
DBO: Fairness for Cloud-Hosted Financial Exchanges
Eashan Gupta

UIUC, Microsoft Research
Prateesh Goyal

Microsoft Research
Ilias Marinos

Microsoft Research

Chenxingyu Zhao
University of Washington,

Microsoft Research

Radhika Mittal
UIUC

Ranveer Chandra
Microsoft Research

Abstract
We consider the problem of hosting financial exchanges in the cloud.
Exchanges necessitate strong fairness guarantees for competing par-
ticipants, particularly for use cases such as “high frequency trading”.
Today, exchanges achieve such guarantees by providing equal la-
tency across all market participants in their on-premise deployments.
However, ensuring equal latency for fairness is notably challenging
in current multi-tenant cloud deployments, mainly due to factors
such as network congestion and non-equidistant network paths.

In this paper, we address the problem of unfairness stemming
from unpredictable and unbounded network latency in cloud net-
works. Taking inspiration from the use of logical clocks in distributed
systems, we present Delivery Based Ordering (DBO), a novel mech-
anism that guarantees fairness by post-hoc offsetting the latency
differences among market participants in the cloud. We thoroughly
evaluate DBO in simulation, a bare-metal testbed and a public cloud
deployment, and we demonstrate that it is feasible to guarantee
fairness while operating at high transaction rates with a sub-100µs
end-to-end latency.

CCS Concepts
• Applied computing → Online auctions; • Networks → Network
protocol design; Network architectures;

Keywords
Financial exchange, Logical clock, Cloud, Fairness, High Frequency
Trading

ACM Reference Format:
Eashan Gupta, Prateesh Goyal, Ilias Marinos, Chenxingyu Zhao, Radhika
Mittal, and Ranveer Chandra. 2023. DBO: Fairness for Cloud-Hosted Finan-
cial Exchanges. In ACM SIGCOMM 2023 Conference (ACM SIGCOMM

’23), September 10, 2023, New York, NY, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3603269.3604871

1 Introduction
Major financial exchanges such as NASDAQ, Chicago Mercantile
Exchange (CME), and London Stock Exchange (LSE) have recently
expressed interest in migrating their workloads to the cloud, aiming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to the Asso-
ciation for Computing Machinery.
ACM ISBN 979-8-4007-0236-5/23/09. . . $15.00
https://doi.org/10.1145/3603269.3604871

to significantly reduce their capital expenditure, improve scalabil-
ity and reduce operational burden. Key market participants of such
exchanges would similarly profit from such migration as they also
currently maintain an expensive on-premise infrastructure for data
analysis and regression modelling to formulate their trading strate-
gies. For cloud providers such as Amazon, Google, and Microsoft,
this is a big business opportunity. Migrating financial exchanges to
the cloud is a mutually beneficial undertaking for all parties involved.

To this end, cloud providers and financial exchanges have an-
nounced long-term partnerships to facilitate such a move [21, 22].
Both parties perceive that this migration will be quite challenging,
especially when considering all different workloads (businesses) that
are currently accommodated in the exchanges’ on-premise infras-
tructure. In this paper, we focus on “speed race” trading [11, 19]
which is an important and highly profitable business for both finan-
cial exchanges and the market traders. Briefly, “speed race” trading
is a form of systematic electronic trading where market participants
(MPs) use high-performance computers to execute strategies that aim
to rapidly react and exploit new opportunities presented in the mar-
ket (e.g., due to volatility, price discrepancies etc). High-Frequency
Traders (HFTs) engage in such speed racing. HFTs invest large
amounts of money for hardware, systems and algorithmic develop-
ment to achieve impressively low reaction times (µs- or even ns-
scale). This trading business is only viable if market participants can
compete in a fair playground guaranteed by the Central Exchange
Server (CES) operators. Equality of opportunity – fairness – in this
case means that all market participants must get provably simultane-
ous access to market data, as well as their subsequent trades must be
executed in the exact order they were generated (i.e. placed in the
wire).

With on-premise deployments, financial exchanges guarantee fair-
ness for speed race trading by guaranteeing equal bi-directional
latency to the relevant market participants. Exchanges go to a great
extent to ensure fairness for their co-located MP customers; it is
not uncommon, for example, to use layer-1 fan-out switches for
market data stream replication and equal-length cables to all co-
located MPs. On the contrary, public cloud datacenter networks do
not provide such guarantees as they were originally designed for a
heterogeneous, multi-tenant environment, aiming to accommodate
diverse workloads. Even if the MPs are located within the same
cloud region as the CES, it is hard to guarantee that the latency
between CES and various MPs will be the same. Copper and fiber
optics cables are not necessarily of equal length, network traffic is
not evenly balanced among the different paths, multiple vendors’ net-
work elements have different performance characteristics, network
over-subscription is still common, and network quality of service
mechanisms for concurrent workloads are only best effort.

https://doi.org/10.1145/3603269.3604871
https://doi.org/10.1145/3603269.3604871

ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA E. Gupta et al.

This problem has recently received some attention from the aca-
demic community. CloudEx [13] aims to achieve fairness by at-
tempting to provide equal (yet inflated) bi-directional latencies in
the cloud relying on tight clock synchronization and buffering for
market data delivery. As we explain later (§2), such approaches
are fragile because latencies in datacenter networks are not only
unpredictable, but also unbounded. Other proposals [11, 19], require
intrusive modifications to existing CES implementations to work.

In this paper, we seek to address the problem of fairness for speed
race trading in cloud environments. Our key insight is that equal
bi-directional latencies are not strictly required to achieve fairness.
For speed trading, instead of ex-ante equalizing latency, we can
ex-post facto correct for any latency differences in delivery of data
by ordering trades differently. We introduce logical delivery clocks
that track time at each trader relative to when market data were
received. We present Delivery Based Ordering (DBO), a mechanism
that uses delivery clocks to order trades and achieve guaranteed
fairness1 in network topologies where latency is unpredictable and
unbounded. Beyond guaranteed fairness, DBO has two other advan-
tages. First, DBO does not require any clock-synchronization what-
soever, which is notoriously hard to achieve in cloud environments
where the network latency is unpredictable and unbounded [17].
Second, compared to other solutions, DBO achieves significantly
lower end-to-end latency.

We implement a real DBO system, which we evaluate on a bare-
metal server testbed leveraging programmable NICs. We also eval-
uate DBO in a public cloud deployment using standard VMs: our
system achieves guaranteed fairness and sub-100us p99 latency
while servicing 125K trades per second.

2 Background
We begin with discussing the challenges in hosting financial ex-
changes on the cloud, that are derived from our discussions with
three major financial exchanges (all are among the top 10 exchanges
in the world by trading volume) and our review of papers from
financial academic community [9, 11, 18, 19] as well as industry
papers [3, 10].

Why is moving to the cloud so hard? Short Answer: It is hard to
achieve fairness in cloud. A key customer/business for any major fi-
nancial exchange is High Frequency Traders (HFTs). At a high level,
high frequency traders aim to process incoming market data feed
from the exchange server and place trade orders as fast as possible.
These traders are engaged in what is known as speed races where
they are competing for the same trading opportunity, trying to get
their trade orders ahead of competition. There is an arms race in high
frequency traders to respond to market data the fastest [11]. HFTs
are becoming faster with time, even minor differences in latency
(sub-microsecond level) for market data delivery and trade orders
can give a trader significant advantage/disadvantage over the rest
[9, 10, 18]. Allowing such traders to compete fairly is critical for
any exchange to attract HFTs that bring significant liquidity to the
exchange. Ensuring such fairness in cloud datacenter networks, how-
ever, is quite challenging as they exhibit non-deterministic network
latency due to reasons explained in §1. Exchanges not only want
fairness; to speed up price discovery they also want low latency. The

1DBO achieves Limited Horizon Response Time Fairness (see Def. 2).

O
ut

go
in

g
M

ar
ke

t D
at

a

In
co

m
in

g
Tr

ad
e

CES

OB

RBᵢRB₁ RBₙ

……

MPᵢMP₁ MPₙ

Figure 1: Basic components of DBO.

Unfairness

Inflated
latency

CloudEx

Network Latency

Time
En

d-
to

-e
nd

 la
te

nc
y

Figure 2: Clock-synchronization is not enough — This figure shows the
latency with CloudEx. Even with perfect clock-synchronization, CloudEx
incurs both unfairness and inflated latency.

latency requirements highly depend on the exchange, ranging from
sub-100 microsecond to millisecond [3].

How exchanges enable fair speed racing today? Short Answer:
Equal bi-directional latency. Major exchanges operate their own dat-
acenters. HFT traders that want to engage in speed trading colocate2

to the exchange datacenter.
The central exchange server (CES) produces a real time market

data feed and distributes it to all the colocated participants (MPs).
The exchange datacenter is optimized to ensure that participants
get all the market data points at the same time. Further, exchanges
ensure that all the trades placed by the participants experience the
same latency to the exchange server. The exchange server simply
processes the trades in a first-come-first-serve (FCFS) manner. Op-
timizing datacenters to provide such equal bi-directional latency is
expensive [3]. As a result of high cost, exchanges charge a substan-
tial premium for such colocation (NASDAQ charges $600,000 per
customer for colocation and direct data feed [3]). The prohibitive
colocation costs establish a significant entry barrier to the domain of
high-frequency trading. Major exchanges would also be interested in
setting up regional exchanges but the cost of creating a new regional
datacenter is prohibitively high.

2.1 Related Work
The problem of migrating financial exchanges to the cloud has re-
ceived some attention. There are two fundamentally different ap-
proaches.

2Exchanges support colocation for a limited number of participants. The exact numbers
are confidential, but the number is in 10s to less than couple of hundred depending on
the exchange.

DBO: Fairness for Cloud-Hosted Financial Exchanges ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

Clock-synchronization based solutions: CloudEx [13] proposes
using clock synchronization to achieve an equal latency abstraction.
CloudEx adds two new components to the architecture (as shown
in Figure 1): (i) For each participant there is a colocated trusted
component called the release buffer (RB), which buffers market
data points, enabling a delayed delivery to the market participant.
(ii) Likewise, the ordering buffer (OB) at the CES buffers the trade
order generated by the participants, enabling delayed and re-ordered
delivery of the trade orders to the CES. Clock synchronization ex-
cluded, the broader architecture of our solution closely mirrors that
of CloudEx.

In CloudEx, all the components have synchronized clocks. A mar-
ket data point produced at time 𝑡 is released by the release buffers
simultaneously at a pre-specified time 𝑡 +𝐶1. A trade order generated
by the participant at time 𝑡 is forwarded to the CES by the ordering
buffer at time 𝑡 +𝐶2. The problem with this solution is that even with
perfect clock synchronization, if network latency spikes beyond the
pre-specified thresholds, then such a system incurs unfairness (see
Figure2). Cloud networks experience latency spikes that are a couple
of orders of magnitude higher than the average [20]. Tuning CloudEx
thresholds to achieve fairness is hard: latency spikes, although rare,
are still both unpredictable and unbounded. Furthermore, by conser-
vatively setting very high thresholds for better fairness, the system
would incur high latency even when the underlying network is well
behaved. Safeguarding against tail spikes, increases the overall end-
to-end latency (𝐶1 +𝐶2) not only at the tail but on average as well
(see Figure2). More importantly, the main issue remains unsolved:
still, there is no guarantee that equal bidirectional latency will always
hold. In fact, there is a known impossibility result on this.

