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Abstract

Low Earth Orbit satellite constellations are gaining traction
for providing connectivity to low-power outdoor Internet of
Things (IoT) devices. This is made possible by the devel-
opment of low-cost, low-complexity pico-satellites that can
be easily launched, offering global connectivity without the
need for Earth-based gateways. In this paper, we report the
space-to-Earth communication bottlenecks derived from our
experience of deploying an IoT satellite. Specifically, we char-
acterize the challenges posed by the low link budgets, satellite
motion, and packet collisions. To address these challenges,
we design a new class of techniques that use the Doppler
shift caused by the satellite’s motion as a unique signature for
packet detection and decoding, even at low signal-to-noise
ratios and in the presence of collisions. We integrate these
techniques into our system, called Spectrumize, and evaluate
its performance through both simulations and real-world de-
ployments. Our evaluation shows that Spectrumize performs
3 better compared to the classic approach in detecting pack-
ets with over 80% average accuracy in decoding.

1 Introduction

The emergence of the "new space” era has led to the growing
popularity of small satellites aimed at connecting Internet of
Things (IoT) devices. These satellites offer connectivity to
devices where terrestrial networks do not exist, for example,
in farms, forests, oceans, and others. With their small size and
low-complexity hardware, these satellites are easy to build
and launch into orbit, resulting in the rapid growth of the
IoT satellite industry. Over a dozen companies [3—6,33,35]
are investing heavily in deploying constellations of hundreds
of these small IoT satellites to provide connectivity using
the Direct-to-Satellite (DtS) model. This allows IoT devices
on the ground to uplink data directly to orbiting satellites,
without requiring deployment of gateway devices. The satel-
lites collect and downlink data to ground stations which have
terrestrial backhaul for cloud-based data aggregation.

The main focus of IoT satellites is to achieve a low price
point, setting them apart from traditional earth observation
and broadband connectivity satellites. These satellites are
smaller in size and optimized for IoT applications, which typ-
ically require low data rates, usually in the range of hundreds
of bits per second, and operate at a bandwidth of around a
hundred kilohertz. Therefore, 10T satellites are equipped with
simple connectivity hardware, such as half-wave dipole cable

(b) Our industry collaborator’s ground station

Figure 1: Our real-world testbed: an IoT satellite launched in
collaboration with FOSSA [7], and multiple ground stations.

antennas with no beamforming capability or inter-satellite link
(ISL) [43]. Similarly, ground stations (GS) and IoT devices
on the ground are designed to be simple and can be deployed
anywhere using small antennas that are either omnidirectional
or have limited directionality. In conclusion, the connectivity
design and hardware of 10T satellites closely resemble that of
state-of-the-art terrestrial IoT networks.

We collaborated with FOSSA Systems [7], an [oT satellite
company, to launch an IoT pico-satellite and investigate the
characteristics of this emerging network class. We utilized
their ground stations in Spain to facilitate data downloads
from the satellite. To our surprise, despite using standard
hardware, we encountered significant packet loss during the
downlink from the satellite to the ground station. Specifically,
we found that 65.28% of the packets transmitted by the satel-
lite were lost and remained undecoded by the ground station.
This paper stems from the challenges of enabling a robust
downlink from low-cost, low-power IoT satellites. In particu-
lar, we observe that the following three challenges limit our
ability to decode downlink transfer from IoT satellites.

Challenge 1: Low link budget — The link budget for satellite
to ground communication is low because of the large distance
(around 500 km), limited directionality of antennas on satel-
lites, ground stations without beamforming capabilities, and
atmospheric attenuation. We observe an average link budget
of only —133.78 dBm during a satellite pass over a ground



station. Increasing transmission power is not feasible due to
power constraints on the satellite and regulatory restrictions.
Though the use of a high-end setup like a phased array an-
tenna on the ground can increase the link budget, it requires
a large antenna setup and is expensive, especially for IoT
satellites that operate on lower frequency bands like VHF and
UHF. Lower link budget leads to frequent packet drops and
a low data rate. It is particularly problematic for the down-
link transmissions because ground stations also experience
increased noise floor due to terrestrial transmissions.

Challenge 2: Packet collisions and spectral inefficiency —
LEO IoT satellites have limited antenna directionality and can
transmit signals across vast areas on Earth, referred to as their
footprint. These footprints can span up to a million square
kilometers of surface area. Since multiple satellites operate
within the same frequency band, their transmissions collide
at ground stations located within the overlapping footprints
(Fig. 2). For example, consider the Swarm constellation con-
sisting of 170+ satellites [9]. A ground station situated in a
polar region, ideal due to the satellites’ orbital dynamics, falls
within the view of an average of 7 satellites simultaneously.
Consequently, satellites may encounter a high collision rate
when downloading data to the ground station. As a preemp-
tive measure, ground stations are scheduled in advance to
communicate with only one satellite, even when in the line
of sight of multiple satellites. This scheduling strategy, while
necessary, has a significant impact on spectral efficiency.

Challenge 3: Satellite motion — The satellite-ground link
exhibits fluctuations in link quality due to two distinct types
of motion: (a) the orbital motion of the satellite introduces
variations in the distance between the ground device and the
satellite, and (b) localized satellite motion, often characterized
by tumbling. This phenomenon is particularly pronounced
in small-sized IoT satellites, as they lack an altitude control
system to stabilize their motion. While large broadband satel-
lites tackle this issue through real-time bit-rate adaptation, it
presents a more formidable challenge with IoT satellites due
to their lower data rates and limited bandwidth. This challenge
is especially evident in receive-only distributed ground sta-
tions employed for downloading data from the satellite [2,48].
As a result, the satellite chooses conservative bit rates for
transmission that can work even for the lowest signal-to-noise
ratio (SNR). This leads to sub-optimal spectrum efficiency.

This paper presents Spectrumize, a novel approach de-
signed to enhance the spectral efficiency of IoT satellite down-
links, thereby enhancing reliability, robustness, and scalability
in satellite-based IoT networks. Spectrumize stands out by
not treating satellite motion as a problem but as a unique
enabler for satellite-based IoT networks. The core concept
behind Spectrumize hinges on the predictability of satellite
motion, which results in predictable Doppler shifts in the sig-
nal unique to each satellite. Consequently, we leverage the
temporal variation of these Doppler shifts as signatures, akin

to codes in CDMA. Much like CDMA, Doppler signatures
empower us to elevate SNR and demultiplex simultaneous
transmissions, resulting in higher spectral efficiency.

