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{liujiuming,wangguangming,liuzhesjtu,wanghesheng}@sjtu.edu.cn

ts20060079a31@cumt.edu.cn marc.pollefeys@inf.ethz.ch

Abstract

Although point cloud registration has achieved remark-
able advances in object-level and indoor scenes, large-
scale registration methods are rarely explored. Challenges
mainly arise from the huge point number, complex distri-
bution, and outliers of outdoor LiDAR scans. In addi-
tion, most existing registration works generally adopt a two-
stage paradigm: They first find correspondences by extract-
ing discriminative local features and then leverage estima-
tors (eg. RANSAC) to filter outliers, which are highly de-
pendent on well-designed descriptors and post-processing
choices. To address these problems, we propose an end-
to-end transformer network (RegFormer) for large-scale
point cloud alignment without any further post-processing.
Specifically, a projection-aware hierarchical transformer is
proposed to capture long-range dependencies and filter out-
liers by extracting point features globally. Our transformer
has linear complexity, which guarantees high efficiency
even for large-scale scenes. Furthermore, to effectively re-
duce mismatches, a bijective association transformer is de-
signed for regressing the initial transformation. Extensive
experiments on KITTI and NuScenes datasets demonstrate
that our RegFormer achieves competitive performance in
terms of both accuracy and efficiency. Codes are available
at https://github.com/IRMVLab/RegFormer.

1. Introduction

Point cloud registration is a fundamental problem in 3D
computer vision, which aims to estimate the rigid transfor-
mation between point cloud frames. It is widely applied in
moblie robotics [22, 34], autonomous driving [47, 37], etc.

*Corresponding Authors. The first two authors contributed equally.

Figure 1. Overview architecture of RegFormer. The whole feature
extraction and frame association sections are transformer-based.
We project point cloud onto a 2D surface and feed its patches into
transformer. A projection mask MT (MS) is also proposed, which
equips our transformer with the awareness of invalid positions.

Although learning-based methods show great potential
in object-level or indoor registration tasks [42, 10, 1, 17],
large-scale point cloud registration is less studied. Chal-
lenges are mainly three-fold: 1) Outdoor LiDAR scans may
consist of hundreds of thousands of unstructured points,
which are intrinsically sparse, irregular, and have a large
spatial range. It is non-trivial to efficiently process all raw
points in one inference [44]. 2) Outliers from dynamic
objects and occlusion would degrade the registration accu-
racy as they introduce uncertain motions and inconsistency.
3) There are numerous mismatches when directly leverag-
ing distance-based nearest neighbor matching methods (eg.
kNN) to distant point cloud pairs [25].
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For the first challenge, previous registration works
mostly voxelize input points [4, 25], and then establish pu-
tative correspondences by selecting keypoints and learning
distinctive local descriptors [42, 10, 1]. However, quantiza-
tion errors are inevitable in the voxelization [18]. Also, dif-
ferent selected keypoints may influence registration accu-
racy and downsampling challenges the repeatability [45]. In
this paper, instead of searching keypoints, we directly pro-
cess all LiDAR points by projecting them onto a cylindrical
surface for the structured organization. Projected image-
like structure facilitates the window partition in transformer,
realizing linear computational costs. This enables our net-
work to process almost 120000 points with high efficiency.
To take advantage of 3D geometric features, each projected
position is filled with raw point coordinates, inspired by
[37]. Another concern is that projected pseudo images are
full of invalid positions due to the original sparsity of point
clouds. We handle this by designing a projection mask.

For the second challenge, the commonly used method
is applying the robust estimator (RANSAC) [13, 4, 1] to
filter outliers. However, RANSAC suffers from slow con-
vergence [30] and is highly dependent on post-processing
choices [44]. From a different view, we observe that
global modeling capability is rather helpful to localize
occluded objects and recognize dynamics as they intro-
duce inconsistent global motion. Therefore, we propose a
projection-aware transformer to extract point features glob-
ally. Notably, some recent works [30, 44] also try to design
RANSAC-free registration networks. However, the combi-
nation of CNN and transformer in their feature extraction
modules deteriorates the efficiency. The closest approach
to ours is REGTR [44], which directly predicts clean cor-
respondences with transformer. Nonetheless, the quadratic
complexity limits its ability for large-scale application.