Impossibility result for equal bi-directional latency: In network en-
vironments with unpredictable and unbounded latency (common
network model is distributed systems [15]), even with perfectly syn-
chronized clocks, it is impossible for two machines to communicate
and co-ordinate to do a task at the same time (two generals problem
[14]). So two release buffers can never co-ordinate to deliver the
same data to the respective market participants simultaneously, no
matter how they communicate with the CES or other release buffers.
Note that it is still possible to co-ordinate at the OB to ensure that
latency on the reverse path stays the same (i.e., two trades generated
at the same time are forwarded to the CES at the same time).

Impossibility Result on Clock Synchronization: Further, in network
environments with unbounded network latency, it is also impossible
to synchronize clocks to any extent and the error in clock synchro-
nization is unbounded [17].

Our conversations reveal that exchanges wish to provide guar-
anteed fairness and as a result, such solutions haven’t seen much
adoption.

Modifying how the matching engine behaves: Frequent Batch
Auctions [11] proposes releasing market data periodically in batches.
The batch frequency is kept very low (1 batch per 100 ms) to allow
all participants to respond before the next batch is released. All
the trades corresponding to a batch are given the same priority for
execution at the CES. This solution ensures fairness in the sense
that no participant has an advantage over others because of network
latency. However, the system latency is high (100 ms!). Further, this
solution completely eliminates the speed races and a participant

Notation Definition
𝐺 (𝑥) Real Time at which 𝑥 was generated at the CES.
𝐷 (𝑖, 𝑥) Real Time at which 𝑥 was delivered (by 𝑅𝐵𝑖 in case of

our system) to MP𝑖 .
𝑇𝑃 (𝑖, 𝑎) Market data point used to generate (𝑖, 𝑎) .
𝑅𝑇 (𝑖, 𝑎) Response time of (𝑖, 𝑎) .
𝑆 (𝑖, 𝑎) Real Time at which (𝑖, 𝑎) was submitted by MP𝑖 .
𝐹 (𝑖, 𝑎) Real Time at which (𝑖, 𝑎) is forwarded (by OB in our

system) to the CES’s matching engine (ME).
𝑂 (𝑖, 𝑎) Dictates the order in which trades are forwarded (by OB

in our system) to the CES. If 𝑂 (𝑖, 𝑎) < 𝑂 (𝑗, 𝑏) then
𝐹 (𝑖, 𝑎) < 𝐹 (𝑗, 𝑏) .

Table 1: Notation.

that responds to market data faster no longer has a competitive
advantage. To achieve fairness in environments with unpredictable
network latency, Libra [19] assigns random priorities to the incoming
trades. Libra achieves fairness for speed races stochastically (faster
participants trades are ordered ahead more than 50% of the times)
when the variability in network latency is bounded. Beyond the
issues stated here, the main problem with both these solutions is that
they require intrusive changes to the exchange matching algorithm.

3 Problem Statement

Goals: In this paper, we aim to enable fair competition in speed
racing among high frequency traders in network environments where
latency is unpredictable and unbounded. We also do not wish to
modify the matching engine to achieve this goal. At a high level,
our solution exploits the characteristics of speed races to suggest a
new form of logical timekeeping - delivery clocks - that monitors
time according to when market data are delivered to the participants.
By ordering trades using this delivery time domain we can achieve
guaranteed fairness for such speed races. Our goal here is not to
just propose a solution, but also present theoretical insights that help
researchers in understanding this space and enable future work.
Non-goals: Achieving bounded latency in cloud networks remains
an open problem as of now. In this paper, we do not attempt to
optimize the underlying network latency or the transport mechanism
for multicasting market data or communicating trade orders. We also
do not discuss solutions for reliability of the various components.
Exchanges today incur unfairness in the event of failures [10]. In
our system, it should be possible to detect failure of various compo-
nents and migrate the impacted components. During failures, either
fairness or latency can get affected (§4.2.1).

We will now introduce some notation, formally define a speed
race and fairness for such races. These definitions are based on our
discussions with financial exchanges and papers from academia [9,
11, 18, 19] and industry [3, 10].

Notation: We refer to the 𝑥𝑡ℎ market data point as 𝑥 . (𝑖, 𝑎) refers to
the 𝑎𝑡ℎ trade from MP𝑖 . Table1 lists the notations used in this paper.
Figure 3 shows the major events in a speed race.
Speed race: Informally, a speed race [9, 11, 19] consists of trades
from multiple participants competing for the same trading opportu-
nity. A particular market data point serves as the trigger/stimulus
for trades competing in the speed race. Participants aim to identify
the trading opportunity and win the speed race by responding as fast
as possible after receiving the trigger market data point. The trades

ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA E. Gupta et al.

G(x)

D(i, x)

D(j, x)

F(i, a) F(j, b)

S(j, b)

CES

MPi

MPj

S(i, a)
RT(j, b)

RT(i, a)

Figure 3: Events in a speed race.

belonging to a speed race are the most latency sensitive [9, 11, 19].
Differences in latency across participants in delivering the trigger
point or on the reverse path to the CES can create significant disad-
vantages for certain participants [9, 18]. These speed trades consti-
tute a substantial fraction of the overall trades in major exchanges
(at least 20% in LSE [9]). In this paper, we will try to achieve fair
ordering for trades engaged in such speed races.
Compute model for speed trades: The response time for trade (𝑖, 𝑎),
𝑅𝑇 (𝑖, 𝑎), whose trigger point is 𝑥 (i.e., 𝑇𝑃 (𝑖, 𝑎) = 𝑥), is defined as
the time it took to generate the trade after receiving the trigger point
𝑥 . Formally, the time trade (𝑖, 𝑎) is submitted/generated by an MP is
given by,

𝑆 (𝑖, 𝑎) = 𝐷 (𝑖, 𝑥 = 𝑇𝑃 (𝑖, 𝑎)) + 𝑅𝑇 (𝑖, 𝑎) (1)

where 𝑆 (𝑖, 𝑎) is the timestamp at which trade (𝑖, 𝑎) is submit-
ted/generated by an MP, and 𝐷 (𝑖, 𝑥 = 𝑇𝑃 (𝑖, 𝑎)) is the time at which
𝑅𝐵𝑖 delivers 𝑥 to 𝑀𝑃𝑖 (see Table 1).

Response time captures the speed of a participant. Note that such
a trade might be generated using market data points other than the
trigger point. However, the trade submission time is completely
governed by the delivery time of the trigger point and the response
time of the participant for that trade.

Fair ordering of trades in a speed race: Outcome of a speed race
is simply governed by the ordering of the competing trades in the
race. Our goal is to achieve the same ordering for these trades had
the network provided equal bi-direction latency. We refer to such an
ordering of trades as Response Time Fairness.

In an equal bi-directional latency network (𝐶1 latency from CES
to MPs, 𝐶2 latency from MPs to CES), trade (𝑖, 𝑎) will be received
by the CES at time,

𝐹 (𝑖, 𝑎) = 𝐺 (𝑥 = 𝑇𝑃 (𝑖, 𝑎)) +𝐶1 + 𝑅𝑇 (𝑖, 𝑎) +𝐶2 (2)

By definition, Trade (𝑖, 𝑎) is ordered ahead of (𝑗, 𝑏), i.e.,𝑂 (𝑖, 𝑎) <
𝑂 (𝑗, 𝑏)), if 𝐹 (𝑖, 𝑎) < 𝐹 (𝑗, 𝑏). In such a network, two trades (𝑖, 𝑎) and
(𝑗, 𝑏) belonging to the same race (i.e. the same trigger point 𝑥) will
be ordered as follows,

If 𝐺 (𝑥) +𝐶1 + 𝑅𝑇 (𝑖, 𝑎) +𝐶2 < 𝐺 (𝑥) +𝐶1 + 𝑅𝑇 (𝑗, 𝑏) +𝐶2,
then, 𝑂 (𝑖, 𝑎) < 𝑂 (𝑗, 𝑏) (3)

Using the above equation, we define response time fairness as
follows,

DEFINITION 1. A system achieves response time fairness if it
satisfies the following condition for all competing speed trades (𝑖, 𝑎)

and (𝑗, 𝑏)
𝐶1 : if 𝑇𝑃 (𝑖, 𝑎) = 𝑇𝑃 (𝑗, 𝑏) = 𝑥

∧ 𝑅𝑇 (𝑖, 𝑎) < 𝑅𝑇 (𝑗, 𝑏),
then, 𝑂 (𝑖, 𝑎) < 𝑂 (𝑗, 𝑏).

The above condition is simply stating that a faster participant’s
trades should be ordered ahead of slower participant. The above
condition is from the perspective of the participants. Response time
is not directly visible to the cloud provider or the exchanges. We
will rewrite the above conditions using quantities visible to them.
The above condition can be rewritten as,

𝐶1′ : if 𝑇𝑃 (𝑖, 𝑎) = 𝑇𝑃 (𝑗, 𝑏) = 𝑥
∧ 𝑆 (𝑖, 𝑎) − 𝐷 (𝑖, 𝑥) < 𝑆 (𝑗, 𝑏) − 𝐷 (𝑗, 𝑥),

then, 𝑂 (𝑖, 𝑎) < 𝑂 (𝑗, 𝑏).
This condition states that the exchange can achieve response

time fairness by measuring time of trades relative to when a market
participant received the market data to order trades.

Adding 𝐺 (𝑥), i.e. the generation time of 𝑥 , to both sides of the
equation results in the following condition:

𝐶1′′ : if 𝑇𝑃 (𝑖, 𝑎) = 𝑇𝑃 (𝑗, 𝑏) = 𝑥
∧ 𝑆 (𝑖, 𝑎) − (𝐷 (𝑖, 𝑥) −𝐺 (𝑥)) < 𝑆 (𝑗, 𝑏) − (𝐷 (𝑗, 𝑥) −𝐺 (𝑥)),

then, 𝑂 (𝑖, 𝑎) < 𝑂 (𝑗, 𝑏) .

Here 𝐷 (𝑖, 𝑥) −𝐺 (𝑥) represents the one way latency from CES to
participant 𝑖 for data point 𝑥 . So to achieve response time fairness
all the exchange needs to do is correct for the differences in latency
from the exchange to the participant.

To deal with variability in network latency, CloudEx tries to
equalize latency by holding information at the release buffer and
releasing it simultaneously to all participants using synchronized
clocks. In other words, it strives to ensure that (𝐷 (𝑖, 𝑥) −𝐺 (𝑥)) is
equal to (𝐷 (𝑗, 𝑥) −𝐺 (𝑥)), so that trades can simply be ordered by
the time when they were submitted by the participants (i.e. 𝑆 (𝑖, 𝑎)).
However, as discussed earlier, it is not possible to equalize latency
always when the underlying network latency is unbounded.

In this work, we take a different approach. Instead of trying to
synchronize clocks or equalize latency (either of which can never be
done accurately [14, 17]), we show that it is possible to post facto
correct for latency difference and achieve (a slightly weaker form
of) response time fairness.
Causality of trades from a participant: We add an additional
requirement for ordering of trades. This condition simply states that
trades from a participant should respect causality, i.e, if trade (𝑖, 𝑎)
was generated before trade (𝑖, 𝑏) then it should be ordered ahead.
Formally,

If 𝑆 (𝑖, 𝑎) < 𝑆 (𝑖, 𝑏), then, 𝑂 (𝑖, 𝑎) < 𝑂 (𝑖, 𝑏). (4)

Fairness beyond Response Time Fairness: While speed races
are the most latency critical, in theory there can be latency-critical
trades that don’t fall under the speed race model (e.g., trades whose
submission time depend on delivery time of multiple data points or
some other external data). Guaranteeing perfect fairness for such
trades might require simultaneous delivery of both market data and

DBO: Fairness for Cloud-Hosted Financial Exchanges ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

external data. While this is impossible, we will discuss how DBO
can be enhanced to provide better fairness for such trades (§4.2.6).

