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ABSTRACT
In Database-as-a-Service (DBaaS) clusters, resource management is a com-

plex optimization problem that assigns tenants to nodes, subject to var-

ious constraints and objectives. Tenants share resources within a node,

however, their resource demands can change over time and exhibit high

variance. As tenants may accumulate large state, moving them to a different

node becomes disruptive, making intelligent placement decisions crucial to

avoid service disruption. Placement decisions need to account for dynamic

changes in tenant resource demands, different causes of service disruption,

and various placement constraints, giving rise to a complex search space.

In this paper, we show how to bring combinatorial solvers to bear on

this problem, formulating the objective of minimizing service disruption as

an optimization problem amenable to fast solutions. We implemented our

approach in the Service Fabric cluster manager codebase. Experiments show

significant reductions in constraint violations and tenant moves, compared

to the previous state-of-the-art, including the unmodified Service Fabric

cluster manager, as well as recent research on DBaaS tenant placement.

PVLDB Reference Format:
Arnd Christian König, Yi Shan, Karan Newatia, Luke Marshall, and Vivek

Narasayya. Solver-In-The-Loop Cluster Resource Management for

Database-as-a-Service. PVLDB, 16(13): 4254 - 4267, 2023.

doi:10.14778/3625054.3625062

1 INTRODUCTION
In Database-as-a-Service (DBaaS) settings, the service provider is

responsible for maintaining the database software, resource man-

agement, backup/restore, point-in-time recovery and high availabil-

ity of the service [37]. Examples of cloud relational DBaaS include

Amazon Aurora [1], Microsoft Azure SQL Database [44] and Google
Cloud SQL [19]. The DBaaS market size is expected to double from

12.0 Billion USD in 2020 to 24.8 Billion by 2025 [14]. DBaaS offer-

ings are multi-tenant, i.e., multiple databases (aka tenants) from
different customers share resources such as CPU, memory, disk I/O

and storage. Individual tenants are hosted on sets of nodes called

clusters (see Figure 1); for high availability, a tenant may have multi-

ple replicas distributed across these nodes. On a node, one or more

database processes, each assigned to a tenant, execute within one

or more virtual machines; the node’s resources are shared.
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Figure 1: Example Azure SQL DB DBaaS cluster (from [31])

DBaaS Cluster Resource Management: Because resources on
a node are shared between tenants, the key challenge in DBaaS

cluster resource management is which replicas to assign to which

nodes. We refer to this assignment as the cluster’s configuration.
Since tenants arrive and depart and their resource demands change

over time, this is an online problem, closely related to online vector
packing with repacking [13, 41], but with additional constraints.

The goal is to place tenants such that all constraints, including

constraints on node resource demands, are maintained for as long as

possible, minimizing service disruption due to constraint violations.

Resource management for DBaaS is particularly challenging, as DB

tenants are long-lived [39], accumulate large state [37] and exhibit

significant changes in resource demand over time [31].

Resource Over-Subscription: One challenge for cluster resource
management are over-subscribed resources, meaning that the sum of

resources promised to services on a node exceeds the node’s capac-

ity. Over-subscription can significantly improve cluster utilization,

thereby reducing service costs for providers and subscribers, and is

crucial to mitigating temporary capacity shortages (e.g., due to node

failures). However, resource over-subscription makes it possible for

resource demand on a node to exceed the node’s capacity.

Resource Violations: If the resource demand on a node exceeds a

threshold
1
, this is considered a resource violation. If a resource viola-

tion persists, it becomes necessary to move tenant replicas to other

cluster nodes. These moves (which we refer to as replica failovers)
may further disrupt the service. Specifically, (a) queries execut-

ing on the failed-over replica may be canceled, (b) the contents of

caches critical for query performance may be lost, (c) any database

1
In practice, thresholds are set below the node capacities, allowing for time to move

tenants before capacity is truly exhausted. For clarity of exposition, however, we use

the node capacities as violation thresholds in this paper.
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state on local storage has to be copied to the new node, and (d) the

tenant itself may become temporarily unavailable. Consequently,

service disruptions due to failovers are crucial to avoid.

Opportunities for Improvement: Because of the number of ten-

ants in a cluster (DBaaS clusters may host 1000s of replicas), com-

plex combinations of constraints (e.g., [5, 26]) and changing re-

source demands, cluster management techniques need to traverse

a large search space. Because of this, and the need to make place-

ment decisions quickly, industrial cluster managers use (greedy or

randomized) heuristics that base decisions on snapshots of current
resource usage. As we show, these fail to explore the space of can-

didate placements in an effective manner, and may miss optimal

solutions. We describe this in detail for two widely used cluster

managers, Kubernetes [30] and Service Fabric [24], in Section 2.1.

While this paper focuses on relational DBaaS settings, our ap-
proach is likely applicable to other resource management scenarios.

1.1 The Proposed Approach
This paper formulates DBaaS Resource Management as a combina-

torial optimization task that leverages amixed-integer programming
solver [52] to quickly generate a solution with provable bounds

on the objective function. It supports the full breadth of placement

constraints [4, 5, 8] and cluster management features (e.g., move
costs [11]) required for DBaaS settings, and has been implemented

inside an industrial-strength cluster-manager (Service Fabric).

Challenges and Key Ideas: The use of constraint solvers for clus-
ter resource management is far from being a panacea: e.g., both [24]

(in the context of Service Fabric) and [20] (in the context of Cluster

Scheduling) argue that combinatorial optimization results in unac-

ceptable overheads (or poor solution quality) and proposed simpler

heuristics. According to [47], no open-source cluster managers use

constraint solvers and, anecdotally, nor do widely used enterprise

cluster managers. This begs the question: why should our approach

succeed when previous attempts have not?

There are several reasons why solvers are viable for our scenario.

First, our optimization objective is specified as a sum of (expected)

failovers. This makes it an effective way to characterize service

disruptions, as we require resources to always be made available

when needed, and any sustained violation entails failovers. Hence,

the objective is highly effective at reducing service disruptions.

Because of this specific formulation, the objective value for inter-

mediate solutions can be used to prune the search space: a candidate

configuration with objective value 𝑋 implies that no configurations

requiring more than 𝑋 failovers can be optimal; thus, only con-

figurations that differ from the current one in the placement of

≤ 𝑋 replicas need to be considered. Since most violations can be

corrected with very few failovers, such pruning quickly reduces the

search space, and, in turn, speeds up the optimization significantly.

Second, the formulation allows the solver to quickly derive

bounds on the objective itself, and abort the search when a suffi-

ciently good solution (e.g., within 1% of optimal) has been found.

As we will explain, this is not the case for the objective used in

Service Fabric, making it less suitable for our specific scenario.

Third, for scalability, nearly all decision variables in our formu-

lation are binary, and we use only linear combinations of them in

the objective and constraints. In contrast, a number of the tech-

niques proposed in research used formulations that are significantly

more expensive to solve. For example, [20] incorporates non-linear

constraints, which result in more expensive optimization tasks [32].

Finally, because of the large state of a typical DBaaS tenant,

which makes failovers disruptive, the consequences of “bad” place-

ment in DBaaS settings can be severe. Consequently, even industrial

cluster managers use seconds of wall-clock time for tenant place-

ment/movement, allowing for some time for the optimization itself.

Results: In experiments using resource traces from real DBaaS

tenants, and clusters mirroring DBaaS production settings, our ap-

proach reduces violations by 71% and failovers by 79% (on average)

compared to Service Fabric, and violations by 54% and failovers by

68% (on average) compared to [31]. Moreover, it has significantly

lower latency for small-to-medium clusters sizes, due to being able

to abort the search when (near-) optimal solutions are found.

2 BACKGROUND
Cluster managers, such as Kubernetes [30], Service Fabric [24],Open-
Shift [22], DRS [50], etc. are ubiquitous in modern data centers

where they are essential for numerous orchestration tasks. In this

paper, we primarily consider two industrial cluster managers, Ku-
bernetes [30], which is deployed by e.g., Amazon, Google, IBM and

various Fortune 100 companies, and Service Fabric, which is used as

the cluster manager behind one of the largest DBaaS offerings [9],

Azure SQL Database [44], Azure Cosmos DB and Dynamics 365.
The role of the clustermanager is to compute a suitable target con-

figuration in response to tenant arrivals/departures, resource short-

ages, node failures, etc., and implement these via replica movement.