In addition, a Bijective Association Transformer (BAT)
is designed to tackle the third challenge. HRegNet [25]
already has awareness that nearest-neighbor matching can
lead to considerable mismatches due to possible errors in
descriptors. However, their kNN cluster is still distance-
based, which can not generalize well to low-overlap in-
puts. To address this problem, two effective components
are designed in BAT for reducing mismatches. The cross-
attention mechanism is utilized first for preliminary location
information exchange. Intuitively, features of deeper layers
are coarse but reliable as they gather more information with
larger receptive fields. Thus, each point is correlated with
all points (instead of selecting k points) in the other frame to
gain reliable motion embeddings on the coarsest layer (all-
to-all). The precise transformation will then be recovered
by the iterative refinement on shallow layers.

Overall, our contributions are as follows:
• We propose a fully end-to-end network for large-scale

point cloud registration. It does not need any keypoint

matching or post-processing, which is both keypoint-
free and RANSAC-free. Our efficient model can pro-
cess hundreds of thousands of points in real time.

• The global modeling capability of our RegFormer can
filter outliers effectively. Furthermore, a Bijective As-
sociation Transformer (BAT) is designed to reduce
mismatches by combining cross-attention with an all-
to-all point correlation strategy on the coarsest layer.

• Experiment results on KITTI [16, 15] and NuScenes
[5] datasets indicate that our RegFormer achieves
state-of-the-art performance with 99.8% and 99.9%
successful registration recall respectively.

2. Related Work
Deep point cloud registration. Existing deep point

cloud registration networks can be divided into two cate-
gories according to whether they extract explicit correspon-
dences. The first class attempts to establish point correspon-
dences through keypoint detection [26, 14, 25] and learning
powerful discriminative descriptors [42, 10, 4, 1, 12]. As
a pioneering work, 3DMatch [46] extracts local volumet-
ric patch features by a Siamese network. PPFNet [12] and
its unsupervised version PPF-FoldNet [11] extract global
context-aware descriptors using PointNet [28]. To enlarge
the receptive field, FCGF [10] computes dense descriptors
of whole input point clouds in a forward pass. Recent
correspondence-based networks [9, 41, 3, 6, 7] commonly
use it to generate putative correspondences.

The second class directly estimates transformation in an
end-to-end manner [2, 39, 19, 43]. Point clouds are aligned
with learned soft correspondences or without explicit cor-
respondences. Among these, PointNetLK [2] is a landmark
that extracts global descriptors and estimates transformation
with Lucas-Kanade algorithm [27]. FMR [19] enforces the
optimization of registration by minimizing feature-metric
projection errors. However, these direct registration meth-
ods can not generalize well to large-scale scenes [17]. Our
method falls into this category and is specially designed for
large-scale registration.

Large-scale point cloud registration. Large-scale reg-
istration is less studied in previous works. DeepVCP [26]
incorporates both the local similarity and global geometric
constraints in an end-to-end manner. Although it is evalu-
ated on outdoor benchmarks, its keypoint matching is still
constrained in local space. With a larger keypoint detection
range, HRegNet [25] introduces bilateral and neighborhood
consensus into keypoint features and achieves state-of-the-
art. Different from previous works [26, 25, 40] that mostly
focus on local descriptors, we address the issue from a more
global perspective thanks to the long-range dependencies
capturing ability of transformer. Motivated by recent scene
flow works [35, 36], our RegFormer has no need for search-
ing keypoint and explicit point-to-point correspondences,



Figure 2. The feature extraction module consists of three cascaded
stages as constructed in a). b) indicates Point Swin Transformer
block in stage l, which computes attention within windows (Point
W-MSA), and then gathers contextual information by the spatial
shift (Point SW-MSA).

which learns implicit cross-frame motion and directly out-
puts pose in a single pass.

Transformer in registration tasks. Most existing
works [39, 14, 44, 45] only treat transformer as a frame
association module. Among these, DCP [39] first uti-
lizes a vanilla transformer to correlate downsampled fea-
tures. RGM [14] proposes a framework based on deep
graph matching, where transformer is employed to dynam-
ically learn the soft edges of nodes. REGTR [44] outputs
overlap scores and the location information through cross-
attention, but it can not handle large-scale scenes. Our Reg-
Former achieves linear complexity by revisiting attention
within non-overlapping windows. Transformer is designed
for not only frame association but also feature extraction.
To the best of our knowledge, our RegFormer is the first
pure transformer-based registration network.