Assumptions: We will list out some of the assumptions we make in
our solution.

Trust: Release and ordering buffers are trusted components that are
controlled by the cloud provider and that cannot be tampered with.

Proximity: Release buffers are colocated with the participants. The
latency between them is negligible. In our system, we implement
the release buffer at participant’s NIC. For scenarios where release
buffer cannot be colocated we analyze the impact of latency between
the release buffer and the participant (§4.2.3).

Clock-drift rate: We don’t make any assumptions on clocks being
synchronized across components in the network. Similar to literature
in the traditional distributed systems [17], we assume that clock-
drift rate is negligible and release buffers can measure time-intervals
accurately. Clock drifts rates are small in practice (< 0.02% under a
wide range of scenarios [16]).

In-order delivery: We assume that packets can be lost in the net-
work. Packets that are not dropped are delivered in order. Just
like exchanges today, we assume that all loses are handled out-of-
band where the receiver requests retransmission using an alternative
slower path [10]. Similar to modus operandi, our system incurs
unfairness in such cases.

Participants are located in the cloud: We assume that all the partici-
pants are located in the cloud. In case a certain participant doesn’t
want to move to the cloud, the exchange can run a proxy machine in
the cloud on the behalf of such a participant. External participants
can get market data feed and place trades through this proxy. Because
of additional latency from proxy to the participant machines, trades
from such external participants will be at a disadvantage. Fairness
for other participants in the cloud remains unaffected.

Remark: CloudEx also makes the same assumptions on trust, prox-
imity, and participants being in the cloud. The key difference is
that CloudEx further assumes clock synchronization and requires
bounded latency for guaranteeing fairness.

3.1 Challenges
There are three key challenges.

Challenge 1: Clock-synchronization. Ideally, we want a solution
that doesn’t require any clock synchronization.

Challenge 2: Trigger point is unknown. We assume that the ex-
change cannot trust an MP to accurately provide the trigger point
and that the trigger point of a speed trade is not known. In such case
it is hard to measure the response time and consequently decide how
trades should be ordered. Unfortunately, when response times are
unbounded it is impossible to achieve Response Time Fairness.

THEOREM 1. If trigger points for trades are unknown, then no
system can achieve Response Time Fairness.

PROOF. When trigger points are unknown, the ordering enforced
by the system should achieve response time fairness for trades re-
gardless what might have been their trigger point. This means that
the ordering enforced by the system should respect condition 𝐶1′
regardless of what the trigger point 𝑥 is. The necessary condition for
this to hold true is given below.

LEMMA 2. When trigger points are unknown, the necessary
conditions on the delivery processes for achieving response time
fairness is given by,

𝐷 (𝑖, 𝑦) − 𝐷 (𝑖, 𝑥) = 𝐷 (𝑗, 𝑦) − 𝐷 (𝑗, 𝑥), ∀𝑖, 𝑗, 𝑥,𝑦.
Please see Appendix A for proof of Lemma 2.
The lemma states that to achieve response time fairness, the inter-

delivery times between data points should be the same across all
participants. However, achieving the same inter-delivery time when
network latency is unbounded is also impossible. If two processes
can co-ordinate to achieve the same inter-delivery time, then they
can co-ordinate to do a task at the same time, a contradiction of the
two generals impossibility result.

□

We cannot achieve Response Time Fairness in settings where
trigger points are unknown. We define a new slightly weaker version
called Limited Horizon Response Time Fairness (LRTF) that is
still useful. Formally, LRTF is defined as,

DEFINITION 2. A system achieves limited-horizon response time
fairness if it satisfies the following condition for all competing speed
trades (𝑖, 𝑎) and (𝑗, 𝑏)

𝐶2 : if 𝑇𝑃 (𝑖, 𝑎) = 𝑇𝑃 (𝑗, 𝑏) = 𝑥
∧ 𝑅𝑇 (𝑖, 𝑎) < 𝑅𝑇 (𝑗, 𝑏),
∧ 𝑅𝑇 (𝑖, 𝑎) < 𝛿,
then, 𝑂 (𝑖, 𝑎) < 𝑂 (𝑗, 𝑏).

The above condition is similar to condition (C1) with an additional
constraint that the system guarantees response time fairness for only
fast trades that are generated within a bounded amount of time.
Notice that the constraint on response time being less than 𝛿 is only
on participant 𝑖. Participant 𝑖’s trades will be ordered fairly regardless
of whether the response time of other participants’ competing trades
is within 𝛿 or not. In this paper, we will present a system, DBO, that
for any given 𝛿 achieves LRTF in a guaranteed manner.

Why is LRTF useful? LRTF is based on the fact that typically partici-
pants respond very quickly to market data. From our conversations,
the faster participants in major exchanges responds within a few mi-
croseconds. Studies [9] further show that the majority of the speed
races last 5-10 microseconds. An exchange provider can choose to
offer its participants guaranteed response time fairness for fast trades.
The choice of 𝛿 presents a trade-off; increasing 𝛿 increases system
latency.

Challenge 3: Enforcing the ordering. Suppose we could tag each
trade (𝑖, 𝑎) with the ordering (𝑂 (𝑖, 𝑎)) in which we want the trades
to be forwarded to the CES for achieving fairness. Because trades
can take unbounded amount of time on the reverse path, even in this
scenario its hard to enforce such an ordering at the ordering buffer.
In particular, before forwarding trade (𝑖, 𝑎) we need to be sure that
there is no other trade (𝑗, 𝑏) in flight that should be ordered ahead.

4 Design
In this section, we will first present the core of our system. Then
we present some analysis of the system along with some extensions
to address a few practical concerns. We will present details of our
cloud implementation separately in the next section.

ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA E. Gupta et al.

CES

DCi

MPi

x x + 1

D(i, x) D(i, x + 1)t

〈 x, 0〉 〈 x, t – D(i, x)〉 〈 x + 1, 0〉
Figure 4: Delivery Clock.

4.1 Delivery Based Ordering
Our solution is composed of three parts.

4.1.1 Delivery Clock
What we do. Each RB maintains a Delivery Clock. This delivery
clock essentially tracks time relative to when market data was deliv-
ered to the participant. We use 𝐷𝐶 (𝑖, 𝑎) to represent delivery clock
of participant 𝑖 at time when a trade (𝑖, 𝑎) is submitted. Delivery
clock is a lexicographical tuple.

𝐷𝐶 (𝑖, 𝑎) = ⟨𝑙𝑑 (𝑖, 𝑎), 𝑆 (𝑖, 𝑎) − 𝐷 (𝑖, 𝑙𝑑 (𝑖, 𝑎))⟩. (5)

where 𝑙𝑑 (𝑖, 𝑎) is the latest data point that was delivered to MP𝑖 by
time 𝑆 (𝑖, 𝑎), i.e., 𝐷 (𝑖, 𝑙𝑑 (𝑖, 𝑎)) ≤ 𝑆 (𝑖, 𝑎) < 𝐷 (𝑖, 𝑙𝑑 (𝑖, 𝑎) + 1)). Interval,
𝑆 (𝑖, 𝑎) −𝐷 (𝑖, 𝑙𝑑 (𝑖, 𝑎)), corresponds to the time that has elapsed since
the last delivery and can be measured locally at the RB without
requiring any clock synchronization (Challenge 1). Figure 4 shows
how delivery clock advances with time.3

Monotonicity: Delivery clocks advance monotonically with market
data delivery and real time. As a result, DBO trivially satisfies the
causality condition (Equation 4). Further, it incentivizes the partici-
pants to submit trades as early as possible. Therefore, a participant
cannot gain any advantage by delaying trades. Finally, we also
leverage the monotonic property to overcome challenge 3 (§4.1.3).

All incoming trades are marked with the delivery clock at the
trade submission time. The ordering buffer uses this delivery clock
time to order trades. Formally, the ordering in DBO is given by,

𝑂 (𝑖, 𝑎) = 𝐷𝐶 (𝑖, 𝑎). (6)

Why it works. When the trigger point of trade (𝑖, 𝑎) is indeed the
last data point (i.e., 𝑥 = 𝑇𝑃 (𝑖, 𝑎) = 𝑙𝑑 (𝑖, 𝑎)), then, DBO respects
condition C2 for LRTF. Figure 5 shows an illustrative example of
this. This is because, the delivery clock directly tracks the response
time of (𝑖, 𝑎) in this case and 𝑂 (𝑖, 𝑎) = 𝐷𝐶 (𝑖, 𝑎) = ⟨𝑥, 𝑅𝑇 (𝑖, 𝑎)⟩.
For a competing trade (𝑗, 𝑏) with higher response time, the delivery
clock at time of submission will either read 𝑂 (𝑗, 𝑏) = 𝐷𝐶 (𝑗, 𝑏) =

⟨𝑥, 𝑅𝑇 (𝑗, 𝑏)⟩ (if 𝑆 (𝑗, 𝑏) < 𝐷 (𝑗, 𝑥 + 1)) or 𝐷𝐶 (𝑗, 𝑏) = ⟨𝑦, 𝑆 (𝑗, 𝑏) −
𝐷 (𝑗, 𝑦)⟩ with 𝑦 > 𝑥 . In both cases, 𝑂 (𝑖, 𝑎) < 𝑂 (𝑗, 𝑏).

At a high level, in our ordering we are correcting for latency
differences in data delivery by using the delivery time of the last data
point. When the last data point is not the trigger point for trade (𝑖, 𝑎),
DBO satisfies the LRTF condition C2, if the following condition
holds,

𝐷 (𝑖, 𝑙𝑑 (𝑖, 𝑎)) − 𝐷 (𝑖, 𝑥) = 𝐷 (𝑗, 𝑙𝑑 (𝑖, 𝑎)) − 𝐷 (𝑗, 𝑥), (7)

where 𝑥 = 𝑇𝑃 (𝑖, 𝑎). While it is impossible to ensure that inter-
delivery times remain the same for all participants for all points, by
3For simplicity of notation, we only defined delivery clock at the time of trade
submission. More generally, delivery clock for MP𝑖 at any time 𝑡 is given by
⟨𝑙𝑑 (𝑖, 𝑡), 𝑡 − 𝐷 (𝑖, 𝑙𝑑 (𝑖, 𝑡)) ⟩, where 𝑙𝑑 (𝑖, 𝑡) is the latest data point delivered before
time 𝑡 .

