Blueprint: A Toolchain for Highly-Reconfigurable
Microservices

Vaastav Anand, Deepak Garg, Antoine Kaufmann, Jonathan Mace
Max Planck Institute for Software Systems (MPI-SWS)

Abstract

Researchers and practitioners care deeply about the per-
formance and correctness of microservice applications. To
investigate problematic application behavior and prototype
potential improvements, researchers and practitioners ex-
periment with different designs, implementations, and de-
ployment configurations. We argue that a key requirement
for microservice experimentation is the ability to rapidly
reconfigure applications and to iteratively Configure, Build,
and Deploy (CBD) new variants of an application that alter
or improve its design. We focus on three core experimen-
tation use-cases: (1) updating the design to use different
components, libraries, and mechanisms; (2) identifying and
reproducing problematic behaviors caused by different de-
signs; and (3) prototyping and evaluating potential solutions
to such behaviors. We present Blueprint, a microservice de-
velopment toolchain that enables rapid CBD. With a few
lines of code, users can easily reconfigure an application’s
design; Blueprint then generates a fully-functioning vari-
ant of the application under the new design. Blueprint is
open-source and extensible; it supports a wide variety of
reconfigurable design dimensions. We have ported all major
microservice benchmarks to it. Our evaluation demonstrates
how Blueprint simplifies experimentation use-cases with
orders-of-magnitude less code change.

ACM Reference Format:

Vaastav Anand, Deepak Garg, Antoine Kaufmann, Jonathan Mace.
2023. Blueprint: A Toolchain for Highly-Reconfigurable Microser-
vices. In ACM SIGOPS 29th Symposium on Operating Systems Princi-
ples (SOSP °23), October 23-26, 2023, Koblenz, Germany. ACM, New
York, NY, USA, 30 pages. https://doi.org/10.1145/3600006.3613138

1 Introduction

Modern cloud applications are increasingly developed as
suites of loosely-coupled microservices [17]. The microser-
vice architectural approach decomposes applications into

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SOSP °23, October 23-26, 2023, Koblenz, Germany

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0229-7/23/10.
https://doi.org/10.1145/3600006.3613138

smaller, modular services that communicate over the net-
work. As a result of their success in enabling large-scale and
continually-evolving applications, microservices have be-
come ubiquitous among internet companies including Twit-
ter [30], Netflix [16], Uber [29], and others [17].

Microservices are large and complex applications, com-
posed of multiple pieces including frameworks, backends,
and libraries. For any application, there are many possible
designs, each with its own set of performance properties
and issues. As a result, researchers are highly interested
in studying, measuring, and improving the performance
and correctness guarantees of microservice systems, and
developing solutions to potential unwanted behavior when
they arise. A salient example of unwanted behaviour are
emergent phenomena [48] of microservice systems which in-
clude cascading failures [52, 70, 75], tail latency effects [18],
cross-system consistency [3], and metastable failures [15, 33],
among others. By analyzing these behaviors, researchers
hope to improve the performance and correctness guarantees
of microservice systems, and develop solutions to potential
unwanted phenomena [15, 33, 43, 55, 61].

Towards this goal, researchers, both in academia and in-
dustry, need to be able to perform three basic actions: (i)
reconfigure applications with new features, backends, and
libraries to improve their performance and add new features;
(ii) reproduce and discover potentially problematic emergent
phenomena of applications; and (iii) develop and evaluate
solutions on canonical microservice systems. The central
requirement of these use-cases is for researchers to easily
explore the design space of microservices, allowing them to
move between different implementations and deployment
configurations of the same application quickly and easily.

Enabling design space exploration is difficult for several
reasons. First, the design space of microservice systems is
enormous. Application design, configuration, and deploy-
ment choices vary along several dimensions: specific patterns
in the flow of application logic (e.g. the presence of concur-
rent or asynchronous execution branches); the inclusion of
particular features, components, or middleware (e.g. repli-
cated services, autoscaling, and sharding); and component
instantiations and their corresponding configuration (e.g.
the specific RPC framework used and its timeout and retry
mechanisms). Given the lack of standardization across these
axes, it is not immediately clear how to support all possible
application design dimensions and all possible instantiations
for a given dimension in a systematic manner.

Second, existing microservice systems, both experimen-
tal and production-grade, are implemented as point solu-
tions in this vast design space and are not designed to be
reconfigurable or extensible. Thus, the entire burden for
moving from one implementation to another falls on the
researcher as they have to make deep modifications to mi-
croservice applications to fulfill their use-case. A high-level
design change, such as replacing the RPC framework, typ-
ically translates into thousands of LoC of source-level im-
plementation changes, dispersed across the many processes,
components, and backends that comprise the microservice
application (cf. §3.1). Implementing a design change is time-
consuming, error-prone, and difficult, as it requires under-
standing the application at the source-code level; yet mi-
croservice implementations tightly couple concerns at the
source-code level, i.e. application logic directly binding to li-
braries and middleware. Thus, changes that are conceptually
simple - e.g. replacing an existing RPC framework with a
different one - can require wide-ranging and complex man-
ual modifications to many components. Most prior research
work on microservices had no alternative to expending this
developer effort, and consequently the majority of works
deploy and evaluate solutions for only a single application
(78%, cf. §B); anecdotally, the developer burden is the limiting
factor.

Due to the large design space of microservice applications,
there is a significant concern about the generalizability of
research results derived from only a single application. A
solution may have implicit dependencies on particular ap-
plication design choices, or worse, it may be an application-
specific solution that does not apply broadly at all. For exam-
ple, Sage [25] assumes synchronous RPCs and Tprof’s [34]
layer4 grouping assumes assumes non-combinatorial explo-
sion when grouping requests by visited services” execution
order; both of which do not hold at Meta [35]. Under normal
circumstances, a lack of broad evaluation would be consid-
ered a benchmarking crime [31]. However, for microservices
it is the prevailing norm.

The goal of this work is to enable researchers to easily re-
configure microservice applications. Our solution, Blueprint,
is a microservice development toolchain designed for rapidly
Configuring, Building, and Deploying (CBD) microservices.
Blueprint enables its users to easily mutate the design of
an application and generate a fully-functional variant that
incorporates their desired changes.

The key insight of Blueprint is that the design of a mi-
croservice application can be decoupled into (i) the application-
level workflow, (ii) the underlying scaffolding components
such as replication and auto-scaling frameworks, communi-
cation libraries, and storage backends , and (iii) the concrete
instantiations of those components and their configuration.
An application written using Blueprint avoids tightly cou-
pling these concerns. Instead, these design aspects are con-
cisely declared by the user using Blueprint’s abstractions,

namely, the workflow spec and the wiring spec. Blueprint’s
compiler combines these two abstractions to automatically
generate the system. Changing any given aspect only requires
the developer to revisit its declaration in Blueprint’s abstrac-
tions and not the generated implementation. Moreover, Blue-
print eliminates duplicated effort — scaffolding and instantia-
tion logic are implemented once and integrated as Blueprint
compiler extensions, to enable Blueprint to automatically
change existing Blueprint applications with minimal effort.
Concretely, using Blueprint, users can:

o mutate off-the-shelf microservice applications (e.g. an open-
source benchmark) with just a few LoC, to swap an instan-
tiation (e.g. RPC framework), enable or disable scaffolding
(e.g. replication), or change backends (e.g. database).

e develop new application workflows and generate runnable
systems. Instead of binding workflow code to specific scaf-
folding and instantiations (e.g. the choice of RPC frame-
work), those are declared separately with 10s of LoC, and
incorporated by Blueprint at compile time.

e introduce support for new instantiations (e.g. an experi-
mental RPC framework) or scaffolding concepts (e.g. geo-
replication) and transparently apply them to existing ap-
plications; these are implemented as compiler extensions
that are independent and agnostic to specific application
workflows.

We have implemented Blueprint in 11k LoC of Go and
ported all major available microservice benchmarks to Blue-
print (15k LoC), including the DeathStar benchmark [26],
TrainTicket [76], and SockShop [47]. Our evaluation demon-
strates the ease with which Blueprint enables changes to the
design and features of an application; we reproduce known
interesting behaviour from a number of prior works; and
show that Blueprint is easily extensible with new features
that can be reused across applications.

2 Microservice Design Space

The space of possible designs for microservice applications is
enormous, and while there may be guiding high-level design
principles, every application differs substantially from the
next. In this section, we briefly elaborate three important di-
mensions for the design of a microservice application. These
axes are useful both for motivating Blueprint’s use cases (§3)
and as insights into Blueprint’s design (§4).

A microservice application’s design can be principally
decomposed along three major dimensions: the application-
level workflow; the lower-level scaffolding infrastructure
on which the workflow executes; and instantiations for
different infrastructure implementations.

Application-Level Workflow. Microservice applications
vary widely in terms of their application-level logic and end-
to-end flow of executions through the system’s different com-
ponents. Recent open-source microservice benchmarks cover

diverse domains, such as e-commerce apps [28, 47, 71, 72],
social networks [26], reservation systems [26, 76] and many
others [2, 6, 26, 36, 66]. These applications differ in the num-
ber of services and APIs they use internally from only a few
(SockShop [47]) to dozens (TrainTicket [76]). Even applica-
tions with similar high-level goals (e.g. TrainTicket [76] and
DSB Hotel Reservation [26]) have vastly different workflows.

