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ABSTRACT
Over the past decade, the database research community has directed
considerable attention towards harnessing the power of GPUs in
query processing engines. The proposed techniques have primarily
focused on devising customized low-level mechanisms that utilize
the raw hardware parallelism provided abundantly byGPU compute
kernels.

In this paper, we advocate a radically different approach – in-
stead of dealing directly with hardware idiosyncrasies, to leverage
the well-established graphics pipeline architecture baked into the
GPU hardware. A variety of advantages accrue from this high-level
abstraction: (a) Extracting the power of GPUs is outsourced to
highly-optimized graphics drivers, thereby providing hardware-
consciousness for free; (b) Query processing becomes agnostic to
changes in GPU architectures (e.g. integrated vs discrete) and ven-
dors, requiring only a change of drivers; (c) Contemporary graphics
APIs also support a compute element, facilitating query operator
designs that seamlessly straddle the compute and graphics worlds.

As a proof of concept of the above vision, we implement here
the workhorse Join and GroupBy operators using core graphics
primitives. These implementations, based on the Vulkan API, have
been evaluated over large benchmark databases on vanilla hybrid
computing platforms. The experimental results indicate both sub-
stantive performance benefits (typically, around 2X faster) over
existing approaches, as well as auto-tuned portability to new hard-
ware platforms.
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1 INTRODUCTION
Over the past decade, GPUs have become mainstream in computing
platforms, and it is expected that soon all commodity CPUs will
feature an integrated GPU on their real-estate. Given this growing
presence, it is no surprise that a considerable body of literature has
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developed on supporting database query processing over heteroge-
neous (CPU+GPU) platforms (see [1, 20, 22] for recent surveys).

The proposed techniques primarily use hand-crafted compute
kernels and focus on leveraging the abundant raw power inherent
in GPU parallelism. Customized low-level workarounds are devised
to overcome the: (a) restricted bandwidth between CPU and GPU
memories, (b) limited shared-memory capacities of individual GPU
nodes, and (c) hierarchical interconnects between GPU elements
that lead to non-uniform access times.

These tailor-made solutions have certainly produced impressive
performance benefits, reaching up to an order of magnitude [24, 26].
Despite this, GPU-based query processing has not gained traction
among industrial-strength database engines, including Microsoft’s
SQL Server. This is due to two main reasons: First, as highlighted
in [20], “system designs have to catch up with the hardware evolu-
tion.” Second, due to the widespread use of CUDA, the proposed
techniques cannot work across hardware from different vendors.

More fundamentally, the original purpose of GPUs – to efficiently
support graphics operations – has been completely ignored in these
formulations. In this paper, we return to first principles, and show
how graphics pipelines, which are natively optimized to leverage the
underlying hardware, offer a highly attractive platform for database
query processing.

Graphics-based Query Processing
Graphics-based approaches had been contemplated about two
decades ago (e.g., [7–9, 29]), but were shelved due to: (a) the graph-
ics technologies of the time being restricted w.r.t. power and pro-
grammability, and (b) the emergence of CUDAprogramming, whose
popularity led to raw compute being valorized over graphics com-
ponents. Notwithstanding, it is our contention that GPU technology
has now come of age to the extent that a graphics-driven approach
for query processing offers substantively superior capabilities to
contemporary GPU-driven techniques.

The graphics pipeline incorporates features to maximize the
GPU-based performance of applications such as games. It decom-
poses the rendering operation, which transforms an input 3D scene
to a 2D camera image, into a collection of smaller (and simpler)
stages, with each stage executed as a collection of parallel threads.
This gives the graphics driver the flexibility to schedule threads
spanning across stages, thus maximizing GPU utilization.

From a data perspective, the pipeline optimizes writes to images
via controlled parallel write operations to frame buffer objects, and
reads from specific types of GPU memory pages, such as textures
and vertex buffers, through targeted pre-fetching.
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Figure 1: Modeling Hash Join using the Graphics Pipeline

In essence, an application that utilizes the graphics pipeline
automatically becomes “hardware conscious” as well. We therefore
advocate use of this abstraction for database query processing.

Contributions
As a proof of concept of the above vision, we design and implement
the workhorse Join and GroupBy query operators – specifically,
their popular hash-based versions – by deconstructing the algo-
rithms into smaller steps amenable to rendering operations that
leverage the graphics pipeline features. In this context, as part of the
GroupBy operator design, we also propose the first implementation
of a GPU-based multi-attribute GroupBy.

The toy example of Figure 1 illustrates our Hash Join approach.
Here, the join attribute values of relations are represented as a set
of 1D points which are transformed to 2D by the hash function.
The build relation points are first transformed and rendered using
the graphics pipeline to create the hash table, which is represented
as a stack of 2D images. The row identifiers are used as color to
generate these images. The Join is then accomplished by rendering
the probe relation against the hash table.

These algorithms have been implemented using the Vulkan
API [15], and evaluated over benchmark databases on vanilla com-
puting platforms. The experimental results indicate substantive
performance benefits on large data sets, attaining on average 2X
improvements over contemporary customized solutions. We also
demonstrate that our approach achieves tuned performance across
GPU architectures, essentially for free.

Apart from query processing efficiency, a graphics-based ap-
proach also offers several collateral benefits: (a) It is easy to keep
pace with technology through new drivers offered by the graph-
ics vendors; (b) Query processing becomes agnostic to changes
in GPU architectures (e.g. integrated vs discrete) and vendors, re-
quiring only a change of drivers; (c) Contemporary graphics APIs
also support the traditional compute paradigm (similar to CUDA),
facilitating query operator designs that seamlessly straddle the best
of both (compute and graphics) worlds.

2 BACKGROUND: GRAPHICS PIPELINE
Graphics-intensive applications, such as games, require constant
rendering of complex scenes that are continuously changing. The

Figure 2: Simplified Graphics Pipeline

rendered scene at a given time step is called a frame, which contains
geometric objects as seen by a camera at that time step. Achiev-
ing smooth transitioning between adjacent frames requires a high
frame rendering rate.

GPUs are designed to speed up precisely these operations which
are executed as part of the graphics pipeline. The pipeline fea-
tures a high-level interface (e.g. Direct3D [19] (Microsoft Windows),
metal [18] (OSX), OpenGL [27], Vulkan [15]) for easy use of the
GPU hardware, while the graphics drivers handle low-level tasks,
such as thread scheduling, parallel rasterization, etc. Since these dri-
vers are hardware-specific, applications using the graphics pipeline
are automatically optimized for the underlying hardware.