G(x)

D(i, x)

D(j, x)

CES

RBi

RBj

G(x + 1)

D(i, x + 1)

D(j, x + 1)
RT(j, b)

RT(i, a)

S(j, b)

S(i, a)

S(j, b) < S(i, a)
RT(i, a) < RT(j, b)

Figure 5: DBO can help correct for late delivery of data. Delivery of
market data to MP𝑖 is lagging behind MP𝑗 . There are two trades (𝑖, 𝑎)
and (𝑗, 𝑏) generated in response to the same market data 𝑥 . (𝑗, 𝑏) was
submitted before (𝑖, 𝑎) but response time of (𝑖, 𝑎) is less than (𝑗, 𝑏) . In
this example, 𝐷𝐶 (𝑖, 𝑎) (= ⟨𝑥, 𝑅𝑇 (𝑖, 𝑎) ⟩) < 𝐷𝐶 (𝑗, 𝑏) (= ⟨𝑥, 𝑅𝑇 (𝑗, 𝑏) ⟩)
and trade (𝑖, 𝑎) is correctly ordered ahead of (𝑗, 𝑏) .

pacing data at the RB it is indeed possible to ensure that the above
condition is always met. The main reason why we can meet the
above condition is that condition C2 limits that the trigger point 𝑥
cannot be any arbitrary data point in the past, and that the trigger
point must have been delivered recently 𝑆 (𝑖, 𝑎) − 𝐷 (𝑖, 𝑥) < 𝛿 . In the
next subsection, we will show how we can achieve this and solve
challenge 2.
Remark: In our cloud experiments, we find that using delivery clocks
alone for ordering (i.e., without any additional control over delivery
times at the RB) achieves fairness with very high probability. This
is because network latency (from CES to any given participant)
exhibits high temporal correlation in latency especially over short
periods of time. When temporal correlation is high, inter-delivery
time at any participant is close to the inter-generation time at the
CES. In such cases, condition given by Equation 7 is satisfied with
high probability.

Difference with traditional logical clocks: Logical clocks are com-
monly used in distributed systems. The most famous ones are Lam-
port clocks [15] and vector clocks. These clocks can be used for
achieving causal ordering of events. While these clocks can track
causality of events, they cannot be used to achieve response time
fairness. In particular, these clocks don’t say anything about how two
competing trades generated using the same market data should be
ordered as these two trades have no direct causality relation. Unlike
delivery clocks, such logical clocks also have no notion of measuring
time between occurrences of two events. Measuring time interval
between events is critical to achieve fairnesss for exchanges.

4.1.2 Batching and Pacing
What we do. In DBO, the CES splits data into batches. Each new
batch contains all data points in the duration (1 + 𝜅) · 𝛿 after the
previous batch (𝜅 > 0). Each release buffer delivers all data points
in a batch at the same time. The release buffer delivers batches as
quickly as possible while ensuring that the time between delivery of
two consecutive batches is at least 𝛿 . Figure 6 shows an illustration
of batching. Both batching and pacing delay the delivery time of data
points. In the next subsection we will analyze the impact of the two
on latency. Note that in the event of queue build up at the RB, since
the batch generation rate (1

(1+𝜅) ·𝛿) is slower than the batch dequeue

rate (1
𝛿

), the queue at the RB eventually gets drained (§4.2.1).
Why it works. With batching and pacing, DBO achieves LRTF.
In particular, consider a trade (𝑖, 𝑎) with response time less than

DBO: Fairness for Cloud-Hosted Financial Exchanges ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

CES

MPi

RBi

(1+!)·δ (1+!)·δ (1+!)·δ

≥ δ ≥ δ
Figure 6: Batching and Pacing. Inter-delivery time for consecutive
batches is equal to or more than 𝛿 .

𝛿 . Because of pacing, consecutive batches are separated at least
by 𝛿 . This means that the trigger point (𝑥 = 𝑇𝑃 (𝑖, 𝑎)) must be
within the last received batch. The point 𝑙𝑑 (𝑖, 𝑎) is also the last
point in this batch and 𝐷 (𝑖, 𝑙𝑑 (𝑖, 𝑎)) = 𝐷 (𝑖, 𝑥). With batching and
pacing, the delivery clock again directly tracks the response time
of (𝑖, 𝑎) and 𝑂 (𝑖, 𝑎) = 𝐷𝐶 (𝑖, 𝑎) = ⟨𝑙𝑑 (𝑖, 𝑎), 𝑅𝑇 (𝑖, 𝑎)⟩. With batch-
ing, for participant 𝑗 , 𝑥 and 𝑙𝑑 (𝑖, 𝑎) also belong to the same batch
𝐷 (𝑗, 𝑙𝑑 (𝑖, 𝑎)) = 𝐷 (𝑗, 𝑥). For a competing trade (𝑗, 𝑏) with higher
response time, the delivery clock at the time of submission will
either read 𝑂 (𝑗, 𝑏) = 𝐷𝐶 (𝑗, 𝑏)) = ⟨𝑙𝑑 (𝑖, 𝑎)), 𝑅𝑇 (𝑗, 𝑏)⟩ (if (𝑗, 𝑏) was
submitted before the next batch, i.e., 𝑆 (𝑗, 𝑏) < 𝐷 (𝑗, 𝑙𝑑 (𝑖, 𝑎) + 1)) or
𝐷𝐶 (𝑗, 𝑏) = ⟨𝑦, 𝑆 (𝑗, 𝑏) − 𝐷 (𝑗, 𝑦)⟩ with 𝑦 > 𝑙𝑑 (𝑖, 𝑎). In both cases,
𝑂 (𝑖, 𝑎) < 𝑂 (𝑗, 𝑏).
4.1.3 Enforcing the ordering
OB contains a priority queue where all incoming trades are sorted
based on the delivery clock timestamp (Equation 6). A trade (𝑖, 𝑎)
at the head of the priority queue should be forwarded to the CES
only when the OB has received all trades (𝑗, 𝑏) with lower ordering
𝐷𝐶 (𝑗, 𝑏) < 𝐷𝐶 (𝑖, 𝑎).
OB’s Heartbeat Handler: In DBO, each RB sends a heartbeat pe-
riodically every 𝜏 seconds to the CES. The heartbeat (𝑖, ℎ), from
participant 𝑖 contains the delivery clock timestamp at the time the
heartbeat was generated (𝐷𝐶 (𝑖, ℎ)). Since data is delivered in order
and because delivery clock advances monotonically with time, heart-
beat (𝑖, ℎ) tells the OB that it has received all trades from participant 𝑖
with delivery clock less than 𝐷𝐶 (𝑖, ℎ). The ordering buffer forwards
trade (𝑖, 𝑎) if it has received heartbeats from all the participants with
delivery clock timestamp higher than 𝐷𝐶 (𝑖, 𝑎).
Note: Several major financial exchanges already rely on heartbeats [2]
for liveness when traffic is low.

4.2 Understanding DBO

4.2.1 Latency, parameter setting and straggler mitigation
We will first derive the minimum latency required by any system
that achieves response time fairness. We will then discuss how DBO
compares to this latency bound. We will also present guidelines for
setting parameters and how to mitigate stragglers that can impact
latency.

We define latency for trade (𝑖, 𝑎), 𝐿(𝑖, 𝑎), as the sum of latency in
delivering data (from generation time) and latency in trade forward-
ing to the CES (from trade submission time). Formally,

𝐿(𝑖, 𝑎) = (𝐷 (𝑖, 𝑥) −𝐺 (𝑥)) + (𝐹 (𝑖, 𝑎) − 𝑆 (𝑖, 𝑎)),
𝐿(𝑖, 𝑎) = 𝐹 (𝑖, 𝑎) −𝐺 (𝑥) − 𝑅𝑇 (𝑖, 𝑎), (8)

where 𝑥 = 𝑇𝑃 (𝑖, 𝑎).
Latency Bound: Formally, trade (𝑖, 𝑎) can only be forwarded to the
CES’s ME only when the CES has received all potential competing

trades (𝑗, 𝑏) with lower response times (𝑅𝑇 (𝑗, 𝑏) < 𝑅𝑇 (𝑖, 𝑎)). Let
𝑅(𝑖, 𝑥, 𝑅𝑇) represent the time when the CES will receive a potential
trade (𝑖, 𝑎) whose trigger point is 𝑥 and response time is 𝑅𝑇 . For-
mally, the earliest time that trade (𝑖, 𝑎) can be forwarded, 𝐹𝑚𝑖𝑛 (𝑖, 𝑎),
is given by,

𝐹𝑚𝑖𝑛 (𝑖, 𝑎) = max
𝑗

(𝑅(𝑗, 𝑥 = 𝑇𝑃 (𝑖, 𝑎), 𝑅𝑇 = 𝑅𝑇 (𝑖, 𝑎))) . (9)

A subtle point to note here is that even if participant 𝑗 does not
produce any trades, we still need to wait for that participant till
𝑅(𝑗, 𝑥 = 𝑇𝑃 (𝑖, 𝑎), 𝑅𝑇 (𝑖, 𝑎)). Before this time, fundamentally the
CES cannot be sure that it will not receive a competing trade from
participant 𝑗 with a lower response time.

We use 𝑅𝑇𝑇 (𝑖, 𝑥, 𝑅𝑇) to represent the sum of raw network latency
for point 𝑥 from CES to MP𝑖 and latency of trade from MP𝑖 to the
CES (whose trigger point is 𝑥 and response time 𝑅𝑇). In the best
case scenario for latency (no buffering at any point in the path), the
minimum value for 𝑅 can be given by,

𝑅𝑚𝑖𝑛 (𝑖, 𝑥, 𝑅𝑇) = 𝐺 (𝑥) + 𝑅𝑇𝑇 (𝑖, 𝑥, 𝑅𝑇) + 𝑅𝑇 . (10)

Using the above three equations, we can write the following
theorem.

THEOREM 3. For any system that achieves response time fairness,
the minimum latency for trade (𝑖, 𝑎), 𝐿𝑚𝑖𝑛 (𝑖, 𝑎), is given by,

𝐿𝑚𝑖𝑛 (𝑖, 𝑎) = max
𝑗

(𝑅𝑇𝑇 (𝑗, 𝑥 = 𝑇𝑃 (𝑖, 𝑎), 𝑅𝑇 = 𝑅𝑇 (𝑖, 𝑎))). (11)

Put it simply, the above theorem states for achieving response time
fairness, the minimum latency is bounded by the maximum round
trip time across all participants. This means that fundamentally bad
latency for a participant affects the latency of all trades. To achieve
low latency consistently, we would like to ensure that latency of all
the participants is well behaved majority of the times. How to better
achieve this goal is left as a subject for future work.
How does DBO compare with the latency bound? DBO achieves
close to optimal latency. Compared to the latency bound, batching
and pacing introduce additional delay in delivery of market data
points. Since heartbeats are generated only periodically they can
introduce an additional delay of 𝜏 at the ordering buffer. We now
discuss the delay due to each of these components and how do the
parameters 𝜅, 𝛿 and 𝜏 affect latency.
Impact of batching: Batching can introduce an additional delay of
(1 + 𝜅) · 𝛿 in the worst case.
Setting 𝛿: 𝛿 thus presents a trade-off between latency and fairness
(how large of a horizon can we pick). The right trade-off really
depends on the needs of the exchange. Ideally, the exchange should
pick the minimum value of 𝛿 that accommodates the response time
of the fastest participants in a race. Our conversations reveal that
fastest participants typically respond within a few microseconds and
majority of the speed races last 5-10 𝜇𝑠. For our cloud experiments
we use 𝛿 = 20𝜇𝑠.
Impact of pacing. Pacing restricts the batch dequeue rate at the
RB. When network latency to a participant is not varying, the batch
arrival/enqueue rate at the RB (1

(1+𝜅) ·𝛿) is lower than the batch

dequeue rate limit (1
𝛿

) and there is no queue build up. However,
when network latency to a participant is decreasing (e.g., after a
latency spike), batch arrival rate at the RB can exceed the dequeue
rate limit leading to a queue build up. The overall queue - dequeue

ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA E. Gupta et al.

