivalent tok ≡ true.
However, because their indicator functions:

indi (G,~, I, C5 (G+~) , C5 (G+I)) = (~ = I =⇒ C5 (G+~) = C5 (G+I)), and

indk (G,~, I, C5 (G+~) , C5 (G+I)) = true,

are inequivalent, the synthesizer is unable to simplify i into k . On the other hand, notice that
their behaviors only diverge on inputs where ~ = I and C5 (G+~) ≠ C5 (G+I) . Since the test variables
C• in the proof of Lemma 4.2 are instantiated based on the implementation 5 and the values of G ,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

Explainable Program Synthesis by Localizing Specifications 298:13

~, I, these distinguishing inputs would violate the functional constraints on 5 and are therefore
physically unrealizable.
We therefore associate each speci�cation i with a set of functional constraints FCi which is

the conjunction of all clauses x = ~ =⇒ C5 (x) = C5 (~) , for each pair 5 (x), 5 (~) of syntactically
di�erent function calls in i . For the example constraint i considered above, FCi ≡ G +~ = G +I =⇒

C5 (G+~) = C5 (G+I) . To compute the optimized subspeci�cation, it now su�ces to �nd a formulak such
that FCi =⇒ indi = indk . We therefore pass FCi as the seed assumption to the simpli�cation
procedure of Algorithm 1.

4.4 Verifying Correctness of Subspecifications

A second algorithmic problem with subspeci�cations involves determining whether a proposed
subspeci�cation is indeed a subspeci�cation according to our de�nition in Section 2. This is in
general a challenging problem as the converse of Lemma 4.2 does not hold, and indicator functions
can no longer be used to prove correctness. Surprisingly, the converse holds for the restricted case
of pointwise subspeci�cations, thus permitting algorithms to mechanically check their correctness:

Lemma 4.4. Consider a speci�cationi , a conforming implementation 5 , and a holeℎ in 5 . Let the seed

subspeci�cationk (ℎ, x) = seed(i, 5 , ℎ) be pointwise, and consider any other pointwise representation

of the same subspec, \ (ℎ, x). Then the corresponding indicator functions, indk and ind\ , are equivalent.

Proof. Assume otherwise. WLOG, assume that in both speci�cations, the invocations of 5 in
k and \ are syntactically equal. Now, there exists a valuation x = v of the free variables and a
valuation C• = vC of the test variables such that indk (v, vC) = true and ind\ (v, vC) = false, or

vice-versa. In addition, becausek and \ are equivalent representations of the same subspec i |
5

ℎ
,

there is a function 6 such that 6 |= k and 6 |= \ . (Recall that the current subexpression 5 ↓ℎ is itself
a natural choice for 6.) Now construct the function:

6′ (G) =

{

6(G) if G ≠ E, and

vC otherwise.

In other words, we have surgically constructed 6′ which agrees with 6 everywhere except at the
point vC . In the �rst case, where indk (v, vC) = true and ind\ (v, vC) = false, observe that 6′ |= k and
6′ 6 |= \ . This contradicts the assumption thatk and \ were equivalent. The other case is similar. �

To con�rm the correctness of a proposed subspeci�cation, in the case where both the seed subspec
and the candidate subspec are pointwise, it su�ces to merely check whether the corresponding
indicator functions are globally equal.

The following result is a straightforward consequence of Lemma 4.4 and establishes the optimality
of our subspeci�cation synthesis algorithm under mild assumptions:

Corollary 4.5. If the speci�cation i is pointwise and assuming the SyGuS solver in Step 5 always

returns the syntactically smallest solution, then Algorithm 1 also produces the syntactically smallest

pointwise subspeci�cation.

5 PROPERTIES OF SUBSPECIFICATIONS

We now discuss some interesting properties of subexpressions. While subspeci�cations are general
and can be applied to diverse synthesis tools, in this section, we restrict our discussion to domains
that do not contain higher-order functions and forbid recursive function de�nitions.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

298:14 Amirmohammad Nazari, Yifei Huang, Roopsha Samanta, Arjun Radhakrishna, and Mukund Raghothaman

5.1 Subspecifications for Specialized Classes of Specifications

We discuss the subspeci�cations that arise for two special classes of speci�cations: point-wise
speci�cations and programming-by-example (PBE) tasks. These speci�cations are syntactically
simple, easy to comprehend, and are amenable to more e�cient synthesis algorithms. We would
therefore like subspeci�cations arising from these speci�cations to be of the same class. We now
show that this is true for point-wise speci�cations in general, and is true for PBE speci�cations if
the hole is highly constrained.

Subspeci�cations for point-wise speci�cations. The theorem below states that for every hole ℎ in
an implementation 50 of a point-wise speci�cation i , there exists a point-wise subspeci�cation.
This follows easily from the de�nition of seed subspeci�cation from Section 4—the seed subspeci-
�cations for point-wise speci�cations are point-wise. Consequently, we have that the simpli�ed
subspeci�cation returned by our algorithm is also point-wise. On the other hand, observe that
as Example 3.3 from Section 3 shows, speci�cations that are not point-wise might still lead to
subspeci�cations that are point-wise.

Theorem 5.1. Given a point-wise speci�cation i (5 , x) and an implementation 50 that satis�es i , for

every hole ℎ in 50, there exists a point-wise speci�cation i |
50
ℎ
that is a valid subspeci�cation for ℎ in 50.

Subspeci�cations for PBE speci�cations. PBE speci�cations are simple to reason about and hence,
one would wish that subspeci�cations for PBE are also in the PBE form. Unfortunately, as the
example below shows, this is not always true.

Example 5.2. Consider the PBE speci�cation i given by 5 ("Alan Turing") = "Alan", and a
corresponding implementation 5 (G) = substr(G

︸︷︷︸

ℎ

, 0, (indexof(G, " ", 0))). The subspeci�cation

i |
5

ℎ
for ℎ in 5 is given by substr(6("Alan Turing"), 0, 4) = "Alan". That is, we can replace ℎ with

any function that produces a string that starts with "Alan" when the input is "Alan Turing". This
subspeci�cation is too loose to be written as a PBE task—it does not constrain the output for the
input "Alan Turing" to a single value, but any of the in�nite set of strings that start with "Alan".