A simplified version of the graphics pipeline (also known as
the shader pipeline), relevant to our work, is shown in Fig. 2. It is
divided into a sequence of stages, some of which are customizable
by the developer through the use of programmable shaders. In the
remainder of this section, we briefly review these pipeline stages –
more details are available in [27]. (Our usage here of the pipeline
term refers to intra-operator constructions, distinct from the inter-
operator pipelines associated with query execution plans.)
Vertex Shading. The first stage of the pipeline, the vertex shading
stage, is typically used to transform the vertices corresponding to
the objects in a scene into a common screen space (the coordinate
system w.r.t. the camera), known as model-view-projection. The de-
veloper can customize the processing of each vertex through the
use of a Vertex Shader, which executes in a Single Program Multi-
ple Data (SPMD) fashion over the vertices. The input vertices are
bound to the pipeline using specialized memory objects called ver-
tex buffers. The graphics driver appropriately schedules the threads
corresponding to the different vertex shaders, and also prefetches
the vertex data from the vertex buffer into the local memory to
improve the performance of this stage.
Vertex Post Processing. This stage is handled by the GPU’s native
driver and is typically used for clipping and rasterization. Clipping
is the process where primitives outside the viewport (the region
visible from the camera) are removed. Primitives such as lines
and triangles that partially intersect the viewport are also cropped
during this operation, resulting in a new set of primitives that are
fully contained within the viewport. Once clipped, the remaining
primitives are then rasterized, where rasterization is the process that
converts each primitive into a collection of fragments. A fragment
can be considered as the modifiable data corresponding to a pixel.
Therefore, the fragment size depends on the screen resolution.
Fragment Shading. This is another developer customizable stage
that processes all the fragments generated after rasterization, using
the logic programmed in a Fragment Shader. It is typically used
to compute and set the “color" for each fragment. Depending on
the required functionality, it can also be used for other purposes



such as discarding fragments, writing to additional output buffers,
etc. As with the vertex shading stage, the driver is responsible for
scheduling the threads, and appropriately prefetching and setting
up the local memory to improve the shader performance.
Post Fragment Processing. The final stage of the pipeline indi-
vidually processes the fragments that are output from the fragment
shading stage, and generates the pixels for the rendered image.
Note that there can be multiple fragments corresponding to a given
pixel. Such fragments are combined in parallel through an operation
called blending to finally generate a single pixel.
Virtual Screen. The graphics API also supports rendered images
to be output to a “virtual" screen represented by a frame buffer
object (FBO). Each FBO can be associated with one or more color
attachments. A color attachment is used to represent the color of
the pixels, and stores 4 values (𝑟, 𝑔, 𝑏, 𝑎), per pixel, corresponding
to the red, blue, green, and alpha color channels. Each attachment
is associated with a texture that stores the actual color data.

3 EQUI-JOIN OPERATOR
In this section, we present our graphics pipeline-based design of
the equi-join operator. In particular, we revisit the classic Hash
Join algorithm [3] from a graphics perspective, and deconstruct it
into a sequence of rendering passes, thus naturally leveraging the
underlying GPU hardware.

Let the join relations be 𝑅 and 𝑆 , with |𝑅 | = 𝑛, |𝑆 | =𝑚. As with
contemporary work [24, 28], we assume for simplicity that the join
attributes are 32-bit integers. Thus, the input to the join operator is
a set of 32-bit integer pairs (𝑅𝐼𝐷, 𝑘), where𝑅𝐼𝐷 is a record identifier
in the relation, and 𝑘 is the value of the join attribute in this row.
The extension to 64-bit integers joins is discussed later in Section 7.

We follow the traditional approach of a partitioned hash join,
wherein𝑅 and 𝑆 are first partitioned on the CPU into smaller batches
that fit in the GPU memory, and these batches are then iteratively
processed on the GPU. Further, we choose radix partitioning for
the initial step, again similar to [24, 28]. This partitioning is such
that the biggest partition can comfortably reside in GPU memory.

Due to the inability to dynamically allocate memory on the GPU
tomaterialize the join, we split the normal two-phase Hash Join into
three phases, with the incorporation of an additional count phase
between the build and probe phases – these phases are described
in Sections 3.1 through 3.3. Subsequently, we discuss important
design choices in Section 3.4.

3.1 Build Phase
Consider a partition (𝑅 𝑗 , 𝑆 𝑗 ), 𝑅 𝑗 ⊆ 𝑅, 𝑆 𝑗 ⊆ 𝑆 that is being joined.
For now, assume that the hash table is built on 𝑅 𝑗 – the determi-
nation of the choice of build and probe relations is discussed later
in Section 3.4.3. We represent this hash table as 2D images corre-
sponding to FBOs. Our motivation for doing so is that creating a
hash table is akin to rendering images, a common task in graphics
applications. Further, probing involves lookups on these images,
another common graphics task in the form of texture lookups. Due
to their pervasive presence, the GPU hardware is already heavily
optimized for performing these tasks.

Within the FBOs, the pixel color channels are used to represent
the join attribute values and their RIDs. The pixel locations in the

2D image are determined through hash functions on the attribute
values. Specifically, we use a pair of (independent) hash functions,
ℎ𝑥 and ℎ𝑦 , to transform attribute value 𝑘 to a 2D image location:

ℎ𝑥 : Z→ [0, 𝑟𝑒𝑠𝑥 − 1] ℎ𝑦 : Z→ [0, 𝑟𝑒𝑠𝑦 − 1] (1)

where (𝑟𝑒𝑠𝑥 , 𝑟𝑒𝑠𝑦) is the resolution of each image. Then the hash
function ℎ is defined as ℎ(𝑘) = (ℎ𝑥 (𝑘), ℎ𝑦 (𝑘)).

This data-to-image transformation is carried out through two
core modules of the graphics pipeline – namely, the Vertex Shader
and the Fragment Shader. The Vertex shader maps data elements
to FBO locations, while the Fragment Shader blends the data ele-
ments assigned to each FBO location.

Our hash-based approach may result in collisions due to two
reasons: (a) highly convergent mapping from (domain-bounded)
data space to (hardware-limited) image space, and (b) duplicate
attribute values. To handle these collisions, we again leverage the
graphics modules to create a sequence of stacked images: all records
that had collisions with the first 𝑖 images get hashed onto the 𝑖 +1𝑡ℎ
image on a first-come-first-served basis. These stacked images are
created through iterative renderings of the build table – that is, if
the hash table comprises 𝑡 images, then the build phase requires
𝑡 rendering passes. Fig. 3 illustrates the first rendering pass of the
build phase on a sample input relation 𝑅.

Finally, we also maintain a boolean array, FlagArray, which
is indexed by the RIDs of 𝑅 𝑗 . It keeps track of the RIDs that have
been successfully entered into the stacked sequence of images, and
guarantees the correctness of our approach by ensuring that all
tuples are eventually processed. The FlagArray is initialized with
all its entries being false.

Our algorithms are designed such that, for a given partition pair
(𝑅 𝑗 , 𝑆 𝑗 ), all of the above structures are fully resident within GPU
memory. (In Section 3.3.2, we describe how to handle the skewed
case where the data characteristics cause several collisions, and 𝑡
becomes large enough that the hash stack exceeds GPU memory.)

3.1.1 First Rendering Pass. Before the start of the rendering, the
FBO which stores the hash image is cleared so that all its pixels are
colored (0, 0, 0, 0). Each record of 𝑅 𝑗 is then processed as a vertex,
implying that 𝑅 𝑗 itself is bound as a vertex buffer. The Vertex Shader
is used to map the input records of 𝑅 𝑗 to 2D positions assigned
by ℎ(𝑘). Recall that each vertex of a vertex buffer is processed in
parallel during the rendering. The driver takes care of parallelizing
this process as well as prefetching the appropriate vertices into the
local memories of the corresponding cores of the GPU.

The transformed vertices are rasterized into a set of fragments by
the Vertex Post Processor in the pipeline. These fragments are then
processed in parallel by the Fragment Shader. The Fragment Shader
for the first rendering pass simply encodes the join attribute-row id
pair of the corresponding vertex as the color of that fragment (inset
in Fig. 3). Specifically, given the four color channels (𝑟, 𝑔, 𝑏, 𝑎), we
set 𝑟 to be the row identifier, and 𝑔 to be the join attribute value. We
also set the value of 𝑏 to 1, and this field is used during the probe
phase to identify whether or not a pixel of the hash image has a
valid value. The 𝑎 channel remains unused.