Scaffolding. Scaffolding refers to runtime components
which are necessary for executing an application but orthog-
onal (and opaque) to the application’s workflow. Scaffolding
includes middleware, framework, libraries and backends that
provide features such as RPCs, replication, load balancing,
circuit breakers, and more [11]. Scaffolding can be changed
without affecting the application’s workflow and functional
behavior. For example, the original DSB Social Network [26]
uses one runtime instance of each service by default; how-
ever, a changed version of the application could modify its
scaffolding to replicate service instances, without changing
the end-to-end application workflow [42].

Instantiations. For every piece of scaffolding there may
be different implementations to choose from, configuration
dimensions of those implementations, and choices for config-
uration parameters, e.g. to enable RPC an application may use
gRPC, Thrift, or some research prototype framework [39].

Overall, the choice of an application’s workflow, scaffold-
ing, and instantiations have different implications for the
application’s performance, correctness, and reliability.

3 Blueprint Use-Cases

This section outlines challenges faced by researchers today
with respect to three core use-cases. Across the three use
cases, we motivate a common need to iteratively Configure,
Build, and Deploy (CBD) variants of microservice applica-
tions that have subtly different designs. Blueprint, which we
will introduce in §4, is designed to address this need.

3.1 UC1: Mutating Applications

To investigate and experiment with changing workloads and
deployment conditions, researchers may wish to mutate an
application — i.e. change, reconfigure, or expand some as-
pect of its design. A mutation modifies the application along
one or more of the aforementioned axes (§2). For example,
changing the RPC framework from Thrift to gRPC is a muta-
tion that only modifies instantiations; introducing replicated
services and a load balancer is a mutation that modifies both
scaffolding and instantiations; and refactoring the applica-
tion workflow is a mutation that typically leaves scaffolding
and instantiations untouched [19]. Ultimately, these changes
modify the application to move its design from one point to
another in the design space, creating a new variant of the
application.

Ideally, users should be able to mutate an application with
minimal effort. Yet today, a conceptually simple mutation

may require far-reaching and time-consuming modifications
to source code and configuration. For example, switching to
a different RPC framework instantiation in an application
with 30 services requires modifying all of those services. Re-
placing one instantiation with another is difficult because
interfaces offered by instantiations of the same piece of scaf-
folding can differ widely, and existing systems tightly couple
the application’s workflow, scaffolding, and instantiations.
Similarly introducing new scaffolding, such as enabling dis-
tributed tracing, entails exhaustively updating all services
to support it; and changing an application’s workflow re-
quires binding the new or changed code to scaffolding and
instantiation interfaces.

To understand the scope of mutations to existing microser-
vice applications, we surveyed 464 forks of popular microser-
vices benchmarks. We found a total of 146 application vari-
ants that apply mutations that include adding tracing, re-
moving tracing, adding replication, adding georeplication,
switching RPC frameworks, and more (cf. §B.3). As an exam-
ple of the cost of manual mutations, an instantiation change
in DSB Social Network [26] to support Sifter [40] required
1,289 lines of manual code change and took 2 weeks to com-
plete based on commit timestamps (cf. §6.3).

3.2 UC2: Reproducing Emergent Phenomena

Emergent phenomena, or emergent behaviors [48], are as-
pects of the system’s runtime behavior that are not local-
ized to any one service or component, instead arising as
the cumulative effect of interactions between components
under a given workload and application design. Emergent
phenomena encompass end-to-end performance, correct-
ness, and reliability concerns of an application — notable
examples include cascading failures [52, 70, 75], tail latency
effects [18], cross-system consistency [3], laser of death [51],
and metastable failures [15, 33]. See §B.1 for a detailed list
of known emergent phenomena.

Left unchecked, emergent phenomena can lead to de-
graded service and even outages [46, 50, 51]; thus they are
the focus of a range of recent work from both industry [61]
and academia [15, 33, 43, 55]. In general, researchers need
the ability to elicit emergent phenomena in microservice
applications, to determine the conditions under which they
emerge, and their effects on application behavior.

Few existing microservice systems exhibit emergent phe-
nomena out-of-the-box, as they arise due to specific work-
flow, scaffolding, or instantiation choices, combined with
workloads and deployment conditions. To study emergent
phenomena, researchers must therefore mutate existing ap-
plications to find variants that exhibit the phenomena. For
example, no out-of-the-box microservice benchmark exhibits
cross-system inconsistency [43, 61] or metastable failures [15];
researchers studying these phenomena manually mutate ex-
isting microservice applications to elicit them [22, 42].

It is not straightforward to identify a design that exhibits
an emergent phenomenon. Changes to the scaffolding or
instantiations can affect performance and error-propagation
characteristics non-linearly, making it difficult to predict the
effects of even minor alterations. Moreover, certain emergent
phenomena only manifest under specific workloads which
are not known to developers a priori. Overall, this makes em-
pirical exploration of the design space essential: researchers
may need to mutate an application multiple times before
finding a variant that clearly exhibits a given phenomenon.

3.3 UC3: Prototyping and Evaluating Improvements

Researchers often need to prototype and evaluate improve-
ments to microservice applications. An improvement can
include applying workflow design patterns [19], enabling
novel scaffolding [42], and implementing instantiations with
better properties than the existing ones [39]. Improvements
typically target some performance, correctness, or reliability
concern, e.g. the application’s scalability, latency, or some
emergent phenomenon. For example, FIRM [55] is an im-
provement for mitigating SLO violations; it leverages dis-
tributed tracing scaffolding and introduces a novel orches-
tration scaffolding and instantiation.

To develop and evaluate improvements, it necessary to
mutate existing applications to incorporate the improvement.
This entails the same degree of manual overhead described
for UC1 and UC2, but is exacerbated in two ways: first, devel-
opment may require multiple iterations of design to converge
on appropriate interfaces, potentially entailing repeated mu-
tations over time integrating successive versions of the im-
provement; second, best practices for rigorous evaluation
demand that any improvement should be evaluated across
multiple, diverse applications [31], thus requiring effort to
mutate multiple applications, not just one.

Due to the high cost of mutating applications, most re-
search works today evaluate on only a single microservice
application (78%, cf. §B.2). Consequently it is difficult to
distinguish whether a proposed improvement would be sim-
ilarly effective for other applications, or just for the specific
application selected. Moreover, an improvement might make
assumptions about an application’s design that restricts its
broader applicability. For example, FIRM [55] assumes a de-
terministic critical path for each AP, so might not apply to
workflows with concurrent or branching RPC calls.

4 Design

Blueprint is a toolchain that offers first-class CBD support for
microservice applications. Instead of directly implementing
runnable application artifacts (e.g. code, container images,
etc.), these are generated by Blueprint’s compiler. Developers
are still responsible for implementing application workflows
(or re-using open-source workflows), and these must adhere
to Blueprint’s abstractions. Likewise developers must sepa-
rately specify which scaffolding and instantiations to apply

to the workflow. Blueprint’s compiler will automatically gen-
erate the necessary artifacts (e.g. glue code, configuration,
wrappers, scripts, and more) to produce a runnable variant.

Separation of Concerns. Blueprint’s key insight is that
an application’s workflow, scaffolding, and instantiations are
conceptually orthogonal and thus should be separable when
specifying the application. The workflow of an application
is independent of the specific choice of, e.g. RPC library, or
the presence of particular scaffolding, e.g. replication. In to-
day’s applications these are tightly coupled, with application
code that intertwines workflow, scaffolding, and instantia-
tions, yet the interfaces between them are narrow because
they are conceptually separate concerns and little informa-
tion is needed of one to specify the other. Blueprint thereby
only combines workflow, scaffolding, and instantiations at
compile time, thus avoiding tight-coupling or hard-coding.
Compile-time integration. Despite a clean conceptual
separation between workflow, scaffolding, and instantia-
tions, in practice these manifest in diverse ways and at dif-
ferent granularities, e.g. application-level libraries, sidecar
processes, container images, and orchestration framework
configuration. Compile-time integration thus becomes nec-
essary for Blueprint to abstract across diverse granularities.
Blueprint’s compiler encapsulates a wide range of concerns
ranging from code, process, and container image generation,
to templating, dynamic addressing, and configuration.

Examples. Blueprint enables users to:

e obtain variant applications by simply recompiling with
different scaffolding and instantiation choices.

e mutate an application by changing as little as 1 LoC.

e change instantiations (e.g. RPC, database implementa-
tions) with as little as 1 LoC.

e develop or change workflows with less cognitive over-
head, since workflow logic is not coupled with scaffolding
or instantiations.

e integrate new instantiations and scaffolding concepts
as one-shot compiler plugins, reusable by any existing
or future application. Implementing a plugin does not
require knowledge of or compatibility with other plugins.

4.1 Blueprint Applications

A Blueprint application consists of two key abstractions.
The workflow spec abstraction is the implementation of the
application’s workflow. The wiring spec abstraction declares
the scaffolding and instantiations to apply to the workflow.
We describe each in detail.