Taking a closer look at the example above, we observe that the problem is caused by the function
substr. Since it is not a one-to-one function, for a speci�c output, there are in�nite inputs that
evaluate to the output. This leads to a loose subspeci�cation. On the other hand, in Example 3.6 in
Section 3, the subspeci�cation for ℎ2 is indeed a PBE speci�cation. The reason is that when one
parameter of the string concatenation is �xed, the resulting function is a one-to-one mapping, thus
impose a strict constraint to that part of the code.
This phenomenon where a one-to-one function imposes a strict subspeci�cation also appears

in non-PBE settings. Consider the speci�cation i ≡ 5 (G,~) = 2G + ~ and the implementation
5 (G,~) = G + ~ + G . The subspeci�cations for the holes corresponding to the subexpressions G and
~ are just 6(G,~) = G and 6(G,~) = ~, respectively. This is because when one parameter of the add
function is �xed, it becomes a one-to-one mapping.

5.2 Multi-hole Subspecifications

Until now, we have only discussed the properties of subspeci�cations for single holes. Here, we
discuss how subspeci�cations for multiple holes relate to each other. We study two aspects: how are
the subspeci�cations for multiple holes related to the subspeci�cations for each of the individual
holes, and how are the subspeci�cations for individual holes related to the original speci�cation?

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

Explainable Program Synthesis by Localizing Specifications 298:15

Independent holes. In general, the joint subspeci�cation i |
5

ℎ1,ℎ2
for two holes ℎ1 and ℎ2 need not

be related to the individual subspeci�cations i |
5

ℎ1
and i |

5

ℎ2
in a simple way.

Example 5.3. Consider the speci�cation i ≡ 5 (G,~) = 5 (~, G) ∧ 5 (G,~) ∈ {G − ~,~ − G} and the
implementation 5 (G,~) = ifG ≥ ~ then G − ~

︸︷︷︸

ℎ2

else ~ − G
︸︷︷︸

ℎ3

from Section 2. The subspeci�cations

i |
5

ℎ2
and i |

5

ℎ3
are equivalent to G ≥ ~ =⇒ 62 (G,~) = G − ~ and G < ~ =⇒ 63 (G,~) = ~ − G

respectively. Intuitively, the value of each of the holes ℎ2 and ℎ3 is �xed as soon as the subexpression
in the opposite branch is decided. However, the joint subspeci�cation is more relaxed—the values of
ℎ2 and ℎ3 may be interchanged, i.e., we can set ℎ2 to ~ − G and ℎ3 to G −~, so the following is also a
valid implementation: 5 ′ (G,~) = ifG ≥ ~ then ~ −G else G −~. Formally, the joint subspeci�cation

can be written as i |
5

ℎ2,ℎ3
≡ 62 (G,~) = −63 (G,~) ∧ (62 (G,~) = G − ~ ∨ 62 (G,~) = ~ − G).

However, joint subspeci�cations can be independently computed from individual holes under
certain conditions.

Example 5.4. Consider the speci�cation i ≡ 5 (G,~) ≥ G ∧ 5 (G,~) ≥ ~ ∧ 5 (G,~) ∈ {G,~}

and the corresponding implementation 5 (G,~) = ifG ≥ ~ then G
︸︷︷︸

ℎ1

else ~
︸︷︷︸

ℎ2

. Here, the

subspeci�cations for ℎ1 and ℎ2 are given by i |
5

ℎ1
≡ G ≥ ~ =⇒ 61 (G,~) = G and i |

5

ℎ2
≡ G < ~ =⇒

62 (G,~) = ~. Now, joint subspeci�cation is just the conjunction i |
5

ℎ1,ℎ2
≡ i |

5

ℎ1
∧ i |

5

ℎ2
. In this case,

we can get the joint subspeci�cation by just taking the conjunction because the subexpressions in
the holes ℎ1 and ℎ2 do not interact with each other in any execution of 5 .

In the above example, we were able to compute the subspeci�cations independently because
the subexpressions corresponding to the two holes have disjoint path conditions. However, as
Example 5.3 shows, this alone is not su�cient. There, the two holes do not interact with each other
in any execution, but they do in the speci�cation as it is not point-wise. Hence, in addition we
want that the speci�cation is point-wise. The following theorem formalizes this discussion.

Theorem 5.5. Let i be a point-wise speci�cation, 5 be an implementation for i , and ℎ1 and ℎ2 be

two holes in 5 . If PC(ℎ1) ∩ PC(ℎ2) = ∅, where PC(ℎ) is the path condition leading to hole ℎ, then

i |
5

ℎ1,ℎ2
= i |

5

ℎ1
∧ i |

5

ℎ2
is a valid joint subspeci�cation for ℎ1 and ℎ2 in 5 .

We postpone the proof to Appendix B.

Reconstructing speci�cations. Given that joint subspeci�cations for multiple holes capture more
information about the speci�cation than subspeci�cations at individual holes, we might ask whether
the joint subspeci�cation captures all information about the original subspeci�cation. Unfortunately,
the following example shows that this is untrue.

Example 5.6. Consider the speci�cation i ≡ 5 (G,~) ≥ 0 and the corresponding implementation

5 (G,~) = | G
︸︷︷︸

ℎ1

− ~
︸︷︷︸

ℎ2

|. Now, the joint subspeci�cation i |
5

ℎ1,ℎ2
is just true. From i |

5

ℎ1,ℎ2
and the

implementation 5 alone, it is therefore impossible to reconstruct i , i.e., there is no procedure to
check if an arbitrary implementation 5 ′ is correct using just the subspeci�cation.

However, as the theorem below shows, in certain speci�c circumstances, it is possible to use
joint subspeci�cations in lieu of the original speci�cation.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

298:16 Amirmohammad Nazari, Yifei Huang, Roopsha Samanta, Arjun Radhakrishna, and Mukund Raghothaman

Theorem 5.7 (Reconstruction). Let i (5 , x) be a point-wise speci�cation, 5 (x) = op(41
︸︷︷︸

ℎ1

, 42
︸︷︷︸

ℎ2

)

be an implementation for i , andk (61, 62, x) be a joint subspeci�cation for ℎ1, ℎ2 in 5 . Suppose that

the operator op is surjective. Then, for any 5 ′, we can construct 6′1 and 6
′
2 such that 5 ′ |= i if and only

if (6′1, 6
′
2) |= k .

