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Abstract

Recently an influx of studies claims emergent cognitive abilities in large language
models (LLMs). Yet, most rely on anecdotes, overlook contamination of training
sets, or lack systematic Evaluation involving multiple tasks, control conditions,
multiple iterations, and statistical robustness tests. Here we make two major
contributions. First, we propose CogEval, a cognitive science-inspired protocol for
the systematic evaluation of cognitive capacities in Large Language Models. The
CogEval protocol can be followed for the evaluation of various abilities. Second,
here we follow CogEval to systematically evaluate cognitive maps and planning
ability across eight LLMs (OpenAI GPT-4, GPT-3.5-turbo-175B, davinci-003-
175B, Google Bard, Cohere-xlarge-52.4B, Anthropic Claude-1-52B, LLaMA-13B,
and Alpaca-7B). We base our task prompts on human experiments, which offer
both established construct validity for evaluating planning, and are absent from
LLM training sets. We find that, while LLMs show apparent competence in a
few planning tasks with simpler structures, systematic evaluation reveals striking
failure modes in planning tasks, including hallucinations of invalid trajectories and
falling in loops. These findings do not support the idea of emergent out-of-the-box
planning ability in LLMs. This could be because LLMs do not understand the
latent relational structures underlying planning problems, known as cognitive maps,
and fail at unrolling goal-directed trajectories based on the underlying structure.
Implications for application and future directions are discussed.

1 Introduction

Large language models (LLMs) are generatively pre-trained and display apparent competence on
some cognitive tasks [9]. This has led to a recent surge in studies claiming LLMs have emergent
human-level cognitive abilities, which may encourage applications that interact with LLMs in a
zero-shot or few-shot manner with expectations of human-level cognition. However, most claims
of competence are based on anecdotes rather than systematic evaluation. In response, we make
two contributions. First, we propose CogEval, a Cognitive Science-Inspired [14, 6, 47] protocol for
Measurement and Evaluation of cognitive abilities in LLMs (Figure 1, top), such as planning, theory
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of mind, causal inference, or other abilities. Second, we apply this evaluation protocol to the domain
of cognitive maps and planning, and systematically evaluate these capacities across eight LLMs. We
build our task prompts according to established human experiments, but our goal is not a comparison
with human performance nor any assumptions of LLMs being "human-like" [34]. We evaluate LLMs’
functional as opposed to formal linguistic abilities [27], and by that we have both a functionalist and
multiple-realizability-based notion of cognitive ability [10] in mind.

We investigated whether LLMs (OpenAI GPT-4, GPT-3.5-175B, and davinci-003-175B, Google
Bard, Cohere-52.4B, Anthropic Claude-1-52B, LLaMA-13B, and Alpaca-7B) understand the latent
structure of planning problems (cognitive maps). We hypothesized that failure in planning may relate
to cognitive map deficits. To address these questions, we followed the CogEval protocol (Figure 1).
First, we operationalized the latent ability (cognitive map and planning) in terms of multiple tasks
with variations in three factors: (a) the latent structure of the tasks’ environment (different Markov
Decision Processes (MDPs) or graphs), (b) the domain (spatial vs. social ties vs. object relations), and
(c) multiple planning tasks for each latent graph structure (c.f. Methods for detail). These domains
were selected due to their prevalence in everyday problems as well as the cognitive science literature
on cognitive maps [5, 53, 43]. We then generated repeated measurements across small and large
LLMs (c.f. Methods for choice of LLMs) and conducted statistical analysis to compare the results.
We found that LLMs only show apparent competence in simpler tasks, where route memorization
was sufficient to find a solution, but fail on closer systematic observation. Our evidence suggests
against out-of-the-box emergent planning capacities in recently introduced LLMs.

What is a cognitive map? A cognitive map is a representation of latent relational structures that
underlies a task or environment, and facilitates planning, reasoning, and inference in biological and
artificial problems [55, 5, 33, 8]. The concept originated from Tolman’s latent learning experiments,
demonstrating rodents’ ability to learn maze structures without rewards [55]. This challenged
the dominant behaviorist view that learning only occurs with reinforcement; and paved the way
for a cognitive revolution. Decades later, discoveries of hippocampal place cells [39, 38, 40] and
entorhinal cortex grid cells [15, 17, 36], together referred to as "the brain’s GPS," further substantiated
cognitive maps and earned the 2014 Nobel Prize [1]. Cognitive maps have since been studied
behaviorally, computationally, and neurally; revealing that multi-step, multi-scale, and compressed
neural representations are crucial for inference in both memory and planning [5, 33, 8]. Over the
past decades, a number of Reinforcement Learning (RL) and deep neural network models have been
proposed to capture the computations involved in cognitive maps and planning in the hippocampus
and the prefrontal cortex of humans, rodents, bats, monkeys, and birds [5, 45, 8].