SNR boosting: As mentioned previously, distinguishing the
signal received from a satellite from noise at a ground station
can be challenging. Traditional methods of packet detection
using preamble-based correlation are often ineffective be-
cause of the signal’s frequency shifts due to Doppler effects.
We have made two key observations: first, Doppler shifts be-
tween satellites and ground stations are predictable due to
stable orbital paths, and second, satellites typically transmit
a periodic train of packets. To address this, Spectrumize em-
ploys a series of preambles, each adjusted with the appropriate
Doppler correction, for correlation with the received signal
to facilitate packet detection. In our empirical studies, we
confirm that both Doppler shift correction and signal repeti-
tion are necessary for successful packet detection, even in the
presence of hardware errors like carrier frequency offsets.

Collision resolution: Spectrumize introduces a new approach
to address packet collision challenges in satellite IoT net-
works, particularly those caused by overlapping satellite foot-
prints. This approach relies on three distinguishing factors:
the unique Doppler shift of each satellite-ground link, the
symbol reception time, and the received signal intensity. By
leveraging the distinct Doppler shift patterns experienced by
colliding packets from different satellites, we use the Doppler
signature as a self-contained code to demultiplex signals from
multiple transmissions. As a result, a ground station can si-
multaneously download data from multiple satellites, leading
to a significant enhancement in spectral efficiency.

We conduct evaluations of Spectrumize through simula-
tion, emulation, and real-world testbed, which encompasses
our satellite in orbit. This testbed also involves other satel-
lites from the same constellation and multiple ground stations
provided by our industry collaborator, FOSSA. Utilizing this
testbed, we characterize the nature of satellite-ground trans-
missions for [oT satellites and validate our design. The results
demonstrate that Spectrumize outperforms state-of-the-art
methods, achieving a 3x enhancement in packet detection
with an average decoding accuracy exceeding 80%.
Summary of Contributions:

* We characterize the communication challenges posed by
the constraints in a deployed IoT satellite network.

* We propose a new ‘Doppler signature as a code’ approach
to boost satellite decoding and demultiplexing performance.

* We evaluate Spectrumize in a real-world testbed including
satellites in orbit.

2 Motivation from Real-world Experience

IoT satellites constitute a rapidly growing category of low-
cost, low-complexity mini-satellites. As of 2022, approxi-
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Figure 2: Overview of end-to-end satellite IoT communication
using Direct-to-Satellite technology.

mately two thousand such satellites have been launched into
orbit [8]. Swarm, FOSSA, Astrocast, EchoStar, Myriota, and
more than ten other companies are leading this growing satel-
lite IoT industry [3—6,35]. To gain a better understanding
of the industry practices, challenges, and the need for inno-
vation in this burgeoning industry, we collaborated with an
industry leader, FOSSA Systems [7], to launch an IoT satellite
shown in Fig. la. Our collaborator designed and launched
the satellite according to industry standards, without any de-
sign input from us. We utilized the satellite as a real-world
testbed for our research along with the collaborator’s ground
station to communicate with the satellite, creating a testbed
that accurately represents the ecosystem of today’s satellite
IoT industry. In this section, we delve deeper into the practices
of the satellite IoT network industry and share our firsthand
experiences with the challenges it presents.

2.1 Satellite as the Global IoT Gateway

In traditional terrestrial wide-area IoT networks such as Lo-
RaWAN, IoT devices follow a star-of-stars topology with
a gateway aggregating data from the IoT devices. In con-
trast, in satellite IoT networks, the IoT gateway is carried
by the satellites themselves. This is achieved through direct-
to-satellite (DtS) communication, where IoT devices on the
earth send data directly to the overhead satellites. As the satel-
lite orbits around the Earth, it can collect data from different
locations and work as the global IoT gateway (Fig. 2). Simi-
larly, our satellite carries a SX1302 LoRa gateway produced
by Semtech [10]. The satellite has dimensions of around
10cm x 5¢cm x S5cm — this class of satellites is smaller than
cube-satellites and is referred to as pico-satellite. Due to its
small size, the satellite’s power is restricted, with a maximum
average power of 1.6 watts produced by its solar panel and
stored in rechargeable batteries. To maintain low hardware
complexity and cost-effectiveness, the satellite does not have
any active altitude control system. It orbits Earth in a low
earth orbit (LEO), typically between 450 to 550 kilometers

above Earth’s surface, allowing it to observe different parts of
the planet over time. Because of its orbital motion, the satellite
can only communicate with ground devices for brief periods,
typically lasting 5-9 minutes for a location on Earth. There
are usually only 2-3 such communication windows per day
for a location. As a result, a constellation of 150+ satellites is
required to ensure 24/7 global coverage.

2.2 Ground Stations

To communicate with our satellite, we rely on two ground
stations provided by our collaborator (Fig. 1b), which we use
for downloading data and configuring the satellite through
Telemetry, Tracking, and Command (TT&C) communication.
To keep costs low, these ground stations use low-end connec-
tivity hardware, including omnidirectional or directional Yagi
antennas, rather than phased array antennas (Fig. 1b). The
directional Yagi antennas have a beamwidth of 30° and a gain
of 12 dBic, and they are coupled with rotators that can move
them to point towards the satellite when it is in view. While
we primarily use Yagi antennas, several other companies opt
for omnidirectional antennas, which can further simplify their
designs [2,25]. The antenna is linked to a software-defined
radio (SDR) to process the communication signal. The idea
of using SDR-based ground stations is also popular in the
ground station as a service industry [14, 29]. Furthermore,
due to the short contact time and low data rate of the sat-
ground communication link, there is currently a significant
effort to develop receive-only distributed ground stations that
can reduce data latency in satellite IoT networks [1, 2, 48].
For example, SatNOGS is an open-source global network of
ground stations equipped with low-cost SDR and Raspberry
Pi [1]. Our satellite also broadcasts health beacons targeting
these distributed ground stations.