Target configurations need to satisfy a number of hard constraints
such as anti-affinity constraints, which e.g., prohibit co-locating

replicas within the same fault domain [5], affinity constraints [26],
which co-locate dependent services, etc. We refer to configurations

that satisfy all such constraints as valid. Among all valid configu-

rations, the target configuration is chosen such that it optimizes a

number of different metrics, such as the number of tenants moves

required to reach the target configuration, etc. These are combined

into a single criterion, called the configuration scoring function.
It is crucial that the cluster manager (1) efficiently generates valid

configurations reachable from a (potentially invalid) cluster state,

and (2) efficiently identifies target configurations that optimize

the scoring function. Unfortunately, as we will discuss, industrial

cluster managers often fail to provide either of these properties.

2.1 Limitations in the State of the Art
Kubernetes: In Kubernetes, the search space of target configura-

tions is limited by the existing scheduling logic, which only allows

moves
2
of replicas either (1) located on nodes that are experienc-

ing resource shortages [29] or (2) in response to a higher-priority

replica needing to be scheduled on the node of the replica to be

moved [29]. In particular, Kubernetes does not support cross node
preemption [28] where pods on a node 𝑁 are preempted, in order

to enable scheduling of a pod on a node 𝐾 (with 𝐾 ≠ 𝑁 ).

2
In Kubernetes, replica moves correspond to the eviction [29] or preemption [28] and

subsequent re-scheduling of a pod.
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Figure 2: Constraint Violation on node 5

Since the Kubernetes scheduler places replicas one-at-a-time,

this means that the configuration search is prone to local optima. As

a result, Kubernetes may not be efficient at optimizing scoring func-

tions and may miss valid configurations, or introduce unnecessary

failovers when “fixing” invalid configurations.

Service Fabric: Service Fabric uses multiple algorithms in concert

to fix constraint violations, which use a combination of random

and greedy heuristics that fix one constraint at a time. This scheme

does not systematically explore the space of valid configurations

reachable with only few moves, even when given large amounts of

time, which canmean unnecessary failovers or persistent constraint

violations in practice. We will show that Service Fabric can fail to

find valid configurations even for few (< 25) total replicas (see Sec-

tion 7.1) and its constraint-fixing logic yields configurations which

require significantly more failovers than needed (see Section 2.2).

The scoring function of Service Fabric (see [18], Score.cpp), is the

(minimal) product of (a) theweighted sum of the standard deviations

of all metrics [3]
3
across all nodes and (b) the sum ofmove costs [11]

of all replicas moved to reach the target configuration
4
. This makes

it difficult to bound the number of replicas moved to reach the

optimal target configuration, thereby constraining the search space,

as additional replica moves may make the (a) term arbitrarily small.

To navigate the resulting search space, the configuration enumer-

ation of Service Fabric uses Simulated Annealing [25] (SA). When

exploring the state space, SA generates a randommove (e.g., moving

a replica) and computes the resulting scoring function. Depending

on the new score, the new configuration is adopted with a certain

probability (see [24], Section 5.3) and used for further exploration.

Similar to the case of fixing constraint violations, this approach

does not allow systematic exploration of parts of the search space.

As a result, Service Fabric may miss an optimal target configura-

tion, and has no effective way to assess how far the current best

candidate target configuration is from the theoretical optimum, and

e.g., use this to bound the exploration time.

2.2 Experiment: Finding Valid Configurations
To demonstrate the limitations discussed above, we experimentally

compare the failovers required to return the cluster to a valid state

for different cluster managers and a specific instance of a constraint

violation. For fairness of comparison, we use the same scoring

function in all approaches: minimizing the total failovers required.
We consider the simple example of a 10-node cluster, with each

node providing only a single resource. There are 22 single-replica

3
These metrics typically correspond to demands for individual resources [3].

4
The scoring function also includes penalties associated with insufficient free nodes

and the total replica count, which we omit for ease of exposition.
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Figure 3: Service Fabric greedily moves 4 small tenant replicas
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Figure 4: The solver is able to fix the violation using only 2 moves

tenants placed in the cluster, which are distributed in the cluster

as shown in Figure 2: due to an increase in resource demand of a

tenants on node 5, the resource demand exceeds the node’s capacity.

When using Service Fabric to resolve this violation, it moves 4

tenants to three different nodes (see Figure 3). This is due to the con-

straint check logic, which greedily searches for moves that reduce

the number of violations. However, there exists a solution requiring

only 2 failovers (see Figure 4) which is found by the techniques

of this paper, but not Service Fabric, despite the small number of

tenants and the extensive search time (20 seconds) given to Service

Fabric (whereas our approach requires < 1 second). Because Kuber-

netes only allows preemption of tenants on nodes experiencing a

constraint violation, the 4-failover solution of Figure 3 is the best

possible outcome for a Kubernetes-based scheduler as well.

Weighted Scoring: To illustrate that this issue extends to other

optimization criteria, we consider a variant of our scenario, in which

the failover of a tenant using many resources is more significant

than the failover of a “small” tenant. Concretely, we use the failed-

over tenants’ resource demands as the optimization criterion.

Again, node 5 requires failovers to fix a capacity violation (see

Figure 5). This node hosts 3 tenants that demand 33% of the node

resource capacity (colored yellow) and one tenant that demands 35%

(colored red). None of the remaining cluster nodes has more than

33% capacity available. A greedy approach to solving this violation

moves 2 yellow tenants to nodes 2 and 4, thereby moving resources

corresponding to 66% of a node’s capacity (see Figure 6). In contrast,

the solver moves only 39% of a node’s capacity, by first moving
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Figure 5: Replicas need to be moved off of node 5
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Figure 6: A greedy solution moves replicas using 66% of node capac-
ity
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Figure 7: The solver moves only 39% of node capacity in total

a small tenant (requiring 4% of capacity) off of node 3, thereby

creating space to move the red tenant there (see Figure 7).

3 RELATEDWORK
Resource Management based on Vector Packing: [13, 41] have
focused on optimizing the packing density, with only loose bounds

on the incidence of failovers; for example, [41] was found to per-

form much worse in terms of violations and failovers than simple

heuristics for realistic tenant distributions [31].

Resource Management in Database Clusters: [31] introduced
an estimator of the probability of a future capacity violations for
co-located tenants. We leverage this estimator in our optimization

formulation, but go beyond [31] in that (a) we change the configura-

tion search algorithm, (b) propose a new scoring function, allowing

for efficient pruning of the search space, and non-trivial bounds on

the optimality of an intermediate score. [33] proposes a system for

resource optimization of cloud database services, with resources

allocated statically to replicas (while in our scenario they are shared

dynamically among co-located replicas), including a variant of the

Best Fit heuristic with logic to avoid skew/fragmentation.

Other techniques have studied different optimization tasks: e.g.,

[42] minimizes the number of used servers, subject to constraints on

service-level objectives and node load. In contrast, in our scenario,

cluster sizes are fixed and service disruption is the optimization

criterion. [16] manages resources based on the impact shortages

have on workload, allocating the minimum resources needed to
satisfy a performance target. Again, this differs from our scenario,

where violations must be resolved, regardless of their performance

impact. Finally, [35] considers a placement approach that protects

against the failure of multiple servers without requiring tenant

failovers. However, [35] models the resource demand as a single

fraction of node capacity (i.e., no differentiation between resources)

and does not account for changes to tenant resource demands.

Cluster Scheduling: Cluster resource management is related to

cluster scheduling (e.g., [23, 48]). However, cluster scheduling scenar-
ios differ in a number of respects: first, in many of these approaches,

resources are reserved statically and remain assigned independently

of whether they are used (e.g., see [48], Section 2.4). Moreover,

the key metrics optimized in scheduling (e.g., job completion times,
fairness) are very different from minimizing failovers.