Why would LLMs plan with a cognitive map? It has been suggested that the transformer architecture
and its learned representations, which lie at the heart of modern LLMs, are comparable to the
hippocampus of the brain and the representations it learns [66]. Other studies show that GPT-3 is
capable of event segmentation of narrative transcripts similar to human evaluators [29], and evaluate
some cognitive capacities of GPT-3 using cognitive science and psychological methods applied in the
evaluation of human cognition [6, 46, 57, 67]. Other cognitive scientists have distinguished formal
linguistic ability (e.g., the ability to form grammatically correct sentences) from functional cognitive
capacities (e.g., theory of mind, sequential planning, etc) and call for a meticulous evaluation of
LLMs’ functional competence without conflating them with their formal linguistic competence -
much like the dissociation of language and thought [27]. Taken together, these studies raise the
hypothesis that LLMs would be able to extract and use cognitive maps from text, and second, that
LLMs’ failure in capturing cognitive maps could underlie failure modes in planning.

To test these hypotheses, we designed prompts to measure behavioral signatures of extraction
and use of cognitive maps in a set of tasks adapted from existing human behavioral experiments
[32, 31, 35, 42, 44]. We operationalized cognitive maps and planning with a number of tasks
(Figure 1) with variations in environmental structures or graphs, varying items from different domains
(spatial, social, object relations), and across a number of different conditions (e.g., value-based
planning, reward and transition revaluation, shortcut, and detour).

Notably, the corresponding human experiments that inspired our prompts were never in linguistic
form, and this is the first adaptation of them to prompts to the best of our knowledge. This is an
important consideration since contamination of the training data with the test set is one of the most
challenging obstacles to testing LLM capacities. To avoid potential contamination, we avoided
BIG-bench [49], which has been flagged by OpenAI for contamination [2], and a planning benchmark
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Figure 1: The CogEval protocol, Experiment 1 task structure, and example task prompt. (top)
In the CogEval protocol, a latent ability can be evaluated by first, being operationalized as tasks, and
second, be measured multiple times and with variations and controls. We followed this protocol to
evaluate cognitive map and planning. To robustly evaluate these abilities, multiple task prompts were
generated with varying task structures (graph), the item domains (e.g., spatial or social), and task
conditions (e.g., value-based path, detour). LLM responses were generated 30 times per task prompt
and temperature for the three OpenAI models studied in this work and once per task and temperature
for other LLMs. The results were compared across task configurations, LLMs, and temperatures
using statistical analysis. (middle) The prompts’ underlying task structures were six graphs based on
human experiments. A: simple line graph from [32]. B: simple tree graphs based on [31]. C: graph A
with double depth and stochastic transitions. D, E, and F represent community graphs from [44], [35],
and [42] respectively. (bottom) An example prompt for graph A. This procedure evaluates planning
behavior in value-based navigation (see Table 1). The colored transitions in the figure are for clarity,
showing different stages of the latent transition structure (cognitive map or graph).

for GPT-3 [58] as both pre-date GPT-4 and raise data contamination issues. Here we introduce and
generate novel prompts inspired by human experiments with established validity in cognitive science.
To our knowledge, a systematic evaluation of planning and cognitive map capacities in GPT-4 and
comparison to other LLMs remain unexplored. In what follows we elaborate on a protocol and two
related experiments to address this.
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2 Methods

The CogEval protocol. In order to evaluate cognitive-map-related planning and navigation in LLMs,
we propose and use the CogEval protocol (Figure 1). Please note that CogEval is not a benchmark
nor limited to cognitive maps, it is a general protocol for evaluating any cognitive capacity, such as
planning, theory of mind, causal reasoning, etc. As an example, here we have applied it to the domain
of cognitive maps and planning.

CogEval adheres to four methodological best practices suggested by cognitive scientists [14]. First,
the latent construct or ability: here we evaluate cognitive maps, which are representations that capture
a model of the task structure, and adaptive planning, which requires an internal representation of
task structures (similar to model-based RL [51] or task-oriented model-free RL [18–21]). Second,
operationalization with construct validity: we operationalize planning ability by generating unique
variations of established experimental tasks that measure the comprehension and use of cognitive
maps in multi-step planning behavior [32, 44, 31]. Third, multiple tasks and multiple response
generations: we generated many tasks for each condition of interest varying graph structure, and
domain (spatial with ordered states such as room numbers, spatial with unordered states, social ties,
object relations). Most task conditions include a partial change in the environment to test adaptive
planning (e.g., changing the location of rewards or the structure of the environment, see Table 1).
Collectively, these tasks allow us to robustly measure the latent construct: cognitive map and planning
ability. Fourth, including multiple task conditions allows us to control for multiple factors when
making inference about the ability.

Thus, we evaluate the construct using multiple environments with different graph structures (based
on existing human experiments on cognitive maps [32, 44, 31], see graphs in Figure 1), controlling
for robustness to variations in graphs, task conditions, and item domains (e.g., rooms, people, objects,
random letters), using multiple generations (30 generations per condition), and across different
temperatures (0, 0.5, and 1).

LLMs evaluated. We compared the following LLMs: GPT-4-* [2], GPT-3.5-turbo-175B [41],
text-Davinci-3-175B [7] (Azure OpenAI API), Bard-* [54], Anthropic Claude-1-52B [4], LLaMA-
13B [56], Cohere-52.4B [11], Alpaca-7B [52] (nat.dev API), where * means the number of parameters
is undisclosed.