Workflow Spec. The basic building block of a workflow
is Blueprint’s service abstraction: developers can declare an
interface for the service with typed methods, and provide
an implementation of those methods. Blueprint currently
supports Go. Fig. 1 defines a ComposePost service from the
DSB Social Media application [26] that enables callers to

® NG W =

NS O

[E, ISR O

[SEN-NIEN NN

=

12

type ComposePostService interface {
ComposePost(ctx context, userID int64, text postContent) error

}

type ComposePostImpl struct {
postStorageService PostStorageService
userService UserService

}

func NewComposePostImpl(ps PostStorageService, us UserService) *
ComposePostService {
return &ComposePostImpl{ps, us}
}

func (c *ComposePostImpl) ComposePost(ctx context, userID int64, text
postContent) error {
creator, err := c.userService.GetUser(ctx, userId)
post := Post{Creator: creator, Text: text}
return c.postStorageService.StorePost(ctx, post)
}

Fig. 1. Workflow Spec for DSB Social Network ComposePost.

type Cache interface {

Put(key []byte, value []byte) error
Get(key []lbyte) ([]byte, error)

}

Fig. 2. Built-in interface for a cache backend component.

normal_deployer : Modifier = Docker()

rpc_server : Modifier = GRPCServer()

tracer : Tracer = ZipkinTracer()

tracerModifier: Modifier = TracerModifier(tracer=tracer)

server_modifiers : List[Modifier] = [rpc_server, normal_deployer,

tracerModifier]

post_cache := Memcached()

post_db = MongoDB()

user_db = MongoDB()

us = UserServiceImpl(user_db).WithServer(server_modifiers)

ps = PostStorageServiceImpl(post_cache,post_db).WithServer(
server_modifiers)

Container(ps,post_cache)

ComposePostServiceImpl(ps, us).WithServer(server_modifiers)

cl
cs

Fig. 3. Wiring Spec for three dependent DSB services. Zipkin tracing
is enabled for all services; they are deployed in Docker containers;
and communicate using gRPC. Cache and database instantiations
are Memcached and MongoDB respectively.

upload new social media posts. Method implementations
can be arbitrary and import arbitrary libraries.

Blueprint’s backend abstraction offers interfaces for differ-
ent kinds of backends such as caches, databases, and queues;
Fig. 2 depicts a simple Cache interface. Unlike for services,
a backend instantiation will have method implementations
provided as part of its Blueprint compiler integration, e.g.
memcached will provide a memcached client.

Blueprint imposes a dependency injection pattern on ser-
vice implementations. A service can invoke the methods of
another service or a backend (Line 12). However, a service
is forbidden from instantiating other services or backends,
which can only be received as constructor parameters (Line
8). Likewise, although invoking another service is simply a
method call in the workflow spec (Line 12), the developer
should not assume that other services and backends are run-
ning in the same address space, correspond to just a single
instance, or are of a particular implementation. Services do
not directly incorporate any scaffolding (e.g. configuring an
RPC server) or bind specific instantiations (e.g. binding to

a memcached client library) as these are automatically in-
tegrated later by Blueprint’s compiler. Blueprint uses Go’s
error-handling conventions to wrap and encapsulate errors
that may be introduced from scaffolding, and Go’s context
propagation for implementing scaffolding such as tracing.
The above restrictions are necessary for several reasons.
First, the addressing scope of callee services can vary - they
could be application-level instances in the same address
space, or running in separate container instances in a differ-
ent datacenter, requiring network calls and address transla-
tion. Second, scaffolding may interpose calls between ser-
vices, e.g. to add functionality like tracing or to implement
RPCs. Third, scaffolding may duplicate or replicate service
instances in some way. In all cases, Blueprint’s compiler is
responsible for later generating the code that instantiates,
configures, and addresses services, at the application, process,
and container granularities. §4.2 relates the above service
abstraction to corresponding compiler abstractions.
Blueprint includes numerous out-of-the-box open-source
applications, and once a developer has implemented an ap-
plication’s workflow spec it only needs to be revisited if
workflow logic needs to change. Changes to scaffolding and
instantiations happen through Blueprint’s wiring spec.

Wiring Spec. The wiring spec declares the topology of
the application, applies scaffolding, and configures instan-
tiations. Fig. 3 depicts a wiring spec for three dependent
DSB services [26]. Wiring is declared using a strongly-typed
DSL with C-style macro support (Fig. 3). The wiring spec
declares instances of services named in the workflow spec
(Line 9) and links instance dependencies (Line 12); it also
declares and links instantiations of backends (Line 7) and
scaffolding (Line 2). The wiring spec also groups instances
into deployment units such as processes and containers.

To enable scaffolding, the user refers to it using unique
keywords and syntactic sugar in the wiring file (Line 2, 4).
A corresponding compiler plug-in will be invoked during
compilation to generate and modify code and other artifacts.
Scaffolding can potentially apply to service instances, pro-
cesses, or container images, depending on the specific feature
it enables. For example, Zipkin tracing (Line 3) applies to
service instances by wrapping with proxy classes.

A typical wiring spec is concise — tens of LoC - and easily
modified by other Blueprint users. Users do not need to
touch the workflow spec to enact changes in the wiring spec.
Blueprint will recompile an application variant, potentially
generating substantially modified code artifacts, without
requiring manual intervention from the user.

Compiler Plugins. Scaffolding and instantiations are im-
plemented as compiler plugins. Most applications will make
use of Blueprint’s out-of-the-box compiler plugins; however
a researcher wishing to prototype new functionality or im-
provements may wish to integrate that functionality with
Blueprint by developing a compiler plugin. Compiler plugins

integrate with Blueprint in three places. First, a plugin can
introduce keywords and syntatic sugar to the wiring spec.
Second, as described in the next section, a plugin can ex-
tend Blueprint’s IR to add new node types or extend existing
node types. Third, a plugin provides logic for generating
code, configuration, and other artifacts specific to the plugin.
For example, Blueprint’s gRPC plugin invokes the Protocol
Buffers compiler and generates client and server wrapper
classes. Blueprint is designed in a way that implementing a
plugin is independent of the implementation of any other
plugins. Most core concepts of Blueprint are implemented as
compiler plugins, e.g. application-level Go service instances,
Go processes, and Docker containers.

4.2 Intermediate Representation (IR)

The canonical representation of a Blueprint application is the
compiler’s Intermediate Representation (IR). Blueprint’s com-
piler takes as input an application’s workflow spec, wiring
spec, and enabled compiler plug-ins. The IR of an application
is a verbose and well-structured graph that represents the
concrete layout and hierarchy of components along with
their interactions. The IR of an application depends on both
the workflow and wiring spec, and a change to just the wiring
spec (e.g. to add replication) will result in a different IR. The
IR is designed to support the flexibility and extensibility of
the compiler. Fig. 4 depicts the IR graph for the wiring spec
outlined in Fig. 3.

Component Nodes. Components are entities that will ul-
timately be instantiated in the generated system; they are rep-
resented as nodes in the IR. All services defined in the work-
flow spec have corresponding component nodes; likewise all
backends and instantiations. Component nodes can exist at
different granularities, e.g. representing an application-level
service instance, a pre-defined binary (e.g. a MongoDB in-
stance), or a pre-built container image (e.g. a ZipkinServer).
IR nodes are typed and plugins may introduce new IR node
types and implementations.

Namespace Nodes. Components of the same granularity
can be grouped under a namespace node to create a compo-
nent of coarser granularity. For example, a Go namespace
node groups together application-level instances (e.g. ser-
vice instances) into a single Go process. Similarly, a process
namespace can be grouped into a container, and a container
namespace into a deployment. During compilation, names-
pace nodes generate runnable artifacts (e.g. code, container
images) that instantiate their contained components. Typing
on nodes ensures that namespace nodes can only contain
children of a compatible granularity. Blueprint can be ex-
tended with new namespaces; e.g. support for georeplication
would introduce a region namespace; supporting C++ work-
flows would introduce a Cpp namespace.

Dependencies. Services in the workflow spec can invoke
other services and components; in the IR these dependencies

are represented as edges between component nodes. RPC
edges are directional indicating the caller-callee direction
and declare the method signatures of the invocations.

Modifier Nodes. Scaffolding can interpose edges between
components, e.g. to modify method signatures, add proxy
functionality, or enable addressing across address space bound-
aries. We call these modifier nodes because they attach to
component nodes and mutate the component’s edges (e.g. to
introduce client side and server side code). Modifiers must
be opaque to the caller component whom expects a par-
ticular method signature from the callee; thus a modifier
typically comprises a client-side transformation function
and a corresponding server-side function that inverts the
transformation (e.g. serialization and deserialization).

Visibility and Addressing. Dependent components can
run in different processes, containers, or machines. For exam-
ple, an application could be compiled as an all-in-one process,
or using a container per service. Although there may be an
edge between two components, it is possible that those com-
ponents are not visible to each other, e.g. if a service has not
been wrapped with an RPC server, it cannot receive remote
invocations. Thus, edges between components are annotated
with their visibility level. Nodes can expand the visibility of
any edge traversing outside that node, e.g. an RPC modifier
enables communication between processes.

Generators. A component declared in a wiring spec might
correspond to a single concrete runtime instance (e.g. those
in Fig. 3), or as a result of applying modifiers, to multiple
runtime instances. For example, an autoscaling modifier
might dynamically create and destroy multiple component
instances at runtime. In general, generator nodes contain
other nodes and represent instances that will be dynami-
cally created at runtime. Generators restrict the visibility of
contained nodes, since there will be multiple dynamically-
generated instances of the contained nodes. Generators are
typically coupled with functionality such as a load balancer
to enable addressing of the dynamically created instances.

4.3 Compilation

Blueprint compiles an application in two steps. First, it pro-
cesses the wiring spec and workflow spec to instantiate
the specific IR graph representing the application and its
topology. Second, it invokes compiler passes and scaffolding-
specific plugins to generate the runnable artifacts. We explain
both steps in detail below.