3. RegFormer
3.1. Overall Architecture

The overall architecture of our proposed RegFormer is
illustrated in Fig. 1. Given two point cloud frames: source
point cloud PCS ∈ RN×3 and target point cloud PCT ∈
RM×3, the objective of registration is to align them via an
estimated transformation. To orderly organize raw irregu-
lar points, we first project point clouds as pseudo images
IS and IT in Section 3.2, and then feed them together with
corresponding masks MS

0 and MT
0 into the hierarchical fea-

ture extraction module as in Fig. 2 a). Following prior works
[23, 24], we treat each patch of size 4×8×3 as a token, and
then a feature embedding layer is utilized to project these
patches to an arbitrary dimension denoted by C. The patch
merging layer of each stage concatenates 2 × 2 neighbor
patches. Then, concatenated features are reduced to half
channels, and then fed into a projection-aware transformer

Figure 3. Cylindrical projection. We project 3D point clouds onto
a 2D surface and fill each pixel with its raw x, y, z coordinates. A
projection mask is also proposed to remove invalid positions.

in Section 3.3. For associating point clouds and reducing
mismatches, a Bijective Association Transformer (BAT) in
Section 3.4 is employed to generate initial motion embed-
dings. Finally, the quaternion q3 ∈ R4 and translation vec-
tor t3 ∈ R3 are estimated from motion embeddings, and
then refined iteratively.

3.2. Cylindrical Projection

According to the original proximity relationship of raw
points, point clouds are projected onto a cylindrical surface,
following the line scanning characteristic of the LiDAR sen-
sor. Each point has a corresponding 2D pixel position on
projected pseudo images as:

u = arctan2(y/x)/∆θ, (1)

v = arcsin(z/
√

x2 + y2 + z2)/∆ϕ, (2)

where x, y, z represent the raw 3D coordinates of point
cloud and u, v are corresponding 2D pixel positions.
∆θ,∆ϕ are horizontal and vertical resolutions of the Li-
DAR sensor. To make the best use of geometric informa-
tion of raw 3D points, we fill each pixel position with its
raw x, y, z coordinates. Pseudo images of size H ×W × 3
in Fig. 3 will be input to the feature extraction transformer.

3.3. Point Swin Transformer

Compared with images, the scale of outdoor LiDAR
points is surprisingly larger, and thus they require a much
larger number of tokens for representation. Vanilla trans-
former with quadratic complexity is not suitable, as it will
lead to huge computation costs. Inspired by Swin Trans-
former [23], we introduce window attention into 3D point
transformer for linear complexity. Thanks to the global un-
derstanding ability of transformer, our network can effec-
tively learn to identify dynamic motions and the location of
occluded objects in the other frame. To simplify the formu-
lation, we only expand the description for the source point
cloud in this section, and the same goes for the target one.

Projection masks. It is non-trivial to extend the 2D
window-based attention mechanism to the pseudo images
generated from 3D points. Point cloud, especially in out-
door scenes, is extremely sparse. Thus, projected pseudo
images are filled with invalid blank pixels. The registra-
tion accuracy will be affected if they are fed identically



Figure 4. Bijective Association Transformer. The cross-attention mechanism is leveraged for preliminary information exchange between
two frames. Then, geometric characteristics of conditioned features F̃S

3 , F̃T
3 are fully considered to generate the initial motion embeddings.

into attention. Also, the attention calculation itself of these
pixels is meaningless as they have no corresponding raw
points. Inspired by [8], a projection-aware mask MS

l is pro-
posed here, which represents whether each pixel is invalid
in Fig. 3:

MS
l =

{
−∞, x = 0, y = 0, z = 0 ,

0, otherwise ,
(3)

where x, y, z are point coordinates filled into pseudo im-
ages. The projection mask MS

l of size H ×W × 1 is pixel-
corresponding to the projected pseudo image and together
downsampled in each stage as Fig. 1. l denotes the stage
number. We assign zero to valid pixels and a big negative
number to invalid ones where attention should not be cal-
culated. In this way, invalid pixels would then be filtered
through the softmax operation afterward in attention blocks.