Database Migration: How to migrate database replicas within a

cluster to alleviate resource contention has been an active area of re-

search as well [12, 15, 17, 36]. [36] studies swap-removable resource
contention, which is resolved by swapping primary and secondary

replicas. This approach is applicable to CPU over-subscription, but

fails for other resources, such as disk space, as swaps do not nec-

essarily reduce the disk footprint; moreover, it is not applicable to

non-replicated tenants. [12] proposes SWAT , an end-to-end tenant

migration framework, with the objective being to minimize tenant
downtime during the migration itself, and minimizing the impact of

the migration operations on workload throughput. However, which

tenants to co-locate, in order to minimize disruptions is not studied.

Thus, [12] complements this paper. The same holds for [15, 17],

which study live migration of database replicas within a cluster.

Optimization in Cluster Management: [47] proposes a frame-

work to translate constraints specified as SQL statements into a

combinatorial optimization task. However, [47] does not specify

which objective function (or constraints) to use in DBaaS settings,

which is one of our key contributions; moreover, it is not clear if

the objective we propose can be handled by their framework. [40]

uses query optimization techniques to scale [47] to larger clusters.

4 PLACEMENT AS AN OPTIMIZATION TASK
In the following, we formulate the task of tenant placement and

movement as an optimization problem. This formulation takes as

input the current state of the cluster, and a (possibly empty) set

of new tenants to be placed/removed. Assuming the placement

problem is not over-constrained, it outputs a target configuration in

which all active replicas are assigned a node, such that (a) all hard
constraints are satisfied and (b) the scoring function is minimized (or

– in the relaxed problem variant – within 𝜖 of the optimal score).

Constraints: For ease of explanation, we focus, in the following, on
4 constraints typical for DBaaS settings. We describe how to encode

other constraints supported by Service Fabric in Appendix A.

Capacity Constraints: Aggregate resource demand for all replicas

on a node may not exceed the node capacities for any resource.

Replica Anti-affinitys: To preserve tenant availability after node

failures, no two replicas of a tenant may be mapped to one node.

Fault Domain Constraints: Nodes in DBaaS clusters are partitioned

into fault domains (FD) [5], where a single fault domain contains

nodes which share a single point of failure. To preserve availability,

no two replicas of one tenant may be placed in one fault domain.

Upgrade Domain Constraints: Similarly, nodes are partitioned into

upgrade domains (UD) [5], where an upgrade domain describes a

set of nodes that are upgraded (and restarted) in parallel. No two

replicas of one tenant may be placed to the same upgrade domain.

Configuration Scoring: The purpose of the scoring function is

to minimize degradation in performance and availability of the

DBaaS service. Such degradation can result from a number of causes,

with the most important one being resource violations that affect

service performance and necessitate replica failovers. Any scoring

function in the DBaaS context ideally minimizes the likelihood of



such shortages, and resolves them with minimal failovers. This is

equally desirable for any other type of constraint violation.

Resource fragmentation: Similarly, resource fragmentation can

be a cause of failovers when “large” replicas need to be placed.

Consider the example of two classes of tenants; class A, which

consumes 25% of a node’s capacity, and class B, which consumes

80% of a node’s capacity. Now, in a cluster of 𝐻 nodes, if at least 𝐻

tenants of class A have been placed using e.g., theWorstFit heuristic,
placing a tenant of class B will require an additional failover.

Scoring Functions in Enterprise Cluster Managers: For ex-
ample, the scoring function used in Service Fabric has three com-

ponents: (i) the (weighted [11]) number of failovers required to

reach the target configuration, (ii) the imbalance in resource de-

mands across nodes, and (iii) a penalty term that is assessed when

insufficiently many nodes with sufficient unused capacity exist [2].

Given the above, a key challenge is to combine these vastly dif-

ferent components into a single score, especially given that they all

use different units (failovers, resources and penalties), and to reason

about them during configuration enumeration (see Section 2.1).

Proposed Scoring Function: In contrast, we propose a scoring

function that is the sum of terms that are all specified in terms of

(expected) failovers; this makes the score more easily interpretable

and allows effective pruning of the search space. This scoring func-

tion has three components, which we define in detail in Section 5:

𝑚𝑜𝑣𝑒𝑠: the actual number of failovers required to reach the target

configuration from the current one.

𝑚𝑜𝑣𝑒𝑠𝑐𝑎𝑝 : The expected number of failovers required as a result of

capacity violations.

𝑚𝑜𝑣𝑒𝑠𝑓 𝑟𝑎𝑔 : The expected number of failovers for placing a full-node

tenant into a randomly chosen fault domain and upgrade domain.

Formulating the score as a sum enables the branch-and-bound
optimizations [51] discussed in Section 1.1, since it allows us to

bound the number of replicas whose placement changes.

Weighted Failovers: There are numerous incentives to differenti-

ate failovers for different tenants by how impactful they are on the

overall service. For example, we may want to distinguish tenants

by resource usage, by tenant type (e.g., Serverless vs Provisioned

offerings) or distinguish between 1st- and 3rd-party users.

For this purpose, Service Fabric offers the move cost [11] ab-
straction, which exposes weights which can be associated with

a tenant. The optimization task then becomes to minimize the

weighted failover count. Assigning such weights is possible in our

formulation as well. For clarity of exposition, we first describe a

version of our formulation that treats all failovers as equal; and

subsequently, in Appendix B, extend it to incorporate weights.

5 OPTIMIZATION FORMULATION
Notation: We consider a cluster to be a set of nodes N , each of

which offers a set of resources R. For each resource 𝑟 ∈ R, every
node has capacity 𝑐𝑟 . The set of nodes is partitioned into 𝑑𝑓 fault
domains [5], where sets of nodes sharing a common point of failure

are grouped in the same domain, and 𝑑𝑢 upgrade domains [5], with
nodes being upgraded in parallel grouped into one upgrade domain.

We denote the set of nodes in fault domain 𝑑 as F𝑑 ⊆ N . Similarly,

we denote the set of nodes in one upgrade domain 𝑑 as U𝑑 ⊆ N .

We use 𝐷 𝑓 = {1, . . . , 𝑑𝑓 } to enumerate the fault domains, and 𝐷𝑢 =

{1, . . . , 𝑑𝑢} to enumerate the upgrade domains. Finally, we denote

the set of all nodes with a current resource violation as N𝑉 .

Database tenants: we consider the set T database tenants; each

tenant has 1 or more replicas. For a tenant 𝑡 ∈ T , we denote the

set of replicas K𝑡 ⊂ N, with replica 1 ∈ K𝑡 denoting the primary
replica and all other secondary replicas. We use K𝑉̄

𝑡 to specifically

refer to all replicas not placed on nodes with a current resource

violation. We include new replicas that have not yet been placed

on the cluster, but are to be placed during the next invocation of

the optimization in T ; we use the notation T𝑛𝑒𝑤
to refer to these

new tenants specifically. For every tenant 𝑡 ∈ T not in T𝑛𝑒𝑤
, we

encode the current placement of its 𝑘-th replica as 𝑝𝑡,𝑘 ∈ N .

We denote the (current) demand for a resource 𝑟 by the 𝑘-th

replica of tenant 𝑡 as 𝑑
𝑡,𝑘
𝑟 . In addition, each tenant replica has a

maximum demand 𝑑_𝑚𝑎𝑥
𝑡,𝑘
𝑟 , which is the maximum of resource 𝑟

the replica can use. Based on these, we capture the degree a resource

is over-subscribed as the oversubscription-ratio of a node 𝑛 for a

resource 𝑟 as 𝑂𝑅𝑟𝑛 :=

(︂ ∑︁
𝑡 ∈T

∑︁
𝑘∈K𝑡 :𝑝𝑡,𝑘=𝑛

𝑑_𝑚𝑎𝑥
𝑡,𝑘
𝑟

)︂
/𝑐𝑟 and for the

cluster as𝑂𝑅𝑟 , corresponding to the average of𝑂𝑅𝑟𝑛 over all nodes.

Target Configuration: The output of the optimization is encoded in

the form of binary decision variables 𝑥
𝑡,𝑘
𝑛 , which are set to 1, if the 𝑘-

th replica of tenant 𝑡 ∈ T should reside on node 𝑛 ∈ 𝑁 in the target

configuration (and 0 otherwise). The set of all decision variables is

shown in Table 1 and they will be explained subsequently.

Furthermore, our formulation uses 2 constants:𝑀 , which is an

upper bound number on tenants on a single node, and 𝐶 , which is

an upper bound on the total resource demand on a node.