Experiments. We conducted two incremental experiments. Experiment 1 systematically compares
the performance of all LLMs across different temperatures and conditions created with 3 factors of
graph structure, domain, and tasks. Experiment 2 evaluates whether simple Chain of Thought (CoT)
instructions can mitigate the observed failure modes in GPT-4.

2.1 Experiment 1: A cognitive science inspired evaluation of cognitive maps and planning
capacity in LLMs

We designed our experiment prioritizing robustness and control conditions. Model performance on
cognitive tasks can be influenced by various factors beyond the primary cognitive capacity, such as
the specific prompts, the temperature parameter, experimental conditions (Table 1, Figure 1, bottom),
the specific items the task is presented with or domain (e.g., spatial connections vs. social ties),
and the specific relational graph underlying the problem (e.g., this could be a graph structure such
as line graphs, trees, community graphs with different size and density). For instance, perhaps an
LLM performs better when the items in a task are rooms that are numbered in order in a line graph
(item or domain effect), or when the graph structure is finite rather than a community graph with
potential loops (graph effect). Thus, we implemented measures to mitigate such effects, like potential
performance variations due to task item selection or its underlying graph structure. We measured the
results for each combination of factors and parameters 30 times for OpenAI models (for which we
had API access) and once for the remaining models with no API access. We compared the results
across 10 LLMs.

Why vary temperature? Temperature in LLMs determines randomness in the generated response, by
manipulating the probabilities of the next word in a sequence. Thus, temperature can be thought of
as a parameter controlling the diversity of the output. When temperature is set to 0, this results in
deterministic or greedy responses with less variance (Note: OpenAI has made it known that even a
temperature of 0 is not entirely deterministic, though this is as close as we can get). When temperature
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is set higher, especially closer to 1, the LLM creates more diverse and varied text upon repetition,
akin to exploration. While a higher temperature may be helpful for tasks that require varied responses
or creativity, it could go either way for planning: on the one hand, precision in planning trajectories
may seem more in line with deterministic temperature, and on the other, a higher temperature leads
to exploration, which may improve getting stuck in local minima and improving behavior. Thus,
repeating the experiments with varying temperature can help address its possible effect in either
direction.

Statistical analysis. We evaluated the robustness of each LLM’s performance by applying a statistical
model of how each of the factors and their combinations contribute to variance in performance.
Specifically, we fit a logistic regression analysis with domain, condition, and graph types as categorical
regressors, and include second and third-order interaction terms between these three terms. We make
sure that each combination of domain, condition, and graph has several replicates, though the approach
is robust to imbalance issues. We include model version and temperature as separate independent
variables that account for technical variation distinct from our conditions of interest.

We choose a logistic regression to model the number of items the LLM answers correctly in a given
dialog out of a total number of possible correct answers. We aggregate the results into an analysis
of deviance table (the generalized linear model equivalent of Analysis of Variance or ANOVA),
which highlights the contributions of each factor and their interactions to performance, along with
significance statistics. See supplement for full details on analysis and results.

2.1.1 Experiment 1: Example prompts

Navigating cognitive maps requires adaptive multi-step planning using compressed representations of
the environment, not mere memorization of all routes. Thus, cognitive map experiments test flexible
adaptivity to local changes in the environment to evaluate biological and reinforcement learning
agents [32, 32, 33, 16]. Latent learning experiments found that rodents who explored a maze with
no reward could quickly find the shortest route to a newly introduced reward, i.e., find an optimal
policy in RL context. This was taken as their ability to learn the cognitive maps of their mazes [55],
but various additional experimental conditions were then designed and evaluated to confirm that
they could flexibly adapt their cognitive map and planning to local environment alterations such as
reward relocation (revaluation), changes to the map (transition revaluation) [32], or the introduction
of shortcuts and detours [50]. Previous research has adapted these experiments to investigating the
robustness and flexibility of deep model-based RL in the face of local changes to the reward structure
(LoCA), and shown that deep model-based RL agents such as Dreamer v2, muZero, and PlaNet failed
at flexible planning in reward revaluation scenarios [61]. Here we operationalized our tasks inspired
by similar conditions in human reinforcement learning and deep MBRL experiments on learning,
updating, and using cognitive maps for adaptive and flexible planning [32, 61].

Importantly, the corresponding human experiments were never conducted using texts, but were
presented either as videos or a sequence of images that human participants moved forward by
choosing an action (e.g. pressing left, right, up, or down). We believe this mitigates the risks
of contamination. Moreover, when possible, we set the date earlier than our pilot studies to avoid
potential contamination due to our experiments in the past month. To also ensure that the model cannot
infer any answers from the papers, we asked GPT-4 to explain the experimental paradigm and draw
the map of the environments after providing it a reference to a specific figure in a corresponding paper,
and it failed. Thus, we believe our prompts have a negligible to no chance of having contaminated
the training sets.

Below we provide examples of task prompts for graph A and a spatial domain (number ordered rooms).
All prompts are available in the supplementary material and on https://tinyurl.com/cogmaps-in-llm.

