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Abstract

Robust estimation is a crucial and still challenging task,
which involves estimating model parameters in noisy envi-
ronments. Although conventional sampling consensus-based
algorithms sample several times to achieve robustness, these
algorithms cannot use data features and historical informa-
tion effectively. In this paper, we propose RLSAC, a novel
Reinforcement Learning enhanced SAmple Consensus frame-
work for end-to-end robust estimation. RLSAC employs a
graph neural network to utilize both data and memory fea-
tures to guide exploring directions for sampling the next
minimum set. The feedback of downstream tasks serves
as the reward for unsupervised training. Therefore, RL-
SAC can avoid differentiating to learn the features and the
feedback of downstream tasks for end-to-end robust esti-
mation. In addition, RLSAC integrates a state transition
module that encodes both data and memory features. Our
experimental results demonstrate that RLSAC can learn from
features to gradually explore a better hypothesis. Through
analysis, it is apparent that RLSAC can be easily trans-
ferred to other sampling consensus-based robust estimation
tasks. To the best of our knowledge, RLSAC is also the first
method that uses reinforcement learning to sample consen-
sus for end-to-end robust estimation. We release our codes
at https://github.com/IRMVLab/RLSAC!

1. Introduction

As a fundamental module in computer vision, robust esti-
mation is crucial for many tasks, such as camera pose estima-
tion [10; 133} 131} 32], motion segmentation [26} |19} 29, 301,
short and wide baseline matching 22l 28], plane fitting [[18]],
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Figure 1. RLSAC remodel the sampling consensus process. By
modeling the sampling consensus as a reinforcement learning pro-
cess, RLSAC can achieve end-to-end learning on various robust
estimation tasks.

and line fitting [12, 20]. However, it is still difficult to ex-
clude disturbances while estimating accurate models. To
address this issue, sampling consensus-based algorithms are
widely used, which are represented by the RANdom SAm-
ple Consensus (RANSAC) [16] algorithm. It first samples
the minimum set required for the task, e.g., a minimum set
size of 2 for 2D line fitting. Then, the hypothesis is solved
by the minimum set. Next, all data is divided into inliers
and outliers, according to their residuals to the hypothesis.
Finally, the above process is repeated and the best hypoth-
esis is selected based on the highest inlier ratio. RANSAC
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can provide strong robustness and generalization, but as the
outlier rate increases, the probability of sampling inliers de-
creases. As a result, the performance of RANSAC degrades
rapidly. This is because RANSAC samples each data evenly,
regardless of data features that can be used for classifying
inliers and outliers. Additionally, the non-differentiable de-
terministic random sampling of RANSAC also limits it to be
integrated into the learning-based pipeline.

Since sampling the minimum set from the data is quite
similar to the process of sampling an action from the ac-
tion space in reinforcement learning [17, |13]], the sampling
consensus can be integrated into the reinforcement learn-
ing framework. Sampling in reinforcement learning can be
achieved through a neural network, which extracts the data
features. In addition, the reward from the environment can
be used to train the reinforcement learning framework with-
out differentiation. Therefore, to learn from data features
and avoid differentiating, we propose the RLSAC: Reinforce-
ment Learning enhanced SAmple Consensus for end-to-end
robust estimation. As shown in Figure [T, RLSAC regards
sampling consensus as the process of interaction between
the agent and environment in reinforcement learning. Specif-
ically, the agent uses a neural network to sample the minimal
set from the data as an action. The environment then per-
forms model generation and evaluation based on the action
and outputs the next state, which is used in the next iteration.

However, designing appropriate reward and state are very
important and challenging in reinforcement learning. To
achieve reinforcement learning enhanced sampling consen-
sus, RLSAC proposes new state transition and reward mod-
ules. Specifically, the state is encoded by augmenting the
original data features with memory features, including the
current action, data residuals, and historical information.
When the state is input into the agent, these features can
provide more information about the quality of the previous
action. This allows RLSAC to gradually explore a better
hypothesis by utilizing this memory information.

Additionally, the evaluation result of the generated hy-
pothesis can be used as the reward signal to train the neural
network without differentiation. The reward signal enables
the learning-based sampling consensus for end-to-end robust
estimation. Furthermore, the evaluation result is the feed-
back from the downstream task. Thus, the neural network
can learn to effectively use the data features and optimize
the output to meet the requirements of the downstream task.

Moreover, instead of directly predicting the final result
from the data in one shot [27], RLSAC employs multiple
episodes, each containing several sampling processes. In ad-
dition, RLSAC performs one random sampling at the begin-
ning of each episode to form the initial state. This approach
preserves the robustness of multiple random sampling and
provides basic performance for RLSAC. Besides, RLSAC
can be extended to other robust estimation tasks since it is

not restricted to any specific task.

The proposed RLSAC is tested on two classic robust es-
timation tasks, which are the 2D line fitting task and the
fundamental matrix estimation task. The experimental re-
sults show that RLSAC achieves great performance.

Our main contributions are as follows:

* We propose RLSAC: a novel Reinforcement Learning
enhanced SAmple Consensus framework for end-to-
end robust estimation. It learns data features to sample
the minimum set. RLSAC retains the robustness of
the multiple sampling process, while the initial random
sampling can provide the basic performance.