The main goal of the above result is to formalize the intuition that understanding all the parts of
a program can lead to an understanding of its whole. Its proof may also be found in Appendix B.

6 USER STUDY

In order to determine whether users can understand the output of program synthesizers, and
whether subspeci�cations help in this process, we conducted a small user study in which we
focused on answering the following questions:

RQ1. Do subspecs help users in understanding implementations?
RQ2. Do subspecs help in understanding speci�cations?
RQ3. Can subspecs help users in debugging faulty implementations?

After IRB approval, we recruited 20 Ph.D. students from the Computer Science, Electrical En-
gineering, and Industrial Engineering departments of a prominent American university. These
participants had a range of research areas, including formal veri�cation and software engineering,
cyber-physical systems, IoT, MEMS, optimization, algorithmic privacy, and machine learning. As
such, we expect these participants to be potential unexpert users of program synthesis tools.

6.1 Tasks and Study Structure

The study consisted of six tasks inspired by the motivating examples discussed in Section 3.
The study materials may be found in Appendix C. Before participants attempted these tasks, we
presented them with a short introduction to the style of program synthesis used in SyGuS and
DreamCoder. To ensure that participants had a minimum level of familiarity with the problem
setting, we presented four quiz questions in which we asked them to determine whether an
implementation satis�ed the constraints imposed by a speci�cation. We only considered responses
from participants who correctly answered all quiz questions. 19 of the 20 participants satis�ed this
requirement and passed the quiz. In addition, one participant withdrew while the study was in
progress because of tiredness, leaving 18 participants who provided data for the full study.

These tasks required participants to identifywhich implementations satis�ed a given speci�cation,
to present alternative implementations, to explain the speci�cation and implementation in their own
words and to debug broken implementations. We presented Tasks 1, 2, 4, 5, and 6 to the participants
in one of two randomly chosen conditions, i.e., with and without access to subspeci�cations
respectively. Each participant attempted at least two tasks with subspeci�cations and two tasks
without access to subspeci�cations. They were able to access the subspeci�cations on demand
through a simple point-and-click web interface such as that shown in Figure 2. We designed Task 3
to familiarize participants with false subspeci�cations before �rst encountering them in Task 4.
Consequently, all participants had access to subspeci�cations while attempting Task 3.
We present the time needed by participants to answer these questions in Figure 3a and their

accuracy under each of the conditions in Figure 3b. After the study was complete, we had a short
discussion with each of the participants and obtained their feedback about which aspects of the
study they found easy or di�cult, and their experience while using subspeci�cation interface.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

Explainable Program Synthesis by Localizing Specifications 298:17

Fig. 2. Interface used by participants to query subspecifications. Upon hovering their mouse pointer over

di�erent subexpressions, a tooltip would appear to show the corresponding subspecification.

0 10 20 30
Time (minutes)

T6

T5
T4
T3
T2

T1

(a)

 1
.1

 1
.2

 1
.3

 1
.4

 1
.5

 1
.6

 2
.1

 2
.2

 2
.3

 4
.1

 4
.2

 4
.3

 5
.1

 5
.2

 5
.3

 6
.1

 6
.2

 6
.3

 6
.4

Task and Question

0

2

4

6

8

To
ta

l S
co

re

(b)

With SubSpecs W/o SubSpecs

Fig. 3. Time needed by participants to answer questions and their accuracy under each of the conditions.

One participant required more than 30 minutes to complete Tasks 1, 4, and 6, which we highlight with the

red outlier dot at the right end of Figure 3a. We do not report participant accuracy in Task 3 in Figure 3b

because all participants had access to subspecifications. Complete numbers are available in Appendix C.

6.2 RQ1: Understanding Implementations

Our �rst research question involves determining whether participants understood the implemen-
tations produced by a program synthesizer. We focus on their responses to Questions 1.1–1.4,
2.1–2.3, 5.1–5.3, and 6.1–6.4 of the study materials described in Appendix C. These questions
involve assessing the impact of a minor alteration to an existing implementation, some form of
requirements tracing, and providing appropriate names to intermediate functions.

From Figure 3b, we observe that subspeci�cations signi�cantly improve the accuracy of responses:
Across Tasks 1 and 2, we recorded only one incorrect response from a participant with access to
subspeci�cations. Notably, this participant realized their mistake soon after completing Task 2.
Tasks 5 and 6 were clearly more challenging. Here, subspeci�cations lead to an ≈ 5.7× improvement
in accuracy in Task 5, and measurable accuracy improvements in Task 6.
At the same time, subspeci�cations reduce the time needed by participants to provide their

responses, as we observe in Figure 3a. We see the most dramatic of these improvements in Tasks 2, 5,
and 6, where the median response time from participants with subspeci�cations was only 48%, 46%,
and 42% of the time needed by participants from the control group respectively.
In addition, when reviewing the tasks during the post-study debrief, we discovered that many

participants in the control group had imprecise reasons for their responses, and had a tendency to
guess when they were otherwise unsure of the answer. In particular, for Tasks 5 and 6, participants
reported being “ba�ed by unnatural implementations”. Of course, one risk in these observations is

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

298:18 Amirmohammad Nazari, Yifei Huang, Roopsha Samanta, Arjun Radhakrishna, and Mukund Raghothaman

that we transcribed DreamCoder output into Python code, which admits more idiomatic implemen-
tations for each of the speci�cations.

We also note that we encouraged participants to use any resources they needed to complete their
tasks. In response, only one participant proceeded to test the code in an interpreter. Somewhat
amusingly, this participant was also unsuccessful failed to complete the task: We observed that
they were unable to determine which part of the code needed instrumentation. They proceeded to
exhaustively insert print statements into the program, but this led to further confusion when they
were unable to interpret the results that they observed. The remaining participants o�ered varied
reasons for not experimenting with the provided implementations: some believed that it was not
“trustworthy” to understand the logic of implementations, and others found it “really hard to guess

reasonable inputs for the unknown subroutines”. A third class of participants reported not thinking
about active experimentation with an interpreter during the study.
As such, participants in the control group responded with humour and mentioned that they

wouldn’t use the synthesized code, while participants with access to subspecs appeared to better
understand the presented code.