I. Value-based or goal-driven planning. Below is an example prompt for value-driven or goal-
directed planning in graph A in Figure 1. Success requires an understanding of the start and goal
positions, comparison of the paths to find the shortest path that leads to the highest rewards, and
planning a multi-step navigation or traversal of the underlying graph structure of the task.

5

https://tinyurl.com/cogmaps-in-llms


Imagine a world with six rooms. From the lobby you have two choices, room 1 and room 2.
You enter room 1, at the end there’s a door that leads to room 3, and room 3 leads to room 5.
There’s a chest in room 5. You open it and there’s 10 dollars. Then you exit and start over.
This time in the lobby you choose room 2, then enter room 4, which leads to room 6. There’s
a chest with 50 dollars. You return to the lobby. Which room will you choose to make the
most money?

II. Transition Revaluation, after prompt I. This condition occurs when the structure of the
environment (e.g., an edge of the graph or Markov decision process) locally changes, and planning
requires integrating or ‘piecing together’ different parts of the cognitive map to update one’s plan or
policy.

Now you’re dropped in room 3 and the door at its end suddenly leads to room 6, and then
you’re dropped in room 4 and the door at its end suddenly leads to room 5. you return to the
lobby. Which room will lead to more rewards?

III. Reward Revaluation, after prompt I. A common local change in any environment is when the
location of rewards or goals change, without any changes to the map or structure of the states (or the
cognitive map). This is known as Reward Revaluation or retrospective revaluation of rewards [32].

Now you’re dropped into room 3, then you enter room 5 and the chest has 100 dollars. Then
you’re taken out, and dropped into room 4, then you enter room 6 and the chest has the same
amount as before. When you return to the lobby, which room do you choose to make the most
reward?

V. Shortcut prompts with and without teleportation, after prompt I. Tolman’s experiments on
cognitive maps [55] included a condition evaluating the animal’s ability to discover shortcuts. Since
the early 1990s, evaluating the ability of various Dyna architectures [51] in discovering shortcuts has
been an important part of evaluating planning behavior. Below are two different shortcut prompts.

In the lobby you’re presented with a portal, and you can choose which room to teleport into.
Which room do you choose to maximize rewards?

In the lobby you’re presented with a new door which leads to a new room, room 7. Room
7’s door leads directly to room 6. Remember that you will only be able to choose one path
that leads to the most money. Which room from the lobby will lead to the path where one can
make the most money?

V. Detour prompts with and without Teleportation, after prompt I.

You enter the lobby and this time you encounter a new room, room 7. Room 7’s door leads to
room 8, and room 8 leads to room 9. From room 9 you can teleport anywhere. You return to
the lobby, and choose the room that leads to the most reward, but the door to the next room is
blocked. You go back to the lobby. Which room do you choose to reach the most rewards?

You enter the lobby and this time you encounter a new room, room 7. Room 7’s door leads to
room 8, and room 8 leads to room 6. When you return to the lobby and choose the previous
path that led to the most reward, you discover that the regular door to the room with the most
money is now blocked. You go back to the lobby. You will only be able to choose one path
that leads to the most money. Which room from the lobby will lead to the path where one can
make the most money?

VI. Drawing a map.
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Please draw a text-based map of the environment.

Table 1: Brief descriptions of the task conditions applied to varying graphs and domains

Condition Description Group

valuePath The optimal solution is to find the optimal policy, or shortest path, which yields the highest reward
 Traversal

1stepPath The optimal solution is a 1-hop policy, i.e., goal is adjacent to the starting state
2stepPath The optimal solution is a 2-step policy
3stepPath The optimal solution is a 3-step policy
nstepPath The optimal solution is an n-step policy, where max n is the diameter of the graph (longest shortest path)

rewardReval Upon a local change in the reward structure, the goal has changed and the optimal solution requires finding a new path
}

RewRevalpolicyReval Upon a local change in the reward structure, the optimal solution requires finding a new policy

transReval Upon a local change in the transition structure, the goal is the same but the optimal solution requires finding a new policy
}

TransRevaltransRevalStochastic Upon a local change in the transition structure, the goal is the same but the optimal solution requires finding a new policy
in a stochastic environment

nonteleShortcut Upon a change in the graph structure, the optimal solution requires finding a shortcut
 Shortcut

nonteleShortcutCoT Upon a change in the graph structure, the optimal solution requires finding a shortcut, an additional CoT prompt is given
teleShortcut Upon a local change in the transition structure, the optimal solution requires finding a shortcut using a teleportation portal
teleShortcutCoT Upon a local change in the graph or transition structure, the optimal solution requires finding a shortcut using

a teleportation portal, an additional CoT prompt is given

nonteleDetour Upon a change in the graph structure, the optimal solution requires finding a detour
}

DetourteleDetour Upon a local change in the transition structure, the optimal solution requires finding a detour using a teleportation step

Table 2: Step-wise contribution of adding each factor to the logistic regression fit of LLM model
performance (number of successes out of max possible successes in dialog).

term Chi-squared Stat (Deviance) df p value
1 LLM 2357.87 7 <0.001
2 graph 3431.53 5 <0.001
3 domain 458.74 2 <0.001
4 temperature 1.28 2 0.53
5 condition 2080.04 4 <0.001
6 LLM and temperature 10.69 14 0.71
7 graph and domain 334.41 10 <0.001
8 graph and condition 1651.33 20 <0.001
9 domain and condition 310.53 8 <0.001