4.3.1 Wiring & Workflow Spec to IR

Blueprint parses the workflow spec to identify all workflow
services that have been defined, and loads the definitions
of standard library backends that can be instantiated. Next,
Blueprint processes the wiring spec to extract the list of
components instantiated in the wiring spec, creating the
appropriate IR nodes for each. Blueprint applies modifiers

Node Types Granularity
ZipkinServer Container Image [T~ PostDB Docker Namespace ~ o
[]_| UserDB Docker Namespace [l | UserService Docker Namespace H(post_db: MongoDB Server 1 . Golang Application
[['] user_db: MongoDB Server \:: UserService Golang Namespace [l - [l Component Linux Process
o w= us: UserServicelmpl . ¥ .
T p| / fl. PostStorage Docker Namespace i i i Modifier ’ Docker Container
Docker N: M Zipkin Modifier
e T et n . 1 P ge Golang ! ‘\
n gRPC Modifier y* H Edge
’ ||| ps: PostStorageServicelmpl =)
; Zipkin Modifier | post_cache: Memcached Server | =) Component Dependency
1 IOt Mrrrrrrrrrrrrrt] == Modifier

Fig. 4. A depiction of Blueprint’s IR for the three DSB services outlined in Fig. 3. Node shape is based on node type, and nodes are colored
according to their granularity. Edges are color-coded according to the type of relationship.

to components by creating additional IR nodes represent-
ing the scaffolding. Blueprint then creates directed edges
between components to encode the dependencies defined in
the wiring spec. Blueprint then extracts the various compo-
nent groupings and granularities to generate the namespace
nodes as well as to add the visibility attributes to the depen-
dency ages between the component nodes. Lastly, Blueprint
performs a pass on the IR graph to allow modifier nodes to
add, delete, or change nodes in the IR graph. For example, a
replication modifier could duplicate the IR nodes represent-
ing a component, and insert a load balancer node.

4.3.2 IR to Implementation

Once the IR graph is constructed, Blueprint checks the vis-
ibility of edges, i.e. that any component that calls another
component will be capable of doing so. Blueprint then pro-
ceeds to the artifact generation step. Each node of the IR
graph will have plugin-specific logic for generating its own
code, configuration, or artifacts needed for instantiating the
component in the system. Blueprint traverses the IR graph,
invoking plugins at IR nodes and collecting the artifacts that
are generated.

Artifact Generation. Blueprint generates code and arti-
facts in a hierarchical manner, starting from the innermost
nodes in the IR graph. For service nodes defined in the work-
flow spec, no extra code generation is required and only
dependencies are gathered. For modifier nodes, the compiler
invokes the plugin that corresponds to the node. The output
of the previous node is passed as input to the plugin, allowing
the plugin to potentially generate code that wraps, extends,
or changes the previous output. For namespace nodes such
as go processes or docker containers, generating code en-
tails packaging code generated by the c¢ ontained nodes, and
generating code that instantiates those nodes.

As an example, consider the generation process for the
ComposePostService in Fig. 3. The generation procedure
starts at the ComposePostServicelmpl node, cs, in Fig. 4. This
node simply gathers the code dependencies directly from the
workflow spec where it is defined. The compiler then steps
outwards to the ZipkinModifier which inspects the method
signature list of cs and generates a wrapper class that adds

trace contexts to all methods. Next, the gRPC plugin gener-
ates protobuf RPC message definitions for the expanded cs
methods, invokes the gRPC compiler, then generates client
and server instantiation code. The compiler proceeds in in-
verse topological order and next invokes the Go Namespace
plugin to package all contained code and generate a main
method that instantiates the service, wrappers, RPC server,
and clients to dependencies. The compiler proceeds similarly
for process nodes and container nodes.

Resolving Dependencies. As part of the generation pro-
cess, Blueprint gathers code dependencies across namespaces
from the IR graph to ensure that remote components are ad-
dressable. For example, if a service invokes another over RPC,
running in a different container, it must therefore include
client code for the target service and its modifiers. Any node
crossed by this edge must receive and forward the target ser-
vice’s address as an argument (i.e. so that the target service
binds to an address that the source service can dial, and so
that docker containers publicly expose the relevant ports).
If the remote components are not addressable by a service,
Blueprint’s compiler will return an error citing that the edge
between the two services lacks the necessary visibility.

5 Implementation

Blueprint is implemented in Go in 10,892 LoC, which includes
Blueprint’s compiler, the wiring spec DSL, component in-
terfaces and their implementations, debugging and logging
features, and other features implemented as modifiers.

Blueprint’s compiler is implemented in 4062 LoC. Blue-
print provides first-class support for Go workflow specs.
We selected Go because it is designed specifically for high-
performance RPC services, and has convenient mechanisms
for handling concurrency, errors, and context propagation.
Blueprint is not constrained to Go; the abstractions of Blue-
print enable extension to multiple languages with no ad-
ditional difficulty. Blueprint’s wiring spec is currently a
Python-based DSL that also allows C-style macros; this is
771 LoC, and we are considering more flexible programmatic
approaches for future work.

We reimplemented five applications from three microser-
vice benchmark suites described in the literature: the Social-
Network, Media, and HotelReservation applications from
the DeathStar Benchmark (DSB) [26], TrainTicket [76], and
the SockShop benchmark [47]. We present an analysis of
the LoC effort required for porting these applications in §6.1.
We additionally outline the features currently supported by
Blueprint in §6.5 and the LoC of implementation required to
implement the compiler plug-ins.

6 Evaluation

Our evaluation of Blueprint seeks to answer the following:

e Does Blueprint reduce effort for design space exploration
(UC1)? (§6.1)

e Can Blueprint help reproduce emergent phenomena in
microservice applications (UC2)? (§6.2)

e Does Blueprint reduce effort for prototyping improve-
ments (UC3)? (§6.3)

e Are Blueprint-generated systems realistic? (§6.4)

o Is Blueprint easy to extend with new scaffolding and in-
stantiations? (§6.5)

e What is the cost of Blueprint’s abstractions? (§6.6)

Experimental setup. All experiments use a cluster com-
prising eight machines, each with four Intel Xeon E7-8857V2
processors, 48 cores and 1.5 TB RAM. We deploy each service
in a separate container. We use a simple open-loop work-
load generator that can be configured to exercise APIs of
the generated system with a specified request rate and API
distribution; this runs on a separate machine.

6.1 UC1: Design Space Exploration

Reducing Implementation Effort. To demonstrate that
Blueprint makes it easy to implement realistic microservice
systems not specifically designed for our evaluation, we have
re-implemented five existing microservice applications in
Blueprint. We selected these systems based on their popu-
larity in microservice research as highlighted in §B.2. Tab. 1
shows the LoC needed to implement the workflow spec and
wiring file for each application in Blueprint. We compare
the LoC needed to those in the original implementations.
Blueprint reduces the code footprint by 5-7x for each appli-
cation by eliminating the need to implement scaffolding and
instantiations alongside workflow code. In the original imple-
mentations, scaffolding was tightly coupled with workflow
code, thus inflating the amount of code that a user needed
to write. By decoupling the workflow specification from the
scaffolding code and moving scaffolding code generation
to the compiler, Blueprint reduces the volume of code re-
quired to implement a workflow. One beta user of Blueprint
noted that this decoupling also made it easier for them to
understand and implement the workflow specification.

Orig. Blueprint (LoC)

System Reduction
Y (LoC) Spec Wiring

DSB SocialNetwork 8209 1478 57 5.4%

DSB Media 7794 1401 42 5.4X

DSB HotelReservation 5 160 679 63 7.0

TrainTicket 54466 9639 166 5.6X

SOCkShOp 13987 2261 40 6.1X

Tab. 1. Lines of code of original and Blueprint implementations of
popular open-source microservice systems

Changing workflow specs. We compare the LoC re-
quired to make a change to the design of the application
in the original system and compare that to the effort to im-
plement the same change in the Blueprint implementation
of the application. In pull request #101 of DSB SocialNet-
work [19], the authors inverted caller-callee relationships be-
tween ComposePostService and TextService, UniqueIDSer-
vice, UserService, and MediaService to improve application
performance. They modified 5,140 LoC. We implemented the
same change in the Blueprint version of the system by mod-
ifying 288 LoC of workflow spec, and 7 LoC of wiring spec —
a 17X reduction. The substantial difference in code changes
arises due to Blueprint’s separation of concerns: in the origi-
nal implementation, changing interfaces between services
required changing scaffolding and instantiation code, which
was tightly coupled with workflow code. However, with
Blueprint, scaffolding and instantiation code changes are
handled by the compiler, and only the workflow specifica-
tion required manual changes.

Changing scaffolding and instantiations. Blueprint
makes it easier to enable or disable new scaffolding in an
application. Based on our survey in §B.2, we found that a
popular change in existing microservice systems is to enable
or disable tracing [5, 13, 32, 37]. For example, disabling trac-
ing in a variant of DSB SocialNetwork required 418 LoC [37].
In contrast, the same change required 5LoC wiring spec
change for the Blueprint implementation of DSB Social Net-
work. This small wiring spec change automatically removes
~2KLoC from the generated system, including all tracing
source code modifications and configuration files needed to
enable tracing in the runtime.

Performance-Driven Design Exploration. Finally we
perform a study requiring many configure, build, and deploy
iterations. We first study the performance impact of differ-
ent choices in DSB HotelReservation and DSB SocialNet-
work [26]. Fig. 5 shows the performance impact of changes
along two dimensions: (i) the RPC framework (gRPC or
Thrift); and (ii) the size of the clientpool (relevant only for
Thrift, as gRPC multiplexes connections on a single con-
nection). We find that gRPC outperforms Thrift for both
applications and find marginal differences when varying the
clientpool size.

thrift512
Hotel Reservation

—+— thrift4096
Social Network

—e— grpc —+— monolith

=
o
S

Avg. Latency (ms)
-
o

—
o
)

0 10K 20K 30K 40K 50K1000 1500 2000 2500 3000 3500
Avg. Goodput (reqgs/s)

Fig. 5. Blueprint enables easy performance-driven design explo-
ration.