2.3 Communication

Our IoT satellite communicates with ground devices in three
ways: 1) the satellite collects data from IoT devices, 2) the
satellite communicates with ground stations for TT&C and
downloading data to ground stations, and 3) the satellite sends
data/beacons to distributed ground stations. In this section,
we focus on communication between the satellite and ground
stations. The satellite is equipped with a half-wave dipole
cable antenna and does not have beamforming capability.
It employs a Semtech SX1262 radio to communicate with
the ground stations, which supports both LoRa and 2-FSK
modulation [21]. We use the 401 - 402 MHz band assigned
by the local regulators for Earth exploration satellites, me-
teorological aids, and meteorological satellites. The uplink
communication (ground station to satellite) takes place on
401.3 MHz, while the downlink communication (satellite to
ground station) occurs on 401.9 MHz. The satellite also sends
a health beacon every 30-120 seconds on 401.7 MHz. The



channel bandwidth is max 125 kHz with LoRa modulation
and 39 kHz with 2-FSK.

Before a satellite-ground station communication takes
place, the contact is scheduled in advance using the satellite’s
two-line element (TLE) and the ground station’s location [47].
During the contact, the communication is initiated by sending
specific commands from the ground station to the satellite.
Once the satellite receives a command, it relays it back to the
ground station. The ground station confirms the command if
it matches the one it sent, and then the command is executed.
Depending on the command, the satellite either updates its
onboard configuration or sends data to the ground station.
When the satellite sends data, it does so in a stream of N data
packets, where N is defined in the command. If the satellite
does not have N packets to send, it sends all the packets that it
has. Since the channel is not expected to be used for multiple
satellite-ground communications at the same time, the packets
are transmitted at a plain interval without any random back-
off. A constant bit rate is maintained during communication,
given the low bandwidth and short contact time.

2.4 Our Experience and Challenges

Following the successful launch of our satellite, we com-
menced the commissioning phase which involves several
stages such as initial orbit determination and tracking, first
contact with the satellite, sequential activation and checks of
spacecraft subsystems, and calibration of payloads, sensors,
and control systems. Ideally, this phase should take about
two weeks to complete. Unfortunately, we encountered some
issues from the first contact with the satellite which extended
the duration of the commissioning phase by several weeks. It
was persistent across other satellites launched together. The
issue primarily appeared to be related to the downlink com-
munication, prompting us to conduct further investigations to
identify the root cause.

The expected signal from our satellite using 2-FSK modu-
lation can be seen in Fig. 3a(top) in the time domain, which
was emulated in the lab using our satellite’s RF setup. When
we transfer the signal in the frequency domain using Fast
Fourier Transformation (FFT) as shown in Fig. 3a(bottom),
we see two distinct peaks with the perfect frequency deviation
configured in 2-FSK modulation. In Fig. 3b, we can see the
signal recorded by the SDR of our ground station during a
satellite pass of approximately 10 minutes. According to the
config of our satellite’s regular beacon transmission, we ex-
pect to receive 10-14 packets. However, in the received signal
shown in Fig. 3b, we do not see any clear signs of the packets
as we saw in the emulated signal (Fig. 3a). When we transfer
the received signal to the frequency domain using FFT, as
shown in Fig. 3b(bottom), we do not see any clear peaks cor-
responding to 2-FSK modulated packets. It is apparent that
the packets are buried under the heavy noise and interference
on the ground. Nevertheless, we attempted to run a classic

preamble-based packet detection by running correlation be-
tween the received signal and the known packet preamble.
Ideally, we should have seen a prominent correlation peak
corresponding to the beginning of each packet in the signal,
translating to 10-14 peaks in our case. However, as shown
in Fig. 4, we hardly see a prominent correlation peak. We
then conducted a manual inspection of the received signal in
search of the packets and found 12 packets in the signal, as
shown in Fig. 3¢ after zooming in on the signal. We ran FFT
on this part of the signal and found clear 2-FSK peaks in the
frequency domain, confirming that the packet was transmit-
ted from the satellite. In aggregate, the SNR of the received
signal was so low that the classic preamble correlation-based
technique failed in detecting packets. This experience led us
to dig deeper into the reasoning behind our experience.

To begin with, the link between the satellite and ground
station has a low link budget due to several factors, such as
the omnidirectional radiation pattern of the satellite’s antenna,
the long distance between the two (hundreds of kilometers),
the satellite’s power limitation, and regulatory restrictions on
the power flux density of satellite transmission on the ground.
For instance, in the case discussed, the link budget is —112
dBm with the satellite’s transmission EIRP of 22 dBm, which
is comparable to other satellite service providers like Swarm
reporting —108.24 dBm [43]. However, these values are cal-
culated by assuming an elevation angle of 50°. The elevation
angle has a direct impact on path loss and consequently, the
link budget. In other words, a lower elevation angle means the
satellite is closer to the horizon, resulting in a lower link bud-
get. Using data from the TinyGS, an opensource distributed
ground station network for IoT satellites, over a six-week
period, we found that the average elevation angle across the
ground stations is 26.68° indicating that the link budget is
lower in the real world than the value calculated for nominal
elevation angle of 50°. Furthermore, the link budget in reality
is even lower due to environmental factors such as weather
and surrounding infrastructure that cause signal attenuation.
The average RSSI across the TinyGS ground stations was
found to be —133.78 dBm, which is —128.12 dBm for our
ground stations. Note that this data had packet survival bias
since we have the RSSI values for only the detected packets,
whereas, the packets having a RSSI below the minimum de-
tectable intensity (MDI) of ground station radio or very poor
SNR values, are not detected and hence not recorded. Addi-
tionally, we noticed that the rotation of the satellite around its
own axis, known as tumbling, leads to the antenna depointing,
resulting in decreased signal strength.

The ability to detect and decode packets despite having
an RSSI above the MDI depends on the level of noise and
interference at the ground station, which can originate from
both terrestrial and non-terrestrial sources. Interference from
other satellite constellations is common since IoT satellites
often use a band designated for Earth exploration, meteoro-
logical, and mobile satellites. In addition, interference from
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terrestrial communication can significantly affect the satel-
lite signal due to the low link budget, and operation in the
ISM band can make them susceptible to direct terrestrial in-
terference [15,28,31,59]. Besides, the use of low-cost and
low-complexity hardware in ground stations also contributes
to the noise. As a combined effect of these factors, the SNR
value gets extremely poor and becomes negative [19]. To
highlight the extent of the poor SNR values, the average SNR
at our ground station locations was found to be as low as —18
dB, while it was —17.11 dB across TinyGS ground stations.