All these fragments are then processed by the per-fragment
processing stage in the pipeline to write to the corresponding pixels
in the FBO, thereby generating the image 𝐻0. When setting up the



Figure 3: Rendering Pipeline for First iteration of Build Phase. The flows highlighted in blue correspond to tuples that do not
succeed in entering 𝐻0 in this iteration. The inset shows the byte-level data layout within a pixel.

rendering pipeline, we set the blend function to overwrite – thus,
when there is a collision, only one of the clashing fragments is
(non-deterministically) output to the final image – we refer to this
fragment as the winner fragment. For example, RIDs 1 and 2 in Fig. 3
generate winner fragments overwriting the fragments generated
by RIDs 3 (hash collision) and 0 (duplicate join value), respectively.

After completing the 𝐻0 image construction, we update the Flag
Array to reflect the input rows of 𝑅 entered in this image. This is
achieved in a completely parallel operation using a Compute Shader.
𝐻0 is input to this shader as a texture, which processes each pixel
to identify if it has been set, and if so, updates the Flag Array to
indicate that the corresponding 𝑅𝐼𝐷 need not be processed again.

3.1.2 Subsequent Rendering Passes. The subsequent passes operate
in the same manner, with the only difference being that in each
pass, the hashing scope is restricted to the input RIDs for whom the
FlagArray entry is false – that is, those records that have not yet
been entered into any of the stacked images. This is accomplished
by transforming vertices corresponding to RIDs whose FlagArray
entry is true so that they get “clipped" by the pipeline. At the end
of each pass, the newly generated fragments are blended together
as before to create the hash image 𝐻𝑖 corresponding to the current
iteration 𝑖 . This is followed by an update of the FlagArray to reflect
the winner fragments in the blending contest. The highlighted flows
in Fig. 3 correspond to the fragments that subsequently get hashed
in the second iteration to generate 𝐻1 (used as input in Fig. 4).

The build phase on 𝑅 𝑗 terminates when all entries in FlagArray
become true, signifying that all tuples in 𝑅 𝑗 have been processed.

3.2 Count Phase
Since the size of the materialized join depends on the distribution
of the input relations, it poses two challenges: First, the graphics
pipeline APIs do not allow dynamic memory allocation during
pipeline execution, making it necessary to determine the output
size prior to materializing the join. Second, even if the inputs fit
into GPU memory, the join output may be much larger.

To overcome the above challenges, we first compute the size of
the materialized join, followed by identifying the location at which

to store the output records. This is then used by the Probe phase to
materialize the join.

3.2.1 Compute Output Size. This is accomplished using a single
rendering pass, as illustrated in the pipeline shown in Fig. 4. Here,
as before, the rows in 𝑆 𝑗 are bound as vertex buffers, and each row
is processed as a single vertex in the Vertex Shader. However, unlike
in the hash phase, where a single pass rendered all vertices of the
input, for the count step, we set the pipeline to be rendered 𝑡 times,
where 𝑡 is the number of hash images created in the build phase. We
employ a feature called instanced rendering that is commonly used in
graphics applications to efficiently render a specific object multiple
times, but each time with different parameters (see Section 3.4).

Thus, for each vertex of 𝑆 𝑗 , a set of 𝑡 Vertex Shader instances
are spawned. Given a vertex (𝑅𝐼𝐷𝑆 , 𝑘) ∈ 𝑆 𝑗 , and 𝑖, 0 ≤ 𝑖 < 𝑡 , the
corresponding Vertex Shader instance first transforms 𝑘 to its hash
location ℎ(𝑘). It then reads the color (𝑟, 𝑔, 𝑏, 𝑎) of the pixel at ℎ(𝑘)
in the hash image 𝐻𝑖 . If 𝑘 is not equal to 𝑔, the record pair – 𝑟 (an
RID in 𝑅) and 𝑅𝐼𝐷𝑆 – do not form a row in the join output. In this
case, the output of the Vertex Shader is simply a location outside
the clip region, which therefore does not create any fragment to
be processed further. For example, the Vertex Shader processing
𝑅𝐼𝐷𝑆 = 42 and 𝑖 = 1 in Fig. 4 does not create a fragment.

On the other hand, if 𝑘 is equal to 𝑔, then (𝑟, 𝑅𝐼𝐷𝑆 ) forms a valid
row in the join output. In this case, the Vertex Shader outputs a
location 𝑝 (𝑅𝐼𝐷𝑆 ), where 𝑝 is a function that uniquely maps the
row in 𝑆 𝑗 to a location in the output image. This is accomplished as
follows: the graphics pipeline provides an implicit vertex indexing
that follows the order of the vertices in a vertex buffer. This is
provided as an in-built variable in the Vertex Shader, and thus has
a one-to-one mapping between 𝑅𝐼𝐷𝑆 and the vertex index 𝑣𝑖𝑛 . The
function 𝑝 is then defined as

𝑝 (𝑅𝐼𝐷𝑆 ) = 𝑝1→2 (𝑣𝑖𝑛 (𝑅𝐼𝐷𝑆 )) (2)
where 𝑝1→2 maps an integer to a 2D coordinate using a row-major
ordering.

The Fragment Shader, when processing this fragment, simply
sets its color to (1, ∗, ∗, ∗) – here ∗ denotes a don’t-care value indi-
cating that the color channel is not used. The blend function for



Figure 4: Rendering Pipeline for Count Phase

Figure 5: Rendering Pipeline for Probe Phase

this pipeline is set to add the colors (note the difference from the
Build Phase, where the blend function was overwrite). This means
that the Per Fragment processing stage simply adds all the colors
of the fragments corresponding to a single pixel, and sets the color
of the pixel to this sum – semantically, it captures the number of
rows in 𝑅 𝑗 that match a given row in 𝑆 𝑗 . Thus, at the end of the
rendering pass, each pixel of the FBO stores the number of output
rows corresponding to the input row associated with that pixel
location. We call this the CountFBO.

3.2.2 Output Location Identification. Apart from the size compu-
tation, we overload the Count step to also identify in advance the
location in the output array where each result row should be stored.
Specifically, we perform an exclusive prefix sum of the elements of
CountFBO and store it as CountArr.

Assume that |𝑆 𝑗 | is less than the size of CountArr (Section 5
describes how we ensure this inequality). After this operation, the
value of the last element of CountArr captures the cardinality of
the join output. Further, if we were to construct a linear array of
this cardinality, the output corresponding to record 𝑅𝐼𝐷𝑆 would be
stored in the array from index 𝐶𝑜𝑢𝑛𝑡𝐴𝑟𝑟 [𝑝 (𝑅𝐼𝐷𝑆 )] onward.

3.3 Probe Phase
The main idea during the probe phase is to test and match each
record in 𝑆 𝑗 with the 𝑡 pixels (one per hash image) corresponding to
the location defined by the hash functionℎ(). Next, we first describe
the pipeline used for the probe phase, followed by discussing how
a large hash stack size (i.e. large 𝑡 ) is handled.

3.3.1 Probe Pipeline. The pipeline used for the probe step is similar
to that used for the count step. In addition to the hash images, the
Vertex Shader also takes as input CountArr that was previously
computed. If a vertex (𝑅𝐼𝐷𝑆 , 𝑘) ∈ 𝑆 𝑗 matches with the image 𝐻𝑖 to
produce an output record, the location of this output is computed
using the CountArr as:

𝑙𝑜𝑐 = atomicAdd(𝐶𝑜𝑢𝑛𝑡𝐴𝑟𝑟 [𝑝 (𝑅𝐼𝐷𝑆 )], 1)
where atomicAdd() atomically increments the value at Coun-
tArr[p(id)] by 1, and then returns its original value prior to the
increment.