Next, we use Blueprint to generate monolithic versions
of both applications, where all services run in a single pro-
cess and communicate directly through function calls. This
allows us to quantify the performance cost of breaking the
application down into a microservice architecture. In both
cases, we run all services on a single machine. The monolith
line in Fig. 5 shows that the monolith version outperforms
the microservice version of the application. This enables an
empirical decision for when the complexity of a microservice
architecture is justified from a performance point of view.

To generate these variants, we only needed to modify 5-10
LoC in the wiring spec, illustrating how Blueprint enables
design space exploration with minimal manual effort.

6.2 UC2: Eliciting Emergent Phenomena

Through two case-studies we demonstrate that Blueprint is
capable of generating systems for exploring emergent phe-
nomena, namely metastability failures [33] and cross-system
inconsistency [61]. We modify the Blueprint implementations
of DSB HotelReservation and DSB SocialNetwork to exhibit
these specific emergent phenomena; for readability we refer
to these simply as HotelReservation and SocialNetwork.

6.2.1 Case Study I: Metastability Failures

We adapt HotelReservation and SocialNetwork to showcase
the four different kinds of metastability failures [33]. The
required changes described below are to the wiring spec and
amount to at most 3 LoC per failure type.

Load spike trigger workload amplification (Type 1).
We modify HotelReservation to add a 500 ms timeout to
every inter-service RPC. We also modify the services to re-
try up to 10 times on error. We start with a 10 K requests/s
(Rps) workload for 60 s, then increase to 30 KRps for 30s,
and then revert to 10 KRps. Fig. 6a shows the mean and
99th percentile service latencies over time. At the 1-minute
mark, the sudden workload increase triggers the majority
of requests to time out, in turn causing more requests to be
generated due to retries. This trigger keeps the system in
a metastable state and even after decreasing the load, the
system does not recover to a stable state.

Load spike trigger capacity degradation amplification
(Type 2). To induce this type of metastability failure, the
authors [33] limited the maximum service heap size. We ex-
periment with HotelReservation’s ReservationService. As
Go offers no direct control over heap size, we instead in-
crease the garbage collection (GC) frequency by causing the
GC to trigger whenever the heap is 75% full instead of the
default 100% (for this, we set the environment variable GOGC
to 75). We run a 20 KRps workload for 10 mins; at the 5 min
mark we introduce low-level CPU contention for 30 s using
FIRM’s anomaly injector [55]. Fig. 6b shows mean service
latency over time. Here, the CPU contention acts as a trigger
by increasing the GC duration, which results in frequent
stop-the-world GC phases, causing other requests to start
timing out and generate more retries. This metastable state
also persists after the CPU contention disappears.

Capacity decreasing trigger workload amplification
(Type 3). To induce this metastability failure, we first
modify HotelReservation to have 1 s timeouts and up to 10
retries on every RPC. We run a 24 KRps workload for 2 mins.
After 1 min, we inject low-level resource contention with
FIRM’s [55] anomaly injector for 30 s to decrease available
CPU capacity. Fig. 6¢c shows the mean and 99" percentile
service latencies over time. CPU contention starting at 1 min
causes timeouts leading to retries that overload the system
and keep it in a metastable state after CPU contention disap-
pears.

Fig. 7 illustrates vulnerability for different request rates,
trigger durations, and maximum retries. At higher request
rates, even a short trigger can cause the system to move into
a metastable failure state. In contrast, at lower request rates,
short triggers only cause transient issues. Fewer retries only
minimally increase the tolerable trigger duration.

Capacity decreasing trigger capacity degradation am-
plification (Type 4). We modify SocialNetwork with an
internal 1s timeout and up to 10 retries. We run this exper-
iment in two phases. First, we fill the UserTimelineCache
with all content from the userTimelineDatabase. In the sec-
ond phase, we run a 3 KRps workload for 2 mins. At 1 min,
we flush the UserTimelineCache which then causes future
requests to query the database. Fig. 6d again shows the mean
and 99" percentile service latencies along with the observed
cache miss rate. The cache flush at 1 min overloads the data-
base and causes cascading timeouts and retries. This overload
prevents the cache from repopulating and keeps the system
in a metastable failure state.

In all cases, Blueprint enables rapid exploration of different
designs, such as adding timeouts and retries, which, in turn,
enables the reproduction and analysis of metastable failures.

6.2.2 Case Study II: Cross-System Inconsistency

We add replication scaffolding to SocialNetwork to elicit
cross-system inconsistencies. Cross-system inconsistencies

Type 1 Metastability Failure Type 2 Metastability Failure

Type 3 Metastability Failure Type 4 Metastability Failure

— 10° 106 106 : o

g — 99th % —:—: Miss Rate 08 =1

= —— Average i -4

4]] 4

5104 10 " 10 . -',//, i 1067
rigger rigger Jj] s

2 Tiager) |y 0a3

< 102 1024 1 102 i b sii 2

9] Yo b [

=~ il s AN 02 9

© Lol Ve ©

i1 (W] {!w Wy o

100 10° 10 100 x 0.0
0 20 40 60 80 100 0 100 200 300 400 500 600 O 20 40 60 80 100 120 0 25 50 75 100 125
Time (s) Time (s) Time (s) Time (s)

(a) Type 1 in HotelReservation (b) Type 2 in HotelReservation

(c) Type 3 in HotelReservation

(d) Type 4 in SocialNetwork

Fig. 6. Four metastability failure types [33] demonstrated in the Blueprint versions of DSB HotelReservation and DSB SocialNetwork.

---- 5 Retries
10 Retries

Stable region
Vulnerable region

-
o

Trigger Duration (s)

0 T T T T T T T T 1
10K 12K 14K 16K 18K 20K 22K 24K 26K 28K

Requests per Second

Fig. 7. Metastability Vulnerability Analysis for HotelReservation.

occur when delays in synchronization of replicated data
stores such as databases and caches cause read requests for an
object to return incorrect results. By default SocialNetwork
has no replication, so we add replication to userTimeline-
Database and UserTimelineService, and modify the Gate-
wayService to use the replicated version of the service. These
changes only touch 4 LoC in the wiring spec.

We compare the replication-enabled SocialNetwork to the
initial Blueprint SocialNetwork. We use a 100 Rps workload
consisting of 100 % ComposePost requests. For each successful
request, we read the user timeline of the post creator after
a wait time ranging between 0s and 1 s at 100 ms intervals.
A response without the new post is a cross-system inconsis-
tency. Fig. 8 shows the measured fraction of inconsistencies
with increasing wait times for the original SocialNetwork
and the replicated version. As expected, the non-replicated
version always reads consistent results, whereas the repli-
cated version incurs a small fraction of inconsistencies [12].

Overall, this case study demonstrates how Blueprint ap-
plications are amenable to change and enable users to mod-
ify existing applications to reproduce emergent phenomena
with minimal effort.

6.3 UC3: Prototyping Improvements

In this section we evaluate how amenable Blueprint is for
supporting prototyping and evaluation of improvements in
two ways: (i) reproducing the prototyping required for a
solution performed in existing research; and (ii) prototyping
a new solution for an emergent phenomenon.

Reproducible Research. To understand how Blueprint
can aid researchers in making changes, we select a muta-
tion that was manually added by researchers to an existing

microservice application, and reproduce that mutation in
the Blueprint implementation of the application. Concretely,
Sifter [40] manually mutates the DSB Social Network appli-
cation to add X-Trace [23]. X-Trace is a distributed tracing
framework, but it does not conform to OpenTelemetry APIs
and cannot reuse the existing Jaeger instrumentation of DSB
SocialNetwork. Consequently, the authors of Sifter manually
extended DSB SocialNetwork to add X-Trace support. This
comprised 1,289 LoC changed over a 2 week period, based
on commit timestamps.

We implemented the same change in Blueprint, which re-
quired (1) extending Blueprint’s compiler to support X-Trace
(a 1-time task); and (2) enabling X-Trace for the Blueprint
SocialNetwork application. The latter required 3 LoC change
to the wiring spec of the SocialNetwork application. This
reduction occurred because the vast majority of code to sup-
port X-Trace is templatable scaffolding code which can be
easily incorporated in the compiler. Implementing X-Trace
within Blueprint’s compiler required 433 LoC.

To evaluate if Blueprint’s modifications to systems yield
the same results as the modifications to original systems, we
contacted the authors of Sifter to obtain their experiment
code and reproduced Figure 6 from the Sifter paper [40] us-
ing the Blueprint-generated SocialNetwork application. In
the original experiment, the authors recorded the loss and
sampling probability for a sequence of 1000 ComposePost
APIrequests, and at five separate instances they had inserted
anomalous requests. Similarly, in our experiment we gener-
ated anomalous requests with the Blueprint generated DSB-
SN and repeated the above experiment. In Fig. 9, the spikes
of high probability of selection correspond to the anomalous
requests. This shows that Blueprint generated systems can
reproduce the same results as the original systems.

Prototyping New Solutions. In this experiment we demon-
strate how Blueprint can help in prototyping and integrating
novel solutions in applications. We particularly focus on the
Type 1 Metastable Failure first introduced in §6.2.