In addition to external interference, IoT satellites also face
interference from other satellites within their own constella-
tion. This is due to the omnidirectional radiation pattern of a
satellite’s antenna, which results in a footprint that can cover
millions of square kilometers. The footprints of adjacent satel-
lites from the same constellation overlap with each other as

number of satellite passes, such as the polar regions. With
over 170 IoT satellites in a constellation like Swarm, a ground
station in such an optimal location spends 83% of its time
in the overlapping footprint of two or more satellites. At any
given time, the ground station can see up to 23 satellites with
a median of 4 (see Appendix A). Now, the satellites having
overlapped footprints create interference with each other as
they transmit to a ground station in an overlapping region.
As a solution, when downloading data from a satellite at a
ground station, only one satellite is scheduled for communi-
cation at a time, despite multiple satellites being within view.
The ground station sends a command to the scheduled satel-
lite to initiate data transfer while keeping the others silent.
This approach, while addressing interference issues, results in
significantly reduced spectral efficiency. This impact is even
more pronounced for ground stations located in polar regions,
which are almost all the time in overlapping footprints of
multiple satellites.

3 Spectrumize’s Algorithm

In this section, we present our technique for detecting and
decoding the packets received from IoT satellites that are
severely buried under the noise floor (Fig. 3b (top)). We
found that conventional technique of correlating with a sin-
gle preamble exhibits poor performance (Fig. 4), where the
peaks corresponding to packet start time are obscured by the
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overwhelming noise.

To enhance the prominence of the peaks associated with
packet start times, it is crucial to increase the correlation score
of the genuine packet within the noisy received signal. To do
so, we leverage two unique observations specific to the [oT
satellite domain.

1. Downlink from satellite to ground stations are
contention-free transmissions: Traditional wireless net-
works, such as WiFi and cellular, operate on a contention-
based system where transmitters employ carrier sense before
transmitting packets. Consequently, packet transmissions in
traditional wireless networks do not typically adhere to a pe-
riodic or predetermined pattern. However, the dynamics in
IoT satellite networks differ. Techniques like carrier sense
are ineffective due to the vast footprint of satellites on the
Earth’s surface, making it possible for distant satellites to
inadvertently collide at a ground station. As a result, the cur-
rent industry standard for deploying downlink communication
protocols from IoT satellites to ground stations adheres to a
contention-free schedule.

More specifically, the IoT satellite network employs a cen-
tralized downlink scheduler that assigns ground stations to
receive packets from specific satellites during each satellite’s
contact period with the ground station. The IoT satellite re-
ceives this transmission schedule in advance, along with com-
mands that specify the number of packets, denoted as N, that it
can transmit. During the satellite’s contact period with its des-
ignated ground stations, it transmits a train of N data packets,
each periodically spaced. It’s essential to note that because the
satellite does not perform carrier sensing before transmitting
data packets, its packet transmissions follow a deterministic
periodic pattern, as illustrated in Fig. 5. The key insight of
Spectrumize is that this known periodic sequence of N pack-
ets can be harnessed to construct a longer virtual preamble
train. This virtual preamble train serves to enhance the corre-
lation score of the target signal, elevating it above the noise
floor and facilitating the detection of packets.

2. Orbital motion of satellites contribute unique Doppler
signatures at the physical layer: The second pivotal insight
underpinning Spectrumize revolves around the exploitation
of the orbital motion of the satellite during its contact period
with a ground station, which introduces a distinctive Doppler
signature unique to each satellite-ground station link. This

signature is influenced by factors such as the satellite’s po-
sition and velocity w.r.t. the stationary ground station. Fig 5
provides an example of two satellites, each characterized by
its unique Doppler signature. These Doppler signatures effec-
tively introduce an additional layer of physical modulation
over the existing data packets transmitted. In essence, this
process is akin to the codes used in CDMA. Similarly, we can
harness this well-known temporally varying Doppler signa-
ture of the satellite-ground station link to enhance signal SNR
and to demultiplex simultaneous transmissions.

We next detail our packet detection and collision resolu-
tion algorithm, followed by techniques to address hardware
imperfections like CFO and time jitter in the packet sequence.

3.1 Packet Detection

Following the transmit schedule and command from the
ground station, the satellite transmits N data packets to the
assigned ground station during its contact period. Each indi-
vidual data packet is preceded by a preamble to help with the
detection of packet start time and subsequent decoding. Let
the preamble signal be denoted by p(¢). Then the sequence
of preambles s(¢) transmitted by the satellite over the course
of the N data packets is:
N-1
s(t) = Z hy p(t — kt) +n(t) (D
k=0

where 7T represents the inter-packet interval at which the
satellite transmits its data packets. The wireless channel expe-
rienced by the k" data packet, denoted as Ay, and the received
signal’s noise, n(t), comprise both thermal noise and exter-
nal interference originating from terrestrial source or other
satellite transmissions.

Traditional packet detection methods would attempt to find
the packet start times by correlating the received signal s(7)
with the known preamble p(¢). However, in our real-world
experiments, due to the overwhelming amount of noise, we
could not detect any packet start times reliably. To address
this challenge, Spectrumize’s insight is that we can leverage
the known periodicity of the transmitted signal and construct
a longer virtual preamble train to correlate with the received
signal. This, in turn, would allow us to boost the correlation
score and would raise the peaks corresponding to the packet
start times above the noise floor.

Specifically, the simulated preamble train 5(¢) that we con-
struct to correlate with the received signal s(¢) is:

N—1
pl)="Y p(t—kr) 2)
k=0

where p(t) is the known preamble structure. So given the
virtual preamble train, our packet detection method works by
correlating s(¢) with j(¢). That is, we want to find

arg max, Is(t) p*(r — t/)| 3)

where p* is the complex conjugate of p. The time { that



maximizes the above correlation would be when the preamble
trains in the two signals s(¢) and j(¢) perfectly align. So when
the two trains align, the value of the correlation score is

“)

N-—1
Corr_Score = Z Ik Hp(t) ’ ’2

k=0

As observed in Eq. 4, the utilization of a preamble train for

correlation results in the aggregation of correlation terms from
each preamble in the train. This aggregation allows the peak
corresponding to the packet start times to surpass the noise
floor. It’s important to note, however, that the terms in the
summation do not add up constructively due to the presence
of the channel term /. The channel /; introduces a random
phase and gain variation to each term in the summation. While
coherent addition of the terms in the summation would be
the ideal scenario for packet detection, we still get significant
gains from non-coherent combination alone. In Appendix B,
we present the proof for the following Lemma.