This gives us the optimization objective 𝑆𝑐𝑜𝑟𝑒 defined below,

which corresponds to the sum of failovers described in Section 4 and

is minimized subject to constraints on node capacity (Equation (1)),

upgrade and fault domains ((3) and (4)), and a constraint ensuring

that every replica is assigned to one node only (2).

Optimization Formulation

𝑆𝑐𝑜𝑟𝑒 = min

(︁
𝑚𝑜𝑣𝑒𝑠 +𝑤 𝑓 ·𝑚𝑜𝑣𝑒𝑠𝑓 𝑟𝑎𝑔 +𝑤𝑐 ·𝑚𝑜𝑣𝑒𝑠𝑐𝑎𝑝

)︁
such that,∑︂
𝑡 ∈T

∑︂
𝑘∈K𝑡

𝑑
𝑡,𝑘
𝑟 𝑥

𝑡,𝑘
𝑛 ≤ 𝑐𝑟 ∀𝑛 ∈ N , 𝑟 ∈ R (1)∑︂

𝑛∈N
𝑥
𝑡,𝑘
𝑛 = 1 ∀𝑡 ∈ T , 𝑘 ∈ K𝑡 (2)∑︂

𝑛∈𝑈𝑑

∑︂
𝑘∈K𝑡

𝑥
𝑡,𝑘
𝑛 ≤ 1 ∀𝑡 ∈ T , 𝑑 ∈ 𝐷𝑢 (3)∑︂

𝑛∈𝐹𝑑

∑︂
𝑘∈K𝑡

𝑥
𝑡,𝑘
𝑛 ≤ 1 ∀𝑡 ∈ T , 𝑑 ∈ 𝐷 𝑓 (4)

Constraints 1-4 ensure that no node in the target configu-

ration is in resource violation (constraint (1)), each replica

is placed on exactly 1 node (constraint (2)), and there is at

most 1 replica per upgrade and fault domain (constraints

(3)-(4)). This also implicitly ensures anti-affinity.



Table 1: Decision Variables used in the Optimization Formulation

𝑥
𝑡,𝑘
𝑛 Binary 1 if the 𝑘th replica of tenant 𝑡 ∈ T should reside on node 𝑛 ∈ 𝑁 in target configuration

𝜋𝑙
𝑛 Binary 1 if for Monte-Carlo iteration 𝑙 ∈ 𝐿, the node 𝑛 ∈ N exceeds capacity for a resource at some time

𝛿𝑑 Integer The minimum number of tenants on a node for upgrade domain 𝑑 ∈ 𝐷𝑢

𝛿𝑑,𝑛 Binary 1 if node 𝑛 ∈ 𝑈𝑑 , 𝑑 ∈ 𝐷𝑢 has the smallest number of placed tenants

𝛾𝑑 Integer The minimum number of tenants on a node for fault domain 𝑑 ∈ 𝐷𝑓

𝛾𝑑,𝑛 Binary 1 if node 𝑛 ∈ 𝐹𝑑 , 𝑑 ∈ 𝐷𝑓 has the smallest number of placed tenants

Components of the scoring function: The first component of the

scoring function,𝑚𝑜𝑣𝑒𝑠 , quantifies the number of failovers required

to reach the target configuration. For this, we count the number of

replicas whose assignment in the target configuration is different

from the current one (Equation (5)). We do not count new tenants

entering the cluster in this equation.

Number of Failovers needed for target configuration

𝑚𝑜𝑣𝑒𝑠 :=
∑︂

𝑡 ∈T\T𝑛𝑒𝑤

∑︂
𝑘∈K𝑡

(︂
1 − 𝑥𝑡,𝑘

𝑝𝑡,𝑘

)︂
(5)

Here, the term 𝑥
𝑡,𝑘

𝑝𝑡,𝑘
is equal to 1 if the replica 𝑘 was not

moved between current and target configuration, and 0

otherwise. Summing 1 − 𝑥𝑡,𝑘
𝑝𝑡,𝑘

over all replicas therefore

corresponds to the number of failed-over replicas.

Note that this above formula is simplified in that it

treats a primary/secondary swap as two separate failovers.

To model swaps separately, we can compute swaps as

𝑠𝑤𝑎𝑝𝑠 :=
∑︁
𝑡 ∈T\T𝑛𝑒𝑤

∑︁
𝑘∈K𝑡 \{1} 𝑥

𝑡,𝑘

𝑝𝑡,1
and adjust the

𝑚𝑜𝑣𝑒𝑠 value by subtracting 2 · 𝑠𝑤𝑎𝑝𝑠 .

Fragmentation failovers:Resource fragmentation can lead to failovers

when “large” replicas need to be placed or moved. One approach to

address this is to measure the amount of resource fragmentation

directly as part of the scoring function or requiring some nodes to

have low or no demand. The drawback of this type of modeling is

that it does not quantify the number of failovers that may result

from fragmentation when placing/moving “large” replicas. More-

over, when a large replica is placed, we do not know upfront in

which fault/upgrade domain it will be placed; hence, ensuring that

some nodes have resources available may not prevent failovers.

Instead, we compute the minimum number of failovers required

to place a replica requiring the entire resource capacity of a node

(i.e., assuming the worst case) into each fault domain; we then use

the average over all fault domains in scoring. We compute the same

average over all upgrade domains, and use the sum of both averages

as the𝑚𝑜𝑣𝑒𝑠𝑓 𝑟𝑎𝑔 component of the scoring function (Equation (12)).

The optimization criterion itself ensures that space required

for this type of placement (for a domain) is only given up, if this

prevents an (expected) failover of a different type. In short, the

𝑚𝑜𝑣𝑒𝑠𝑓 𝑟𝑎𝑔 term ensures the cluster is maintained in a state that

allows for the placement of large replicas in arbitrary domains as

long this does not entail additional failovers due to other causes.

Modeling Failovers due to Fragmentation

∀𝑑 ∈ 𝐷𝑢 , 𝑛 ∈ U𝑑 :

𝛿𝑑 ≤
∑︂
𝑡 ∈T

∑︂
𝑘∈K𝑡

𝑥
𝑡,𝑘
𝑛 (6)

𝛿𝑑 ≥
∑︂
𝑡 ∈T

∑︂
𝑘∈K𝑡

𝑥
𝑡,𝑘
𝑛 −𝑀

(︁
1 − 𝛿𝑑,𝑛

)︁
(7)

∀𝑑 ∈ 𝐷 𝑓 , 𝑛 ∈ F𝑑 :
𝛾𝑑 ≤

∑︂
𝑡 ∈T

∑︂
𝑘∈K𝑡

𝑥
𝑡,𝑘
𝑛 (8)

𝛾𝑑 ≥
∑︂
𝑡 ∈T

∑︂
𝑘∈K𝑡

𝑥
𝑡,𝑘
𝑛 −𝑀

(︁
1 − 𝛾𝑑,𝑛

)︁
(9)

1 =
∑︂
𝑛∈𝑈𝑑

𝛿𝑑,𝑛 ∀𝑑 ∈ 𝐷𝑢 (10)

1 =
∑︂
𝑛∈𝐹𝑑

𝛾𝑑,𝑛 ∀𝑑 ∈ 𝐷 𝑓 (11)

𝑚𝑜𝑣𝑒𝑠𝑓 𝑟𝑎𝑔 :=
∑︂

𝑑∈𝐷𝑢

𝛿𝑑

|𝐷𝑢 |
+

∑︂
𝑑∈𝐷𝑓

𝛾𝑑|︁|︁𝐷 𝑓

|︁|︁ (12)

The terms 𝛿𝑑 and 𝛾𝑑 correspond to the minimum num-

ber of replicas in the corresponding upgrade and fault do-

mains, respectively, with the indicator variables 𝛿𝑑,𝑛 and

𝛾𝑑,𝑛 being set to 1 if 𝑛 corresponds to the node that has

this minimum number of replicas (and 0 otherwise). Equa-

tion (6) ensures that 𝛿𝑑 is never larger than the number

of tenants on a node in upgrade domain 𝑑 , whereas Equa-

tion (7) ensures that it is at least as large as the minimum.