Point W-MSA and Point SW-MSA. For stage l, point
feature Zl−1 (Hl × Wl × Cl) and its corresponding mask
MS

l (Hl×Wl× 1) are fed into Point Window-based Multi-
Head Self Attention (Point W-MSA) as:
W -MSA(Zl−1) = (Head1 ⊕ · · · ⊕HeadH)WO, (4)
Headh = Attention(Qh,Kh, V h)

= softmax(
QhKh

√
dhead

+MS
l +Bias)V h, (5)

where Headh represents the output of h-th head. MS
l is

the projection mask. Bias is the relative position encoding
[31]. Qh = Zl−1WQ

h , Kh = Zl−1WK
h , V h = Zl−1WV

h ,
in which WQ

h ∈ RCl×Chead , WK
h ∈ RCl×Chead , WV

h ∈
RCl×Chead , WO ∈ RHChead×Cl are learned projections.
The above process is repeated again in the following Point
Shift Window-based Multi-head Self Attention (Point SW-
MSA). The only difference is that features are first spatially
shifted [23] in Point SW-MSA for increasing information
interaction among windows.

Point Swin Transformer blocks. Overall, one complete
transformer stage in Fig. 2 b) can be described as:

Ẑl = PW -MSA(LN(Zl−1)) + Zl−1

Zl = MLP (LN(Ẑl)) + Ẑl

Ẑl+1 = PSW -MSA(LN(Zl)) + Zl

Zl+1 = MLP (LN(Ẑl+1)) + Ẑl+1, (6)

where P(S)W-MSA represents Point (Shift) Window Multi-
head Self Attention. Zl+1 is the output feature of stage l.

3.4. Bijective Association Transformer

After global features are hierarchically extracted by our
Point Swin Transformer, the key issue is how to match
source and target point clouds through their downsampled
features. The most common method is to search for nearest
neighbors (NN). However, this distance-dependent strategy
is ineffective enough for large-scale registration, as two cor-
responding points may be too far away, which leads to nu-
merous mismatches [25]. To solve this problem, we propose
a Bijective Association Transformer block (BAT) in Fig. 4,
which first learns rough but generally correct location infor-
mation with cross-attention. Then, an all-to-all point gather-
ing strategy guarantees reliable location output and further
reduces mismatches on the coarsest layer.

Rough association. As depicted in Fig. 4, downsam-
pled source and target point features of stage 3 are first fed
into a cross-attention layer with linear complexity, roughly
associating with each other. Cross attention can introduce
certain similarities of two point cloud frames by calculating
attention weights and updating features with the awareness
of point location in the other frame [44]. Concretely, source
and target point coordinates and their features are first re-
sized as XS

3 ∈ Rn×3, Y T
3 ∈ Rm×3 and FS

3 ∈ Rn×C3 ,
FT
3 ∈ Rm×C3 , which are inputs of the cross-attention

block. The output conditioned features F̃S
3 for source point

cloud can be written as:

F̃S
3 = Attention(FS

3 WQ, FT
3 WK , FT

3 WV ), (7)

where WQ,WK ,WV are respective projected functions.
Attention is similar to Section 3.3. When the source point
cloud serves as query, the target point cloud would be pro-
jected as key and value, and vice versa.

All-to-all point gathering. The coarsest layer obvi-
ously gathers more information and a larger receptive field,
which is reliable to match two frames. Thus, on the bot-
tom layer of our RegFormer, each point in F̃S

3 is asso-
ciated with all points in F̃T

3 , rather than select k nearest
neighbor points (kNN), to generate reliable motion embed-
dings. Specifically, each point in PCS = {(xi, fi)|xi ∈



XS , cfi ∈ F̃S
3 , i = 1, · · · , n} correlates with all m points

in PCT = {(yj , fj)|yj ∈ Y T , cfj ∈ F̃T
3 , j = 1, · · · ,m},

forming an association cluster {(yki , cfk
i )|k = 1, · · · ,m}.

Then, the relative 3D Euclidean space information {rki } is
calculated as:

rki = xi ⊕ yki ⊕ (xi − yki )⊕ ∥xi − yki ∥2, (8)

where ∥·∥2 indicates the L2 Norm.
The cosine similarity of grouped features is also intro-

duced as:
ski =

< cfi, cf
k
i >

∥cfi∥2∥cfk
i ∥2

, (9)

where <,> denotes the inner product. This step will out-
put a n × m × 2 similarity feature ski , where the neighbor
similarity in [25] is also considered here.