Lemma 3.1 Consider ay,ay,...,a, to be complex numbers
on the unit circle with random phase. That is, a; = e/% where
0; is uniformly sampled from [0,2n|. Let s, be defined as
sn = Y1 ai. Then we have & [||s,||*] = O(n).

The above Lemma 3.1 demonstrates that the gains from non-
coherent combining grows monotonically with the number
of terms in the non-coherent summation. Hence, leveraging a
preamble train allows us to detect the packets buried under the
noise floor, and this was not possible with single preamble-
based correlation techniques. This observation also aligns
with the rich body of literature on non-coherent combining
and beamforming of wireless signals [32,37,50,51, 58].

Up to this point, we have discussed how leveraging a virtual
preamble train can enhance the SNR and enable the detection
of packet start times. However, this alone is not sufficient. In
addition to the wireless channel’s contribution represented by
hy, it is crucial to consider the presence of a Doppler signature
component. As previously discussed, the orbital motion of
the satellite results in a unique Doppler signature for each
satellite-ground station link, which overlays the data transmis-
sions from the satellite. This time-varying Doppler signature
is denoted as f;(). As illustrated in Fig. 5, the Doppler sig-
natures for two satellites are depicted in green and blue. This
signature essentially introduces frequency modulation on top
of the sequence of data packets transmitted by each satellite.
Given that the Doppler signature differs for each satellite-
ground station link, we can liken them to CDMA codes. We
can leverage these Doppler signatures to further enhance the
SNR of the desired signal.

Specifically, we can modify our simulated preamble train
p(t) as follows

N—1
p(t)=Y p(t—kr) e/t (5)
k=0

Note that the actual received signal s(¢) from the satellite
already has the Doppler shift encoded in it, so in the correla-

tion equation shown in Eq. 4, when we plug in our modified
p(t) from Eq. 5, the Doppler signature terms will cancel and
our correlation score is going to remain the same as in Eq. 4.
Hence, correcting for this Doppler signature f,;(¢) is essential
for the correlation across preambles from different packets to
add up constructively.

Packet separation: We would like to emphasize that the
term e/2Ma()" effectively functions as a time-varying code in
this context, aiding in the separation of packets between trans-
missions from terrestrial sources or other satellites operating
in the same frequency band. To illustrate this, let’s consider
the reception of transmissions from two satellites, as depicted
in Fig. 5, with their respective Doppler signatures denoted
as f1(t) and f2(t). Without loss of generality, let’s focus on
detecting the start times of packets from satellite 1, while
considering packets from satellite 2 as interference. For satel-
lite 1, employing the modified preamble train shown in Eq.
5, our correlation score achieves its highest value when the
simulated preamble train with the Doppler signature aligns
precisely with the train of packets present in the transmitted
signal from satellite 1.

However, when considering the transmissions from satellite
2 that cause interference at the ground station, the correlation
between our simulated preamble train and the signal from
satellite 2 diminishes. This is because the Doppler signature
encoded in satellite 2’s transmissions differs from the Doppler
signature we are seeking in the received signal. Specifically,
the correlation score for satellite 2’s transmission will be:

N—1
Corr_Score ~ Z hx ||p(t)||2g1'2”(f3(’>_f}(’>)’ (6)
k=0

Hence, as evident from the above equation, the correla-
tion terms from different packets in the train no longer add
up constructively. This occurs because the value of the term
(f7(t)— f1(t)) varies with time, contributing different phase
offsets to each term in the summation. Consequently, by har-
nessing the unique Doppler signature for each satellite, we can
further effectively suppress transmissions from other sources.

3.2 Hardware Imperfections

However, it is important to note that we have not yet accounted
for hardware imperfections in our technique. Due to these
hardware imperfections and the lack of perfect synchroniza-
tion, there will be disparities between the real signal s(f) and
our simulated preamble train j(z). More specifically, the re-
ceived signal s(¢) will exhibit a Carrier Frequency Offset
(CFO) component, causing it to deviate from the simulated
preamble train j(¢). Additionally, our assumption of a uni-
form periodic train of data packets every T seconds may not
hold true in practical scenarios. Processing delays through
different layers of the network stack often introduce some
jitter, causing the packets in the train not to be transmitted at
precisely T-second intervals.



It is imperative that we consider the impact of these hard-
ware imperfections when creating the virtual preamble train
used for detecting the presence and start times of packets.
However, standard channel-based techniques are inadequate
for estimating these offsets, as we must first locate the packet
to measure these channels. Consequently, we begin with a set
of initial values and iterate on these values until we observe
the peaks from the data packets rising above the noise floor.
Specifically, we construct the virtual preamble train with a
CFO value of Af and jitter denoted as €. In this scenario, our
modified virtual preamble takes the following form —

N-1
pt) =Y, plt—k(t+e)) PHall 2T (7)
k=0

The above equation for the preamble train takes into ac-
count the unique Doppler signature f;(¢), the Carrier Fre-
quency Offset (CFO) Af, and the jitter € in the periodic train.
It is worth noting that the jitter may result in non-uniformly
spaced packets, rather than just a uniformly perturbed period-
icity of €. However, for the sake of maintaining manageable
computational complexity, we assume only a jitter in the pe-
riodicity of the train. Our experiments have demonstrated
that this approach is sufficient to elevate the correlation score
above the noise floor.

The algorithm operates as follows: We start by selecting a
set of candidate CFO values {Af1,...,Af,} and a set of can-
didate jitter values {€1,...,€,}. It is important to note that the
Doppler signature is known, thanks to the TLE information
from the satellite. For each pair of CFO and jitter values, we
create a virtual preamble train to correlate with the received
signal s(¢). From the collection of candidate preamble trains,
we identify the CFO value Af* and jitter value €* that maxi-
mize the correlation score with s(z). These chosen values of
CFO and jitter may not be perfectly accurate, but our objec-
tive is to select values that are close enough to elevate the
correlation score above the noise floor. This approach enables
us to determine the position of the first packet in the signal.
However, what about subsequent packets?