Equations (8)-(9) serve the same roles for fault domains.

Capacity Failovers: To model the expected number of failovers due
to (future) capacity violations, we leverage the technique from [31].

The key idea is shown in Figure 8: the future resource demand of a

set of co-located replicas is simulated using the resource demands

of similar replicas that were observed previously. These demands

are aggregated for time points 𝑂 = {𝑜1, 𝑜2, . . .}, and tested for

resource violations. This computation is repeated, with the past

resource demands used chosen at random from all collected similar
tenants, yielding a Monte-Carlo (MC) simulation. The probability

of a resource violation is then estimated as the fraction of iterations

that had one (or more) resource violations.

There are 3 key reasons why we use the MC simulation to quan-

tify the risk of a future failover: (a) the approach effectively models

the uncertainty of future demands (as opposed to giving a point
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Figure 8: One MC iteration of the estimation of the probability of
violation, for a node 𝑁 containing 2 tenants (of class 1 and class 2).

estimate only), which is crucial for new tenants for which there

is little information to base demand predictions on, (b) it implic-

itly captures correlations across resources and (c) it does not make

assumptions about the shape of the demand curves. While the prob-

ability estimates are heuristic in nature, this is a consequence of

tenant placement being an online problem, in which solution quality

is dependent on (unknown) future resource demands. More princi-

pled characterizations of placement quality have been attempted

in online vector packing [13, 41], which offer (loose) bounds on the

number of failovers required in response tenant arrivals or load

changes, but do not asses the likelihood of such events, either.

To realize the MC simulation as part of optimization, Equa-

tion (13) realizes a single MC iteration 𝑙 (for a given node 𝑛 ∈ N and

time point 𝑜 ∈ O), resulting in an indicator variable 𝜋𝑙𝑛 being set if

there is a violation. Based on the indicators, the expected number of

resulting failovers𝑚𝑜𝑣𝑒𝑠𝑐𝑎𝑝 is the sum of the violation probabilities

(Equation (14)). Similar to [31], we make the assumption that each

violation can be resolved using one failover.

Modeling Failovers due to Capacity Violations

∀𝑛 ∈ N , 𝑜 ∈ O, 𝑙 ∈ 𝐿, 𝑟 ∈ R :∑︂
𝑡 ∈T

∑︂
𝑘∈K𝑡

𝑑
𝑡,𝑘

𝑟,𝑜,𝑙
𝑥
𝑡,𝑘
𝑛 ≤ 𝑐𝑟 +𝐶𝜋𝑙𝑛 (13)

𝑚𝑜𝑣𝑒𝑠𝑐𝑎𝑝 :=
1

|𝐿 |
∑︂
𝑛∈N

∑︂
𝑙∈𝐿

𝜋𝑙𝑛 (14)

In Equation (13), the term 𝑑
𝑡,𝑘

𝑟,𝑜,𝑙
corresponds to the future

resource demand of resource 𝑟 for replica 𝑘 of tenant 𝑡 ,

at time 𝑜 , with the past resource demand trace selected

during the 𝑙-th Monte-Carlo invocation. For each node 𝑛,

all of these demand terms are added up, and if the aggre-

gate (predicted) demand exceeds the node capacity 𝑐𝑟 , the

indicator variable 𝜋𝑙𝑛 is set to 1 (0 otherwise).

5.1 Scheduling failovers
When transitioning a cluster to a new configuration we need to

ensure that all failovers can be executed without introducing tem-

porary capacity violations or acerbating existing ones. For this, it

is not sufficient to ensure that the new configuration has no viola-

tions (i.e., constraint (1)): when moving a replica, locally stored data

needs to be copied to the target node, andmemory and CPU demand

for the database process are incurred even before the new replica

becomes active. Therefore, we need to ensure that (in the worst

case) the resource demand for moved replica can be accommodated

on both the source and the target node during the transition.

There is an inherent trade-off here: assuming sufficient network

bandwidth, scheduling failovers in parallel allows for them to com-

plete quickly, but also ties up resources on more nodes. Moreover, in

some cases, it becomes necessary to schedule failovers in multiple

phases: consider an example cluster in which every node contains

replicas that require 30% of its resource capacity. Now, placing a

new replica that requires 80% of a node’s capacity means that first
some replica(s) need to be moved to create space, and only after
these moves can the placement of the large replica proceed.

Consequently, we consider both 1-phase and 2-phase failover

schedules, where all failovers in a phase are executed in parallel,

with the next phase starting after all failovers have completed.

In 2-phase schedules, during phase 1 replica moves are executed

that create sufficient space (a) for new tenants and (b) to allow

subsequent (i.e., during phase 2) moves of replicas located on nodes

in violation. As explained above, we account for the demand of

failed over replicas on both the source and target nodes, and require

all nodes not in violation at the start of phase 1 to satisfy resource

capacity constraints at the end of it. For nodes initially violating

capacity constraints, we do not allow any tenant moves onto these

nodes, in order to not exacerbate the violation further.

To realize this logic, we formulate an additional constraint en-

suring that the cluster state after the 1st phase does not introduce

any additional capacity violations (constraint (15)), and disallow

placing tenants on nodes in capacity violations (constraint (16)).

Scheduling Failovers

∀𝑛 ∈ N\N𝑉 , 𝑟 ∈ R:∑︂
𝑡 ∈T\T𝑛𝑒𝑤

∑︂
𝑘∈K𝑉̄

𝑡

(︂
𝑑
𝑡,𝑘
𝑟

(︁
𝑥
𝑡,𝑘
𝑛 + 𝐼 [𝑛 = 𝑝𝑡,𝑘 ] (1 − 𝑥𝑡,𝑘𝑛 )

)︁ )︂
≤ 𝑐𝑟 (15)

∀𝑛 ∈ N𝑉 ,∀𝑡 ∈ T , 𝑘 ∈ K𝑡 , with 𝑝
𝑘,𝑡 ≠ 𝑛 : 𝑥

𝑡,𝑘
𝑛 = 0 (16)

Here, the left side of (15) sums up the resource demands

of all replicas, counting the demand of failed-over repli-

cas on both source and destination. This condition then

ensures that there are no additional constraint violations

introduced at the end of phase 1. Constraint (16) disallows

adding replicas to nodes that are in resource violation.



6 SERVICE FABRIC INTEGRATION
Background: In Service Fabric clusters, each Azure SQL database

runs as a stateful service and is scheduled by the Reliability Sub-
system [10], which consists of (a) the Failover Manager (FM), which

keeps track of database creation/deletion requests and the latest

cluster configuration and periodically reports them to (b) the Place-
ment & Load Balancing component (PLB). PLB detects if the config-

uration is invalid or requires new placement/removal of replicas.

It then executes a search to find a new valid cluster configuration,

generates replica moves and sends these FM for execution.

Invoking the solver: The input to PLB includes database creation/-

deletion requests and the cluster configuration. PLB’s state already

contains all the data needed in the optimization formulation except

for the MC samples 𝑑
𝑡,𝑘

𝑟,𝑜,𝑙
required by Equation (13). Now, similar

to the resource usage of a tenant, its MC samples can change over

time. So we associate the MC samples with each tenant as its custom
metrics [3], which are reported periodically. In total, we create an

additional |R | × |𝐿 | × |O| metrics cluster-wise. Using the settings in

our experiments (Section 7.2), this means 3×10×6 = 180 additional

metrics stored per tenant, which is less than 1KB in memory.

The constraint constructor and objective constructor consume the

input and together construct the full optimization model. Specifi-

cally, the constraint constructor covers Constraints (1)–(4) and (15)–

(16), while the objective constructor covers the remainder. Logically,

the constraint constructor is abstracted to construct user-facing con-
straints, such as tenant affinity, while objective constructor builds

the internal failover objective and constraints. The decoupled design
aims to improve code clarity and maintainability.