Then, we concatenate the above space and similarity em-
beddings and utilize a 3-layer shared MLP on them:

Lk
i = MLP (fi ⊕ cfk

i ⊕ rki ⊕ ski ). (10)

Finally, the initial flow embedding can be represented by
the attentive encoding of concatenated features as:

fei =

m∑
k=1

Lk
i ⊙ softmax

k=1,··· ,m
(Lk

i ), (11)

where a max-pooling layer and a softmax function are lever-
aged to predict attention weights for each point xi. And the
output motion embedding is a weighted sum of Lk

i .

3.5. Estimation of the Rigid Transformation

The transformation is estimated from initial motion em-
beddings FE = {fei, i = 1, · · · , n} together with down-
sampled source point features FS

3 in layer 3 as:
W = softmax(MLP (FE ⊕ FS

3 )), (12)

where W = {wi|wi ∈ RC3} are attention weights. Then,
the quaternion q3 ∈ R4 and translation vector t3 ∈ R3 can
be generated separately from weighting and sum operations
followed by a fully connected layer:

q3 =

FC1(
n∑

i=1

fei ⊙ wi)

|FC1(
n∑

i=1

fei ⊙ wi)|
, (13)

t3 = FC2(

n∑
i=1

fei ⊙ wi), (14)

where FC1 and FC2 denote two fully connected layers.
Nonetheless, the initially estimated transformation is not

precise enough due to the sparsity of the coarsest layer.
Thus, we iteratively refine it on upper layers with PWC
structure [32, 38] to generate residual transformation ∆ql

and ∆tl. Refinement in the l-th layer can be indicated as:
ql = ∆qlql+1, (15)

[0, tl] = ∆ql[0, tl+1](∆ql)−1 + [0,∆tl]. (16)

3.6. Loss Function

Our network outputs transformation parameters from
four layers and adopts a multi-scale supervised approach:
L = αlLl. αl indicates weights of layer l. Ll denotes the
loss function of the l-th layer, which is calculated as:

Ll = Ll
transexp(−kt) + kt + Ll

rotexp(−kr) + kr, (17)

where kt and kr are two learnable parameters, which can
uniform the difference in the unit and scale between quater-
nion and translation vectors [21]. Ll

trans and Ll
rot can be

calculated as:
Ll
trans = ∥tl − t̂l∥, (18)

Ll
rot = ∥ ql

∥ql∥
− q̂l∥2, (19)

where ∥·∥ indicates the L1 Norm. ql, tl and q̂l, t̂l are esti-
mated and ground truth transformations respectively.

4. Experiment
We evaluate our RegFormer on two large-scale point

cloud datasets, namely KITTI [16, 15] and NuScenes [5].
Moreover, ablation studies are conducted for each designed
component of our network to demonstrate their effective-
ness. Extensive experiments demonstrate that our methods
can achieve state-of-the-art registration accuracy and also
guarantee high efficiency.

4.1. Experiment Settings

Implement Details. In the data processing, we directly
input all LiDAR points without downsampling. Projected
pseudo images are set in line with the range of LiDAR sen-
sor as 64 (H)×1792 (W ) for KITTI and 32 (H)×1792 (W )
for NuScenes. Window size and shift size are set as 4 and 2
separately. Experiments are conducted on a single NVIDIA
Titan RTX GPU with PyTorch 1.10.1. The Adam optimizer
is adopted with β1 = 0.9, β2 = 0.999. The initial learning
rate is 0.001 and exponentially decays every 200000 steps
until 0.00001. The batch size is set as 8. The hyperparame-
ter αl in the loss function is set to 1.6, 0.8, 0.4, and 0.2 for
four layers. Initial values of learnable parameters kt and kr
are set as 0.0 and -2.5 respectively. More experiment details
are presented in Appendix.

Evaluation metrics. We follow protocols of DGR [9]
to evaluate our RegFormer with three metrics: (1) Relative
Translation Error (RTE). (2) Relative Rotation Error (RRE).
(3) Registration Recall (RR). RR is defined when RRE and
RTE are within a certain threshold.