The above strategy provides a lock-free mechanism for identify-
ing the index within the output array. The actual 2D location where
the join output is written to in the FBO is then obtained using the
function 𝑝1→2 (𝑙𝑜𝑐), where 𝑝1→2 is the same 1D-to-2D function as
that used in Equation 2. The Vertex Shader also passes along the
values of the matched row ids, i.e., 𝑅𝐼𝐷𝑆 and 𝑅𝐼𝐷𝑅 = 𝑟 (recall that
𝑟 was obtained using a texture lookup on 𝐻𝑖 ).

The rasterized fragments are then simply written to the result
FBO at their designated locations by the Fragment Shader. The
colors of these fragments are set as (𝑅𝐼𝐷𝑅, 𝑅𝐼𝐷𝑆 , ∗, ∗), denoting
the matching join records. This part of the pipeline is illustrated in
Fig. 5. At the end of the rendering pass, the result FBO contains the
materialized join identifiers.

Note that it is possible that the physical size of the FBO, used
for materializing the join, turns out to be smaller than the join
output size computed in the previous step. In this case, the probe
step is split into multiple rendering passes such that the output size
from each pass can be accommodated within the FBO. The specific
records in 𝑆 𝑗 that are processed in each pass are determined using



the CountArr – it is used to partition 𝑆 𝑗 such that the join resulting
from each partition fits within the FBO. At the end of each pass, the
result FBO is transferred to the CPU before starting the next pass.

3.3.2 Hash Stack Height Threshold. Given the limited memory
available in the GPU, it will not be able to handle a large hash stack
size on the 𝑅 𝑗 partition. Therefore, we limit the stack height of the
hash images to a fixed number, SH_limit, that can comfortably fit
in GPU memory. Consider the case where the stack height required
for the join is found to be greater than SH_limit, arising out of a
large number of duplicates or hash collisions. In this case, we pause
the hash computation after SH_limit images are generated, then
run the probe step, and subsequently generate the next stack of
hash images. Note that this punctuated process only requires that
the flag array 𝐹 be kept current, and feeding 𝐹 to the rendering
pipeline when the next hashing cycle is initiated.

3.4 Design Choices
As described above, our join algorithmmakes several design choices
to leverage the rich features of the graphics pipeline. The obvious
advantage of this approach is that hardware tuning is automati-
cally obtained by simply being pipeline conscious. Specifically, we
derive the following benefits: First, by processing the data similar
to vertices, the driver manages not only the parallelism, but also
the necessary data allocation across different thread groups to opti-
mize fast vertex data reads (including data pre-fetching). Second, as
mentioned earlier, by making use of images to store the hash tables,
we take advantage of not only faster “texture lookup” operations,
but also more efficient data writes into the FBOs.

Additionally, we have also made the following choices to maxi-
mally harness the graphics features, as well as to overcome some
of the graphics-induced limitations.

3.4.1 FBOs vs Traditional Buffers. To materialize the join, it is
possible to use traditional buffers (called storage buffers) instead
of writing the output to an FBO (like in our approach). However,
unlike write to storage buffers which are immediate, writing to
an FBO is lazy, wherein the actual writes occur post the Fragment
Shader stage. Since the writes are driver controlled, thus allowing
driver-based scheduling of the write operations. Furthermore, it
allows the usage of the in-built blend operations.

3.4.2 Instanced Rendering. A straightforward way to design the
count and probe pipeline in the probe step would have been to
use a Vertex Shader similar to that of the hash phase. That is, map
each row of relation 𝑆 into its hash location, and then use the
Fragment Shader to lookup the stacked hash images and test for
equality between the join attributes. This process involves looking
up 𝑡 textures in a loop within the Fragment Shader, resulting in
multiple randommemory accesses. Further, it can generate multiple
output records due to which efficient FBO writes cannot be used (a
fragment shader can write to only one location of the FBO).

Therefore, we instead chose to use Instanced Rendering since it
provides the following benefits: First, since each Vertex Shader and
Fragment Shader instance has constant time complexity (because
of no loops), the graphics driver can now efficiently schedule the
parallel threads to maximize GPU utilization; Second, each Vertex
Shader now reads from exactly one texture, which gives the driver

leeway to appropriately schedule threads and the corresponding
texture prefetches. Third, we get to use the efficient FBO writes to
output the join results.

3.4.3 Minimizing the Hash Stack size. Consider a join being per-
formed on a partition (𝑅 𝑗 , 𝑆 𝑗 ). As the number of hash images in-
creases, the number of rendering passes (in the build phase) and
the number of vertices rendered (in the probe phase) also increase.
This will in turn slow down the performance of the join. Thus, we
ideally want to build a hash stack that has fewer images.

To accomplish the above goal, we add a compute_statistics step
before the build phase, which counts the number of hash images
required for 𝑅 𝑗 and 𝑆 𝑗 , respectively. The hash images are then dy-
namically built on the partition (𝑅 𝑗 or 𝑆 𝑗 ) with the smaller number
of images, resulting in what may be termed as a “SnakeJoin”where
the build can switch between 𝑅 and 𝑆 partitions and is not exclusive
to a single relation.

The compute statistics step is also executed using the graphics
pipeline as follows. It uses the same Vertex Shader as the hash
phase. However, in the Fragment Shader, it simply outputs the
color (1, ∗, ∗, ∗) and sets the blend function to add the fragments.
Thus, at the end of this rendering, each pixel of the output image
will have the number of clashes corresponding to that pixel location.
The maximum value over all these pixels gives the number of hash
images that are required.

Since the computation is done in a single rendering pass, its
overhead is small, especially when compared to the potential degra-
dation due to building hash images on the wrong partition.

3.4.4 Handling Large Hash Stack Sizes. In case of skewed data, it
is possible that the hash stack size may become infeasibly large
from a memory perspective. This, despite the sparsity of entries in
the individual images since the memory is pre-allocated. To handle
such pathological cases, we introduce an additional pass during the
build phase to flatten the hash stack into a single dense image. This
is achieved as follows: Since the compute statistics step described
above also counts the number of collisions for each pixel of a hash
image, we make use of this information to map each location to
contiguous pixels in a single image, thus reducing the number of
images and the memory occupancy.

The flatten image step is introduced during runtime depending
on the hash stack size, and this information is then used during the
probe phase as well.

4 GROUPBY OPERATOR
In this section, we describe the algorithm for the GroupBy oper-
ation, which poses some unique challenges as compared to Join
processing. We begin in Section 4.1 with the graphics-based ap-
proach for a single-attribute grouping – that is, where the input
comprises 𝑛 pairs of the form (𝑘, 𝑣𝑎𝑙), where 𝑘 is the 32-bit integer
grouping attribute, and 𝑣𝑎𝑙 is the associated value that feeds into
an aggregate operation. Subsequently, we follow up in Section 4.2
with the extension to multiple GroupBy attributes, which requires
additional graphics machinery.