According to Eq.4, the correlation peaks for subsequent
packets decrease as we decode and discard packets from the
signal. It causes the peaks of trailing packets in the train to
become increasingly obscured by noise. This makes detection
as challenging as single-preamble-based detection for these
trailing packets, as Eq.4 loses its summation advantage. To
tackle this issue, we must restore the summation advantage by
reconstructing the preamble train. To achieve this, following
the initial packet detection and decoding, we remove the cor-
responding portion in the signal and append it to the end of
the signal. We apply the same process to the virtual preamble
train, with the second packet now becoming the head of the
train. This procedure continues until we successfully decode
all the packets in a circular queue fashion. This approach en-
sures the train’s length is maintained, allowing us to preserve
the summation advantage in Eq. 4.

3.3 Collision Resolution for Packet Decoding

As previously mentioned, ground stations frequently find
themselves within the overlapping footprints of multiple satel-
lites due to the large coverage areas of these satellites. Al-
though they have the potential to communicate with several
satellites, current scheduling practices dictate that only one
satellite can be active at a time. This precaution is taken to pre-
vent collisions between transmissions from satellites within
the same constellation, but it comes at the cost of poor spectral
efficiency. As a remedy, Spectrumize facilitates simultane-
ous transmissions in the same frequency band from multiple
satellites within the same constellation.

Spectrumize efficiently separates and decodes data symbols
from the intended satellite while filtering out symbols from
collided packets of other satellites. This capability is made
possible by the distinct Doppler signature unique to each
satellite-ground station link. Each packet, within its duration,
carries a Doppler signature that differs significantly among
satellites. In essence, each packet can be seen as encoded with
a unique physical layer code defined by its Doppler signature,
as demonstrated in our results. Multiplying the combined sig-
nals of collided packets by the complex conjugate of the rele-
vant Doppler signature (f(¢)) allows us to enhance the SNR
of the desired packet’s data symbols while attenuating data
symbols from interfering packets. This approach leverages
Doppler signatures in a manner akin to CDMA codes. Fol-
lowing this SNR enhancement, we employ a standard LoRa
collision resolution algorithm to further isolate the symbols
corresponding to the target packet, effectively eliminating
symbols from interfering packets.

We focus on LoRa modulation for our packet decoding use
case, which is prevalent in the satellite IoT industry [6,7,43].
Our satellite employs LoRa modulation along with 2-FSK,
and the techniques we employ can also be extended to 2-FSK.
Numerous studies have delved into decoding collided LoRa
packets [24,45,46,52,53]. In our work, we employ the CIC
algorithm [38] for decoding collided packets. It is important
to note that merely applying the CIC algorithm [38] to the
received signal s(r) without prior Doppler signature correc-
tion, as demonstrated in Section 4, is ineffective, especially
for long packets. The correction of the Doppler signature is a
prerequisite for successfully decoding collided packets and
extracting the desired data symbols.

4 Evaluation

We evaluate Spectrumize’s performance in both simulation
and real-world environments. In simulation and benchtop em-
ulator setup, we assess the micro-benchmarks and scalability
of Spectrumize, while in the real-world testbed, we evaluate
its performance in actual operation settings.
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Figure 6: Micro-benchmark of packet detection techniques: a single preamble or a train without the Doppler signature suffering
from large noise. A preamble train with the Doppler signature applied exhibits a 13dB gain in correlation detection power.

4.1 Real-world Testbed

Our real-world testbed consists of our own satellite that is
launched in collaboration with FOSSA Systems, along with
two ground stations operated by the same collaborator, as
described in Section 2. While most of the experiments are
conducted using our own satellite, we also use other satellites
in the constellation for certain experiments, such as those
involving packet collisions. At the ground stations, we collect
raw SDR recordings of satellite passes, as well as the SNR and
RSSI values of the packets that are decoded by the Semtech
SX126x radio. This radio is connected to the receive chain
of the ground station through an RF splitter. Additionally, we
utilize the Microsoft Azure Orbital ground stations to receive
signals from our satellite [29].

4.2 Simulator and Benchtop Emulator Setup

For simulations, we employ MATLAB, leveraging the Com-
munications Toolbox for 2-FSK modulation and LoRaMatlab
for LoRa modulation [12]. To bring the evaluation closer
to real-world conditions, we also establish a benchtop em-
ulator setup. In this benchtop setup, we utilize three SDRs,
specifically USRP B200 [11], integrated with GNU Radio and
tuned to the satellite frequency plan. Two of these SDRs repli-
cate the transmitters of two distinct satellites, while the third
serves as the ground station. To introduce the Doppler effect,
we calculate the Doppler signature for a satellite pass over our
actual ground station location using the corresponding satel-
lite’s TLE. Subsequently, we multiply this Doppler signature
with the transmission signal. It’s important to note that, simi-
lar to the real-world testbed, there is no clock synchronization
across the SDRs.

4.3 Packet Detection

In order to assess the effectiveness of Spectrumize’s packet
detection technique, we initially conduct a series of micro-
benchmark tests to determine how different parameters impact
our approach, as detailed in Section 3. Subsequently, we apply

our method to the data collected from the real-world testbed,
and compare its performance with the conventional technique.

4.3.1 Micro-benchmark

We first conduct the benchtop emulation to examine the im-
pact of different correlation setups. We take a scenario where
a satellite transmits 2-GFSK packets at a 9600 baud rate, ev-
ery 30 seconds, with Doppler variation and Additive White
Gaussian Noise (AWGN) based on real-world measurements.
Our baseline approach employs classic preamble-based cor-
relation for packet detection in the received signal. However,
we encounter a lack of prominent correlation peaks at the start
of packets, as illustrated in Fig. 4. To improve the correlation
results, we correlate the signal with a single preamble mul-
tiplied by the Doppler signature. This results in marginally
improved correlation outcomes where the peak remains rela-
tively subtle in terms of correlation magnitude as shown in
Fig. 6a. Subsequently, we experiment with correlating the sig-
nal using a preamble train aligned with the satellite’s packet
transmission sequence but without Doppler correction. This
approach yields subpar results, with indistinct peaks that are
challenging to distinguish, as demonstrated in Fig. 6b. Fi-
nally, we implement our proposed method, which involves
correlating the signal with a preamble train multiplied by the
Doppler signature. This approach demonstrates a significant
improvement, showcasing a gain of approximately 13dB in
correlation detection power, as depicted in Fig. 6¢. In cer-
tain scenarios, we achieve an even higher gain of up to 25dB
demonstrating the effectiveness of our technique in detecting
packets despite heavy noise.