6.3 RQ2: Understanding Specifications

Through our second research question, we sought to determine whether users can readily under-
stand speci�cations—for example, by explaining it in their words—and whether subspeci�cations
can help in this process. In Question 1.5 of Task 1, we asked participants to provide a new imple-
mentation for the original speci�cation, and in Question 1.6, we asked them to explain the original
speci�cation in English. Along similar lines, Question 2.4 asks participants to guess the intent of
the author of the original speci�cation and Question 2.5 asks participants to suggest additional
input-output data points to disambiguate this intent.
Observe that all participants with access to subspeci�cations are able to provide alternative

implementations as part of their response to Question 1.5, while only two participants were able
to do so in the control group. Four of the responses from the group with access to subspecs were
semantically new implementations, with di�ering behavior when G ≠ ~, while only one of the
participants in the control group discovered this approach. The remaining correct responses were
merely syntactic variations of the existing implementation.
We manually judged the free-form responses to Question 1.6 and assessed whether they were

compatible with the speci�cation. All responses we judged as correct were variations of “If G = ~

then the function should return 0 and otherwise it should return either 1 or 2.” On the other hand, many
participants who we judged as answering the question incorrectly had di�culty in understanding
the required behavior when G ≠ ~: two participants said that the output had to be 1 in this case, two
other participants believed that the speci�cation only required a non-zero output when G ≠ ~, and
two participants guessed that the spec required a positive value. Three participants in the control
group also skipped the question.

While attempting Task 1, 5 participants asked whether subspecs imposed an exact requirement
on potential implementations, and were relieved when they realized that they could just consult
the subspecs while forming their responses.
When we studied the responses to Question 2.4 of Task 2, we observed that one participant

from the control group provided an interpretation that was inconsistent with even the provided
input-output examples, and another participant, also from the control group, chose to skip the
question entirely. We were able to cluster the remaining responses into two groups: The �rst
group simply provided English readings of the implementation as explanations of user intent. This
included 3 responses from the users with subspecs and 4 responses from users without subspecs.
On the other hand, the second group of responses attempted to guess the intent from the provided

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

Explainable Program Synthesis by Localizing Specifications 298:19

input-output examples, and included responses such as “The function checks whether either input

has value 1.” Note that such responses are not directly available from the implementation and are
in fact incompatible with it. 6 of the participants with subspecs provided responses of this kind,
while only 3 participants without subspecs provided similar answers. We conclude that subspecs
encourage users to more actively interrogate the speci�cation, thereby aiding comprehension.

6.4 RQ3: Debugging Faulty Implementations

As part of the third research question, we wanted to con�rm whether subspeci�cations help in
debugging faulty implementations, as discussed in Example 3.6. In order to familiarize participants
with subspeci�cations for buggy implementations, we �rst presented them with a relatively simple
speci�cation-implementation pair in Task 3. The speci�cation was ∀G, 5 (G) ≥ 0 and the implemen-
tation was 5 (G) = ifG ≥ 0 then G else −1 in Task 3. As part of the three questions associated
with this task, we asked participants to re�ect on the meaning of the false subspeci�cation in the
then-branch. Unfortunately, only two participants gave answers that could be considered correct:
one of them deduced that the bug must be elsewhere in the implementation, while the other
participant guessed that it was a hint from the synthesizer to “not worry about this subexpression.”
Most other participants reported not knowing the answer.
Despite this, participants with access to subspeci�cations had a higher accuracy on Task 4,

where we reused the speci�cation-implementation pair from Equations 10 and 11 in Example 3.6.
We asked participants to identify which of two implementations was buggy (the other satisfying
implementation may be found in Appendix C.5), to locate the faulty subexpression, and to �x the
subexpression in question.

The two participants who successfully completed Task 3 were both in the group who had access
to subspeci�cations in Task 4. They took 16 minutes and 24 minutes respectively to correctly
respond to all questions of the last task. In the post-study discussions, participants achieved a
better appreciation of what it meant for the subspec to be false, and described it as a useful
debugging technique. One participant also believed that this represented a powerful alternative
way of applying subspecs. One of the participants in the control group who we judged as correctly
answering the third question simply copied the reference implementation from before.

Finally, some participants reported being confused by having access to lots of subspeci�cations.
We believe that with greater familiarity with logical speci�cations as used in SyGuS solvers, users
will overcome these di�culties and become more �uent in querying for subspecs on demand.

7 EXPERIMENTAL EVALUATION

We have implemented, (3, the subspeci�cation synthesis algorithm of Section 4, in approximately
2,700 lines of Python code. Our implementation is able to generate subspeci�cations for implemen-
tations produced both using SyGuS solvers [Alur et al. 2013a] and using DreamCoder [Ellis et al.
2021]. We use CVC5 to simplify the seed subspec for SyGuS implementations and apply a sequence
of rewriting rules to simplify the subspec in the case of DreamCoder. Our evaluation focused on
the following research questions:

RQ4. How e�ective is (3 in generating simple subspeci�cations?
RQ5. How long does (3 take to construct subspecs?
RQ6. How do the preprocessing steps of Section 4 a�ect simpli�cation e�ectiveness?

Benchmarks. We ran both CVC5 and EUSolver on the benchmarks from the 2017 SyGuS Compe-
tition and obtained the corresponding implementations. With a timeout of 5 minutes, the solvers
are able to successfully discharge 1,384 and 1,360 benchmarks respectively. Subsequently, we nar-
rowed our focus to benchmarks whose implementations had less than 100 holes. This resulted in

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

298:20 Amirmohammad Nazari, Yifei Huang, Roopsha Samanta, Arjun Radhakrishna, and Mukund Raghothaman

0.0 0.2 0.4 0.6 0.8 1.0
|subspec|

|seed subspec|

0

5000

10000

15000

20000

25000

of

 h
ol

es
 in

 S
yG

uS
 (c

um
ul

at
iv

e)

0

100

200

300

400

500

of

 h
ol

es
 in

 D
re

am
Co

de
r (

cu
m

ul
at

iv
e)

CVC5
EUSolver
DreamCoder

Fig. 4. E�ectiveness of (3 in simplifying subspecifications. We count the number of benchmarks where the

algorithm reduces the size of the subspec to the corresponding fraction of the size of the original seed subspec.