For example, we observed that the majority of the scheduler

invocations result new tenant placements only, with no failovers of

existing tenants. This leads to room for optimization in the objective

constructor without affecting the constraint constructor. Specifi-

cally, when there is no failover, the left side of Equation (13) is upper

bounded by the sum of 𝑑
𝑡,𝑘

𝑟,𝑜,𝑙
for all existing replicas on node 𝑛 plus

the largest value of𝑑
𝑡 ′,𝑘
𝑟,𝑜,𝑙

for the newly placed tenant 𝑡 ′. If this upper

bound is smaller than 𝑐𝑟 for all offsets 𝑜 , then we know 𝜋𝑙𝑛 = 0

and the corresponding instance of Equation (13) can be omitted

from the encoding. In experiments, this optimization reduced the

number of constraints generated by Equation (13) by up to 90%.

The MIP solver solves the resulting optimization problem and is

bounded by a configurable time limit (e.g., 2 sec.) and an approxima-

tion limit (e.g., stop when within 2% of optimal) for high efficiency.

Then the FM move generator compares all optimized placement

variables to the input configuration to determine which replica

moves are needed. All such moves are sent to FM for execution.

7 EXPERIMENTS
In this section, we compare the proposed approach to existing

industrial cluster managers as well as [31]. Please note that [31]

already compared its approach to many simpler placement heuris-

tics (such as BestFit,WorstFit, etc.) used in cluster managers, as well

as [41], [20], [38] and outperformed them significantly in terms

of capacity violations and failovers. Moreover, none of these ap-

proaches directly supports the placement constraints required for

industrial DBaaS clusters, or has logic to resolve constraint viola-

tions, so we omit a comparison to them.

7.1 Experiment: Finding valid configurations
In this experiment, we evaluate the ability of different cluster man-

agers (Service Fabric, Kubernetes, and our approach) to identify

valid configurations for small, but challenging placement tasks. We

use the Gurobi solver [21] in our approach.

Experimental setup: We consider a 10 node cluster with a single

resource 𝑟 and node capacity 𝑐𝑟 = 100. Now, we generate a set of

55 single-replica tenants T ; to set their resource demands 𝑑
𝑡,1
𝑟 , we

first chose a value 𝐹 (≤ 𝑐𝑟 ), which denotes the average per-node

resource demand once all tenants in T are placed. Then we generate

tenant demands as follows: 1 tenant with demand 𝐹 , 2 tenants with

demand 𝐹/2,. . . , and 10 tenants with demand 𝐹/10. Obviously, these

tenants can be placed in the cluster without capacity violations by

placing the 1st tenant on node 1, the next 2 tenants on node 2, etc. . .

We then shuffle the set of tenants randomly and place them in

the shuffled order on the cluster, testing if the cluster manager is

able to generate a valid configuration after every placement request.

Since we only want to exercise the configuration search component,

we make the simplifying assumption that all tenant moves required

to place a large tenant are instantaneous (i.e., the resource demand

does not accumulate on both source and target nodes during a

move). In particular, this means that a final configuration placing

all tenants is always reachable, no matter where tenants had been

placed previously. In the experiments, we vary 𝐹 between 90 and

99 (in steps of 1) and repeat the experiment 10× for each value of 𝐹 .

Cluster Manager Configuration: We initially set the Placement-
SearchTimeout in Service Fabric (see [7]) and the Timeout of Gurobi
to 2 seconds (both execute in a single thread in these experiments).

Results: Service Fabric is able to place all tenants in 71% of all

experiments, whereas the solver is able to do so in 100% of all

experiments. If we increase the PlacementSearchTimeout for Ser-
vice Fabric by 5x to 10 seconds, Service Fabric is still only able to

place all tenants in 80% of all experiments; increasing the Place-
mentSearchTimeout to 1 minute results in Service Fabric placing

all tenants in 91% of the experiments. In contrast, if we reduce the

Timeout value of Gurobi to 0.5 sec., the solver continues to place

all tenants 100% of the time.

Kubernetes: We repeated the same experimental setup for the

Kubernetes cluster manager. Here, we deploy a local 10-node Ku-

bernetes (V1.25) cluster on a Windows Server 2019 machine us-

ing minikube (V1.28). The Kubernetes scheduler component, kube-
scheduler , is deployedwith thewidely usedNodeResourceFit (V1Beta2)
plugin which supports three scoring strategies:Most Allocated, Least
Allocated, and RequestToCapacityRatio. As there is only one metric 𝑟

in the experiments, RequestToCapacityRatio reduces to either Most

Allocated or Least Allocated depending on the pre-defined scores

of node utilization ratios. Therefore, we only evaluate the Most

Allocated and Least Allocated scoring strategies in the experiments.

Placement is carried out by deploying a dummy nginx pod with

the specified resource demand. An extended resource [27] is cre-
ated to represent the demand for 𝑟 . The resource demand is set

accordingly in the ‘requests’ and ‘limits’ of the pod YAML file.



Kubernetes handles placement failure differently than Service

Fabric: if a pod (of higher priority) can not be placed, an existing

lower-priority pod is preempted and placed into the scheduling

queue [28]. Thus, finding a valid configurationmay involvemultiple

iterations of preemption and re-scheduling and hence we cannot

apply a timeout threshold (as before) to asses if a placement fails.

Instead, each tenant is (initially) placed with low priority. If the

initial placement of a tenant 𝑡 fails, its priority level is temporarily

increased to high so that Kubernetes may preempt existing tenants

to place 𝑡 . Once placed, 𝑡 ’s priority is restored to low. All preempted

tenants are rescheduled for placement. This may trigger cascading

preemptions, which are not guaranteed to converge to a valid cluster

state. Consequently, we set a stopping criterion: if the number of

tenants preempted due to a single new placement exceeds half of

the existing tenants in a cluster, we consider the placement failed.

Repeating the experimental setup above, we see that rate of

successfully placing all tenants depends significantly on the scoring

strategy: forMost Allocated, Kubernetes was able to place all tenants
44% of the time, and for Least Allocated only 17%. Both policies

consistently result in placement failures if 𝐹 exceeds 97.

7.2 Experiment: Cluster Simulation
In this section, we consider realistic tenant (demand) distributions

and cluster setups and evaluate the effect of the different techniques

on the overall quality of the DBaaS service, measured via the num-

ber of violations, failovers as well as the overhead of tenant place-

ment itself. Our experiments cover a period of 3 (simulated) weeks

of cluster time, and we stress the various techniques by systemati-

cally varying the degree to which resources are over-subscribed.

Because Kubernetes handles violations and placement failures by

iterative re-scheduling tenant using priorities (as discussed in Sec-

tion 7.1) thereby making it difficult to minimize failovers, we focus

these experiments on comparing to Service Fabric.

Experimental setup: Due to the scope (40 nodes) and duration

(21 days) of the experiments required for one data point, executing

them on real hardware is prohibitively expensive. Instead, we use an

industrial-strength cluster simulator originally developed to debug

Service Fabric placement decisions. It uses existing PLB interfaces to

report resource demand and tenant arrivals/departures. Because the

simulation covers all relevant input interfaces to PLB (including all

SF configuration settings [7]), and we intercept and implement the

PLB output in the simulated cluster, these simulations are faithful to

the PLB behavior in real clusters. The simulator runs on a Windows

Server 2019 machine with Intel Xeon E5-2660 v3 CPU, 384 GB

memory and 745 GB SSD. The use of simulators in cluster placement

is common in research, e.g., papers on theOmega scheduler [43], the
Borg cluster manager [49], or learning-based cluster scheduling [34]

all evaluate based on (trace-driven) simulations.

For the simulated clusters, we use the Azure SQL DB Gen5 hard-
ware specs [6]. The clusters contain 40 nodes, divided into 10 up-

grade domains and 5 fault domains (using the logic in [5]).