10 graph, domain, condition 1133.16 44 <0.001

2.2 Experiment 2: Evaluating the effect of Chain of Though (CoT) instructed prompts

LLM evaluation is usually performed within the in-context learning framework [3, 30], where
the input to the LLM is the text of the problem to be solved, preceded with several examples of
related problems and their solutions, possibly worked out step-by-step. The rationale is that a
single problem may be ambiguously stated (as far as the LLM is concerned), and a few examples,
possibly with explanations, may be all that is needed to disambiguate the intent. However, the
choice and even the order of examples impacts the performance [26], as does the incorporation of
auxiliary knowledge, [48, 68, 37], particularly in the form of Chain-of-Thought (CoT) reasoning
[65, 63, 69, 12, 62, 25, 23, 24].

While CoT prompting is not a rigorously defined concept, a prompt with a small number of worked
out examples, serving as an instance of few-shot learning, may qualify as a CoT prompt and has
been shown to improve performance considerably on cognitive tasks (e.g., Theory of Mind [30]).
However, such a prompt can be so regimented that they effectively turn an LLM into a Turing Machine
executing a given algorithm the way a computer would [22].In this view, careful CoT prompts could
have a significant effect both on the performance and on our interpretation of how it is achieved.

Here wetried breadth first and depth first instructions as follows:

2.3 BFS (Breadth First Search) instruction:

“Think carefully before you respond. You can try using Breadth-first search (BFS), it is a graph
traversal algorithm that visits all the vertices of a graph in breadth-first order, starting from a given
source vertex. In BFS, vertices are visited in layers, where the vertices at distance 1 from the source
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Figure 2: Experiment 1 results. (top) Mean and standard error of performance on all tasks for each
of the different graphs (see Figure 1 for graph details) across different LLMs studied in this work.
(bottom) Mean performance compared across per main task category (see Table 3 for details).

vertex are visited first, followed by the vertices at distance 2, and so on. BFS uses a queue data
structure to keep track of the vertices to be visited, and it ensures that no vertex is visited more than
once. BFS is useful for finding the shortest path between two vertices in an unweighted graph, or for
exploring all the vertices in a graph.”
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Table 3: Mean and standard errors for planning performance across all task conditions in all 10
LLMs. ARI scores closer to zero represent poor performance by the LLM and ARI scores reaching
1.0 represent performance matching Leiden.

gpt-4-32k gpt-35 davinci-003 claude-v1 pythia-20b cohere llama-13b alpaca-7b bard
Condition
1stepPath 0.99, 0.08 0.76, 0.32 0.52, 0.45 0.57, 0.37 0.64, 0.41 0.27, 0.42 0.23, 0.38 0.27, 0.41 0.05, 0.10
2stepPath 0.82, 0.35 0.73, 0.38 0.16, 0.25 0.61, 0.41 0.67, 0.42 0.29, 0.44 0.22, 0.37 0.35, 0.47 0.25, 0.50
3stepPath 0.55, 0.38 0.37, 0.37 0.58, 0.43 0.27, 0.31 0.35, 0.49 0.04, 0.11 0.04, 0.07 0.06, 0.20 0.11, 0.10
nonteleDetour 0.55, 0.39 0.51, 0.35 0.55, 0.43 0.50, 0.41 0.51, 0.37 0.21, 0.35 0.19, 0.33 0.26, 0.38 0.29, 0.48
nonteleShortcut 0.56, 0.40 0.52, 0.39 0.49, 0.40 0.62, 0.43 0.40, 0.36 0.16, 0.27 0.11, 0.18 0.20, 0.30 0.29, 0.48
nonteleShortcutCoT 1.00, 0.00 1.00, 0.00 0.09, 0.07 0.58, 0.38 0.36, 0.38 0.37, 0.49 0.17, 0.29 0.37, 0.37 -
nstepPath 0.47, 0.38 0.31, 0.34 0.17, 0.27 0.33, 0.37 0.27, 0.42 0.05, 0.11 0.06, 0.08 0.12, 0.32 0.00, 0.00
policyReval 0.21, 0.18 0.18, 0.23 0.13, 0.04 0.28, 0.30 0.00, 0.00 0.00, 0.00 0.04, 0.07 0.05, 0.22 0.00, 0.00
rewardReval 0.67, 0.40 0.57, 0.36 0.34, 0.25 0.48, 0.35 0.60, 0.45 0.31, 0.44 0.28, 0.43 0.33, 0.44 0.14, 0.14
teleDetour 0.47, 0.35 0.34, 0.30 0.53, 0.44 0.37, 0.33 0.44, 0.41 0.21, 0.35 0.23, 0.37 0.23, 0.38 0.29, 0.48
teleShortcut 0.54, 0.39 0.35, 0.33 0.44, 0.41 0.45, 0.39 0.27, 0.33 0.16, 0.27 0.16, 0.22 0.12, 0.24 0.29, 0.48
teleShortcutCoT 0.50, 0.00 0.50, 0.00 0.04, 0.01 0.50, 0.50 0.39, 0.36 0.19, 0.40 0.83, 0.29 0.35, 0.36 -
transReval 0.60, 0.42 0.59, 0.40 0.49, 0.38 0.55, 0.36 0.47, 0.42 0.19, 0.28 0.22, 0.33 0.27, 0.37 0.08, 0.17
transRevalStochastic 0.73, 0.36 0.52, 0.36 0.91, 0.24 0.78, 0.34 0.36, 0.32 0.00, 0.00 0.11, 0.19 0.22, 0.39 -
valuePath 0.58, 0.41 0.66, 0.40 0.66, 0.39 0.44, 0.41 0.49, 0.46 0.31, 0.40 0.27, 0.39 0.33, 0.45 0.29, 0.48
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Figure 3: Experiment 2 results. (Bottom) BFS and DFS instructions marginally enhance perfor-
mance on community graphs. In the Cluster counting task (graph D) adding BFS or DFS is beneficial
at temperatures 0 and 0.5 but less at 1. For finding shortest paths within a cluster, BFS or DFS help
with BFS being effective at temperature 0. However, for finding the shortest path 1-cluster away, only
BFS at temperature 0.5 yields slight improvements.