4.2. KITTI Benchmark

KITTI odometry dataset is composed of 11 sequences
(00-10) with ground truth poses. Following the settings in
[10, 9], we use 00-05 for training, 06-07 for validation, and



RTE(m) RRE(◦)Method AVG STD AVG STD RR(%) Time(ms)/Points NT(ms)

FGR [48] 0.93 0.59 0.96 0.81 39.4% 506.1/11445 44.22
RANSAC [13] 0.13 0.07 0.54 0.40 91.9% 549.6/16384 33.54

DCP [39] 1.03 0.51 2.07 1.19 47.3% 46.4/1024 45.31
IDAM [20] 0.66 0.48 1.06 0.94 70.9% 33.4/4096 8.15
FMR [19] 0.66 0.42 1.49 0.85 90.6% 85.5/12000 7.13
DGR [9] 0.32 0.32 0.37 0.30 98.7% 1496.6/16384 91.35
HRegNet [25] 0.12 0.13 0.29 0.25 99.7% 106.2/16384 6.48
Ours 0.08 0.11 0.23 0.21 99.8% 98.3/120000 0.82

Table 1. Comparison with state-of-the-art. The best performance
is highlighted in bold. Registration Recall (RR) is defined as the
success ratio where RRE< 5◦and RTE< 2m. ‘NT’ means normal-
ized time per thousand points.

Figure 5. Registration recall with different RRE and RTE thresh-
olds on the KITTI dataset.

08-10 for testing. Also, the ground truth poses of KITTI are
refined with ICP [10, 4].

Comparison with state-of-the-art. Following [25], the
current frame and the 10th frame after it are used to form
input point pairs. We choose both traditional and learning-
based registration methods for comparison. For classical
methods, our network is superior to FGR [48] by a large
margin in both accuracy and efficiency. Compared with
RANSAC [13], our RegFormer has a 7.9% higher RR. Also,
RANSAC suffers from much lower efficiency (five times
more total time than ours) due to the slow convergence.
With respect to learning-based methods, RegFormer is com-
pared with a series of state-of-the-art. DCP [39], IDAM
[20], and FMR [19] are all feature-based registration net-
works that extract local descriptors. DGR [9] achieves com-
petitive performance in indoor scenes with global features.
As in Table 1, our RegFormer has much lower RRE and
RTE, higher RR than all the above learning-based meth-
ods without designing discriminative descriptors. HReg-
Net [25] is recent CNN-based SOTA for outdoor large-scale
scenes. Our RegFormer is more accurate in terms of all
metrics and has a 7.2% efficiency improvement than theirs.
As for efficiency, both total time and normalized time are
given. Normalized time is calculated by the processing
speed per thousand points. As illustrated in Table 1, our
RegFormer can process large-scale points with the highest
average efficiency (0.82ms). Registration recalls with dif-
ferent RRE and RTE thresholds are also displayed in Fig. 5,
which proves that our RegFormer is extremely robust to var-
ious threshold settings.

Method Backbone RTE(cm) RRE(◦) RR(%) Time(s)

3DFeat-Net [42] CNN 25.9 0.25 96.0% 3.4
FCGF [10] CNN 9.5 0.30 96.6% 3.4
D3Feat [4] CNN 7.2 0.30 99.8% 3.1
Predator [17] CNN 6.8 0.27 99.8% 5.2
CoFiNet [45] CNN 8.5 0.41 99.8% 1.9
SpinNet [1] CNN 9.9 0.47 99.1% 60.6
GeoTransformer [30] Transformer 7.4 0.27 99.8% 1.6
Ours Transformer 8.4 0.24 99.8% 0.1

Table 2. Comparison with RANSAC-based networks. The best
performance is highlighted in bold. RR is defined as the success
ratio where RRE< 5◦and RTE< 2m.

Comparison with RANSAC-based models. RANSAC
is a commonly employed estimator for filtering outliers.
With no need for RANSAC, our RegFormer leverages the
attention mechanism for improving the resilience to out-
liers by learning global features. Its effectiveness is demon-
strated by the comparison with RANSAC-based methods
in Table 2. We follow settings in [30] using input point
pairs at least 10m away and setting the RTE threshold as
2m. Also, all methods are divided into two categories in
terms of different backbones: CNN and Transformer. Our
network is on par with all SOTA CNN-based works includ-
ing 3DFeatNet [42], FCGF [10], D3Feat [4], CoFiNet [45],
Predator [17], and SpinNet [1]. Notably, although Preda-
tor has 1.6 cm lower RTE than ours due to well-designed
local descriptors, it has 11.1% larger RRE and 52× more
runtime compared with ours. In terms of transformer-based
networks, GeoTransformer [30] introduces geometric fea-
tures into transformer and has a marginally smaller RTE, but
it has a higher RRE and obvious efficiency decline. Our effi-
cient RegFormer has a 16× speed-up compared with theirs.