Generation Time, G(x)

La
te

nc
y

to
 p

ar
tic

ip
an

t
D(

i,x
)-G

(x
)

Direct Delivery
Batching + Pacing

Figure 7: Latency in data delivery: x-axis shows the generation time of
the market data. y-axis shows the latency from generation time to data
delivery. 𝜅 governs the average slope of the orange line immediately after
latency spike (slope = 𝜅

1+𝜅).

rate can be given by batch size · batch rate limit = 1 + 𝜅. Figure 7
shows the impact of batching and pacing on latency in delivery of
data in the event of a queue build up. The figure also shows the
latency when data is delivered directly (raw network latency). The
smaller sawtooths in the batching + pacing are because of batching.
The deviation in direct delivery and batching + pacing (after the
latency spike) is because of the rate limit imposed by pacing.

Setting 𝜅: Increasing 𝜅 increases batching delay but also increases
the queue drain rate in the event of queue build up due to tail latency
spikes. Increasing 𝜅 thus presents a trade-off between reducing tail
latency and increasing average latency. In our experiments we use
𝜅 = 0.25.

Impact of heartbeats: Heartbeats present a trade-off as well. Too
frequent heartbeats can overwhelm the network, the ordering buffer
or the release buffer. Infrequent heartbeats can increase the time OB
has to wait for the participants. In particular, heartbeats can introduce
an additional wait time of 𝜏 . Note that the number of heartbeats, the
OB needs to process increases linearly with the number of partici-
pants. In the next section we show how the heartbeat handler can be
sharded for scalability.

Setting 𝜏: Ideally we want to pick as low of a value as possible
for the heartbeats without overwhelming the system. This number
is very much dependent on the capabilities of the network and the
processing power of the RB and the OB. In our cloud implementation
we use 𝜏 = 20𝜇𝑠.
A note on latency: When the network latency to participants is not
varying with time, there is no queue build up at the release buffers.
In such cases, DBO adds maximum of ((1 + 𝜅) · 𝛿) + 𝜏 additional
latency over the latency bound.

Straggler Mitigation and RB/MP failure In the event a participant
or release buffer crashes, DBO can stall processing trades. Further,
the overall system latency also gets impacted when a certain partici-
pant is experiencing unusually high network latency (see Theorem 3).
Here we have the option to wait for the delayed participant and take
a latency hit but not let the fairness be impacted. Ideally, we want
to let the system continue with low latency with only the affected
participant incurring unfairness. In DBO, we use a simple strategy
to mitigate this. Using the heartbeats and the generation time of data
points, the OB tracks the round trip latency to each participant. If
this latency goes beyond a certain threshold for a participant, then
the OB does not wait for heartbeats from such straggler participant
before forwarding trades. When the round trip latency goes down,
OB again starts waiting for heartbeats from the straggler. In the event

of crashes, OB might not hear any heartbeats. If the OB does not
hear a heartbeat from a particular participant for the above threshold,
then it concludes that round trip latency exceeds the threshold and
the OB deems the participant a straggler.

OB failure: In the event, the OB crashes all trades in the priority
queue will be lost. System will incur unfairness in such cases.

4.2.2 The necessity of batching and pacing
Batching and pacing contribute delays; are they necessary? The
answer is yes. Similar to Lemma 2, we can derive the necessary
conditions for achieving LRTF.

COROLLARY 1. When trigger points are unknown, the necessary
conditions on the delivery processes for achieving limited horizon
response time fairness is given by,

If 𝐷 (𝑖, 𝑦) − 𝐷 (𝑖, 𝑥) < 𝛿, then,

𝐷 (𝑖, 𝑦) − 𝐷 (𝑖, 𝑥) = 𝐷 (𝑗, 𝑦) − 𝐷 (𝑗, 𝑥), ∀𝑖, 𝑗 .

PROOF. Please see Appendix B. □

In contrast to Lemma 2, the above condition states that the inter-
delivery time of two points should be same across all participants
only if they are separated by less than 𝛿 for some participant. Batch-
ing and pacing indeed satisfies this, for two points 𝑥 and 𝑦 in a batch,
the inter-delivery times across all participants is indeed zero and
hence equal. For point 𝑥 and 𝑦 belonging to different batches, since
the inter-delivery time is greater than 𝛿 across all participants, there
is no additional constraint on inter-delivery times being equal.

4.2.3 Impact of RB to MP latency
In scenarios where RB and the participant cannot be colocated, DBO
can incur unfairness. If this latency is unbounded, then, it might be
impossible to achieve fairness. If latency is bounded, however, then
DBO provides the following fairness guarantees.

THEOREM 4. If round trip network latency from release buffer
𝑖 to it’s corresponding participant is bounded between 𝐵𝑙 (𝑖) and
𝐵ℎ (𝑖), then, DBO achieves the following guarantee for ordering
trades.

𝐶3 : if 𝑇𝑃 (𝑖, 𝑎) = 𝑇𝑃 (𝑗, 𝑏) = 𝑥
∧ 𝑅𝑇 (𝑖, 𝑎) < 𝑅𝑇 (𝑗, 𝑏) − (𝐵ℎ (𝑖) − 𝐵𝑙 (𝑗)),
∧ 𝑅𝑇 (𝑖, 𝑎) < 𝛿 − 𝐵ℎ (𝑖),
then, 𝑂 (𝑖, 𝑎) < 𝑂 (𝑗, 𝑏) .

PROOF. See Appendix C. □

Compared to LRTF, the above condition reduces the bound on
response time for the faster trade (𝑖, 𝑎) to 𝛿 −𝐵ℎ (𝑖). Additionally, the
above condition states that trades are ordered fairly only when the
response time of the faster trade is lower than the response time of the
competing trade by atleast the variability in latency (𝐵ℎ (𝑖) − 𝐵𝑙 (𝑗)).
This theorem essentially states that when RB and MP cannot be
colocated, for better fairness we should ensure that latency between
them is both consistent (across participants) and the upper bound is
small.

4.2.4 Impact of Losses
Although infrequent, packet losses can occur in cloud environments.
Such losses can impact fairness in DBO. However, only the fairness
for trades that are lost and potential trades whose trigger point is lost
are impacted (see Appendix D).

DBO: Fairness for Cloud-Hosted Financial Exchanges ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

4.2.5 Thwarting front-running attacks
There is a front-running attack possible in our system. In particular,
if a participant receives a market data point 𝑥 through some other
way before RB delivers the data point 𝑥 to the participant, then
the participant has a competitive advantage. This scenario (though
unlikely) is still possible.

A simple way to avoid this is to limit that a participant cannot talk
to anyone beyond the CES. However, we would like the participant
machine to use other “helper” machines in the cloud, e.g., to aid
computation. We also want to allow the participants to be able to
talk to machines outside the cloud, e.g., to get a news stream.

In Appendix E, we show how we can prevent such front run-
ning attacks. In our solution, the participant and its helpers cannot
communicate with any other participants or their helpers using the
cloud network. To prevent scenarios where a participant uses a proxy
machine outside the cloud to send market data to other participants
(faster than the network), we precisely add additional latency for data
being sent outside the cloud. While our solution introduces latency
for data going out, the latency of speed trades remains unaffected.

4.2.6 Future Work: Fairness beyond LRTF
With DBO, it is not guaranteed that trades that do not directly follow
the LRTF model (Theorem 1 and Equation 1) are ordered fairly.
However, DBO still ensures fairness for the most latency-sensitive
speed trades. While ensuring guaranteed fairness for trades that do
not follow the model might be impossible, we discuss some potential
solutions.

Trades with response time > 𝛿: DBO does not provide any guar-
antees for trades with response time greater than 𝛿 . In case we have
access to synchronized clocks, we can try and ensure (to the ex-
tent possible) that batches are indeed delivered at the same time
across participants. When batches are delivered simultaneously, de-
livery clocks also get synchronized and DBO simply orders trades in
the order of submission time. DBO thus ensures better fairness for
such trades (when data is delivered simultaneously) while always
guaranteeing LRTF. That said, in our cloud experiments (§6.3.2),
because of temporal correlation in latency, DBO alone (without any
synchronized clocks) provides fairness for such trades with high
probability.

Generalized compute model for trades: A trade’s submission time
might be governed by delivery times of multiple data points. Again
in such cases if we have access to synchronized clocks, we can try
and ensure simultaneous delivery to the extent possible and achieve
better fairness for such trades.

External data streams: In theory, external data streams like news
events or market data from a competing exchange can trigger speed
races. While DBO does not delay delivery of such streams to the
participants (Appendix E), as described it does not guarantee fair-
ness with respect to such streams. Existing exchanges do not provide
any simultaneous delivery guarantees with respect to such external
streams. Such streams typically traverse the internet, and the variabil-
ity in network latency is substantially higher (order of milliseconds)
than the market data stream (order of microseconds). Potentially,
the exchange can serialize such external streams with the market
data stream and ensure LRTF with respect to such a super stream.
Such a serialization might not be trivial. Different participants might

RX
Network Jitter

Set (on delivery):
idlatest = pkt.market_id
tlatest_delivery = clock()

Paced data

H
ost

(M
P)

Tag:
DC = { idlatest, clock() - tlatest_delivery }

TX

RB context:
{ idlatest, tlatest_delivery }

 DC

MP trades

C
ES

≥ δ ≥ δ

Figure 8: High-level architecture of the Release Buffer. The Delivery
Clock advances upon new market data reception from the CES. Incom-
ing trades from the MP are tagged with the Delivery Clock id and MP’s
response time before being sent to the OB/CES.

request different external data streams. Further thought is required
on what constitutes a fair serialization.

5 Cloud Architecture and Implementation
In a typical on-premise deployment, the CES servers and physical
network are part of the trusted infrastructure of the exchange: the
exchange operators have exclusive access to the physical machines,
network elements and cables. On the other hand, the MPs own the
physical servers that connect to the exchange network. Migrating
such components to the public cloud is slightly more complicated:
while the CES servers and MPs could be accommodated by virtual
machines owned by the different parties, the network infrastruc-
ture is still owned by the cloud provider. Furthermore, compared to
on-premise deployments, DBO requires leveraging two extra com-
ponents for correctness: the Release Buffer (RB) and the Ordering
Buffer (OB).

5.1 Release Buffer
Figure 8 depicts a high-level view of the RB’s functionality. The
RB transparently interposes the communication between the Mar-
ket Participant (MP) and the Ordering Buffer (OB). As mentioned
previously, the RB maintains the Delivery Clock (DC), the logical
clock tuple consisting of id of the latest data point transmitted to the
MP and the time elapsed since the last transmission. Market data
are grouped into logical batches by the CES and sent to each MP.
The RB buffers the received market data (packets) that belong to the
same batch, until the full batch is received. Upon the reception of
the last market data (packet) of the batch, the RB checks the time
elapsed since the previous market data batch delivery to the MP:
if it is equal to or more than 𝛿 , the batch is released to the MP at
once, and the DC is updated on transmission completion of each
packet. Otherwise, the batch is buffered at the RB for the appropriate
duration to ensure that inter-batch gap is equal to or more than 𝛿 .

Each MP implements its own strategy on how to respond to each
market data received, and generates trades. All the trades from an
MP are intercepted by the corresponding RB: upon the reception
of a trade, the RB needs to tag the trade accordingly with a DC-
derived timestamp so that total ordering can be achieved at the
Ordering Buffer. This timestamp is piggybacked on each trade and
is calculated simply as the tuple consisting of the current DC id and
the real time elapsed between trade reception and latest market data
delivery.