2.4 DFS (Depth First Search) instruction:

“Think carefully before you respond. You can try using Depth-first search (DFS), it is a graph traversal
algorithm that visits all the vertices of a graph in depth-first order, starting from a given source vertex.
In DFS, the algorithm traverses as far as possible along each branch before backtracking. DFS uses a
stack data structure to keep track of the vertices to be visited, and it ensures that all vertices connected
to a visited vertex are explored before backtracking. DFS is useful for finding cycles in a graph, for
exploring all the vertices in a graph, or for finding a path between two vertices. However, unlike BFS,
DFS does not guarantee that the shortest path is found.”

We explored how the simple instructions impact LLM performance for different temperatures to
investigate if the effectiveness of a given prompt can be impacted by the level of uncertainty caused
by the temperature parameter. We find that while in some cases the performance improves, the effects
are not consistent nor monotonic. This is an interesting phenomenon that needs further investigation
to be better understood.
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3 Results

3.1 Experiment 1: Repeated measures comparison of planning across LLMs

We evaluated out-of-the-box emergent or native ability of different LLMs on the cognitive map
tasks. Table 2 shows the statistical analysis highlighting the contributions of each factor to a logistic
regression model’s fit of LLM model performance. The magnitude of chi-square test statistics indicate
contribution to overall model fit. Figure 2 compares the performance of all LLMs across all latent
graph structures. Table 3 shows mean and standard error for planning performance across tasks and
LLMs.

The results in Table 2 indicate that the LLM (χ2(11) = 2357.87, p < .001), graph (χ2(11) = 3431.53,
p < .001), condition (χ2(11) = 2080.04, p < .001), and domain (χ2(11) = 304.06, p < .001) each
yielded significant chi-squared statistics. This means that not only did different LLMs performed
differently, but performance varied as a result of varying graphs, domains, and conditions. Conversely,
the temperature showed a non-significant chi-squared statistic (χ2(11) = 1.28, p = .53) and the
interaction between the LLM and temperature was also non-significant (χ2(11) = 10.69, p =
.71). Noteworthy, the interactions among graph-domain, graph-condition, domain-condition, and
graph-domain-condition were all significant (all p’s < .001). The interactions among graph-domain
(χ2(11) = 334.41, p < .001), graph-condition (χ2(50) = 1651.33, p < .001), domain-condition
(χ2(39) = 310.53, p < .001), and graph-domain-condition (χ2(108) = 1133.16, p < .001) were all
significant. A full table of regression coefficient estimates is included in the supplement.

In summary, while the ’temperature’ and the interaction of ’LLM’ and ’temperature’ do not show
significant effects in Experiment 1 (but show difference in Experiments 2), all other factors and
their interactions significantly contribute to the variations in the dependent variable. Considering
both individual and interactive effects, this finding shows that LLM performance on cognitive map
and planning tasks was not robust to the graph structure of the problems, the domain, or the task
conditions, and it also varied across models (see Tables 2 and 3 and Figure 2).

3.2 Experiment 2: The effect of Chain of Thought (CoT) Instructions

We explored the impact of instructing GPT-4 with graph traversal methods—Breadth First Search
(BFS) and Depth First Search (DFS). Even though explained at a high level, they resulted in
performance improvement on several experiments with complex community graphs. For the Cluster
counting task on community graph D in Figure 1, adding BFS or DFS improved results at temperatures
0 and 0.5, but less so at 1. Finding shortest paths within a cluster was improved across all temperatures
when using BFS or DFS, with BFS being most effective at temperature 0. However, for finding the
shortest path 1-cluster away, only BFS at temperature 0.5 improved performance. Each experiment
was repeated 30 times per prompt and temperature (Figure 3).