4.3. NuScenes Benchmark

We further evaluate our RegFormer on NuScenes. It con-
sists of 1000 scenes, including 850 scenes for training and
validation, and 150 scenes for testing. Following [25], we
use 700 scenes for training, 150 scenes for validation, and
10th frame away point pairs.

Comparison with state-of-the-art. As illustrated in
Table 3, our registration accuracy outperforms all classi-
cal works and most learning-based ones. Our RegFormer
has a 39% RR improvement compared with RANSAC with
only 30% of their runtime. For learning-based methods, our
model is superior to DCP [39], IDAM [20], and FMR [19]
by a large margin. Compared with HRegNet [25], our Reg-
Former has the same 99.9% recall. Because the feature ex-
traction section is finely pre-trained, it has 0.02m lower RTE
than ours, but more than two times RRE (0.45◦) instead.
Moreover, their efficiency is lower than ours.

4.4. Qualitative Visualization

Low-overlap Registration. Fig. 6 selects four challeng-
ing samples of registration results on the KITTI dataset.



Figure 6. Low-overlap registration results. Point clouds colored red and green indicate the input source and target point clouds. Transformed
source points by the estimated pose of ours and HRegNet are colored blue and pink respectively. The ground truth is colored purple. Our
RegFormer can align low-overlap input points even with large translations (upper two rows) or rotations (lower two rows).

Method RTE(m) RRE(◦) Recall(%) Time/Points NT(ms)

FGR [48] 0.71 1.01 32.2% 284.6/11445 24.87
RANSAC [13] 0.21 0.74 60.9% 268.2/8192 32.74

DCP [39] 1.09 2.07 58.6% 45.5/1024 44.43
IDAM [20] 0.47 0.79 88.0% 32.6/4096 7.96
FMR [19] 0.60 1.61 92.1% 61.1/12000 5.09
DGR [9] 0.21 0.48 98.4% 523.0/8192 63.84
HRegNet [25] 0.18 0.45 99.9% 87.3/8192 10.66
Ours 0.20 0.22 99.9% 85.6/50000 1.71

Table 3. Quantitative results on NuScenes. The best performance
is in bold. ‘NT’ means normalized time per thousand points.

Figure 7. Visualization of registration errors. Point clouds colored
yellow and blue indicate transformed source points by the ground
truth (GT) and our estimated pose. Registration errors are visual-
ized by a red vector pointing from estimated points to the GT.

Our RegFormer can effectively align source and target point
clouds even though they originally have large translations or
rotations with low overlap. Also, our RegFormer has higher
registration accuracy compared with HRegNet [25].

Visualization of the registration errors. To further

study the source of errors, error vectors are visualized in
Fig. 7. Interestingly, our registration errors are also influ-
enced by the surroundings due to the data-driven character-
istics. When features on both sides of the vehicle are suf-
ficient as Fig. 7 a) and b), errors are relatively distributed
evenly. It can be attributed to the structured buildings
around, which offer solid positioning information. How-
ever, if there are scarce reference objects besides the car or
surrounding features are monotonous as in Fig. 7 c), errors
mainly come from the front and rear directions.

4.5. Ablation Study

In this section, extensive ablation studies are conducted
for each designed element.

Hierarchical architecture. We separately output esti-
mated transformation parameters from coarser layers and
re-evaluate the metrics. As displayed in Table 4, rotation
and translation are generated from layer 3 (a), layer 2 (b),
and layer 1 (c). It is obvious that registration errors get
smaller as the transformation is iteratively refined.

Projection masks. The projection mask in our trans-
former is removed to evaluate its effectiveness. As in Ta-
ble 5 (a), the whole registration accuracy drops dramatically
since numerous invalid pixels are also taken into account.

Global modeling capability. Different from most previ-
ous works, our RegFormer focuses on more global features
with transformer. The global modeling ability enables our
network to sufficiently capture dynamics and recover the



Model RTE(m) RRE(◦) Recall(%)

(a) Transformation from layer 3 0.96 ± 0.42 1.49 ± 1.03 64.2%
(b) Transformation from layer 2 0.75 ± 0.44 1.31 ±0.85 79.9%
(c) Transformation from layer 1 0.38 ± 0.30 0.88 ± 0.82 96.8%

Ours (from layer 0) 0.08 ± 0.11 0.23 ± 0.21 99.8%

Table 4. Ablation studies of the hierarchical architecture.