1,124 speci�cation-implementation pairs from CVC5 and 1,254 speci�cation-implementation pairs
from EUSolver. Collectively, they contained 26,472 and 25,689 holes respectively. We ran (3 on all
these holes with a per-hole timeout of 5 minutes, and a per-implementation deadline of 30 minutes.
After this process, we had access to the subspeci�cations for 24,771 and 24,625 holes respectively.

Next, we focused on the reference solutions for the List domain provided as part of the Dream-
Coder artifact.4 Of the 550 implementations contained in this �le, we excluded 10 implementations
because of the tricky semantics of the mod operator when applied to negative numbers. We then
calculated the subspec for each highlighted library function in these implementations. This resulted
in a total of 568 subspeci�cations.

Experimental setup. We ran our experiments on a workstation machine with an AMD Ryzen
9 5950X CPU and 128 GB of memory running Ubuntu 21.04. We note that the computations are
primarily CPU bound rather than memory intensive. Furthermore, our experiments focus primarily
on comparative running times rather than absolute values, so largely identical results should be
obtained on most contemporary computers.

7.1 RQ4: E�ectiveness in Simplification

To measure the e�ectiveness of our technique in deriving simple subspeci�cations, we compared
the size of the synthesized subspeci�cation to the size of the seed subspec. We present these results
in Figure 4, with a separate curve for the implementations obtained from CVC5, EUSolver, and
DreamCoder respectively. The G-axis indicates the compression ratio, while the ~-axis indicates
the cumulative number of holes at which (3 achieve this compression ratio or better.

Overall, we observe that (3 is comparably e�ective in simplifying subspecs obtained from CVC5
and from EUSolver. For these benchmarks, it achieves a 74% reduction in the size of the seed
subspeci�cation for 74% of all holes. On the other hand, it is less e�ective in achieving high
compression rates for subspecs obtained from DreamCoder. In these cases, it only achieves a 59%
reduction in the size of the seed subspec for 59% of the holes.

We speculate that the low compression rate is due to higher-order functions. Speci�cally, when
the function at the probe point happens to itself be the parameter of a higher-order operator
(such as map or fold), partial evaluation can increase the size of the resulting subspeci�cation.
Anecdotally, however, this increase in size does not necessarily cause an increase in perceptual
complexity and sometimes even reveals nontrivial properties of the implementation. For example,

4File named jobs/list_hard_test_ellisk_2019-02-15T11.43.28.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

Explainable Program Synthesis by Localizing Specifications 298:21

0 5000 10000 15000 20000 25000
of holes in SyGuS (cumulative)

0

50

100

150

200

250

300

Ru
nt

im
e

of
 S

3 (
se

co
nd

s)

CVC5
EUSolver

(a)

f 1X f 10X f 100X > 100X
Time needed compare with original synthesis tasks

0%

20%

40%

60%

80%

100%

Fr
ac

tio
n

of
 h

ol
es 74.3%

91.1%
98.4%

1.5%

45.1%

82.5%

96.4%

3.5%

EUSolver
CVC5

(b)

Fig. 5. (5a) Cactus plot of the time needed by the tool to synthesize subspecs for implementations obtained

from the SyGuS solvers. (5b) Comparison of the time needed to produce subspecs to the time originally

needed to produce the implementation.

one subspec that resulted from such expansion was ℎ(ℎ(ℎ([], 4), 0), 2) = [4; 0; 2], suggesting the
intermediate function append. Overall, however, the di�culty in obtaining small subspeci�cations for
the DreamCoder implementations highlights the importance of powerful simpli�cation procedures
such as those we use in the case of the SyGuS benchmarks.

Finally, we note that our system is able to simplify the subspeci�cation to true for 482 holes: by
indicating unconstrained subexpressions, (3 is able to reveal potential opportunities for further
optimizing the implementation produced by the synthesizer.

7.2 RQ5: Time Needed to Construct Subspecs

We next measured the time needed by (3 to construct the optimized subspec. Because of the
relatively light-weight rewrite rules used for the DreamCoder implementations, the total time
needed to explain all holes is less than 20 seconds. We will therefore only focus on the time needed
to explain the SyGuS implementations.

We present a cactus plot of the time needed by (3 to explain each hole in Figure 5a, and compare
these running times to the time needed by CVC5 and EUSolver to originally solve the respective
synthesis tasks in Figure 5b. We note that subspecs for 78% of the probe points can be constructed
in less than 1 second. Only 13% of the benchmarks exceed 10× of the time it takes for the original
synthesis task, and are mainly from PBE tracks involving strings and bit-vectors. Notably, each
of these synthesis tasks involve at least 1000 examples. Nevertheless, our system appears to be
su�ciently fast to be used to interactively reason about synthesis problem instances.

7.3 RQ6: E�ect of Preprocessing Passes

Finally, we assessed the impact of the preprocessing steps in simplifying subspecs for the SyGuS
benchmark. We describe this data in Table 1. Observe that the preprocessing passes capture a large
fraction of the easy simpli�cation opportunities, and already achieve a 93% reduction in the size of
the seed subspec. The more expensive recursive simpli�cation process of Algorithm 1 achieves an
additional 23% reduction in the size of the simpli�ed subspeci�cations thus achieving an overall
95% reduction in size of the simpli�ed subspec.
Despite these aggregate statistics, both steps are crucial to the e�ectiveness of the overall

procedure, as we also observed in the case of DreamCoder in Figure 4. The most notable of these
examples are when the subspecs simplify to true, which is typically the result of the main synthesis

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

298:22 Amirmohammad Nazari, Yifei Huang, Roopsha Samanta, Arjun Radhakrishna, and Mukund Raghothaman

Table 1. Impact of preprocessing andmain simplification loops in reducing the size of the final subspecification.