Similar to the Join approach, we handle data that does not fit in
GPU memory by first partitioning the input table into batches that
can be comfortably GPU-resident, and then iteratively processing



Figure 6: GroupBy algorithm. (a) Second Rendering Pipeline in Grouping Step. (b) Rendering Pipeline for Computing Aggregates
(here, average). (c) Colors and Blends for Aggregates.

these batches. We use the same radix partitioning-based scheme
as before to identify the batches. Here, an interesting issue that
arises in the multi-attribute GroupBy context, is the specific choice
of partitioning attribute. We make the choice based on statistics
computed during query execution, as described in Section 4.2.2.

Our approach can handle distributive and algebraic aggregate
functions [10]. The current implementation specifically supports
count, sum, minimum, maximum, and average functions.

4.1 Single Attribute GroupBy
4.1.1 Grouping Step. The initial grouping step uses iterative pro-
cessing of two rendering pipelines. The first is similar to the hashing
pipeline used in join, creating a series of hash images on the group-
ing attribute 𝑘 . However, a critical difference is that a new image
is created only for hash collisions, but not for duplicate attribute
values. The implicit vertex index provided by the graphics pipeline
is used as the RID while generating this image.

The hash image created in each iteration is used by the second
rendering pipeline to map each tuple of the input table to a unique
position defined by the grouping value. This pipeline is illustrated in
Fig. 6(a). The vertex shader maps the RID 𝑣𝑖𝑛 (implicit vertex index)
to the RID of the hashed vertex obtained by looking up 𝐻𝑖 [ℎ(𝑘)],
where 𝑘 is the GroupBy attribute of the vertex being processed,
and 𝑖 is the iteration number. If they are equal, then the RID 𝑣𝑖𝑛 is
mapped to the RID in 𝐻𝑖 [ℎ(𝑘)]. In essence, this mapping is similar

to the union-find data structure: when multiple tuples share the
same attribute value, one of them is identified as the head for the
group, and all the others point to this head. For example, in Fig. 6(a),
RIDs 0 and 2 corresponding to group-by attribute 𝑘1 get mapped to
2. So, the head for this group is Record 2. This mapping is stored
using a buffer called𝑀𝑎𝑝 . The records corresponding to the heads
of the different groups are stored in a separate buffer called 𝐻𝑒𝑎𝑑 .
In particular, 𝐻𝑒𝑎𝑑 stores a 1 for records that form the heads of
their respective groups, and 0 for the others.

The pair of rendering pipelines are run iteratively until no more
collisions are present, and all the input records have been processed.
Note that since the hash image generated in an iteration is immedi-
ately consumed, it is not necessary to retain multiple images.

4.1.2 Aggregation Step. Before computing the aggregation, a prefix
sum operation is first executed on the 𝐻𝑒𝑎𝑑 array. It is precisely
to facilitate this operation that we write directly to storage buffers
instead of an FBO in the grouping step. Had an FBO been used,
the associated𝑀𝑎𝑝 and 𝐻𝑒𝑎𝑑 values for a record would be stored
within a single pixel of the FBO, making the prefix-sum computa-
tion cumbersome. The prefix-summed 𝐻𝑒𝑎𝑑 provides the required
output location index for each group.

The aggregation is then accomplished in a single rendering pass,
as illustrated in Fig. 6(b). Here, the Vertex Shader uses the𝑀𝑎𝑝 and
𝐻𝑒𝑎𝑑 buffers to transform a given record to its mapped location.



Specifically, when processing a record with vertex index 𝑣𝑖𝑛 , its
group is given by 𝑀𝑎𝑝 [𝑣𝑖𝑛], and its location in a 1D array is pro-
vided by 𝑙𝑜𝑐 = 𝐻𝑒𝑎𝑑 [𝑀𝑎𝑝 [𝑣𝑖𝑛]]. The location in the output FBO is
then obtained by using the mapping 𝑝1→2 (𝑙𝑜𝑐) (Equation 2).

The fragment shader then simply outputs the appropriate color
depending on the aggregate function. These colors are “blended"
together in the per-fragment processing stage to generate the fi-
nal output FBO, which is then returned to the CPU. The different
blend functions and the colors used for the different aggregate
functions are as shown in Fig. 6(c). For the case of Avg, there is
a post-processing step which computes the average by dividing
the 𝑟 channel (which stores the sum of the output pixels), with the
𝑔 channel (which stores the count of these pixels). The Compute
Shader is invoked for this evaluation.

4.2 Multi-Attribute Group By
We now move on to considering Multi-attribute GroupBy, where
the query features 𝑙 GroupBy attributes 𝑘1, 𝑘2, . . . , 𝑘𝑙 . As with the
single attribute GroupBy, the Grouping step hashes only one of
the attributes. In Section 4.2.1, we first discuss our algorithm which
assumes 𝑘1 to be the hashing attribute. Then, Section 4.2.2 describes
how this attribute is chosen from the 𝑙 candidates.

4.2.1 Processing Multiple Attributes. Different from the single at-
tribute GroupBy, the Fragment Shader writes to the hash FBO all
the attributes 𝑘1, 𝑘2, . . . , 𝑘𝑙 . This raises a storage issue that was not
present either for Join or single-attribute GroupBy. Specifically, an
image pixel can store only 4 values corresponding to 𝑟, 𝑔, 𝑏 and 𝑎, of
which 3 are already used to store the RID (𝑟 ), GroupBy attribute (𝑔),
and validity flag (𝑏). Therefore, at most, one more grouping at-
tribute can be natively accommodated in the pixel. But, if 𝑙 > 2,
then we have to bring in additional graphics machinery to handle
the overflow – our solution is to use multiple color attachments (see
Section 2) for the FBO.

In particular, given a query with 𝑙 grouping attributes, a total
of ⌈ 𝑙+24 ⌉ attachments are required to accommodate them. Thus,
attributes 𝑘𝑖 , 𝑖 ≥ 2 onward are written to the ⌈ 𝑖+24 ⌉𝑡ℎ attachment of
the FBO. The mapping pipeline is modified to compare with all of
these attributes to identify a clash during the mapping phase of the
grouping step. This is implemented by binding all the attachments
as textures in the second grouping pipeline.

The remaining steps of the multi-attribute algorithm are the
same as those of the single-attribute GroupBy.

4.2.2 Choosing Attribute Order. For multi-attribute GroupBys, we
would like to choose the attribute that is most diverse for the hash-
ing operation. This is because a less diverse attribute can cause
more collisions when coupled with the other attributes. Thus, if
the database already stores statistics about the GroupBy attributes,
then the one with the most number of unique values is chosen to
perform the hash. In the absence of such statistics, we piggyback on
the partitioning step to identify the hash attribute. Specifically, we
compute fine-grained histograms on all the GroupBy attributes as
part of the first step of the radix partitioning, and use the number
of non-empty bins as a heuristic to approximate the diversity of
the attributes. The partitioning is then performed using the chosen
attribute, which continues to be used in the grouping step.

5 IMPLEMENTATION
The Join and GroupBy operators were implemented in C++ and
use the recently developed feature-rich Vulkan API [15] to access
the graphics pipeline. There are several challenges that have to
be overcome when using the GPU, and in particular the graphics
pipeline. First, the use of images imposes restrictions on the maxi-
mum resolution of the image, as well as the amount of information
that can be stored per pixel of the image. Second, the lack of a
common memory space between the CPU and GPU, along with the
limited GPU memory, can make data transfer overheads a bottle-
neck. Third, dynamic memory allocations are not possible during
the execution of the pipeline.