Model RTE(m) RRE(◦) Recall(%)

(a) w/o projection mask 0.22 ± 0.18 0.52 ± 0.53 98.1%

(b) replace transformer with 2D CNN 0.57 ± 0.42 0.89 ± 0.81 82.2%
(c) replace transformer with PointNet++ [29] 0.24 ± 0.25 0.57 ± 0.62 92.4%

(d) w/o cross attention in BAT 0.19± 0.17 0.48 ± 0.44 98.7%
(e) w/o all-to-all points gathering in BAT 0.88± 0.46 1.88 ± 1.02 63.3%
(f) replace BAT with cost volume in [38] 0.75 ± 0.49 1.20 ± 0.90 60.3%
(g) replace BAT with cost volume in [33] 0.18 ± 0.22 0.33 ± 0.46 93.4%

Ours (Full) 0.08 ± 0.11 0.23 ± 0.21 99.8%

Table 5. Ablation studies of components in transformer module.

occluded objects. To verify this, we replace the feature ex-
traction transformer with CNNs, keeping other components
unchanged. As indicated in Table 5 (b), 2D CNN is used
to extract local features with the same downsampling scale.
PointNet++ [29] is also utilized to replace our transformer
in Table 5 (c). The results show both local features extracted
by 2D CNN and Pointnet++ have larger registration errors
since their receptive fields are constrained.

Bijective Association Transformer (BAT). In this pa-
per, cross-attention is leveraged to exchange information
between frames in advance. Here, we remove the cross-
attention in BAT to quantitatively test the effectiveness. Ta-
ble 5 (d) shows that registration errors become double with-
out cross-attention module. Also, the all-to-all point group-
ing strategy is extremely crucial to find reliable points and
reduce mismatches as in Table 5 (e). Furthermore, we con-
duct experiments by replacing BAT with the cost volume
mechanism [38, 33], which is commonly used for consecu-
tive frame association. From the results in Table 5 (f) (g),
we can witness at least 0.1m larger RTE and 6.4% RR drop.

5. Discussion

Here, we discuss why our RegFormer has such excellent
accuracy. The competitive performance can be basically at-
tributed to the outlier elimination capability and mismatch
rejection strategy. We will elaborate on these two mecha-
nisms in detail respectively.

Global modeling ability to filter outliers. Trans-
former can learn patch similarity globally while dynamics
and occlusion have inconsistent global motion. So, our
transformer-based pipeline can effectively recognize and
eliminate interference from these objects by paying less at-
tention to these patches as in Fig. 8. In this case, our Reg-
Former can maintain high registration accuracy without ro-
bust estimators like RANSAC.

Cross-attention mechanism for reducing mismatches.

Figure 8. Visualization of attention weights. We give two samples
here, where the first two rows respectively represent corresponding
pictures and projected point clouds. Attention weights are visual-
ized in the last row. Dynamic objects (red box) have lower atten-
tion weights, and static objects (green box) have higher weights.

Figure 9. Visualization of the cross attention mechanism in BAT.
Points A and B are corresponding points respectively in the source
and target frame. Point C is the transformed position of A by con-
ditioned features after cross-attention block.

In our Bijective Association Transformer module, a cross-
attention block is first applied to exchange information and
embed motion between two frames. Here, we remove the
rest parts of BAT, leveraging only conditioned features from
the cross-attention block to generate a directionally correct
but not precise transformation. Then, it is used to transform
input point clouds as in Fig. 9 (purple). For each point in
the source point cloud (blue), its corresponding point in the
target one (yellow) is originally almost 10m away. Cross-
attention can effectively shorten this distance between two
frames by learning preliminary motion embeddings.

6. Conclusion

In this paper, we proposed a transformer-based large-
scale registration network. Global features are extracted by
transformer to filter outliers. To cope with the irregular-
ity and sparsity of raw point clouds, we leverage cylindrical
projection to organize them orderly and present a projection
mask to remove invalid pixels. Furthermore, a bijective as-
sociation transformer, including cross-attention-based pre-
liminary information exchange and all-to-all point gather-
ing, is designed for reducing mismatches. The whole model
is RANSAC-free, high-accuracy, and extremely efficient.
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