Synthesizer |Preproc| / |Seed| |Final| / |Preproc| |Final| / |Seed|

EUSolver 9% 78% 7%
CVC5 5% 77% 4%

process and not the preprocessing pass. Similarly, in the LIA fragment, the main simpli�cation
algorithm only contributes a 50% size reduction on average, while the preprocessing pass only
results in a 32% drop in subspec size.

8 RELATED WORK

Explainability and interpretability are increasingly important topics in several research areas,
including machine learning [Doshi-Velez and Kim 2017], algorithmic transparency [Barocas et al.
2019], and reinforcement learning [Mott et al. 2019]. The availability of explicit program repre-
sentations has made explainability a less pressing issue for program veri�cation and synthesis.
Nevertheless, the large body of work on program debugging and comprehension [Caballero et al.
2017; Zeller 1999], program slicing [Ko and Myers 2004; Weiser 1981], and user-guided program
synthesis [Zhang et al. 2021] underscores the importance of program explainability. In this section,
we outline notable threads of research that share facets of our work, in particular, research on
explainability, local reasoning, and expression simpli�cation.

Finkbeiner et al. [Finkbeiner et al. 2021] have recently employed a similar idea of decomposing
speci�cations into smaller constituent units and using a divide-and-conquer approach to accelerate
reactive synthesis. While our use of the term is very close to theirs, there are two notable di�erences:
�rst, our concept is slightly more general in that it does not require di�erent parts of the program
to be necessarily independent of each other, and second, they use subspeci�cations primarily to
accelerate the synthesis process rather than to facilitate programmer comprehension.

Explainability and interpretability in AI. The increased prevalence of black-box or grey-box
methods has led to growing interest in explaining and interpreting their functioning and results. This
is especially true in AI [Adadi and Berrada 2018]. E�orts to better understand the highly expressive
and parametric models used for machine learning include model-speci�c visualization tools [Wang
et al. 2021b], model agnostic methods [Ribeiro et al. 2016a], and example-based methods [Aamodt
and Plaza 2001]. While there are important di�erences between program synthesis and machine
learning, it is possible to adopt the latter’s approaches to help explain the program synthesis
process, especially for PBE. This is evidenced by recent contributions in visualization for program
synthesis [Zhang et al. 2021].

Local reasoning. The concept of local reasoning has been used in multiple areas. For instance, in
machine learning, local reasoning is used to explain predictions made on speci�c inputs (see, for
instance, [Ribeiro et al. 2016b] and [Zhou et al. 2016]). In contrast, our approach focuses more on
explaining how parts of the model a�ect the outcome. Local reasoning has, of course, long been used
inmodular software veri�cation [Chaki et al. 2003]. More recently, local speci�cations [Ferdowsifard
et al. 2020] have been adopted in program synthesis by asking a user to provide examples for
program snippets; such examples can be viewed as instances of subspecs.

Expression simpli�cation. Our algorithm relies on simplifying Boolean expressions. Expression
simpli�cation has been widely studied in compiler optimization via constant folding, common
subexpression elimination, and partial evaluation [Muchnick 1998], with many methods relying on

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

Explainable Program Synthesis by Localizing Specifications 298:23

rewriting techniques such as equality saturation [Willsey et al. 2021]. While our method leverages
synthesizers, its performance can potentially be boosted using such rewriting techniques.

Connections to top-down program synthesis. As such, subspeci�cations are also closely related to
propagation of constraints during top-down program synthesis, including in deductive program
synthesizers such as Leon [Koukoutos et al. 2016] and SuSLik [Polikarpova and Sergey 2019], and
top-down enumerative synthesizers such as Myth [Osera and Zdancewic 2015], _2 [Feser et al.
2015] and Synquid [Polikarpova et al. 2016]. In this context, subspecs can be thought of as the
speci�cation for the part of the program yet to be enumerated.

9 CONCLUSION

In this paper, we considered the problem of explaining the output of program synthesizers, and
introduced the concept of subspeci�cations as a mechanism by which users can probe the syn-
thesized program. We discussed several examples where subspeci�cations provided insight into
the speci�cation, implementation, and even the semantics of the synthesizer. We presented an
algorithm to construct concise subspeci�cations, and conducted experiments to investigate its
e�ectiveness. In future, we hope to apply the concept more broadly, to debugging speci�cations, to
facilitate user interaction, and in applications beyond program synthesis.

ARTIFACT AVAILABILITY STATEMENT

The artifact that supports the �ndings of this paper can be downloaded from Zenodo [Nazari et al.
2023].

ACKNOWLEDGEMENTS

We thank all the participants in our user study and the anonymous reviewers for immeasurably
improving this paper. The research described in this paper was supported by the NSF under grants
CCF #2146518, #2124431, and #2107261.

REFERENCES

Agnar Aamodt and Enric Plaza. 2001. Case-Based Reasoning: Foundational Issues, Methodological Variations, and System
Approaches. AI Communications 7 (2001), 39–59. https://doi.org/10.3233/AIC-1994-7104

Amina Adadi and Mohammed Berrada. 2018. Peeking Inside the Black-Box: A Survey on Explainable Arti�cial Intelligence
(XAI). IEEE Access 6 (2018), 52138–52160. https://doi.org/10.1109/ACCESS.2018.2870052

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo Martin, Mukund Raghothaman, Sanjit Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013a. Syntax-Guided Synthesis. In Formal Methods in Computer-Aided

Design (FMCAD). IEEE, 1–8. https://doi.org/10.1109/FMCAD.2013.6679385
Rajeev Alur, Loris D’Antoni, Sumit Gulwani, Dileep Kini, and Mahesh Viswanathan. 2013b. Automated Grading of DFA

Constructions. In Proceedings of the 23rd International Joint Conference on Arti�cial Intelligence (IJCAI). AAAI Press,
1976–1982.

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling Enumerative Program Synthesis via Divide and
Conquer. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS). Springer, 319–336.

Solon Barocas, Moritz Hardt, and Arvind Narayanan. 2019. Fairness and Machine Learning: Limitations and Opportunities.
fairmlbook.org. http://www.fairmlbook.org.