Some of the above challenges were handled in the design of
the algorithms in the previous sections (e.g., multiple attachments,
additional count step). In this section, we focus on the choices made
in our implementation to handle the other challenges.
Setting Image and Partition Sizes. A core parameter of our
algorithms is the resolution (or size) of the hash images. While
in principle, more would appear to be better, an excessively large
resolution can be detrimental by slowing down the rendering. Due
to this, graphics drivers set a limit on the maximum image sizes
supported by the hardware. Accordingly, we chose a resolution of
4096 × 4096, a reasonable setting for contemporary GPUs, which
allows hash images to host up to 16 million entries.

Given this hash image size setting, the data partition sizes need to
be assigned so as to limit the number of collisions to an acceptable
level. Specifically, the expected percentage of collisions [2] is given
by 50 ∗ 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒

𝐻𝑎𝑠ℎ𝐼𝑚𝑎𝑔𝑒𝑆𝑖𝑧𝑒
– if we set this level to a modest 20 percent,

then the Partition Size works out to around 6 million entries for
the 16 million image size.
Image Storage Efficiency. Improving the space usage of a hash
image not only reduces the space utilization, but also increases the
number of images that can be stored in the GPU. However, our
pixel layout thus far, with its four 32-bit color components, is highly
wasteful – for instance, 𝑏 stores only a boolean flag, and worse, 𝑎 is
completely unused. To improve storage efficiency, we take recourse
to: (a) Replacing the 32-bit color channels with 16-bit color channels,
(b) Spreading values across multiple channels as shown in Fig. 7,

Figure 7: Data layout for 16-bit color channels

and (c) Replacing RIDs with the 31-bit implicit vertex indices (since
the number of rows processed per data partition is less than 231 by
design) provided by the vertex shader and using the remaining 1
bit to store the flag. These simple modifications result in halving
the space requirement of a hash image.
Hash Stack Height Threshold. As discussed in Section 3.3.2,
the stack height of the hash images is limited to SH_limit. In our
implementation, SH_limit is set to 8, corresponding to 1GB of GPU
memory, easily manageable even in lower-end GPUs.
Parallel Rendering. The partition sizes defined above are depen-
dent on the rendering capability of the GPU hardware. However,
performing just one rendering at a time may not completely utilize
the available GPU resources. Thus, to maximize the GPU utilization,
we perform parallel renderings, i.e., process partitioned batches in



parallel to the extent that the memory is fully utilized. A crucial
advantage of this strategy is that our implementation can easily
scale to architectures featuring multiple GPUs.
Pipelining Compute and Data Transfer. To improve GPU effi-
ciency and reduce data transfer bottleneck, our implementation also
pipelines data transfer with compute. Specifically, in each thread as-
sociated with a single rendering, the data transfer of a batch 𝑖 + 1 to
the GPU is performed in parallel with the compute corresponding
to batch 𝑖 of that thread.

6 EXPERIMENTAL EVALUATION
In this section, we first describe our experimental setup, and then
present the performance profiles for the Join and GroupBy imple-
mentations. The performance metric is the end-to-end execution
times of the operator, that is, from the time the input relation(s) are
loaded into CPU memory, to the time the entire output is material-
ized in CPU memory.

6.1 Setup
Our evaluation was conducted on a Windows 10 desktop provi-
sioned with AMD Ryzen 5950X CPU, 128GB memory, and Nvidia
RTX 3080 LHR GPU with 10GB VRAM and a PCIe interface. The
source code of the database operators was compiled using Visual
C++ 2019, with the relevant optimization and AVX flags.

6.1.1 Data sets and queries. We report the results primarily from
Joins and GroupBys that were run on a 1 Terabyte version of the
TPCH benchmark database, thereby simulating industrial-strength
data warehouses. We use the following four Joins on this database
in our evaluation:
JO1. Customers ⊲⊳𝑐𝑢𝑠𝑡𝑘𝑒𝑦 Orders
JO2. Part ⊲⊳𝑝𝑎𝑟𝑡𝑘𝑒𝑦 Lineitem
JO3. Partsupp ⊲⊳𝑝𝑎𝑟𝑡𝑘𝑒𝑦 Lineitem
JO4. Orders ⊲⊳𝑜𝑟𝑑𝑒𝑟𝑘𝑒𝑦 Lineitem

We also evaluated the join performance on the “narrow-schema”
databases used in previous work [24, 28]. In particular, we use both
uniformly generated data sets as well as skewed data sets.

To evaluate single attribute GroupBy performance, we run the
following GroupBy operations:
SGO1. 𝑜𝑟𝑑𝑒𝑟𝑑𝑎𝑡𝑒G𝑆𝑈𝑀 (𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒 )LineOrder
SGO2. 𝑜𝑟𝑑𝑒𝑟𝑘𝑒𝑦G𝑆𝑈𝑀 (𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒 )LineOrder
SGO3. 𝑝𝑎𝑟𝑡𝑘𝑒𝑦G𝑆𝑈𝑀 (𝑠𝑢𝑝𝑝𝑙𝑦𝑐𝑜𝑠𝑡 )PartSupp

The queries used for multi-attribute GroupBy are:
MGO1. 𝑜𝑟𝑑𝑒𝑟𝑘𝑒𝑦,𝑜𝑟𝑑𝑒𝑟𝑑𝑎𝑡𝑒G𝑆𝑈𝑀 (𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒 )LineOrder
MGO2. 𝑜𝑟𝑑𝑒𝑟𝑘𝑒𝑦,𝑜𝑟𝑑𝑒𝑟𝑑𝑎𝑡𝑒,𝑠ℎ𝑖𝑝𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦G𝑆𝑈𝑀 (𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒 )LineOrder

Here, ‘LineOrder’ is the materialized join between Lineitem and
Orders in the TPCH database, and the LineOrder queries are de-
signed to simulate a simplified version of TPCH Query 3.

6.1.2 Baselines. Our goal is to assess the performance benefits of
incorporating the graphics pipeline to implement query operators,
as compared to the traditional wisdom of using compute APIs such
as CUDA or OpenCL. We refer to our driver-based approach as
GARUDA (Graphics ARchitecture Utilized for Data Analytics) in
the experimental analysis. To represent the compute API-based

category, we chose the state-of-the-art single GPU-based hardware-
conscious join [28], which we refer to as HCJoin.

For the GroupBy baseline, we use the most recent GroupBy
technique, proposed in [23], which we refer to as TGB (Tunable
GroupBy). They implement the single attribute GroupBy approach
described in[14] using OpenCL, and provide knobs to tune the
parameter settings of the code.

For both baselines, we used the original source codes, which
are publicly available. For completeness, we also include parallel
CPU-based hash join and GroupBy operators [21], which we refer
to as CPU, as part of the evaluation.

6.2 Graphics vs. Compute
As mentioned in Section 1, the graphics drivers are designed to
improve pre-fetching for specific GPUmemory types such as vertex
buffers. To quantify this improvement, we design the following
experiment whose main task focuses on reading data from and
writing data to GPU memory. Specifically, we implement, using
both CUDA and Vulkan, code that takes as input an array of integers
(size = 32M), and computes a histogramwhere the bins are identified
using the LSB-24 bits (i.e., there are 224 = 16M bins). In the Vulkan
implementation, the histogram is stored as an image where the
MSB-12 and LSB-12 bits of this 24-bit number is used to index a
4𝐾 × 4𝐾 image. While Vulkan does not require any parameters
to be set, the CUDA implementation was evaluated for a large
suite of parameter settings. Specifically, our combinations covered:
1) number of thread groups; 2) number of threads per group; and
3) data access pattern (grid stride vs block stride). We then use
the L2 cache hitrate metric to compare the pre-fetching/caching
performance between the two implementations. In particular, we
found that the hitrate achieved by the Vulkan implementation
was at least 2X the maximum hitrate over all the parameters for
the CUDA implementation, thus demonstrating the effective pre-
fetching strategy of the Vulkan drivers.