Where should the RB be placed in a cloud-hosted Financial Ex-
change deployment? There are two essential requirements for the
RB component: (a) the latency between MP and RB must be minimal

ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA E. Gupta et al.

so that it does not affect correctness, and (b) for security reasons, the
RB must be isolated from the MP, to avoid attacks that aim to tamper
with response time measurements or market data delivery. Deploying
the RB as a standalone VM is not a solution, as that would introduce
non-negligible, variable latency between MP and RB. Even for VMs
that are collocated into the same physical node, inter-VM communi-
cation is still achieved via the network so that cloud providers can
enforce the appropriate SDN policy. A switch-based implementa-
tion would also suffer from similar limitations: (a) there is lack of
fine-grained control for VM placement in cloud (so we cannot have
any guarantees about switch-VM latencies), (b) switch resources are
scarce and shared by multitenant traffic in the cloud, and avoiding
interference would be a challenging problem to solve.

Top-tier cloud providers deploy (custom) programmable NICs
that leverage a variety of ASIC- or FPGA-based accelerators and
powerful SoCs to enforce strict SDN policies required for I/O re-
source management, network virtualization, billing etc. These plat-
forms serve as a natural boundary between the guest VMs that are
controlled by the customers and the datacenter network which is
shared resource managed by the cloud operator. We believe that
the RB’s functionality should be embedded in the cloud providers’
smartNICs. RB support in the programmable NIC could be incre-
mentally deployed in the existing infrastructure, and exposed to
customers as a virtual NIC feature similar to accelerated networking
[5, 6, 12]. NIC performance isolation and background interference
challenges are beyond the scope of this paper: MPs already invest
large amounts of money for their co-located server hardware – using
high-end instances that provide single-tenancy guarantees per cloud
node [7, 8] would eliminate interference stemming from on-host
multi-tenancy.

Since we do not have access to cloud providers’ smartNICs, we
used an off-the-shelf programmable (DPU) NIC [4] to demonstrate
the feasibility of a NIC-based RB implementation. We implemented
the RB functionality on top of DPDK [1], running it on the System-
on-Chip ARM cores. A busy-polling receive engine intercepts all
incoming market data traffic and releases them to the host while en-
forcing the pacing requirements. The RB functionality is completely
transparent for the MP: market data packets appear at the host’s RX
ring unmodified.

5.2 Ordering Buffer
The Ordering Buffer component’s functionality closely resembles
that of a ‘sequencer’ which tags incoming trades in a First-Come-
First-Served (FCFS) manner in existing on-premise deployments. In
our system, it is responsible for ordering all received trades based
on their Delivery Clock timestamp, before they are submitted to the
Matching Engine (ME). Similarly to the ‘sequencer’, the OB compo-
nent is part of the trusted CES platform. In our prototype system, we
have implemented the Ordering Buffer as a dedicated thread which
buffers incoming trades in a priority queue (for ordering). When
the OB has received all heartbeats up until a particular DC-derived
timestamp it dequeues all the relevant trades to the Matching Engine
over shared-memory channels.
Scaling: With higher numbers of MPs, a single OB instance would
become the bottleneck (in aggregate, number of heartbeats scale
linearly with participants). In such cases, scaling the OB is straight-
forward by leveraging sharding: multiple OB components could be

OB

CES VM

ME

 vNIC

TXRX

MP VM

 vNIC

TXRX

Execution
Engine

 RB

Figure 9: Cloud-hosted exchanges’ architectural view.

deployed either as different threads on multicore CPUs or even as
standalone VMs. Each OB needs to be responsible for a subset of
the RBs. The OB instances can dequeue a batch of pending trades
when safe and send them to ME-colocated OB for the final merge
before they are forwarded to the matching engine. A distributed OB
deployment would also allow handling the higher rates of heartbeats
in the case of numerous MPs, as each OB can effectively filter out all
incoming heartbeats before reaching the CES. Each distributed OB
instance needs to maintain the minimum of current Delivery Clocks
from its associated RBs, while the master OB needs to maintain the
minimum DC from all the distributed OBs to be able to dequeue
trades safely to the matching engine. Since contemporary cloud data-
center networks do not support in-network multicast for market data
transmission, such distributed approach would also allow scaling the
CES’ market data distribution engine to higher rates.

6 Evaluation
We evaluate the feasibility of our solution in hardware using our
own hardware test bed. We use public-cloud experiments to get an
understanding of overall DBO’s performance in terms of latency and
fairness if deployed.

6.1 Methodology
For all of the experiments (except simulation) presented in this
section, we leverage our prototype CES and MP implementations.
On the CES side, we generate and distribute data to all Market
Participants at fixed intervals. The market data points arrive at the
RBs, which later on release them to the Market Participants. The
MP implementation relies on busy-polling and kernel-bypass for
low-latency access to the incoming market data packets, but does not
utilize a sophisticated algorithm for trading decisions; it rather busy-
waits for a pre-configured response time duration before generating
a trade. We set each MP’s reaction time accordingly so that we can
derive the expected final ordering at the OB and evaluate fairness.
Fairness metric: For any number of MPs, perfect fairness is achieved
when all competing trades among all unique pairs of participants
are fully ordered (from faster to slower). We define the metric of
fairness as the ratio of the number of competing trade sets that were
ordered correctly to the total number of competing trade sets for all
unique pairs of market participants.
End-to-end latency: We define end-to-end latency of a trade using
Equation 8 (𝐹 (𝑖, 𝑎) − 𝐺 (𝑥) − 𝑅𝑇 (𝑖, 𝑎)). Generation time and for-
warding time are measured at the CES. For the purpose of reporting
latency and fairness (and not for ordering trades in DBO), we assume
that the trigger point is known. We use it to calculate the response
time of trades at the release buffer. We also report the latency bound

DBO: Fairness for Cloud-Hosted Financial Exchanges ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

Fairness Latency (𝜇𝑠)
(%) avg p50 p99 p999

Direct 74.62 9.60 9.52 16.58 25.25
Max-RTT - 10.23 9.94 18.08 26.18

DBO 100 15.92 12.16 28.82 46.80
Table 2: Fairness and trade latency results on bare metal servers with
BlueField-based RB implementation.

(maximum network round-trip-latency across all participants, The-
orem 3), shown as Max-RTT, for achieving perfect response time
fairness.

We evaluate our solution on three different setups: (a) on-premise,
bare-metal testbed deployment, (b) public-cloud-based deployment,
and (c) simulation.

Evaluation schemes: We evaluate three schemes. (1) Direct de-
livery: This is the baseline scheme. There is no release buffer or
ordering buffer and both trades and market data points just incur the
underlying network latency. (2) DBO: Based on our discussion in
§4.2.1, we use 𝛿 = 20, 𝜅 = 0.25 and 𝜏 = 20𝜇𝑠. (3) CloudEx: CloudEx
requires fine-grained clock synchronization, which is not available
in our test-bed and cloud experiments. Due to inaccuracies in clock-
-synchronization in our experiments, we experience frequent release
and ordering buffer overruns. We only report results for CloudEx in
simulation where we assume perfectly synchronized clocks.
Response Time: The response time for each trade is a random
number between 5 and 20 𝜇s and is within the horizon (𝛿). Note
that our solution does not ensure fairness for speed races where the
response time (of the faster participant) is greater than the horizon.
We picked a horizon to accommodate majority of the speed races.
But we explicitly take into account this limitation. We present latency
results with longer horizons and include experiments where the
response time exceeds the horizon.

6.2 Evalution on DPU-enabled baremetal servers
Our lab setup consists of three machines: one CES server and two
MP servers. The CES server is equipped with an Nvidia ConnectX-5
NIC with two 100Gbps ports. Each MP server hosts one Nvidia
BlueField-2 DPU with two 100Gbps ports. The server has a dual-
CPU Intel Xeon processor running at 3.1 GHz. Each BlueField-2
DPU has eight ARMv8 A72 cores. All machines are connected via
a 100GbE switch. We run Linux kernel (v5.4.0) and DPDK (v21.11)
for the CES, RB, and MP network engines.

The CES is generating market data every 40𝜇𝑠 (25𝐾 ticks per
second), and the market participant servers are generating responses
within 𝛿 time horizon since the reception of the data. The RB is
executing on the BlueField-2 DPU’s SoC.

Table 2 shows the achieved fairness and latency of our system.
Direct delivery achieves poor fairness because of differences in
network latency. DBO achieves perfect fairness at the cost of latency.
In particular, to achieve response time fairness, the OB waits for
the slowest participant. The latency is lower bounded by Max-RTT
(Theorem 3). The difference between the Max-RTT and DBO is due
to batching, pacing and heartbeats.

6.3 Cloud-hosted Testbed
We wish to understand how our system performs in a real pub-
lic cloud-based deployment with several market participants. As
discussed in §5.1, we do not have access to the cloud providers’
programmable NICs to deploy the RB functionality. To work around

Fairness Latency (𝜇𝑠)
(%) avg p50 p99 p999

Direct 57.61 27.9 27.48 32.5 44.03
Max-RTT - 33.34 32.44 42.01 48.38

DBO 100 47.19 46.95 55.71 67.41
Table 3: Fairness and end-to-end latency for different schemes; full
traces collected over a 15-minute duration. For consistency, Max-RTT
latencies (𝐿𝑚𝑖𝑛 lower bound) are calculated using the packet timestamps
from the DBO experiment trace.

40 60 80 100 120 140
Latency (μs)

0.0

0.5

1.0

CD
F

DBO(20,25)
DBO(45,60)
DBO(80,120)
Max-RTT

Figure 10: CDFs of the end-to-end latency for various DBO configura-
tions.

this limitation, we have adjusted our RB implementation so that it
runs as a co-located process with the market participant’s execution
engine on the MP VMs. In such configuration, the RB is using a
kernel-bypass network stack to take over a dedicated vNIC which
it uses to receive the UDP stream of market data from the CES,
and to send back any trades submitted by the MP. To facilitate fast
MP-to-RB communication we rely on shared-memory-based IPC
primitives. Clearly, such a solution does not provide any security
guarantees as the RBs run on VMs owned by the market participants
which are not part of the CES’ Trusted Computing Base, and could
easily tamper with the RB’s market data delivery engine or the de-
livery clock measurements. It allows us, however, to evaluate the
real-world performance (i.e., achievable throughput and latency) of
our DBO system in a public cloud deployment.

We set out to evaluate the fairness and end-to-end latency of dif-
ferent schemes. We deploy ten market participants and one CES as
virtual machines (Standard_F8s) in Microsoft Azure. We configure
the aggregate service rate to 125, 000 transactions (trades) per second
(market data generation interval is fixed to 40𝜇𝑠). Table 3 summa-
rizes the achieved fairness and end-to-end latency results for direct
delivery and DBO.
Fairness: Direct delivery achieves poor fairness in our experiments.
Compared to our test-bed where there is no network traffic and the
variability in latency across participants is lower, direct delivery per-
forms worse in the cloud. DBO always achieve perfect fairness.We
discuss fairness for slow responders in §6.3.2.
Latency: As expected, direct delivery achieves the lowest latency,
at the cost of fairness. On the other hand, DBO trades off latency
to achieve perfect fairness, but it still achieves sub-100𝜇𝑠 p999
tail latency in the public cloud. This latency is well within the
requirements of many major exchanges. IEX, for example, a major
exchange that prides itself on fairness had 700𝜇𝑠 latency [3]. We
believe that with additional optimizations such as network traffic
prioritization, in-network multicast, proximity placement groups,
this number could be further brought down. The p9999 latency is
much higher (~3.5ms); full trace analysis shows that packet drop rate
is very low but we identified a well-aligned, periodic queue buildup
at the OB which we believe is due to scheduling artifacts in the VM.

ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA E. Gupta et al.