Rafael Caballero, Adrián Riesco, and Josep Silva. 2017. A Survey of Algorithmic Debugging. Comput. Surveys 50 (08 2017),
1–35. https://doi.org/10.1145/3106740

Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and Helmut Veith. 2003. Modular Veri�cation of Software Components
in C. In Proceedings of the 25th International Conference on Software Engineering (ICSE). IEEE Computer Society, 385–395.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards,
Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser,
Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

https://doi.org/10.3233/AIC-1994-7104
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1109/FMCAD.2013.6679385
http://www.fairmlbook.org
https://doi.org/10.1145/3106740

298:24 Amirmohammad Nazari, Yifei Huang, Roopsha Samanta, Arjun Radhakrishna, and Mukund Raghothaman

Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter
Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

Finale Doshi-Velez and Been Kim. 2017. Towards A Rigorous Science of Interpretable Machine Learning. https://doi.org/10.
48550/ARXIV.1702.08608 arXiv:1702.08608 [stat.ML]

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt, Luc Cary, Armando Solar-
Lezama, and Joshua Tenenbaum. 2021. DreamCoder: Bootstrapping Inductive Program Synthesis with Wake-Sleep
Library Learning. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design

and Implementation (PLDI). ACM, 835–850. https://doi.org/10.1145/3453483.3454080
Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program Synthesis Using Con�ict-Driven Learning. In

Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM,
420–435. https://doi.org/10.1145/3192366.3192382

Ashley Feniello, Hao Dang, and Stan Birch�eld. 2014. Program Synthesis by Examples for Object Repositioning Tasks. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 4428–4435. https://doi.org/10.1109/IROS.2014.
6943189

Kasra Ferdowsifard, Allen Ordookhanians, Hila Peleg, Sorin Lerner, and Nadia Polikarpova. 2020. Small-Step Live Program-
ming by Example. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (UIST).
Association for Computing Machinery, 614–626. https://doi.org/10.1145/3379337.3415869

John Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-Output
Examples. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI ’15). ACM, 229–239. https://doi.org/10.1145/2737924.2737977
Bernd Finkbeiner, Gideon Geier, and Noemi Passing. 2021. Speci�cation Decomposition for Reactive Synthesis. In NASA

Formal Methods. Springer, 113–130.
Orlena Gotel and Anthony Finkelstein. 1994. An Analysis of the Requirements Traceability Problem. In Proceedings of IEEE

International Conference on Requirements Engineering. 94–101. https://doi.org/10.1109/ICRE.1994.292398
Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-Output Examples. In Proceedings of

the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). ACM, 317–330.
https://doi.org/10.1145/1926385.1926423

Shivam Handa and Martin Rinard. 2020. Inductive Program Synthesis over Noisy Data. In Proceedings of the 28th ACM Joint

Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC /

FSE). ACM, 87–98.
Susmit Jha, Sumit Gulwani, Sanjit Seshia, and Ashish Tiwari. 2010. Oracle-Guided Component-Based Program Synthesis. In

Proceedings of the 32nd International Conference on Software Engineering (ICSE). ACM, 215–224. https://doi.org/10.1145/
1806799.1806833

Amy J. Ko and Brad A. Myers. 2004. Designing the Whyline: A Debugging Interface for Asking Questions About Program
Behavior. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI). ACM, 151–158.
https://doi.org/10.1145/985692.985712

Robert Könighofer, Georg Ho�erek, and Roderick Bloem. 2009. Debugging Formal Speci�cations Using Simple Counter-
strategies. In 2009 Formal Methods in Computer-Aided Design. 152–159. https://doi.org/10.1109/FMCAD.2009.5351127

Manos Koukoutos, Etienne Kneuss, and Viktor Kuncak. 2016. An Update on Deductive Synthesis and Repair in the Leon
Tool. In Proceedings Fifth Workshop on Synthesis (SYNT@CAV, Vol. 229). 100–111. https://doi.org/10.4204/EPTCS.229.9

Orna Kupferman and Moshe Vardi. 2003. Vacuity Detection in Temporal Model Checking. International Journal on Software

Tools for Technology Transfer 4, 2 (Feb. 2003), 224–233. https://doi.org/10.1007/s100090100062
Vu Le and Sumit Gulwani. 2014. FlashExtract: A Framework for Data Extraction by Examples. In Proceedings of the

35th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM, 542–553. https:
//doi.org/10.1145/2594291.2594333

Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr Polozov, Rishabh Singh, Benjamin Zorn,
and Sumit Gulwani. 2015. User Interaction Models for Disambiguation in Programming by Example. In Proceedings of

the 28th Annual ACM Symposium on User Interface Software and Technology (UIST). ACM, 291–301. https://doi.org/10.
1145/2807442.2807459

AlexMott, Daniel Zoran, Mike Chrzanowski, DaanWierstra, and Danilo Rezende. 2019. Towards Interpretable Reinforcement
Learning Using Attention Augmented Agents. In Proceedings of the 33rd International Conference on Neural Information

Processing Systems (NeurIPS). Article 1107, 10 pages.
Steven Muchnick. 1998. Advanced Compiler Design and Implementation. Morgan Kaufmann.
Amirmohammad Nazari, Yifei Huang, Roopsha Samanta, Arjun Radhakrishna, and Mukund Raghothaman. 2023. Explainable

Program Synthesis by Localizing Speci�cations. https://doi.org/10.5281/zenodo.8331495

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

https://arxiv.org/abs/2107.03374
https://doi.org/10.48550/ARXIV.1702.08608
https://doi.org/10.48550/ARXIV.1702.08608
https://arxiv.org/abs/1702.08608
https://doi.org/10.1145/3453483.3454080
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1109/IROS.2014.6943189
https://doi.org/10.1109/IROS.2014.6943189
https://doi.org/10.1145/3379337.3415869
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1109/ICRE.1994.292398
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/985692.985712
https://doi.org/10.1109/FMCAD.2009.5351127
https://doi.org/10.4204/EPTCS.229.9
https://doi.org/10.1007/s100090100062
https://doi.org/10.1145/2594291.2594333
https://doi.org/10.1145/2594291.2594333
https://doi.org/10.1145/2807442.2807459
https://doi.org/10.1145/2807442.2807459
https://doi.org/10.5281/zenodo.8331495