To address the Type 1 Metastable Failure, we prototype a
solution based on circuit-breakers. A circuit-breaker prevents
new requests from being sent if the moving-average fail-
ure rate of requests is higher than a specified threshold. We

o
W

—_ T T %] 6
o ; R K £ 10°4 ——
3\’ —— Replicated 154 vy ---- Anomalies = —— W(/O CircuitBreaker
0.2 ---- Non-replicated i i i g ---- With CircuitBreaker
. H H ~ 104
3 2 10 bl >
@01 S i @
g 1 o 1024
S 5 kS
20.0 o b e
- T T T T T v 0+ e P —— y = 10° T . - v -
0 200 400 600 800 1000 0 200 400 600 800 1000 < 0 20 40 60 80 100
Wait Time (ms) Trace Time (s)

Fig. 8. Cross-system inconsistencies arise in
SocialNetwork when enabling replication.

—e— Blueprint
Hotel Reservation

Al A

0 5K 10K 15K 20K 25K 30K K 2K
Avg. Goodput (regs/s)

original
Social Network

-
o
W

-
o
~

=
o

on

Avg. Latency log(ms)

-
o
=)

3K 4k 5K

Fig. 11. Performance comparison of Blueprint systems with their
original counterparts

implement a circuit-breaker feature and introduce it to Blue-
print’s compiler as a new type of scaffolding. This required
126 LoC. Enabling circuit breakers for the HotelReservation
application required only 2 LoC change to its wiring spec.
Fig. 10 shows how adding circuit breakers can potentially
prevent the system from going into a metastable failure state.
The circuit-breaker-enabled version of the application expe-
riences the same latency increase at t = 60, but due to the
circuit-breaker triggering, the application is able to avoid
entering a metastable failure state and returns to normal at
t = 90. Overall, this example demonstrates how Blueprint
can be useful in prototyping novel solutions for phenomena.

6.4 Generating Realistic Systems

We now evaluate Blueprint’s ability to generate real systems
useful for meaningful evaluation. For this we measure and
compare the performance of two of the Blueprint-generated
systems applications above to that of the original systems.

HotelReservation. We compare the performance of the
Blueprint implementation of HotelReservation to the origi-
nal DSB implementation. The original DSB HotelReservation
application is implemented in Go, enabling a direct compari-
son between it and the Blueprint-generated application. To
exercise the systems, we run a mixed workload of 60% hotels,
38% recommendations, 1% user, and 1% recommend requests.
We run the workload for different request rates ranging from
1Krps to 30 KRps for a duration of 1 min each. Fig. 11 shows
the latency-throughput profile of both systems. The Blue-
print generated system has a similar performance to the
original manually implemented system.

Fig. 9. Blueprint’s reproduction of Fig. 6 from Fig. 10. Prototype Solution for Type 1 Metasta-
the Sifter paper [40] in SocialNetwork.

bility failure in HotelReservation.

Backend Interface Compiler
Cache 12 0
NoSQLDB 27 0
RelDB 22 0
Queue 12 0
Tracer 45 0
Deployer 3 46
RPC 11 152
HTTP 11 146

Tab. 2. Lines of Code required for adding a backend interface.

SocialNetwork. We also compare the performance of the
Blueprint implementation of SocialNetwork to the original
DSB implementation. The original DSB implementation uses
a mix of C++ and Lua with an nginx gateway web server
whereas the Blueprint implementation uses Go’s default
HTTP web server. To exercise both systems, we run a mixed
workload of 60% ReadHomeTimeline, 30% ReadUserTimeline,
and 10% ComposePost requests. We run the workload for dif-
ferent request rates ranging from 1KRps to 6 KRps for a
duration of 1 min each. Fig. 11 shows the latency-throughput
profile for both systems under the aforementioned work-
load. In this scenario, the original system outperforms the
Blueprint generated system. We attribute this to two com-
pounding factors. First, the original system is implemented
in C++ whereas the Blueprint version is in Go. Go incurs
garbage collection overhead and relies on different libraries
for many core microservices building blocks. Second, the
Blueprint implementation does not use any Redis-specific
specialized array operations. This illustrates a drawback of
Blueprint- it requires interacting with backends through
common interfaces.

Overall, these results illustrate that Blueprint can generate
microservice systems whose performance compares closely
to that of handwritten systems.

6.5 Extensibility of Blueprint

Adding backends and instantiations. Tab. 2 shows
the LoC in the interface of various Blueprint backends and

Type Instantiation Impl Compiler
Cache Redis 76 140
Cache Memcached 76 142
NoSQLDB MongoDB 288 140
RelDB MySQL 91 140
Queue RabbitMQ 50 111
Tracer Jaeger 28 145
Tracer Zipkin 28 145
Deployer Docker 74 0
Deployer Kubernetes 45 0
Deployer Ansible 439 0
RPC GRPC 673 0
RPC Thrift 636 0
HTTP Go’s net/http 271 0

Tab. 3. Lines of Code required for adding a new instantiation.

Plugin Compiler (LoC) Stdlib (LoC)
Retry 123 0
Tracing 284 45
p-Replication 52 0
ClientPools 145 55
X-Trace 364 69
CircuitBreaker 126 0
LoadBalancer 208 19

Tab. 4. Lines of code required for adding a new compiler plugin.

Tab. 3 shows the LoC for the instantiations currently avail-
able for each backend. Adding a new backend generally re-
quires <100 LoC for implementing the lightweight interface.
Adding an instantiation also requires a small amount of code
(<200 LoC) in the compiler. Each of these is a one-time effort,
that can be leveraged by subsequent Blueprint applications.

Instantiations of certain backends require more code than
others. For example, instantiations of the RPC and backends
require more code than average as these instantiations must
correctly generate the code for communicating over the net-
work, establishing connections, and running servers.

Adding new plugins. Blueprint’s modifier abstraction
allows developers to add new scaffolding. Tab. 4 shows the
plugins currently available in Blueprint and the LoC in their
implementations. Some plugins require changes only in the
Blueprint toolchain whereas others also require an additional
runtime library component. The LoC vary across features
from 46 to around 440.

Adding new plugins is harder than directly implementing
the scaffolding hard-coded within an application. Nonethe-
less, this addition is a one-time cost that amortizes the effort
of reimplementing scaffolding in all later systems.

6.6 Cost of Blueprint

Compilation time. Tab. 5 shows the time taken by Blue-
print to generate systems. Blueprint can generate small to

System Name Gen Time(s) Num Services

DSB-SN 1.172 28
DSB-MM 1.698 33
DSB-HR 1.281 18
TrainTicket 3.723 67
SockShop 0.925 14
Alibaba-TraceSet 707 2882

Tab. 5. Time taken by Blueprint for generating the system including
services, caches, databases, queues, tracers

E 104{ —— blueprint .'-\.

; -#- blueprint_revrange \‘
210 5

9]

=

©

- 102 Y
oy S
<

1000 1500 2000 2500 3000 3500 4000
Avg. Throughput (reqgs/s)

Fig. 12. DSB-SN cache choice exploration

medium sized system within seconds. As there are no exist-
ing large open-source microservice systems, we generated a
large-scale microservice application using the Alibaba ser-
vice topology in the Alibaba trace dataset [44]. For this, we
omitted the caches and databases and only focused on state-
less services. In total, the resulting workflow and wiring
spec had 2.8K service instances. To generate a variant imple-
mentation, Blueprint took around 12 minutes. Overall, the
compilation time is proportional to the number of service
instances in the wiring spec and the density of the service
topology. These results demonstrate that Blueprint enables
researchers and practitioners to quickly (re-)compile appli-
cations, thus supporting rapid Configure, Build, and Deploy
cycles. These results may be further improved through com-
piler optimizations and incremental compilation.

Cost of abstractions. For each type of backend supported
by Blueprint, services interact with the backend through a
generalized interface. The interface is selected such that
backend instances can be opaquely reconfigured. Yet many
backends do provide broader interfaces with specialized op-
erations that are more efficient for certain workloads. Blue-
print’s approach discourages services from using such oper-
ations, in the interest of reconfiguration.

To demonstrate the impact of using more general but less
efficient APIs, we implement an extended Cache interface
that provides access to Redis’ specialized cache operations.
We use this extended interface in the SocialNetwork appli-
cation, we execute a 100% ReadHomeTimeline workload for
1 minute for request rates ranging from 1 KRps to 6 KRps.
With the extended interface, the application observes a 33%
increase in throughput as shown in Fig. 12.

7 Discussion

Debugging. Debugging generated code and the workflow
specification can be a challenging task. To aid developers in
debugging workflow specification code, Blueprint provides
default implementations of the various components called
null implementations. These implementations provide a basic
interface against which the core application specification
can be tested without worrying about the deployment of the
system. These implementations are attached to the workflow
specification in the wiring spec and can be iteratively re-
placed with the real choices once the developer is confident
in the correctness of their application code.

Language Heterogeneity. Usually, microservice systems
contain services implemented in different languages. Cur-
rently, Blueprint generates services only in Go. Generating
services in other languages is purely an implementation chal-
lenge and we believe that the current design can be extended
to generate code in other languages. This would require
compiler plugins to support generation of scaffolding in mul-
tiple languages in order to correctly mix code of different
languages in an application.