RT (in 𝜇𝑠) 10-15 15-20 20-25 25-30 30-35 35-40
Direct 0.45 0.46 0.46 0.46 0.46 0.46
DBO 1.0 1.0 0.999 0.999 0.997 0.985
Table 4: Fairness for trades with response time> 𝛿 = 20.

0 250 500 750 1000 1250 1500 1750 2000
Time (ms)

0

200

400

600

La
te

nc
y

(μ
s)

Figure 11: Network trace used for simulation.

6.3.1 Understanding DBO latency: How do DBO parameters
affect end-to-end trade latency? Figure 10 illustrates the CDF of the
latency with different DBO configurations. Here, DBO(𝑥,𝑦) refers
to using a horizon 𝛿 = 𝑥 and batch size (1+𝜅) ·𝛿 = 𝑦. We also include
the optimal latency bound (Max-RTT). As expected, increasing the
horizon and the batch size increases the latency. When batch size
is 60𝜇s we see one inflection point. For batch size of 120𝜇𝑠 we see
two inflection points. These inflection points are a direct result of
batching. Since a new market data point is generated every 40𝜇𝑠,
for batch size of 60𝜇𝑠, roughly 2/3 of the batches contain two data
points. The first point in such batches incurs 40𝜇𝑠 of additional
delay compared to the second point. This difference creates the
inflection point. Similarly for batch size 120𝜇𝑠, on average there
are three market data points, the first point in the batch incurs an
additional delay of 80𝜇𝑠 while the second point incurs an additional
delay of 40𝜇𝑠. For batch size of 25𝜇𝑠, which contains only one
market data point, the batching delay is zero. The deviation from the
optimal latency bound is primarily due to heartbeats. Recall when
network latency is well behaved, pacing does not add additional
delay. Since 𝜏 = 20, heartbeats cost an additional latency delay of
10𝜇𝑠 on average.

6.3.2 Trades with response time > 𝛿
DBO only guarantees fairness for trades with a limited response
time. Table 4 shows the fairness for such trades for different values
of response time. In each experiment, the response time for the
trade is derived from a range of values (shown on the top of the
table). Direct delivery achieves poor fairness (similar to Table 3).
In contrast, even though the response time of trades exceeds the
horizon 𝛿 , DBO achieves close to ideal fairness. DBO orders such
trades fairly, if the inter-delivery time for the batch that triggered the
trade and the last batch corresponding to the trade is same across all
participants. In the cloud experiments, even though latency differs
across participants, for any particular participant (majority of the
time) the latency exhibits little variation. Figure 11 shows the end-
to-end network latency for a particular participant in this experiment.
As a result, the inter-delivery time for batches is similar (= (1 + 𝜅) ·
𝛿) across all participants for most of the time. DBO is thus able
to correct for static differences in latency across participants and
achieve fairness.

6.4 Simulation
We use simulations to evaluate DBO as we scale the number of
participants and to compare with CloudEx. We use a network trace
of round trip times between the CES and an RB from the cloud-
hosted testbed, as illustrated in Figure 11. The one-way latencies
between CES and each RB are calculated by taking random slices

10 30 50 70 90
Participants

0

20

40

60

La
te

nc
y

(μ
s)

DBO

(a) Mean latency

10 30 50 70 90
Participants

0

100

200

300

La
te

nc
y

(μ
s)

Max-RTT

(b) Tail latency (p99)
Figure 12: Latency as a function of the number of market participants.

0 200 400 600
Latency (μs)

0.994

0.995

0.996

0.997

0.998

0.999

1.000

Fa
irn

es
s

CloudEx, 10 MPs
CloudEx, 60 MPs
DBO, 10 MPs
DBO, 60 MPs

(a) Mean latency

0 200 400 600
Tail Latency p99 (μs)

0.994

0.995

0.996

0.997

0.998

0.999

1.000

Fa
irn

es
s

CloudEx, 10 MPs
CloudEx, 60 MPs
DBO, 10 MPs
DBO, 60 MPs

(b) Tail latency (p99)
Figure 13: CloudEx (perfect clock-synchronization) vs DBO. We vary
the one-way CloudEx latency thresholds from 15 to 290𝜇s.

of the network trace and halving the RTTs. The response times are
between 5 to 20𝜇𝑠.
Scaling the number of participants. Figure 12 shows the mean and
the tail latency (p99) for DBO as we scale the number of participants.
We also include the latency bound (Max-RTT) in the figure for
reference. As expected, the latency bound increases with the number
of participants. The end-to-end latency for DBO is limited by this
bound, with additional delay due to batching, pacing and heartbeats.
We thus see a similar trend as Max-RTT in the latency for DBO.
Comparison with CloudEx. Figure 13 shows the fairness and end-
to-end latency of DBO and CloudEx (assuming perfect clock syn-
chronization). We report results for scenarios with 10 and 60 market
participants respectively. For CloudEx, we use different values of
latency thresholds: as we increase the latency thresholds, fairness
improves but latency degrades. Here, CloudEx achieves perfect fair-
ness only when the one-way latency threshold is set higher than
the maximum one-way latency value in the trace. CloudEx incurs
this high latency at all times, even when the underlying network
latency is low. In contrast, in the case of DBO, a spike in latency
only occurs when there is a surge in the underlying network latency.
DBO maintains perfect fairness at a reduced latency compared to
CloudEx.

7 Conclusion
We presented DBO, a novel mechanism to provide fairness for high
frequency trading in cloud environments. DBO is incrementally
deployable, achieves guaranteed fairness and low latency while still
operating at high transaction rates.

Acknowledgements
We thank Graham Mosley, Sadjad Fouladi, Mark Russinovich, Anu-
pam Pandey, Rupesh Khendry, Mark Galgano, and Alan Ross. We
further thank Robert Park, and Alpesh Sethia for their insightful
feedback on financial exchange architectures and high-frequency
trading workloads.

This work does not raise any ethical concerns.

DBO: Fairness for Cloud-Hosted Financial Exchanges ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

References
[1] 2013. Data Plane Development Kit (DPDK). http://dpdk.org/
[2] 2017. NYSE XDP Client Specification. https://www.nyse.com/publicdocs/nyse/

data/XDP_Common_Client_Specification_v2.1e.pdf
[3] 2019. The Cost Of Exchange Services. https://finansdanmark.dk/media/mstbpq23/

iex-and-market-data-cost-2019.pdf
[4] 2021. NVIDIA BlueField-2. https://www.nvidia.com/content/dam/en-zz/

Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
[5] 2023. Amazon AWS Elastic Fabric Adapter. https://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/efa.html
[6] 2023. Amazon AWS Elastic Network Adapter. https://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/enhanced-networking-ena.html
[7] 2023. AWS Dedicated Host. https://docs.aws.amazon.com/AWSEC2/latest/

UserGuide/dedicated-instance.html
[8] 2023. Azure Dedicated Host. https://azure.microsoft.com/en-us/products/

virtual-machines/dedicated-host
[9] Matteo Aquilina, Eric B Budish, and Peter O’Neill. 2020. Quantifying the high-

frequency trading" arms race": A simple new methodology and estimates. Techni-
cal Report. Working Paper.

[10] Brian Nigito. 2020. Multicast and the Markets. https://signalsandthreads.com/
multicast-and-the-markets/

[11] Eric Budish, Peter Cramton, and John Shim. 2015. The high-frequency trading
arms race: Frequent batch auctions as a market design response. The Quarterly
Journal of Economics 130, 4 (2015), 1547–1621.

[12] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. 2018. Azure accelerated networking: Smartnics in the public cloud.
In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18). 51–66.

[13] Ahmad Ghalayini, Jinkun Geng, Vighnesh Sachidananda, Vinay Sriram, Yilong
Geng, Balaji Prabhakar, Mendel Rosenblum, and Anirudh Sivaraman. 2021.
CloudEx: a fair-access financial exchange in the cloud. In HotOS ’21: Work-
shop on Hot Topics in Operating Systems, Ann Arbor, Michigan, USA, June, 1-3,
2021, Sebastian Angel, Baris Kasikci, and Eddie Kohler (Eds.). ACM, 96–103.
https://doi.org/10.1145/3458336.3465278

[14] Piotr J Gmytrasiewicz and Edmund H Durfee. 1992. Decision-theoretic recursive
modeling and the coordinated attack problem. In Artificial Intelligence Planning
Systems. Elsevier, 88–95.

[15] Leslie Lamport. 2019. Time, clocks, and the ordering of events in a distributed
system. In Concurrency: the Works of Leslie Lamport, Dahlia Malkhi (Ed.). ACM,
179–196. https://doi.org/10.1145/3335772.3335934

[16] Yuliang Li, Gautam Kumar, Hema Hariharan, Hassan M. G. Wassel, Peter
Hochschild, Dave Platt, Simon L. Sabato, Minlan Yu, Nandita Dukkipati, Prashant
Chandra, and Amin Vahdat. 2020. Sundial: Fault-tolerant Clock Synchronization
for Datacenters. In 14th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2020, Virtual Event, November 4-6, 2020. USENIX As-
sociation, 1171–1186. https://www.usenix.org/conference/osdi20/presentation/
li-yuliang

[17] Jennifer Lundelius and Nancy A. Lynch. 1984. An Upper and Lower Bound for
Clock Synchronization. Inf. Control. 62, 2/3 (1984), 190–204. https://doi.org/10.
1016/S0019-9958(84)80033-9

[18] Donald MacKenzie. 2019. How Fragile Is Competition in High-Frequency Trading.
Tabbforum, March 26 (2019).

[19] Vasilios Mavroudis and Hayden Melton. 2019. Libra: Fair Order-Matching for
Electronic Financial Exchanges. In Proceedings of the 1st ACM Conference on
Advances in Financial Technologies, AFT 2019, Zurich, Switzerland, October
21-23, 2019. ACM, 156–168. https://doi.org/10.1145/3318041.3355468

[20] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily R. Blem, Hassan M. G.
Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and
David Zats. 2015. TIMELY: RTT-based Congestion Control for the Datacenter.
In Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, SIGCOMM 2015, London, United Kingdom, August 17-21, 2015,
Steve Uhlig, Olaf Maennel, Brad Karp, and Jitendra Padhye (Eds.). ACM, 537–
550. https://doi.org/10.1145/2785956.2787510

[21] NASDAQ. 2021. Nasdaq and AWS Partner to Transform
Capital Markets. https://www.nasdaq.com/press-release/
nasdaq-and-aws-partner-to-transform-capital-markets-2021-12-01

[22] POSTTRADE. 2021. CME and Nasdaq move their mar-
kets to the cloud. https://posttrade360.com/news/technology/
cme-and-nasdaq-move-their-markets-to-the-cloud/

http://dpdk.org/
https://www.nyse.com/publicdocs/nyse/data/XDP_Common_Client_Specification_v2.1e.pdf
https://www.nyse.com/publicdocs/nyse/data/XDP_Common_Client_Specification_v2.1e.pdf
https://finansdanmark.dk/media/mstbpq23/iex-and-market-data-cost-2019.pdf
https://finansdanmark.dk/media/mstbpq23/iex-and-market-data-cost-2019.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/efa.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking-ena.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking-ena.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-instance.html
https://azure.microsoft.com/en-us/products/virtual-machines/dedicated-host
https://azure.microsoft.com/en-us/products/virtual-machines/dedicated-host
https://signalsandthreads.com/multicast-and-the-markets/
https://signalsandthreads.com/multicast-and-the-markets/
https://doi.org/10.1145/3458336.3465278
https://doi.org/10.1145/3335772.3335934
https://www.usenix.org/conference/osdi20/presentation/li-yuliang
https://www.usenix.org/conference/osdi20/presentation/li-yuliang
https://doi.org/10.1016/S0019-9958(84)80033-9
https://doi.org/10.1016/S0019-9958(84)80033-9
https://doi.org/10.1145/3318041.3355468
https://doi.org/10.1145/2785956.2787510
https://www.nasdaq.com/press-release/nasdaq-and-aws-partner-to-transform-capital-markets-2021-12-01
https://www.nasdaq.com/press-release/nasdaq-and-aws-partner-to-transform-capital-markets-2021-12-01
https://posttrade360.com/news/technology/cme-and-nasdaq-move-their-markets-to-the-cloud/
https://posttrade360.com/news/technology/cme-and-nasdaq-move-their-markets-to-the-cloud/

ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA E. Gupta et al.