3.3 Failure modes

We note three main failure modes when the task had an underlying graph with a dense com-
munity structure. Notably, when we probe the LLMs to list connected rooms or items as
(state, actions, state) tuples, they do well (e.g., (room1, opendoor, room3) is a tuple for graph
A in Figure 1). However, when asked to do any tasks with a community graph structure using this
tuple knowledge, LLMs display the following failure modes; (1) hallucinate edges that do not exist,
or (2) produce longer trajectories instead of shortest paths, or (3) produce trajectories that fall in
loops. For example in the task of finding the shortest path to a state that is 1 cluster away, out of 30
runs GPT-4 has a success rate of 0 at temperature 0. Even with changing the temperature to 0.5 or
1 and repeating the same 30 runs its success rate can not exceed 10%. Please refer to Figure 4 for
examples of above failure modes.

4 Discussion and future directions

This paper makes two main contributions. First, we introduce CogEval, a cognitive science inspired
protocol for systematic and robust evaluation of functional [27] cognitive abilities in LLMs. Second,
we follow the CogEval protocol to evaluate multiple LLMs’ native or emergent ability to extract
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Figure 4: Examples of three failure modes. (left) Edge hallucination. (middle) Failure at finding a
1-step policy within the same cluster. (right) Failure at multi-hop path by both falling in a loop and
hallucinating edges. In each example the blue box is the task prompt, the grey box shows the model
response, and the green arrows demonstrate the correct response on the graph.

cognitive maps for sequential planning, navigation, or graph inference. All tasks and prompts are
based on non-linguistic human cognitive science experiments that we adapted into text prompts for
the first time. We test for robustness of the findings by varying task conditions, graph structure,
domains (spatial, social, and object-relational), and LLM temperature. Our systematic evaluation
reveals that while LLMs display apparent competence on some tasks in smaller graphs, they do not
have out-of-the-box emergent cognitive map comprehension or planning competence.

Methodological contribution. We provide a cognitive-science inspired protocol [14] for systematic
and careful evaluation of LLMs, CogEval, as follows. (1) We avoid the reuse of contaminated
standardized benchmarks by creating novel prompts based on non-text-based experiments that are
known to evaluate cognitive maps and planning in humans, animals, and RL. (2) We use multiple tasks
to probe the cognitive constructs (cognitive maps and planning) and repeat each interaction multiple
times and across different temperatures. (3) We use statistical analysis to evaluate the robustness and
reliability of each effect, with three main factors of graph structure, item domain (spatial vs. social vs.
object relations), and task condition (e.g., value-based decision making, shortcut, detour, see Table 1).
(4) We employ chain of thought and instruction prompts to evaluate the limits of out-of-the-box
cognitive abilities of LLMs and (5) analyze different types of failure modes. Please note that CogEval
is not a benchmark nor limited to evaluating cognitive maps and planning, it is a general protocol for
evaluating any cognitive capacity in LLMs. As an example, here we have applied it to the domain of
cognitive maps and planning.

No evidence for understanding cognitive maps or planning. Our systematic and incremental evalu-
ations reveal limited to no cognitive map capacities in the current generation of LLMs - including
GPT-4. Specifically, we find that LLMs only show apparent competence on simple sequential infer-
ence tasks where route memorization can help, and given LLMs have received all possible trajectories
in the text prompt. We also observe that the sparsity of graph structure drove performance. However,
when 1-step and multi-step traversal and planning require understanding the underlying relational
structure of the environment graph, LLMs including GPT-4 fail by hallucinations, suboptimally long
routes, or falling in loops.

How did LLMs solve the simpler tasks? Without access to full architectures or training sets, we can
only form hypotheses based on our behavioral observations. We observe that LLMs do better in
problems where the entire trajectories are explicitly available in the text prompts, and they only need
to retrieve and piece together partial changes. Planning behavior in larger graphs is far worse than the
smaller ones, and this is not just due to graph size: LLMs often perform worse on the graph with 15
nodes and 3 dense clusters compared to the 16-node (4-cluster) graph that has more nodes, but better
cross-cluster connectivity. The difference is that there are fewer paths among clusters in the 15-node
graph.

These observations suggest that LLMs may fail at planning problems where they need to use the
transition structure to unroll the trajectories and find the correct path, which is closer to the notion
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of planning in model-based RL and in cognitive science. Capturing the underlying structure and
using it to unroll trajectories are quintessential to cognitive maps and planning ability. Thus, the
apparent competence in simpler tasks may be due to using cached or memorized routes rather than
understanding the cognitive map, planning, or inference ability.

LLMs may do better in smaller graphs because the prompt already expands all the possible paths or
trajectories. When there is a change in the rewards or transition structure, the LLM only needs to
change one step in an already laid out path. However, in more clustered graphs only the one-step
connections are laid out in the prompt, but not all paths or trajectories between any given two nodes.
We observed that failures significantly increase in tasks with these larger graphs and a community
structure, even though LLMs can list the pairwise tuples of connected states (see failure modes,
Figure 4), especially for paths that LLMs could not explicitly memorize by reading the prompts.