After examining our technique’s performance under ideal
conditions, we then investigate its robustness against real-
world factors such as hardware imperfections. We begin by
introducing a CFO of 100 Hz to the transmitted packets. When
we use our correlation technique to detect these packets, we
observe a decrease in the correlation peak (Fig. 7a), but it is
still very prominent compared to the baseline results shown
in Fig. 4. Next, we consider an extreme case of Doppler esti-
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Figure 7: Robustness of packet detection to errors: our packet detection is robust to timing or frequency mismatch.

mation error, 500 Hz. Although the resulting correlation peak
is shorter (Fig. 7b) than the ideal case, it is still very promi-
nent. We then study the impact of packet interval mismatch
by adding a 0.3 sec delay to each preamble in our preamble
train. As shown in Fig. 7c, this factor has a negative impact on
our performance. However, we still obtain a distinguishable
correlation peak that is much higher than the baseline. For
further investigation of the impact of these factors, we try out
a range of values. The results are presented in Fig. 7d and 7e.
In Fig. 7d, we demonstrate the effect of Doppler estimation er-
ror and CFO on the F1 score for packet detection. We observe
that our technique can tolerate a Doppler estimation error of
up to 1 kHz, while the CFO can reach several hundred Hz
without significantly affecting the F1 score. Fig. 7¢ shows
the impact of packet interval estimation error on the F1 score,
indicating that our technique can perform well with an inter-
val estimation error of up to one second. However, we have
observed an average interval estimation error of around 0.18
sec in real-world scenarios, and our algorithm makes iterative
adjustments to the preamble train to further reduce this error.
Additionally, we found that when the F1 score decreases, it is
mainly due to a decrease in precision rather than recall. This
indicates that our technique can detect actual packets even
under very adverse conditions.

4.3.2 Real-world evaluation

In addition to emulating our technique, we also test it in real-
world scenarios using our testbed. We apply our technique on

SDR recording traces gathered from ground station setups,
which contain packets transmitted from our satellite. We col-
lect traces from 67 satellite passes at various times over a
one-year period to ensure that we capture a range of factors
related to satellite orbital motion and noise at the ground sta-
tion, including weather conditions. These traces contain over
700 packets of varying lengths transmitted using 2-GFSK and
LoRa modulation schemes with intervals of a few seconds to
a minute between transmissions. To carry out the evaluation,
we implement our technique using MATLAB and execute it
in a virtual machine having 32 GiB RAM and 4 vCPUs.

The results of the real-world evaluation and comparisons
among different approaches are presented in Fig. 8. Fig. 8a
displays the F1 score for packet detection using Spectrumize
and a classic approach of single preamble-based correlation
at different SNR values (rounded off to the closest integer
number). Additionally, the distribution of packets across SNR
values is shown. As we only have the SNR values for the
packets decoded by the SX126x radio at the ground station
during a pass, we use this as a reference and calculate relative
SNR values for the packets detected by our approach but not
by the SX126x radio. Fig. 8a demonstrates that Spectrumize
outperforms the classic approach by 5x in low SNR scenar-
ios, where we have a higher distribution of packets since a
significant amount of packets reaching the ground station
suffer from low SNR. In Fig. 8b, the overall performance
of Spectrumize and other approaches in detecting packets is
shown. Spectrumize exhibits 3 x better performance than the
classic approach of single preamble-based correlation and
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Figure 8: Real-world evaluation: performance of Spectrumize
in packet detection and comparison against classic approach
(single preamble correlation without Doppler correction) and
other intermediate approaches.

2x better performance even when we incorporate Doppler
correction with a single preamble.

4.4 Collision Resolution

As explained in Section 2 and 3, packet collision is a signifi-
cant problem when downloading data from a satellite, affect-
ing the spectral efficiency. We now evaluate how effectively
Spectrumize mitigates this issue.

4.4.1 Simulation

We first evaluate Spectrumize’s ability in resolving packet
collision through simulation. It further aims to assess the scal-
ability of Spectrumize in terms of the number of satellites
visible from a ground station as illustrated in Fig. 2. We select
a polar region as the location for the ground station, as this
is where satellites most frequently pass overhead, resulting
in higher overlaps of their footprints. We simulate over 170
IoT satellites from the Swarm constellation by using their
TLEs. Satellites are set to transmit packets at 2-second inter-
vals when they come into view of the ground station. The
packet length is set to 3.5 seconds to cause frequent collisions.
The rest of the simulation setup is similar to that described in
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Section 4.2. As discussed in Section 3.3, we here use Spectru-
mize for packet detection and boosting the SNR of a packet
of interest w.r.t. colliding packets using Doppler signature.
We later employ CIC [38] to extract the symbols in a packet.
Since the opensource source code of CIC supports only LoRa
modulation, we use LoRa packets in our simulation. However,
a similar technique can be translated to 2-FSK.

The performance of Spectrumize in resolving packet colli-
sions is depicted in Fig. 9a, where we illustrate how its accu-
racy varies by the number of satellites that cause collisions.
We begin with a few satellites from the Swarm constellation
and gradually increase the number to the maximum in the
simulation. We achieve an accuracy of over 90% in resolving
collisions caused by up to eight satellites. The accuracy goes
down as the number of satellites causing collision increases.
This occurs since more satellites lead to a higher probability
of similarity in Doppler signatures among the satellites. In
Fig. 9b, we show the impact of similarity in Doppler signa-
ture on the accuracy, where it is measured in terms of the
correlation coefficient between Doppler signatures from two
satellites. The accuracy is observed to decline exponentially
with the correlation coefficient.