Figure 14: Proof of Lemma 2.
Appendices are supporting material that has not been peer-reviewed.

A Proof of Lemma 2
The lemma states that for response time fairness, the inter-delivery
times should be the same across all MPs.

PROOF. To prove that the lemma condition is necessary we will
show that if this condition is not met then no system exists which
can achieve response time fairness for arbitrary trade orders.

Consider the following scenario (Figure 14) where the lemma
condition is not met. Let 𝐷 (𝑖, 𝑥 + 1) − 𝐷 (𝑖, 𝑥) = 𝑐1, 𝐷 (𝑗, 𝑥 + 1) −
𝐷 (𝑗, 𝑥) = 𝑐2. Without loss of generality we assume 𝑐1 < 𝑐2.

Consider hypothetical trades (𝑖, 𝑎) and (𝑗, 𝑏) s.t. 𝑆 (𝑖, 𝑎) = 𝐷 (𝑖, 𝑥 +
1) +𝑐3 and 𝑆 (𝑗, 𝑏) = 𝐷 (𝑗, 𝑥 +1) +𝑐4. Further, we can pick 𝑆 (𝑖, 𝑎) and
𝑆 (𝑗, 𝑏) s.t. 𝑐3 > 𝑐4 and 𝑐1 + 𝑐3 < 𝑐2 + 𝑐4. Now we consider two sce-
narios for how these trades were generated. These two scenarios are
indistinguishable from the cloud provider/exchange’s perspective.
Case 1: 𝑇𝑃 (𝑖, 𝑎) = 𝑇𝑃 (𝑗, 𝑏) = 𝑥 + 1. Here,

𝑆 (𝑖, 𝑎) − 𝐷 (𝑖, 𝑥 + 1) = 𝑐3, 𝑆 (𝑗, 𝑏) − 𝐷 (𝑗, 𝑥 + 1) = 𝑐4. (12)

Since 𝑐3 > 𝑐4, condition 𝐶1 implies that, 𝑂 (𝑖, 𝑎) > 𝑂 (𝑗, 𝑏).
Case 2: 𝑇𝑃 (𝑖, 𝑎) = 𝑇𝑃 (𝑗, 𝑏) = 𝑥 . Here,

𝑆 (𝑖, 𝑎) − 𝐷 (𝑖, 𝑥) = 𝑐1 + 𝑐3, 𝑆 (𝑗, 𝑏) − 𝐷 (𝑗, 𝑥) = 𝑐2 + 𝑐4. (13)

In this case, since 𝑐1 + 𝑐3 < 𝑐2 + 𝑐4, for response time fairness
the ordering must instead satisfy the opposite, 𝑂 (𝑖, 𝑎) < 𝑂 (𝑗, 𝑏). A
contradiction! Thus, no system can achieve response time fairness
in both these scenarios. □

B Proof of Corollary 1
PROOF. The proof is identical to that of Lemma 2. The only

difference being, we consider trades (𝑖, 𝑎), (𝑗, 𝑏) and trigger point 𝑥
and 𝑥 + 1, s.t., 𝑐1 + 𝑐3 is less than 𝛿 . □

C Proof of Theorem 4
PROOF. To the prove this theorem we will show that with DBO

the ordering of trades (𝑖, 𝑎) and (𝑗, 𝑏) that meet the Theorem condi-
tion is 𝑂 (𝑖, 𝑎) < 𝑂 (𝑗, 𝑏).

Consider a trade (𝑖, 𝑎) with response time less than 𝛿 − 𝐵ℎ (𝑖).
Let 𝐷̂ (𝑖, 𝑥) represent the delivery timeof 𝑥 at the RB. The observed
submission time at RB (𝑆 (𝑖, 𝑎)) for such a trade will be,

𝑆 (𝑖, 𝑎) = 𝐷̂ (𝑖, 𝑥) + 𝑅𝑇 (𝑖, 𝑎) + 𝑅𝐵_𝑀𝑃_𝐿(𝑖, 𝑥, 𝑎) . (14)

where 𝑅𝐵_𝑀𝑃_𝐿(𝑖, 𝑥, 𝑎) represents the combined network round
trip latency between RB𝑖 and 𝑀𝑃𝑖 for trigger point 𝑥 and trade
(𝑖, 𝑎) . Because 𝑅𝐵_𝑀𝑃_𝐿(𝑖, 𝑥, 𝑎) is bounded by 𝐵ℎ (𝑖), 𝑅𝑇 (𝑖, 𝑎) +
𝑅𝐵_𝑀𝑃_𝐿(𝑖, 𝑥, 𝑎) < 𝛿 or 𝑆 (𝑖, 𝑎) < 𝐷̂ (𝑖, 𝑥) + 𝛿 .

Recall, consecutive batches are atleast separated by 𝛿 . This means
that the trigger point (𝑥 = 𝑇𝑃 (𝑖, 𝑎)) must be within the last re-
ceived batch. The point 𝑙𝑑 (𝑖, 𝑎) is also the last point in this batch and
𝐷̂ (𝑖, 𝑙𝑑 (𝑖, 𝑎)) = 𝐷̂ (𝑖, 𝑥). The delivery clock for trade (𝑖, 𝑎) will thus
be: 𝑂 (𝑖, 𝑎) = 𝐷𝐶 (𝑖, 𝑎) = ⟨𝑙𝑑 (𝑖, 𝑎), 𝑅𝑇 (𝑖, 𝑎) + 𝑅𝐵_𝑀𝑃_𝐿(𝑖, 𝑥, 𝑎)⟩.

With batching, for participant 𝑗 , 𝑥 and 𝑙𝑑 (𝑖, 𝑎) also belong to the
same batch 𝐷̂ (𝑗, 𝑙𝑑 (𝑖, 𝑎)) = 𝐷̂ (𝑗, 𝑥). For a competing trade (𝑗, 𝑏)

with higher response time, the delivery clock at the time of sub-
mission will either read 𝑂 (𝑗, 𝑏) = 𝐷𝐶 (𝑗, 𝑏)) = ⟨𝑙𝑑 (𝑖, 𝑎)), 𝑅𝑇 (𝑗, 𝑏) +
𝑅𝐵_𝑀𝑃_𝐿(𝑗, 𝑥, 𝑏)⟩ (if (𝑗, 𝑏) was submitted before the next batch,
i.e., 𝑆 (𝑗, 𝑏) < 𝐷̂ (𝑗, 𝑙𝑑 (𝑖, 𝑎) + 1)) or 𝐷𝐶 (𝑗, 𝑏) = ⟨𝑦, 𝑆 (𝑗, 𝑏) − 𝐷̂ (𝑗, 𝑦)⟩
with 𝑦 > 𝑙𝑑 (𝑖, 𝑎).

C3 implies that, 𝑅𝑇 (𝑖, 𝑎) < 𝑅𝑇 (𝑗, 𝑏)− (𝐵ℎ (𝑖)−𝐵𝑙 (𝑗)) and 𝐵𝑙 (𝑖) ≤
𝑅𝐵_𝑀𝑃_𝐿(𝑖, 𝑥, 𝑎) ≤ 𝐵ℎ (𝑖), 𝐵𝑙 (𝑗) ≤ 𝑅𝐵_𝑀𝑃_𝐿(𝑗, 𝑥, 𝑏) ≤ 𝐵ℎ (𝑗). As
a result, 𝑅𝑇 (𝑖, 𝑎) +𝑅𝐵_𝑀𝑃_𝐿(𝑖, 𝑥, 𝑎) < 𝑅𝑇 (𝑗, 𝑏) +𝑅𝐵_𝑀𝑃_𝐿(𝑗, 𝑥, 𝑏)

As a result, in both the cases,𝑂 (𝑖, 𝑎) < 𝑂 (𝑗, 𝑏). Hence proved. □

D Impact of Losses
Impact of market data points being lost: Like status-quo we advo-
cate market participants requesting any dropped market data points
separately. The retransmitted market data point does not update the
delivery clock at the release buffer. This way, only trades generated
using the retransmitted data points get affected. However, fairness
for all other trades remains unaffected. The latency of the system
can get affected as the delivery clock of the participant experiencing
losses lags transiently until the next data point is delivered. If data
points are generated infrequently, then the delivery clock of the par-
ticipant might take a large time to recover. To prevent this explicitly,
we advocate CES sending periodic heartbeats. However, we believe
that major exchanges already generate data at a very high frequency
(a data point every 20 𝜇𝑠) and such heartbeats are not necessary.
Impact of trades being lost: In the event a trade is lost, the par-
ticipant can retransmit the trade. The retransmitted trade will be
tagged by the delivery clock at the time of the retransmission. Such
a retransmitted trade will incur unfairness. However, fairness of all
other trades remains unaffected.
Impact of heartbeats being lost: Lost hearbeats do not impact
fairness. However, if a heartbeat is lost then the OB might have
to wait an additional time (for the next heartbeat to arrive) before
forwarding the trades to the CES increasing latency (Equation 8).

E Thwarting front-running attacks
We impose two simple constraints on communication to prevent
front running. (1) A participant machine and its helper machines
can communicate with each other freely but they cannot commu-
nicate with any other machines in the cloud. This restriction can
be imposed easily by cloud providers today using security groups.
This restriction ensures that a participant machine cannot get market
data from other participant machines in the cloud directly. Next, we
will ensure that a participant machine cannot get an earlier market
data feed from outside the cloud. We will do so by restricting that a
participant can only send data point 𝑥 out of the cloud, when 𝑥 has
been delivered to all participants in the cloud. This way, market data
points can only be available outside the cloud once they have been
delivered to all the participants. (2) The helper machines cannot send
data outside the cloud. Any data (excluding the trade orders) from
a participant being sent outside the cloud is tagged by the delivery
clock at the RB and buffered at a gateway. The data sent by the par-
ticipant could potentially be a market data point with id less than or
equal to the last point id (first tuple) of the delivery clock time stamp.
The gateway thus buffers this data until it is sure that the all data
points with id less than the last data point id in the delivery clock
time stamp have been delivered. For this purpose, RB’s periodically
communicate their delivery clock to the gateway.

	Abstract
	Introduction
	Background
	Related Work

	Problem Statement
	Challenges

	Design
	Delivery Based Ordering
	Understanding DBO

	Cloud Architecture and Implementation
	Release Buffer
	Ordering Buffer

	Evaluation
	Methodology
	Evalution on DPU-enabled baremetal servers
	Cloud-hosted Testbed
	Simulation

	Conclusion
	References
	Proof of Lemma 2
	Proof of Corollary 1
	Proof of Theorem 4
	Impact of Losses
	Thwarting front-running attacks