Furthermore, a recent work [17] evaluated implementations of
standard GPGPU algorithms using Vulkan, and showed that it is
on average 1.5X faster than the CUDA-based implementations. To
achieve this, they leverage the improved synchronization support
offered by the Vulkan drivers, which transitively points to better
thread scheduling, and thus better GPU utilization.

6.3 Join Performance
6.3.1 Baseline Comparison. The relative performance of GARUDA,
HCJoin, and CPU for the aforementioned narrow-schema data set
are as shown in Fig. 8(a), with GARUDA being normalized to 1.
GARUDA is at least 2X faster when compared to HCJoin, and 3X
when compared to CPU on these relations. The results from the
join experiment on the more diverse TPCH tables are as shown in
Fig. 8(b). Here as well, GARUDA attains a consistent speedup of at
least 2X over HCJoin and around 3X over CPU.

Fig. 9 breaks down the running time of our join approach into
three components: CPU partitioning time, GPU processing time,
and data transfer time (between the CPU and GPU). Since our im-
plementation pipelines data transfer and GPU processing, the data
transfer time does not include the I/O that happens in parallel dur-
ing GPU compute – here the GPU compute time is the time taken



Figure 8: End-to-end Join performance

Figure 9: Join time breakdown of GARUDA

to execute the different rendering pipelines. Due to our pipelined
approach, the impact of CPU-GPU transfer overhead is signifi-
cantly reduced – we obtain a consistent speedup of 2-2.5X using
the pipelined approach when compared to a blocking approach.

6.3.2 Impact of Input Data parameters.
Join Selectivity: Fig. 10(a) shows the performance of GARUDA
and HCJoin when the build and probe table sizes are fixed to 512M,
but the join selectivity (the number of tuples selected relative to
the input table size) varies from 100% (output size = 512M) to 1600%
(output size = 8192M) on a log-scale. The running times are nor-
malized by setting the GARUDA Join time with 100% selectivity to
1. We see here that GARUDA scales linearly (with a smaller slope)
with increased selectivity when compared to HCJoin. Moreover,
HCJoin could not even compute the join at 1600%.
Data Skew: Fig. 10(b) plots the normalized running time (nor-
malized w.r.t. Garuda join on uniform data) with varying skew
(represented as the maximum required hash stack size, see Sec-
tion 3.4.4). Specifically, we increase the skew (by increasing the zipf
factor, with the maximum zipf factor being 0.5) of the synthetic
narrow schema data (|𝑅 | = |𝑆 | = 512 M), and perform a self-join.
Note that if only one of the input tables is skewed, then it does
not affect the performance due to our snake join approach. Thus,
the self-join provides a worst case scenario for our approach. We
see here that GARUDA consistently maintains performance im-
provement over HCJoin even in the skewed regimes. The jump in
query times when the hash stack size is 104 corresponds to a sharp
increase in join output size – here, output size increases by a factor
of 4 from around 780M tuples (with stack size 103) to 3.16B tuples.

6.3.3 Impact of Snake Join. Fig. 11 analyzes the impact of the
partition-based SnakeJoin ordering (Section 3.4.3) when compared
to a fixed table-based ordering for JO1–JO4. We observe that an
inappropriate join order can significantly impact the running times,
becoming up to 4 times slower. On the other hand, our SnakeJoin

Figure 10: Impact of Input Data parameters

Figure 11: Impact of Snake Join. (Numbers above bars denote
hash stack sizes of the join.)

approach incurs only a marginal overhead when compared to using
the ideal join order. Since the initial partitioning time is the same
across all algorithms for a given pair of join input relations, we
ignore this component in the evaluation.

At first glance, it may appear that the correct choice of join
order would have already been made by the query optimizer, and
therefore the SnakeJoin is redundant. To demonstrate that there
are databases where it can be beneficial despite the optimizer’s
presence, we also created a synthetic database with tables 𝑅 and 𝑆
such that a subset of𝑅 has several duplicates in 𝑆 and is independent
of a subset in 𝑆 which also has several duplicates in 𝑅. The join
performance on this database is shown in Fig. 11 as JO5. Due to the
symmetric nature of the data, the performance of both the global
join orders is the same – in contrast, SnakeJoin is significantly faster
in completing the join processing thanks to its dynamic switches
of the build partition across 𝑅 and 𝑆 .

6.4 GroupBy Performance
Since existing GPU-based GroupBy implementations cater only to
the base case of a single grouping attribute, we split the evaluation
into two parts—single attribute and multi-attribute, respectively.

6.4.1 Single Attribute GroupBy. For this experiment, we exhaus-
tively evaluated the combinatorial number of alternative parameter
settings for TGB, as described in [23], and finally chose the settings
that resulted in the best query run time. This parameter search was
done for all three queries used in our evaluation.

The performance of GARUDA, TGB and CPU are shown in
Fig. 12(a) for SGO1 through SGO3. We observe that GARUDA is
perceptibly better than TGB, despite the expensive tuning provided
to the latter. This highlights how leveraging the graphics pipeline
automatically translates to hardware-conscious performance. Both
of these GPU-based approaches are significantly better than CPU.

Drilling down, SGO1 results in around 2000 groups covering
the input relation of 6 billion tuples. This data characteristic is



Figure 12: GroupBy performance Figure 13: Multi-Attribute GroupBy Figure 14: GroupBy on Intel GPU

tailor-made for TGB since it maintains the entire hash table in
GPU memory. On the other hand, there are as many as 1.5 billion
and 200 million groups in SGO2 and SGO3, respectively. Due to
these large group cardinalities, TGB did not have sufficient GPU
memory to execute the query to completion. As a workaround
for this limitation, we first split the data into memory resident
partitions, and computed the GroupBy for each of the partitions. It
is for this modified version of TGB that the performance is shown
for SGO2 and SGO3 in Fig. 12(a).

Fig. 12(b) compares GARUDA and TGB with varying group car-
dinalities. For this experiment, the input relation size was set to
1024M, and the number of groups was varied from 28 to 224.

6.4.2 Multiple Attribute GroupBy. As mentioned previously, only
GARUDA is capable of handling multiple grouping attributes. Its
performance on the MGO1 and MGO2 is shown in Fig. 13 for both
the COUNT and SUM aggregations. For comparative purposes, the
performance on the single-attribute SGO2 query is also shown in
this graph. We observe here that the queries are all completed in
around 10 seconds despite the huge size of the LineOrder relation,
testifying to the effective utilization of the hardware resources.

The marginal performance difference between COUNT and SUM
is due to the following: For the former, only the grouping attributes
have to be transferred to the GPU, whereas for the latter, the value
attribute also has to be shipped over. Essentially, the performance
difference is dictated by the memory transfer overheads incurred
by the grouping and aggregation components of the query.