Explainable Program Synthesis by Localizing Specifications 298:31

OpenAI. 2022. ChatGPT. https://openai.com/blog/chatgpt/.
Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-Example-Directed Program Synthesis. In Proceedings of the

36th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM, 619–630. https:
//doi.org/10.1145/2737924.2738007

Hila Peleg, Sharon Shoham, and Eran Yahav. 2018. Programming Not Only by Example. In Proceedings of the 40th International
Conference on Software Engineering (ICSE). ACM, 1114–1124. https://doi.org/10.1145/3180155.3180189

Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program Synthesis from Polymorphic Re�nement
Types. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).
522–538. https://doi.org/10.1145/2908080.2908093

Nadia Polikarpova and Ilya Sergey. 2019. Structuring the Synthesis of Heap-Manipulating Programs. Proceedings of the
ACM on Programming Languages 3, POPL, Article 72 (Jan. 2019), 30 pages. https://doi.org/10.1145/3290385

Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark Barrett. 2015. Counterexample-Guided
Quanti�er Instantiation for Synthesis in SMT. In Computer Aided Veri�cation (CAV). Springer, 198–216.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016a. Model-Agnostic Interpretability of Machine Learning.
(2016). https://doi.org/10.48550/ARXIV.1606.05386

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016b. “Why Should I Trust You?”: Explaining the Predictions
of Any Classi�er. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (KDD). ACM, 1135–1144. https://doi.org/10.1145/2939672.2939778
Lei Shi, Yahui Li, Boon Thau Loo, and Rajeev Alur. 2021. Network Tra�c Classi�cation by Program Synthesis. In Tools and

Algorithms for the Construction and Analysis of Systems (TACAS). Springer, 430–448.
Rishabh Singh. 2016. BlinkFill: Semi-Supervised Programming by Example for Syntactic String Transformations. Proceedings

of the VLDB Endowment 9, 10 (June 2016), 816–827. https://doi.org/10.14778/2977797.2977807
Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated Feedback Generation for Introductory

Programming Assignments. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI). ACM, 15–26. https://doi.org/10.1145/2491956.2462195
Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. 2006. Combinatorial Sketching for

Finite Programs. In Proceedings of the 12th International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS). ACM, 404–415. https://doi.org/10.1145/1168857.1168907
Ashish Tiwari, Arjun Radhakrishna, Sumit Gulwani, and Daniel Perelman. 2020. Information-theoretic User Interaction:

Signi�cant Inputs for Program Synthesis. CoRR abs/2006.12638 (2020). arXiv:2006.12638 https://arxiv.org/abs/2006.12638
Chenglong Wang, Yu Feng, Rastislav Bodik, Isil Dillig, Alvin Cheung, and Amy Ko. 2021a. Falx: Synthesis-Powered

Visualization Authoring. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI). ACM,
Article 106, 15 pages. https://doi.org/10.1145/3411764.3445249

Zijie Wang, Robert Turko, Omar Shaikh, Haekyu Park, Nilaksh Das, Fred Hohman, Minsuk Kahng, and Duen Horng Polo
Chau. 2021b. CNN Explainer: Learning Convolutional Neural Networks with Interactive Visualization. IEEE Transactions

on Visualization and Computer Graphics 27, 2 (Feb. 2021), 1396–1406. https://doi.org/10.1109/tvcg.2020.3030418
Mark Weiser. 1981. Program Slicing. In Proceedings of the 5th International Conference on Software Engineering (ICSE). IEEE

Press, 439–449.
Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. 2021. egg: Fast

and Extensible Equality Saturation. Proceedings of the ACM on Programming Languages 5, POPL, Article 23 (Jan. 2021),
29 pages. https://doi.org/10.1145/3434304

Andreas Zeller. 1999. Yesterday, My Program Worked. Today, It Does Not. Why?. In Proceedings of the 7th European Software

Engineering Conference Held Jointly with the 7th ACM SIGSOFT International Symposium on Foundations of Software

Engineering (ESEC/FSE). Springer, 253–267.
Tianyi Zhang, Zhiyang Chen, Yuanli Zhu, Priyan Vaithilingam, Xinyu Wang, and Elena Glassman. 2021. Interpretable

Program Synthesis. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. ACM, 16 pages.
Tianyi Zhang, London Lowmanstone, XinyuWang, and Elena Glassman. 2020. Interactive Program Synthesis by Augmented

Examples. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (UIST). 627–648.
https://doi.org/10.1145/3379337.3415900

Bolei Zhou, Aditya Khosla, Àgata Lapedriza, Aude Oliva, and Antonio Torralba. 2016. Learning Deep Features for Discrimi-
native Localization. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society,
2921–2929. https://doi.org/10.1109/CVPR.2016.319

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 298. Publication date: October 2023.

https://openai.com/blog/chatgpt/
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/3180155.3180189
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/3290385
https://doi.org/10.48550/ARXIV.1606.05386
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.14778/2977797.2977807
https://doi.org/10.1145/2491956.2462195
https://doi.org/10.1145/1168857.1168907
https://arxiv.org/abs/2006.12638
https://arxiv.org/abs/2006.12638
https://doi.org/10.1145/3411764.3445249
https://doi.org/10.1109/tvcg.2020.3030418
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3379337.3415900
https://doi.org/10.1109/CVPR.2016.319

	Abstract
	1 Introduction
	2 Formally Defining Subspecifications
	3 Motivating Examples
	4 Algorithmic Synthesis of Subspecifications
	4.1 The Seed Subspecification
	4.2 From (Sub-)Specifications to Indicator Functions
	4.3 Simplifying Specifications
	4.4 Verifying Correctness of Subspecifications

	5 Properties of Subspecifications
	5.1 Subspecifications for Specialized Classes of Specifications
	5.2 Multi-hole Subspecifications

	6 User Study
	6.1 Tasks and Study Structure
	6.2 RQ1: Understanding Implementations
	6.3 RQ2: Understanding Specifications
	6.4 RQ3: Debugging Faulty Implementations

	7 Experimental Evaluation
	7.1 RQ4: Effectiveness in Simplification
	7.2 RQ5: Time Needed to Construct Subspecs
	7.3 RQ6: Effect of Preprocessing Passes

	8 Related Work
	9 Conclusion
	References