Interpreting the results. The incremental experiments in the paper, notably, are not meant to be
interpreted as a benchmark for planning. They probe the same construct in different ways, evaluating
the ability to use information about (state, actions, state) tuples, e.g., (room1, opendoor, room3)
to piece together policies in response to task prompts. A reader may wonder why we claim that
LLMs do not display emergent planning in spite of high performance for some tasks in experiment 1
(Figure 2. We interpret the findings against emergent planning or understanding of cognitive maps in
LLMs due to various inconsistencies in success and failure cases (Figure 4). For instance, a common
failure mode is generating sequences with hallucinated (state, actions, state) tuples that do not exist.
Another common failure mode is that they fall into loops when prompted to find the shortest path
between two states (Figure 4, left and right). Moreover, LLMs can even fail to identify 1-step paths
and sometimes suggest multi-hop trajectories for traversing to an adjacent state (Figure 4, middle).

These observations stand in contrast to LLMs’ ability to generate a list of tuples based on the text
prompt. It shows that, while LLMs appear to solve planning problems with simple routes that can be
explicitly memorized, they have not emerged the ability to generalize from route memory solutions
to using the tuples to adaptively generate routes. Together, these inconsistent observations are in line
with the hypothesis that LLMs do not understand cognitive maps and therefore cannot consistently
plan. We acknowledge that they can be augmented with various tricks to improve their planning, but
these findings point to the absence of out-of-the-box planning ability.

Limitations. First, we lack knowledge of LLMs like GPT-4’s architecture or training. Thus, we did
not use existing text-based benchmarks that could be in the training data, and instead generated novel
prompts not in their training sets. Second, in the human experiments that influenced our prompts,
participants learn gradually, experiencing states one-by-one, but were only tested after they showed
signs of learning, similar to a model-based RL agent having the transition structure and using it
for inference and planning. To address this difference, we present the environment’s structure in
linguistic format. In all cases, the participant or model had to identify the goal location based on
instructions and infer the policy towards the goal, which is the room with the maximum reward. Thus,
we believe that our approach sufficiently addresses these differences.

Implication for applications. LLMs are expected to be applied in fields like gaming, planning, and
social reasoning, with tasks that require understanding the inherent relational structure of the problem
from the input for flexible reasoning and planning. However, here we show various failure modes
in the understanding of the underlying cognitive maps or planning abilities, including hallucination
and falling in loops. Even when provided instructions and Chain of Thought (CoT) prompts like
breadth-first search (BFS), we observe that GPT-4 struggles to process multi-hop paths it has not
experienced, which it needs to infer from the task’s underlying graph. These findings suggest caution
in the application of LLMs in problems that involve planning or complex structures. However,
augmenting the LLMs and CoT design may mitigate these challenges for problems with simpler
structures.

LLMs as programmable machines rather than emergent intelligence? While some prefer to regard
LLMs as agents with emergent intelligence comparable to humans and animals, our results reveal no
emergent cognitive map or planning capacities. These findings are more consistent with the view that
LLMs are programmable machines with natural language as their programming language [22]. This
is why here we evaluated planning in LLMs in a functionalist and multiple-realizability sense rather
than requiring any assumptions of them being "human-like" [34].
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Another implication of this view regards the role of scale in future directions. Scale might have
been a computationally costly and carbon-expensive shortcut to certain capacities and skills in the
absence of an architecture with energy- or efficiency- constraints. However, smaller models with
well-thought-out architecture, augmentation, and energy constraints could potentially achieve the
same skills. This will especially be more achievable in smaller models with specialized domain
training. While more hypothesis-driven and brain-inspired architectures would take more time and
domain knowledge, they may lead to more ecologically friendly AI with efficiency constraints and
adaptive skills.

Future directions. A future direction is to analyze representational similarities in the embeddings
and test hypotheses about representations underlying success and failure modes. This mirrors how
neuroscience analyzes neural data to understand representations in model-based and predictive
planning and decision-making [32, 8]. Moreover, we observed that while LLMs struggled with
planning, some could list pairwise tuples or recognize the item that was associated with the goal.
Thus, an interesting direction is to study the limits of LLMs’ transitive inference using pair-wise
associations [45, 42]. Another direction is to study whether the use of schemas, i.e., overused,
generalized cognitive maps such as "airport" [59, 28, 13, 60], can improve performance on real-world
scenarios, given LLMs can apply analogical reasoning to solve problems [64]. Finally, some have
suggested ways to improve planning by augmenting LLMs with algorithms that enable executive
control, an interesting direction that can contribute to the future of augmenting both larger and
especially smaller language models.

LLMs need a hippocampus and prefrontal cortex. Practical applications may benefit from adding
memory, planning, and executive control augmentations to LLMs. The failure modes we observed in
dense community graphs included hallucinating edges, inability to find shortest paths, and falling in
loops. It is possible that they can be mitigated with careful augmentations for memory and planning
that, similarly to the role of the hippocampus and prefrontal cortex in the brain, can extract the
relational structure from sequential data and flexibly reflect [47] to plan at multiple scales [8, 33].

Summary. We’ve made two contributions. We introduce CogEval, a cognitive science inspired
protocol for systematic and robust evaluation of LLMs. Following CogEval, we show that LLMs do
not have emergent planning capacities, possibly because LLMs do not understand cognitive maps:
the relational structures underlying planning problems.
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