6.5 Hardware Portability
The goal of this experiment is to show how GARUDA achieves
portability essentially “for free” unlike the prior approaches which
required expensive customization for achieving their best efficiency.
For this purpose, we evaluated the performance on a new hardware
platform comprising a laptop with an Intel integrated HD620 GPU.
Since the laptop has only 16 GB RAM, the experiment was run
on a reduced 100 GB version of the TPCH database. On this new
platform, we compared a freshly and fully tuned version of TGB
with an unchanged version of GARUDA. The relative running times
for the above environment are shown in Fig. 14, which demonstrates
that GARUDA cheaply obtains close to tuned performance across
hardware architectures. The figure also shows the performance
with the parameter settings from the earlier desktop experiments
– here we see that for SGO2 and SGO3, there is only a marginal

Figure 15: Join performance on an A100 GPU

10%-20% degradation, but for SGO1, the settings are sufficiently off
to cause a crash due to running out of memory.

Since HCJoin uses CUDA, we chose an Nvidia A100 GPU as the
alternative hardware to test Join performance. Fig. 15 shows that
GARUDA still achieves 2-3X speedup over HCJoin on joins over
both the narrow-schema data sets as well as the 1TB TPCH tables.

7 EXTENSIONS AND NEXT STEPS
In this section, we first describe various extensions of the environ-
ments modeled in the earlier sections, followed by discussing some
of our future work topics.
64-bit join attributes. Equi-joins using 64-bit integer attributes
is accomplished by using FBOs with 4-byte color channels instead
of the 2-byte channels described in Section 5, as shown in Fig. 16.
Specifically, the 64-bit join attribute is split into two 32-bit channels

Figure 16: Pixel layout for 64-bit integer joins.

(𝑔 and 𝑏). Since, we know that the number of rows processed in
a batch is less than 231, the 𝑟 channel is sufficient to store the
implicit RID, and the 𝑎 channel is used for the flag. The rest of the
implementation remains unchanged.
Non-integer Join Attributes. Thus far, we have only considered
integer attributes. However, equi-joins of other data types, such as
strings, are also quite common in industrial workloads. We cannot
directly represent strings, which can be of significant and variable
length, in the graphics data structures (which are of fixed sizes).
However, we could leverage the initial partitioning step at the CPU
to concurrently also create hashed fixed-length versions of the
strings. For instance, using the popular FNV [4] non-cryptographic
hash function which is fast, has a low collision rate, and supports



a variety of output lengths, including 32 and 64-bit versions. Of
course, the join output may now contain a few false positives due
to undetected collisions, but these could be eliminated through a
final round of CPU verification of the obtained results.
Graphics pipeline for other operators.While we have shown
how the EquiJoin and GroupBy operators can be adapted to leverage
the graphics pipeline, extending this approach to other operators
may require fresh constructions. Furthermore, it would be interest-
ing to see if a common set of “atomic" pipelines can be designed
that can then be composed together to implement such operators.
Integration with query engine.We advocate a CPU-GPU hybrid
approach for query processing, since it might not be efficient to
move all operators to the GPU. This is especially true when working
with data that does not fit in CPU memory, let alone GPU memory.
In such instances, it is only natural to take advantage of the already
efficient CPU-based operators such as index scans.

However, there exist several challenges for graphics-based GPU
operators to be part of a full-fledged query engine, including, when
to use GPU operators; how to efficiently schedule and handle move-
ment between the CPU and GPU when these operations are part of
a more complex plan (e.g., [5, 6]); how to accurately model the cost
of these operators, especially given that hardware configurations
can vary greatly across environments; and how to incorporate the
operators within the query engine.

8 RELATEDWORK
GPUs in the context of database systems have long been explored in
the research community. We refer the reader to the recent book [20]
and survey [22] for a comprehensive history of the use of GPUs
for query processing. In this section, we restrict our attention to
GPU-based techniques proposed for the Join and GroupBy operator.
Joins. He et al. [12] was one of the earliest works to propose what
has now become the modus operandi for hash joins – i.e. using
CUDA. This work also tried using the graphics pipeline for GPU-
based joins. Specifically, they implemented the same CUDA-based
algorithm using DirectX and showed that the CUDA approach
performed better than the graphics pipeline alternative. This lack
of performance can be attributed to fitting the graphics pipeline
to a GPGPU algorithm, rather than adapting the algorithm to the
graphics pipeline. Kaldewey et al. [13] ported the then state-of-the-
art CPU hash join algorithms to GPUs to understand the impact of
unified virtual addressing (UVA) on the memory transfer bottleneck.
More recently, Guo and Chen [11] proposed purely GPU-based joins
where they first partition the data in the GPU, and then compute
the joins of these partitions in parallel. All of these approaches
work only on data that completely fits within GPU memory.

Rui and Tu [25] used new generation GPU features such as atom-
ics, dynamic parallelism, and pipelining data transfer in their hash
join approach. Their approach only requires the build table to fit in
GPU memory. Sioulas et al. [28] proposed a hardware-conscious
hybrid partitioned hash join approach which first partitions the
input in CPU, and then executes the join between the partitions on
the GPU, thus being able to handle data that does not fit in GPU.
Additionally, it also takes advantage of new atomic features offered
by the GPU for non-blocking operations.

Rui et al. [24] and Lutz et al. [16] extend the partitioned hash
join approach to perform the initial partitioning directly on the
GPU. Specifically, they redesign the partitioning algorithm to take
advantage of the fast NVlink interconnect between the CPU and
GPU. Note that these methods are complementary to our approach:
similar to their approaches, the NVlink-based partitioning can also
replace our CPU-based partitioning, thereby further improving the
efficiency of our approach.

In summary, all of the techniques that use modern hardware
are designed using CUDA and follow the traditional GPU compute
paradigm. On the other hand, we follow a radically different ap-
proach that aims to extract the best performance from the GPU
through the use of the already optimized graphics pipeline. Further,
the high-level abstractions of our algorithms are amenable to the
utilization of macro hardware advances.
GroupBy. Karnagel et al. [14] proposed a CUDA-based GroupBy
approach that leverages the modern GPU features such as pipelin-
ing and atomic operations, but assumed that the the hash table
fits in GPU memory. They also discussed the limitations of hard-
ware portability and choice of parameters. Tomé et al. [30] fol-
lowed a similar approach, but used perfect hash functions. They
also took advantage of the low level GPU architecture by carefully
planning local memory placement and use of the GPU registers.
However, note that such an approach is not easily portable. Rosen-
feld et al. [23] implemented the aggregation approach proposed in
[14] using OpenCL, thus being able to evaluate this approach across
different GPU hardware. They demonstrated the importance of care-
fully choosing the hardware parameters, and proposed a systematic
technique to choose good parameters for a given query-hardware
combination. However, this identification is a computationally ex-
pensive process. As shown in our evaluation, designing algorithms
using the graphics pipeline can help overcome such limitations.

9 CONCLUSIONS
Our goal in this paper was to resurrect the G in GPU, that is, to
leverage the graphics pipeline for implementing OLAP database
operators. We showed that relational data could be represented as a
stacked sequence of FBO images, and that workhorse operators such
as HashJoin and GroupBy could be successfully implemented using
core pipelinemodules such as Vertex Shaders and Fragment Shaders,
in tandem with blend functions and attachments. Our experimental
evaluation over industrial-strength warehouse environments on
multiple computing platforms showed that GARUDA is capable of
providing both improved query performance and highly desirable
software engineering features.

Moving forward, we plan to take a two-pronged approach in
tackling the open questions highlighted in Section 7:Wewill explore
the design of additional operators (e.g. Projection and Set operators)
using the graphics pipeline, and in tandem, work on integrating the
already designed operators into the Microsoft SQL Server engine
to validate GPU applicability for commercial environments.
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