Generating Production Systems. Blueprint targets mi-
croservice experimentation and prototyping use cases, rather
than generating production-ready microservice applications.
It remains an open question whether Blueprint is a suitable
toolchain for developing production-ready microservice ap-
plications. Currently, Blueprint’s approach stands at odds
with the microservices architectural approach: microservices
are typically developed by highly distributed teams oper-
ating independently; yet Blueprint imposes a centralized
configuration and deployment step through its wiring spec.
We are currently exploring approaches to decomposing and
distributing the wiring spec. A further concern is the cost
of Blueprint’s abstractions for backends, which might be
too high a price to pay for production systems. However,
we believe that Blueprint could be used in production to
quickly home in on a concrete set of choices that satisfies
the developer’s requirements. The Blueprint-generated sys-
tem could then further be fine-tuned manually to obtain a
production-grade system.

8 Related Work

Microservice benchmark suites have gained considerable
popularity in recent years [26, 66, 71, 76]. Each system cor-
responds to only one concrete point in the design space and
as they were not designed to be configurable, they are in-
adequate for tasks that would require exploring the design
space of microservices.

Several existing tools support generation of microservice
systems by providing a DSL or some other programming
language [4, 21, 27, 38, 49, 53, 56—59, 62-64, 67, 68, 73].

However, the tools are designed for one-shot generation
of microservices and select a single dimension to provide
flexibility. The most prominent example is Google’s Ser-
viceWeaver [27], which provides flexibility along the deploy-
ment dimension allowing users of the tool to deploy the same
application as a suite of microservices or as a monolithic ap-
plication. However, like the other tools, ServiceWeaver is a
poor fit CBD use cases that require modifying the application
along dimensions other than the deployment dimension.

Some existing tools, such as SpringBoot [65] or Dapr [1]
aid in developing microservice systems by separating out
reusable infrastructure components from the core implemen-
tation of the application, allowing users to select infrastruc-
ture building blocks that can be applied to an application.
However, the SpringBoot framework makes binding choices
along the deployment and communication dimensions of
the microservice design space making SpringBoot a poor
fit for CBD use cases. Unlike the SpringBoot framework,
Dapr allows users to switch between the deployment and
communication dimensions but the user must change them
manually resulting in high manual effort.

Two of the key features that enables Blueprint to quickly
reconfigure applications are the notions of reusability and
dependencies. First, the idea of reusability has been inspired
from the The Flux OSKit [24]. Similar to Flux OSKit’s suite of
reusable OS components, Blueprint also uses commonly used
microservice libraries and components as reusable building
blocks for microservice applications. In contrast, Blueprint
does not require glue code to be handwritten for each com-
ponent for each new application, instead relying on its com-
piler abstractions and code generation to correctly handle
composition of components. Second, Blueprint uses Depen-
dency Injection [54] to correctly generate applications by
not allowing instantiation of dependent components in the
workflow specification of applications. The dependencies of
any given service in a Blueprint application are generated at
compilation time.

9 Conclusion

We have introduced Blueprint, a toolchain for developing
highly reconfigurable microservice applications. We have
demonstrated Blueprint for several use cases that involve
configuring, building, and deploying variants of microser-
vice applications with modified designs. Compared to exist-
ing benchmark applications, Blueprint substantially eases
development and reconfiguration by providing a strong sep-
aration of concerns between an application’s workflow, scaf-
folding infrastructure, and implementation choices. Blue-
print is open-source, and we hope that its adoption will
make it easier for future work to understand and improve
the performance and correctness guarantees of microser-
vice systems. Blueprint is available at https://gitlab.mpi-
sws.org/cld/blueprint/blueprint-compiler.

Acknowledgements

We would like to thank our shepherd, Rebecca Isaacs and
our anonymous reviewers for helping us shape up the final
version of the paper. We would also like to thank and ac-
knowledge the efforts of the anonymous evaluators of the
Artifact Evaluation Committee. We would like to thank Gerd
Alliu, for helping with an initial Blueprint versions of the
TrainTicket and SockShop applications. We would also like
to thank Rodrigo Fonseca, Roberta De Viti, and Matheus
Stolet for providing us with feedback.

References

[1] Dapr: Distributed application runtime. https://dapr.io/.

[2] AcmeAir. Acmeair. https://github.com/acmeair.

[3] P. Ajoux, N. Bronson, S. Kumar, W. Lloyd, and K. Veeraraghavan.
Challenges to adopting stronger consistency at scale. In 15th Workshop
on Hot Topics in Operating Systems (HotOS XV), 2015.

[4] LK. Aksakalli, T. Celik, A. B. Can, and B. Tekinerdogan. A model-driven
architecture for automated deployment of microservices. Applied
Sciences, 11(20):9617, 2021.

[5] V. Anand and J. Mace. Deathstarbench - modified with x-trace. https:
//github.com/JonathanMace/DeathStarBench/.

[6] asc lab. Asclab micronaut poc - lab insurance sales portal. https:
//github.com/asc-lab/micronaut-microservices-poc/.

[7] Azure. Retry storm antipattern. Retrieved September 2022 from
https://learn.microsoft.com/en-us/azure/architecture/antipatterns/
retry-storm/, 2021.

[8] Azure. Chatty i/o. Retrieved September 2022 from https://learn.
microsoft.com/en-us/azure/architecture/antipatterns/chatty-io/, 2022.

[9] Azure. No caching antipattern. Retrieved September 2022 from
https://learn.microsoft.com/en-us/azure/architecture/antipatterns/
no-caching/, 2022.

[10] Azure. Noisy neighbour. Retrieved Septemeber 2022 from
https://learn.microsoft.com/en-us/azure/architecture/antipatterns/
noisy-neighbor/noisy-neighbor, 2022.

[11] Azure. Technology choices for azure solutions. Retrieved Septem-

ber 2022 from https://learn.microsoft.com/en-us/azure/architecture/

guide/technology-choices/technology-choices-overview, 2022.

P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein, and I. Sto-

ica. Probabilistically bounded staleness for practical partial quorums.

Proceedings of the VLDB Endowment, 5(8):776-787, 2012.

[13] Barber0. Deathstarbench no tracing. Retrieved August 2022 from
https://github.com/Barber0/DeathStarBench/tree/no_tracing, 2021.

[14] R. Blum and R. Singh. Data integrity: What you read is what you
wrote. Retrieved September 2022 from https://sre.google/sre-book/
data-integrity/.

[15] N.Bronson, A. Aghayev, A. Charapko, and T. Zhu. Metastable failures
in distributed systems. In Proceedings of the Workshop on Hot Topics in
Operating Systems, pages 221-227, 2021.

[16] A. Cockeroft. The evolution of microservices. (April 2016). Retrieved
October 2020 from https://www.slideshare.net/adriancockcroft/
evolution-of-microservices-craft-conference, 2016.

[17] A. Cockcroft. Microservices workshop: Why, what, and how
to get there. (April 2016). Retrieved October 2020 from
https://www.slideshare.net/adriancockcroft/microservices-
workshop-craft-conference, 2016.

[18] J. Dean and L. A. Barroso. The tail at scale. Communications of the
ACM, 56(2):74-80, 2013.

[19] delimitriou. Deathstarbench social network application refactor for
better performance. Retrieved August 2022 from https://github.com/
delimitrou/DeathStarBench/pull/101, 2021.

[12

—

[20] M. Dinga. An empirical evaluation of the energy and performance
overhead of monitoring tools on docker-based systems. Retrived
August 2022 from https://github.com/MadalinaDinga/thesis-
2022-monitoring-tools-integration-with-train-ticket-replication-
package/, 2022.

[21] T. F. Dillmann and A. Van Hoorn. Model-driven generation of mi-
croservice architectures for benchmarking performance and resilience
engineering approaches. In Proceedings of the 8th acm/spec on in-
ternational conference on performance engineering companion, pages
171-172, 2017.

[22] J. Faro. Deathstarbench metastability failure fork. Retrieved August
2022 from https://github.com/jfaro/DeathStarBench, 2022.

[23] R. Fonseca, G. Porter, R. H. Katz, and S. Shenker. X-trace: A perva-
sive network tracing framework. In 4th {USENIX} Symposium on
Networked Systems Design & Implementation ({NSDI} 07), 2007.

[24] B.Ford, G.Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers. The flux
oskit: A substrate for kernel and language research. In Proceedings of
the sixteenth ACM symposium on Operating systems principles, pages
38-51, 1997.

[25] Y. Gan, S. Dev, D. Lo, and C. Delimitrou. Sage: Leveraging ML To Diag-
nose Unpredictable Performance in Cloud Microservices. In Workshop
on ML for Computer Architecture and Systems (MLArchSys), June 2020.

[26] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, et al. An open-source benchmark suite
for microservices and their hardware-software implications for cloud
& edge systems. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 3-18, 2019.

[27] S. Ghemawat, R. Grandl, S. Petrovic, M. Whittaker, P. Patel, I. Posva,
and A. Vahdat. Towards modern development of cloud applications.
In Proceedings of the 19th Workshop on Hot Topics in Operating Systems,
pages 110-117, 2023.

[28] GoogleCloudPlatform. Online boutique, fka hipstershop. https://
github.com/GoogleCloudPlatform/microservices-demo.

[29] E.Haddad. Service-oriented architecture: Scaling the uber engineering
codebase as we grow. (September 2015). Retrieved October 2020 from
https://eng.uber.com/service-oriented-architecture/, 2015.

[30] M. Hashemi. (January 2017). Retrieved February 2021 from
https://blog.twitter.com/engineering/en_us/topics/infrastructure/
2017/the-infrastructure-behind-twitter-scale.html, 2017.

[31] G. Heiser. System benchmarking crimes. https://www.cse.unsw.edu.
au/~gernot/benchmarking-crimes.html.