Compared Techniques: We compare Service Fabric’s existing

Placement-and-Load-Balancing component (PLB), the Probability-
of-Violation estimator [31] integrated with PLB’s scoring function

(PLB+PrV), which is the best-performing combination in the clus-

ter experiments in [31], as well as the optimization formulation

described in Section 5 (MIP). As before, we run the Gurobi solver

with a single thread, since Service Fabric’s PLB component is single-

threaded. To give comparable processing time to each approach,

we set a timeout of 2 seconds for the configuration optimization

itself (using Constraintchecktimeout and PlacementSearchTimeout
in Service Fabric and TimeLimit for Gurobi); we also allow Gurobi

to exit the optimization if the current best score is within 5% of the

lower bound computed by Gurobi. Finally, to demonstrate that our

approach can achieve significant improvements independently of

the probability of violation estimates of [31], we also evaluate a

version of our approach that does not include the𝑚𝑜𝑣𝑒𝑠𝑐𝑎𝑝 term

defined in (14), which is based on the violation probabilities. We

refer to this approach as MIP w/o PrV.
Demand traces: To simulate the resource demands of DBaaS ten-

ants, we use two distinct samples of resource usage traces from

Azure SQL DB, containing several million distinct tenants; both

samples were taken in different geographical regions, which differ

significantly in terms of the distribution of resource demands and

tenant sizes. Each trace contains the resource usage at 10-minute

granularity, for 3 resources: CPU, main memory and local disk us-

age, all of which are used in the following experiments. We hold

out 115K of these traces (sampled at random) for the Monte Carlo

simulations used to estimate the probability of violations, requiring

7.19 MB of storage after trace compression (see [31]).

Optimization Formulation: The placement algorithm described

in Section 5 uses the weights 𝑤 𝑓 = 0.05 (for failovers due to

fragmentation) and 𝑤𝑣 = 0.1 (for capacity failovers) in the com-

putation of the objective function 𝑆𝑐𝑜𝑟𝑒 . We use |𝐿 | = 10 iter-

ations of the Monte Carlo simulations and 5 time points O =

{5, 30, 60, 1000, 5000} (with each value corresponding to a num-

ber of minutes into the future). Finally, we set 𝐶 to 10× the node

capacity, and𝑀 to the total number of replicas in the cluster.

Setup: To assess the effect of different levels of over-subscription,

we vary how densely tenants are packed: initially, each cluster is

filled with tenants until a target tenant density is reached. This

tenant density is defined as the cluster-level over-subscription ratio

𝑂𝑅𝑟 with the resource 𝑟 being CPU cores. During experiments, we

maintain this tenant density by, after tenant departures, admitting

new tenants until the target tenant density is reached again. New

tenants are chosen uniformly at random, with each technique plac-

ing the same sequence of tenants. In this experiment, we assign

identical weight to all tenants – weighted failovers are considered

in Section 7.3. All techniques use the same set of constraints.

Results – Service Quality (Region 1): Figure 9 shows total num-

ber of violations seen, as we vary the cluster-level over-subscription

ratio 𝑂𝑅𝑟 from 1.8 to 2.6 (using CPU cores as 𝑟 ). Here, the use of

probability of violation estimates significantly reduces the number

of violations seen. However, MIP reduces the number of violations

even further, especially at large𝑂𝑅𝑟 , where PLB+PrV has more than

twice the violations ofMIP. Moreover,MIP w/o PrV performs almost

on par with MIP. This demonstrates that the improvements seen

fromMIP are not mainly due to the probability of violation estimates,

but the modified scoring function and configuration search.

We observe the same trends when comparing the numbers of

failovers, with the improvements due toMIP beingmore pronounced:

whereas for MIP the number of failovers and violations are nearly
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identical in every experiment (thus validating the assumption made

when computing the expected number of failovers 𝑚𝑜𝑣𝑒𝑠𝑐𝑎𝑝 in

Section 5), both competing techniques, which use the PLB con-

figuration enumeration, exhibit significantly more failovers than

violations. This is likely due to the effects described in Section 2.2.

Figure 11 shows the number of instances for which the cluster

manager is not able to generate a valid target configuration in

response to a resource violation. As we can see, both Service Fabric

as well as our proposed approach (almost) never run into this issue

unless the OR is 2.6 (PLB has 2 such instances, PLB+PrV 1, and

MIP none for 𝑂𝑅 < 2.6). However, at 𝑂𝑅 = 2.6, the fact that our

approach (a) can iterate through the search space of configurations

in a principled manner and (b) is able to use intermediate results to

prune the search space result gives an improvement in the number

instances for which no valid configuration could be found by more

than 30x over the PLB-based searches. Even if this level of over-

subscription is unlikely to be used in production clusters, the results

demonstrate that the solver-based placement component is able to

handle emergency situations in which (e.g., due to correlated node

failures) cluster capacity is significantly reduced. We did not call

out the variant of MIP without PrV estimates in Figure 11, as these

do not affect the solver’s ability to generate a valid configuration.

Results – Service Quality (Region 2): We repeated the experi-

ment for region 2, with one exception: the over-subscription ratio

was only increased up to 2.4, as tenants from this region consume

more resources on average, leading to instances where the cluster

capacity was insufficient to accommodate all tenants at 𝑂𝑅 = 2.6.

This also results in more resource violations, compared to region 1.

Otherwise, the overall trends seen in these experiments are sim-

ilar to the ones observed in region 1; MIP significantly reduces the
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incidence of violations compared to the alternatives and exhibits

an even larger reduction in the number of failovers.

Results – Overheads: For each invocation of the placement and

constraint violation fixing logic, we measured the latency from the

invocation to the output of the target configuration. We show the

measurements in Figure 14, showing the 50th, 90th and 99th per-

centile for each algorithm; we are showing only the measurements

for region 1, as the values for region 2 are very similar.

Interestingly, the latency for MIP is significantly less than for

PLB and PLB+Prv, despite the fact that (a) all approaches use iden-
tial timeouts, and (b) while PLB-based approaches incrementally

maintain all data structures inside PLB as replicas report new re-

source demands, MIP has to encode the cluster state from scratch

for every invocation. The main reason for this improvement is that

MIP can stop the optimization when sufficiently close to the optimal

objective value, which is something generally not possible for PLB
and PLB+Prv, for the reasons described in Section 2.1.
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7.3 Experiment: Weighted Failovers
One important consideration is to differentiate failovers by how

impactful they are for the service. For this, we repeated the experi-

ment of Section 7.2, but assigned different weights to tenants, and

used the modified formulation from Appendix B. To compare to the

original PLB, we used the weight assignment logic used in produc-

tion in Azure SQL DB, and limited the number of distinct weights

to 3, as Service Fabric currently supports only 3 weight classes

(Low/Medium/High, which correspond to the weights 1/15/40).

Here, we compare the sum of the weighted failover counts, as

these are the metric each approach seeks to optimize. In addition,

we measured the aggregate main memory consumption of all failed-

over tenants (as a proxy for the costs to re-hydrate the correspond-

ing caches) as well as aggregate local disk space (as a a proxy for the

time required for a move to complete). The results can be seen in

Figures 15, 16, and 17. As we can see, MIP continues to outperform

the alternative approaches, on all of the considered measures.

7.4 Experiment: Scalability
Next, we measure the scalability of our approach as we scale up

the cluster sizes, repeating the setup (for 𝑂𝐵 = 1.8) of Section 7.2

and measuring the (a) placement latency and (b) the peak memory

overhead of the solver (including both solver code and working

memory). The results are shown in Figures 18 and 19.

As we can see, the latency numbers increase with cluster size

(which means scaling up the number of tenants as well), but they do

so sub-linearly. In fact, given the 2 sec. timeouts used for both cluster

managers, MIP on a 200 node cluster still has lower latencies than

PLB on 40 nodes. Only at large cluster sizes does MIP exceed the 2

sec. timeout, due to the encoding of the cluster state becoming more
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expensive. Note that this overhead is required independently of

any timeout settings. An incremental encoding scheme modifying

a previous optimization task is something we are investigating as

future work. Memory overhead (as shown in Figure 19) is not a

significant concern for the practicality of our approach.
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8 CONCLUSION
In this paper, we show how to leverage solvers in DBaaS resource

management. Our contributions include the formulation of resource

management as an optimization problem in which (a) constraints

and objective are realized as linear combinations of (binary) decision

variables and (b) the objective captures the key causes of service

disruption, while enabling effective pruning of the search space.

We implemented the approach in the Service Fabric codebase. Us-

ing realistic (simulated) cluster setups and tenant distributions, we

show significant improvements in violations/failovers when com-

pared to existing cluster managers. We also demonstrated improve-

ments in the ability to find valid placements and resolve violations.

Our approach has a small resource footprint, requiring 1 thread and

≤ 42MB memory. Our work also substantially improves upon [31],

which targeted the same scenario, and itself had been shown to

outperform many simpler heuristics used in enterprise cluster man-

agers, and techniques proposed in research ([41], [20], [38]).