4.4.2 Real-world evaluation

In addition to the simulation, we conduct the real-world evalu-
ation of Spectrumize’s ability to resolve packet collision using
our testbed. To perform this evaluation, we use multiple satel-



lites from the same constellation launched by our collaborator.
We configure two satellites to cause packet collision at the
ground stations using LoRa modulation with a spreading fac-
tor of 11, a bandwidth of 125 kHz, and a code rate of 8. Given
the limited number of satellites in orbit, naturally occurring
collision scenarios are low. To address this, we employ our
benchtop emulator to create such collisions and enrich the
dataset of SDR traces. We then employ Spectrumize on the
SDR traces to detect the packets and resolve the collision. We
further compare its performance with the standalone CIC [38]
approach proposed for terrestrial networks as a baseline. It
is important to note that CIC does not use Doppler correc-
tion. The results in Fig. 10 show that Spectrumize achieves
over 80% accuracy on average, with more than 70% accu-
racy in low SNR conditions and 90% accuracy in good SNR
conditions. On the other hand, CIC performs poorly in low
SNR conditions as it relies on the classic approach of sin-
gle preamble correlation for packet detection. Although the
performance slightly improves with the SNR, the absence of
Doppler adjustment hampers its performance. We also ob-
serve that CIC struggles in decoding longer packets compared
to shorter ones given the Doppler change within a packet.

5 Related Work

The quest to enhance spectral efficiency in satellite communi-
cation has garnered considerable attention in the state-of-the-
art literature, with numerous techniques proposed, including
MIMO and beamforming. [20, 44, 54], cognitive radio com-
munication [39,40], and interference mitigation and cancella-
tion [16,22,22,22,23,41], among others. As the coexistence
of space and terrestrial networks becomes important in 5G
and 6G, this field is gaining significant interest [18,26, 34].
However, all of these techniques have been developed for
broadband communication in space. This paper focuses on
solving the problem of spectral efficiency in narrowband IoT
satellite communication, which has unique challenges such
as power constraints, lack of beamforming capability, lower
frequency and bandwidth, and the use of low-cost and low-
complexity connectivity hardware. As a remedy, we leverage
the unique Doppler signature of satellites in packet detection
and collision resolution.

5.1 Packet detection

In wireless communication, a preamble is added to the start
of a packet to aid in synchronization. Various correlation-
based methods have been proposed and implemented to de-
tect the preamble in the received signal [27, 30, 56,57]. How-
ever, in low SNR situations encountered in satellite IoT net-
works, single-preamble correlation techniques are not effec-
tive, as we have previously shown. To counteract the Doppler
shift caused by the high relative motion of LEO satellites,

Doppler compensation techniques are typically used in satel-
lite communication, both at the hardware and software lev-
els [13,17,42,49,55]. To the best of our knowledge, we are
the initial proponents of utilizing a series of preambles multi-
plied with the Doppler shift of a satellite to identify packets
in situations where the signal-to-noise ratio is low.

5.2 Collision resolution

The process of collision resolution in satellite communica-
tion is well researched, but not specifically in the context of
narrowband IoT satellite communication. On the other hand,
in terrestrial IoT networks, such as LoRa, various techniques
have been proposed to address packet collision. For exam-
ple, Choir [24] groups LoRa symbols based on the CFO of
the transmitter hardware, while FTrack [53] generates time-
frequency tracks of the symbols using sliding window Short
Term Fourier Transforms (STFT) on the de-chirped signal.
Similarly, mLoRa [52] and CoLoRa [46] group LoRa sym-
bols based on the power of the received signal. NScale [45]
translates the packet time offset into frequency features for
improved robustness, while CIC [38] cancels out interference
by combining spectra obtained from different parts of each
symbol. However, the major challenges in applying these
techniques to satellite IoT networks are very low SNR and
RSSI, and Doppler frequency offset.

6 Conclusion

The IoT satellite industry is growing rapidly due to the low
cost, low-complexity, and ease of deployment of satellite con-
stellations in orbit. However, our experience with launching a
satellite shows that the downlink from the IoT satellite to the
ground station suffers from large packet losses due to their
low link budget, large footprint and packet collisions, and
satellite motion. This paper introduces Spectrumize, a novel
approach to improve the spectral efficiency of 10T satellite
downlink. Spectrumize leverages the predictable motion of
the satellite and uses the temporal variation of the Doppler
shift as a signature to boost signal SNR and de-multiplex
simultaneous transmissions. Our evaluation involving our
launched satellite and collaborator’s ground stations shows
that Spectrumize improves downlink communication by 3 x
over state-of-the-art.
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A Simulation of Orbital Dynamics

Throughout the paper, particularly in Section 2, we incorpo-
rate various statistical data related to the orbital dynamics of
a LEO IoT satellite constellation. This data includes informa-
tion on the satellite’s footprint coverage, elevation angles, and
more. To generate these statistics, we utilize the CosmicBeats
Simulator [36] provided by Microsoft Research. We configure
the simulator with the locations of our ground stations and
the TLESs for the complete Swarm constellation.

B Proof of Lemma 3.1

Lemma: Consider ay,an,...,a, to be complex numbers on
the unit circle with random phase. That is, a; = e/% where
0; is uniformly sampled from [0,2n). Let s, be defined as
Sn =Y." a;. Then we have E [||sn|\2] = O(n).

Proof: s, is the sum of n random phasors on the unit circle
with phase sampled uniformly from [0, 27]. By leveraging the
commutative property of addition of complex numbers we
have

Sp = Sp—1+an (8

We know that a,, has magnitude 1 and has uniform random

phase in [0,27]. Hence, the phase difference between the

complex numbers a, and s,,_ can also be treated as uniformly

distributed in [0,27)]. Let the phase difference between a,, and

sp—1 be denoted by ¢,,. So from a simple inner product, we
have

lsall® = lsa—11> + llan]|* +2 cos(9n) llanll llsa-1ll ()

Isall® = [1sn—1]1* + 1 +2 cos(@n) [lsa-1]] (10)

2n
B (lsnl?) = 55 [ (B llswerlF] 41+
2cos) B (Is,-il] a0 (11

E [lIsall*] =E [lsn-1?] +1 (12)

We know that s; = 1. Hence, by induction we can see that

E [llsa*] = O(n) (13)
The key takeaway from the above lemma is that even
though we are adding up unit phasors with random phase
values in [0,27], the expected magnitude of their summation
grows monotonically with number of terms rather than go-
ing to 0. Hence, by leveraging a virtual preamble train in
Spectrumize, although we do not see the complete benefits of
coherent combination, we still see enough gains that allows
our system to detect satellite packets even in very low signal
strength conditions.
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