[32] Hilbert-Yaa. Deathstarbench local tracing. Retrieved Au-
gust 2022 from https://github.com/Hilbert-Yaa/DeathStarBench/tree/
proto-tracing, 2021.

[33] L. Huang, M. Magnusson, A. B. Muralikrishna, S. Estyak, R. Isaacs,
A. Aghayev, T. Zhu, and A. Charapko. Metastable failures in the
wild. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), pages 73-90, 2022.

[34] L. Huang and T. Zhu. tprof: Performance profiling via structural
aggregation and automated analysis of distributed systems traces. In
Proceedings of the ACM Symposium on Cloud Computing, pages 76-91,
2021.

[35] D.Huye, Y. Shkuro, and R. R. Sambasivan. Lifting the veil on {Meta’s}
microservice architecture: Analyses of topology and request work-
flows. In 2023 USENIX Annual Technical Conference (USENIX ATC 23),
pages 419-432, 2023.

[36] istio. Bookinfo application. https://istio.io/latest/docs/examples/
bookinfo/.

[37] ivanium. Deathstarbench social network no tracing. Retrieved Au-
gust 2022 from https://github.com/ivanium/DeathStarBench/commit/
01360df6653e12982335838¢877cc4178a518987, 2021.

[38] jhipster. Jhipster. Retrieved August 2022 from https://github.com/
jhipster/generator-jhipster, 2019.

(39]

[40]

(42]

(43]

(4]

(45]

[46]

(47]

(48]

(49]

(50]

(51]

[52]

(53]

(54]

[56]

(57]

(58]

A. Kalia, M. Kaminsky, and D. Andersen. Datacenter {RPCs} can be
general and fast. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), pages 1-16, 2019.

P. Las-Casas, G. Papakerashvili, V. Anand, and J. Mace. Sifter: Scalable
sampling for distributed traces, without feature engineering. In Pro-
ceedings of the ACM Symposium on Cloud Computing, pages 312-324,
2019.

A. Lesniak, R. Laigner, and Y. Zhou. Enforcing consistency in microser-
vice architectures through event-based constraints. In Proceedings of
the 15th ACM International Conference on Distributed and Event-based
Systems, pages 180-183, 2021.

J. Loff. Deathstarbench inconsistency. Retrieved August 2022 from
https://github.com/jfloff/antipode-deathstarbench, 2022.

J. Loff, D. Porto, C. Baquero, J. Garcia, N. Preguica, and R. Rodrigues.
Transparent cross-system consistency. In Proceedings of the 3rd Interna-
tional Workshop on Principles and Practice of Consistency for Distributed
Data, pages 1-4, 2017.

S. Luo, H. Xu, C. Lu, K. Ye, G. Xu, L. Zhang, Y. Ding, J. He, and C. Xu.
Characterizing microservice dependency and performance: Alibaba
trace analysis. In Proceedings of the ACM Symposium on Cloud Com-
puting, pages 412-426, 2021.

J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi. Retro: Targeted
resource management in multi-tenant distributed systems. In 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15), pages 589-603, 2015.

A. Mcdade. Significant outage for amazon web services
stalls netflix, delta airlines, others. Retrieved September 2022
from https://www.newsweek.com/significant-outage-amazon-web-
services-stalls-netflix-delta-airlines-others-1657077, 2021.
microservices demo. Retrieved August 2022 from https://github.com/
microservices-demo/microservices-demo, 2016.

J. C. Mogul. Emergent (mis) behavior vs. complex software systems.
ACM SIGOPS Operating Systems Review, 40(4):293-304, 2006.

F. Montesi, C. Guidi, and G. Zavattaro. Service-oriented programming
with jolie. In Web Services Foundations, pages 81-107. Springer, 2014.
S. Needleman. Amazon outage disrupts lives, surprising peo-
ple about their cloud dependency. Retrieved September 2022
from https://www.wsj.com/articles/amazon-outage-disrupts-lives-
surprising-people-about-their-cloud-dependency-11638972001, 2021.
L. Nolan. Why health checks are like sidewalks. (December
2022). Retrieved April 2023 from https://www.usenix.org/publications/
loginonline/why-health-check-sidewalk, 2022.

J. Park, B. Choi, C. Lee, and D. Han. Graf: a graph neural network based
proactive resource allocation framework for slo-oriented microser-
vices. In Proceedings of the 17th International Conference on emerging
Networking EXperiments and Technologies, pages 154-167, 2021.

K. Perera and I. Perera. A rule-based system for automated generation
of serverless-microservices architecture. In 2018 IEEE International
Systems Engineering Symposium (ISSE), pages 1-8. IEEE, 2018.

D. R. Prasanna. Dependency injection. 2009.

H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer. {FIRM}:
An intelligent fine-grained resource management framework for slo-
oriented microservices. In 14th { USENLX} Symposium on Operating
Systems Design and Implementation ({ OSDI} 20), pages 805-825, 2020.
F.Rademacher, S. Sachweh, and A. Ziindorf. Aspect-oriented modeling
of technology heterogeneity in microservice architecture. In 2019 IEEE
International conference on software architecture (ICSA), pages 21-30.
IEEE, 2019.

F. Rademacher, J. Sorgalla, S. Sachweh, and A. Ziindorf. Towards
a viewpoint-specific metamodel for model-driven development of
microservice architecture. arXiv preprint arXiv:1804.09948, 2018.

F. Rademacher, J. Sorgalla, S. Sachweh, and A. Zundorf. Specific model-
driven microservice development with interlinked modeling languages.

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

In 2019 IEEE International Conference on Service-Oriented System Engi-
neering (SOSE), pages 57-5709. IEEE, 2019.

F. Rademacher, J. Sorgalla, P. N. Wizenty, S. Sachweh, and A. Zindorf.
Microservice architecture and model-driven development: Yet singles,
soon married (?). In Proceedings of the 19th International Conference
on Agile Software Development: Companion, pages 1-5, 2018.

M. R. S. Sedghpour, C. Klein, and]J. Tordsson. Service mesh circuit
breaker: From panic button to performance management tool. In
Proceedings of the 1st Workshop on High Availability and Observability
of Cloud Systems, pages 4-10, 2021.

X. Shi, S. Pruett, K. Doherty,]. Han, D. Petrov,]. Carrig, J. Hugg, and
N. Bronson. {FlightTracker}: Consistency across {Read-Optimized}
online stores at facebook. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages 407-423, 2020.
J. Sorgalla. Ajil: A graphical modeling language for the development of
microservice architectures. In Extended Abstracts of the Microservices
2017 Conference, 2017.

J. Sorgalla, F. Rademacher, S. Sachweh, and A. Ziindorf. Model-driven
development of microservice architecture: An experiment on the qual-
ity in use of a uml-and a dsl-based approach. 2020.

J. Sorgalla, P. Wizenty, F. Rademacher, S. Sachweh, and A. Ziindorf.
Applying model-driven engineering to stimulate the adoption of de-
vops processes in small and medium-sized development organizations.
SN Computer Science, 2(6):1-25, 2021.

spring.io. Spring boot. Retrieved August 2022 from https://spring.io/
projects/spring-boot.

A. Sriraman and T. F. Wenisch. p suite: A benchmark suite for mi-
croservices. In 2018 IEEE International Symposium on Workload Char-
acterization (IISWC), pages 1-12. IEEE, 2018.

A. Suljkanovi¢, B. Milosavljevi¢, V. Indji¢, and I. Dejanovi¢. Develop-
ing microservice-based applications using the silvera domain-specific
language. Applied Sciences, 12(13):6679, 2022.

B. Terzi¢, V. Dimitrieski, S. Kordi¢, G. Milosavljevi¢, and I. Lukovi¢.
Development and evaluation of microbuilder: a model-driven tool for
the specification of rest microservice software architectures. Enterprise
Information Systems, 12(8-9):1034-1057, 2018.

R. Tighilt, M. Abdellatif, N. Moha, H. Mili, G. E. Boussaidi, J. Privat,
and Y.-G. Guéhéneuc. On the study of microservices antipatterns: A
catalog proposal. In Proceedings of the European Conference on Pattern
Languages of Programs 2020, pages 1-13, 2020.

M. Ulrich. Addressing cascading failures. Retrieved September 2022
from https://sre.google/sre-book/addressing-cascading-failures/.

J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann,
and S. Kounev. TeaStore: A Micro-Service Reference Application
for Benchmarking, Modeling and Resource Management Research. In
Proceedings of the 26th IEEE International Symposium on the Modelling,
Analysis, and Simulation of Computer and Telecommunication Systems,
MASCOTS ’18, September 2018.

S. Waterworth. Stan’s robot shop - a sample microservice ap-
plication. https://www.instana.com/blog/stans-robot-shop-sample-
microservice-application/, 2018.

P. Wizenty, . Sorgalla, F. Rademacher, and S. Sachweh. Magma: Build
management-based generation of microservice infrastructures. In
Proceedings of the 11th European conference on software architecture:
companion proceedings, pages 61-65, 2017.

xiling42. ZI-1dfi with train ticket. Retrieved September 2022 from
https://github.com/xiling42/train-ticket-LDFI, 2020.

Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou. Sinan: Ml-
based and qos-aware resource management for cloud microservices. In
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
167-181, 2021.

X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao. Poster: Bench-
marking microservice systems for software engineering research. In

2018 IEEE/ACM 40th International Conference on Software Engineering:
Companion (ICSE-Companion), pages 323-324. IEEE, 2018.