A ENCODING ADDITIONAL CONSTRAINTS
Here, we outline how to extend the formulation to the other con-

straints supported by Service Fabric:

Node Block List and Placement Constraints These constraints
can be enforced by setting 𝑥

𝑡,𝑘
𝑛 = 0 for all nodes 𝑛 that are either

blocked or do not satisfy all placement constraints [46].
Affinity (aligned) To satisfy this constraint, the primary replicas

of two services 𝑡1, 𝑡2 need to be co-located on a node. Assuming

the primaries are always the 1st replica, this can be encoded as

∀𝑛 ∈ N : 𝑥
𝑡1,1
𝑛 = 𝑥

𝑡2,1
𝑛

Affinity (non-aligned) For this constraint to hold, replicas of a

child service 𝑡1 must be co-located with replicas of a parent Service

𝑡2, with the replica role (i.e., primary vs secondary) being irrelevant.
For this, we define the number of child replicas on a node 𝑛 as

𝑆𝑅𝑛 =
∑︁
𝑘∈K𝑡

1

𝑥
𝑡1,𝑘
𝑛 , and the number of parent replicas as 𝑃𝑅𝑛 =∑︁

𝑘∈K𝑡
2

𝑥
𝑡2,𝑘
𝑛 and enforce the constraint ∀𝑛 ∈ N : 𝑆𝑅𝑛 ≤ 𝑃𝑅𝑛 .

Scale Out Constraints These constraints enforce a minimum or

maximum on the total number of nodes containing replicas for

a given tenant 𝑡 . We can encode this constraint using additional

(binary) decision variables 𝜇𝑛 , which encode if an instance of 𝑡 is

placed on a node 𝑛, and are set using the additional constraints:

∀𝑛 ∈ N :

∑︁
𝑘∈K𝑡

𝑥
𝑡,𝑘
𝑛 ≤ 𝑀𝜇𝑛

∀𝑛 ∈ N :

∑︁
𝑘∈K𝑡

𝑥
𝑡,𝑘
𝑛 ≥ 𝜇𝑛

The Scale Out constraints can then be expressed as

∑︁
𝑛∈N 𝜇𝑛 ≤

𝑚𝑎𝑥_𝑆𝑐𝑎𝑙𝑒𝑂𝑢𝑡 and
∑︁
𝑛∈N 𝜇𝑛 ≥ 𝑚𝑖𝑛_𝑆𝑐𝑎𝑙𝑒𝑂𝑢𝑡 .

Preferred Location Constraint Unlike the other constraints, this
is a soft constraint, meaning it is used in the scoring function that

is minimized as part of configuration selection. This constraint is

used to ensure that – during a cluster upgrade – primary replicas

on nodes about to be upgraded are swappedwith secondary replicas
located on nodes that have been upgraded already [45], meaning

no further swaps will be required. Denoting the set of upgraded

nodes as N𝑈 , we can specify the number of such swaps as

𝑈 _𝑠𝑤𝑎𝑝𝑠 :=

|︁|︁|︁{𝑡 ∈ T | ∃𝑘 ∈ K𝑡\{1} : 𝑥𝑡,𝑘 = 𝑝𝑡,1 ∧ 𝑝𝑡,1 ∈ N𝑈 }
|︁|︁|︁ .

We can then make a weighted combination of (a) 𝑠𝑤𝑎𝑝𝑠 −𝑈 _𝑠𝑤𝑎𝑝𝑠

and (b)𝑈 _𝑠𝑤𝑎𝑝𝑠 part of the optimization criterion.

B ASSIGNINGWEIGHTS TO FAILOVERS
In the following, we describe how to modify the formulation of

Section 5 to incorporate weighted failovers, where each tenant 𝑡

is associated with a weight𝑤𝑡 , with the possible weights chosen

from a set W = {𝑣1, . . . , 𝑣ℎ} ⊂ R. Modifying the computation

of the number of failovers needed to reach a target configuration

(i.e., the value of 𝑚𝑜𝑣𝑒𝑠) and expected failovers due to resource

fragmentation (𝑚𝑜𝑣𝑒𝑠𝑓 𝑟𝑎𝑔) is straight-forward, as all that is required

is to add the corresponding𝑤𝑡 terms to Equations (5)–(9); we show

the modified versions (Equations (5’)–(9’)) below.

Computing expected failovers due to capacity violations (𝑚𝑜𝑣𝑒𝑠𝑐𝑎𝑝 )

is more involved: here, we assume that – in case of a capacity vio-

lation – we resolve it by moving the replica with the lowest weight

off of the target node. To model this, we, instead of using 𝜋𝑙𝑛 to

indicate a violation on node 𝑛 in Monte-Carlo iteration 𝑙 , use an

indicator 𝜋𝑙
𝑛,𝑗

, which indicates violation on node 𝑛 in Monte-Carlo

iteration 𝑙 that is resolved bymoving a tenant of weight 𝑣𝑗 (Equation

(13’)). Based on these indicators, we can then compute the weighted

failovers due to capacity constraints by multiplying the 𝜋𝑙
𝑛,𝑗

with

the corresponding weights 𝑣 𝑗 (Equation (14’))

For correctness, we need to ensure that (a) at most one of the

𝜋𝑙
𝑛,𝑗

indicators is set (i.e., for only one value of 𝑙) and (b) that the

indicator is only set if a tenant with the corresponding weight exists

on the node, leading to new constraints ((17) and (18)).

Assigning Weights to Failovers

Weighted failovers to reach a new configuration:

𝑚𝑜𝑣𝑒𝑠 :=
∑︂

𝑡 ∈T\T𝑛𝑒𝑤

𝑤𝑡

(︃ ∑︂
𝑘∈K𝑡

(︂
1 − 𝑥𝑡,𝑘

𝑝𝑡,𝑘

)︂ )︃
(5′)

(Expected) weighted failovers due to fragmentation:

𝛿𝑑 ≤
∑︂
𝑡 ∈T

∑︂
𝑘∈K𝑡

𝑤𝑡 𝑥
𝑡,𝑘
𝑛 (6′)

𝛿𝑑 ≥
∑︂
𝑡 ∈T

∑︂
𝑘∈K𝑡

𝑤𝑡 𝑥
𝑡,𝑘
𝑛 −𝑀

(︁
1 − 𝛿𝑑,𝑛

)︁
(7′)

𝛾𝑑 ≤
∑︂
𝑡 ∈T

∑︂
𝑘∈K𝑡

𝑤𝑡 𝑥
𝑡,𝑘
𝑛 (8′)

𝛾𝑑 ≥
∑︂
𝑡 ∈T

∑︂
𝑘∈K𝑡

𝑤𝑡 𝑥
𝑡,𝑘
𝑛 −𝑀

(︁
1 − 𝛾𝑑,𝑛

)︁
(9′)

Note that 𝑀 needs to account for weights, i.e. multiplied

with max𝑖 𝑣𝑖 .

(Expected) weighted failovers due to capacity violations:∑︂
𝑡 ∈T

∑︂
𝑘∈K𝑡

𝑑
𝑡,𝑘

𝑟,𝑜,𝑙
𝑥
𝑡,𝑘
𝑛 ≤ 𝑐𝑟 +𝐶

(︁ ∑︁
𝑗∈{1,... |W| } 𝜋

𝑙
𝑛,𝑗

)︁
(13

′)

𝑚𝑜𝑣𝑒𝑠𝑐𝑎𝑝 :=
1

|𝐿 |
∑︂
𝑛∈N

∑︂
𝑙∈𝐿

∑︂
𝑗∈{1,... |W| }

𝑣 𝑗 · 𝜋𝑙𝑛,𝑗 (14
′)∑︂

𝑗∈{1,... |W| }
𝜋𝑙𝑛,𝑗 ≤ 1 (17)

∀𝑛 ∈ 𝑁, 𝑗 ∈ {1, . . . , |W|}, 𝑙 ∈ 𝐿 :

∑︂
𝑡 ∈T:𝑤𝑡=𝑣𝑗

∑︂
𝑘∈K𝑡

𝑥
𝑡,𝑘
𝑛 ≥ 𝜋𝑙

𝑛,𝑗
(18)
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