* RLSAC proposes an approach for state encoding, which
includes both current and historical information. This
enables the agent to assess the quality of the previous
actions and gradually explore better hypotheses. RL-
SAC is trained unsupervised using the reward function,
which avoids differentiating the sampling process and
achieves end-to-end robust estimation.

* RLSAC is evaluated on two robust estimation tasks.
The 2D line fitting task demonstrates its robustness
to disturbances and effective progressive exploration
capability. In the fundamental matrix estimation task,
RLSAC achieves state-of-the-art performance. Further-
more, RLSAC can be easily applied to other sampling
consensus-based robust estimation tasks.

2. Related Work

Robust estimation is a basic module for many tasks. Al-
though the simple repetitive random sampling strategy of
RANSAC [16] is robust and generalized, it has some limita-
tions, such as no further optimization, inefficient sampling,
and non-differentiability.

There are several methods observing that local features
help to optimize the sampling result. LO-RANSAC [135]
continues to sample in the inliers with a smaller threshold
after sampling the best model so far, aiming to find a better
hypothesis near the current one. NAPSAC [25]] uses a fixed
hypersphere to acquire local data and samples from it, but
this approach loses global features and may get stuck in
local data. To address this, progressive NAPSAC [4]] gradu-
ally expands the hypersphere to extend the sampling from
local to global. GC-RANSAC [5] considers spatial conti-
nuity between inliers and surrounding points, modeling the
connections of the data through graph-cut to divide inliers
and outliers. MAGSAC++ [6] assesses the model quality by
weighting various thresholds to reduce the sensitivity to the
choice of a specific noise scale.

To improve sampling efficiency, some methods use
guided sampling instead of random sampling. PROSAC [14]]
sorts the data based on a quality function and then samples
the sorted data sequentially to improve efficiency. USAC
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Figure 2. The pipeline of the proposed RLSAC. The fundamental matrix estimation problem is used as an example. The black, green, and
blue lines represent outliers, inliers, and the minimum set, respectively. The yellow arrows are only used once during initialization. The red
and orange arrows indicate the loop in an episode. The initial states are randomly sampled. The best hypothesis for this scene is selected by
scoring all hypotheses. The collected experience is recorded in the replay buffer for training.

integrates the advantages of various methods to achieve
robustness and efficiency. To learn from the data, Yi et al.
[36] are the first to use a neural network based on PointNet
to directly classify inliers and outliers. Then, Zhang et al.
[37] improve this work by proposing pooling and unpooling
blocks to learn the local context of correspondences. NG-
RANSAC [9] uses a neural network to calculate the sample
probability for each point, achieving probability-based sam-
pling. The neural network is trained using reinforcement
learning, but it did not use reinforcement learning to achieve
sampling consensus and progressive exploration. Barath
et al. propose the MQ-Net to learn from residual his-
tograms and evaluate the quality of the model. Additionally,
the authors design the MF-Net to learn to reject bad mini-
mum sets early, further improving efficiency. NeFSAC [11]
uses a neural network to reject the motion-inconsistent and
poorly-conditioned minimal samples.

The non-differentiability of RANSAC makes it challeng-
ing to integrate into an end-to-end learning pipeline. Some
methods propose the differentiable RANSAC. For exam-
ple, DSAC [8] replaces the deterministic selection process
with probabilistic selection, allowing for differentiation with
respect to the data. Wei et al. [35]] achieve gradient propaga-
tion by predicting the probabilities of being inliers to guide
sampling. To avoid differentiation, some methods use the
loss as reward signals through reinforcement learning to train
the network. Bhowmik et al. [[7] use reinforcement learning
to train the feature point detection network but not for the
sampling consensus process. Truong et al. iteratively
delete points with reinforcement learning, seeking the maxi-
mum consensus model that meets the threshold. However,

the authors encode the attributes of the points into the state,
but does not include long-range historical information or the
position of the hypothesis in the state space. In addition, this
method does not include the sampling consensus process
and may overlook better solutions.

3. Method
3.1. Problem Formulation

Robust estimation can be considered as generating a good
hypothesis h given a set of data xy = {Xi}i]il, which may
be disturbed by noise. For instance, the hypothesis h could
represent the parameters of a 2D line, and x could be all the
points in the 2D plane. Or h could be the fundamental matrix
that represents the epipolar geometry of a pair of images, and
X could be all the correspondences. Similarly, the data con-
tained in x; varies with the task. As a commonly used robust
estimation method, the sampling consensus method samples
n minimum sets M from x. The size m of a minimum set
varies depending on the task. For example, when fitting a
2D line, the size m = 2. Then, these minimum sets M are
solved by the minimum solver S to output hypotheses:

H={SMj)M; e M,j=1,2,...,n}. (1)

Next, the hypotheses H are evaluated using a scoring
function f. The residuals of all data points y can be com-
puted and used to calculate the inlier ratio, which is com-
monly used as a metric for the hypothesis quality [16]. Fi-
nally, the hypothesis with the highest score is chosen as the
best hypothesis hpest:

hpest = argmax f (h, X) . 2)
heH



By solving the problem using several minimum sets M, the
model can achieve robust estimation, which is less sensitive
to outliers and can lead to more accurate results.

The RANSAC [16] algorithm performs random sampling
to sample the minimum sets M, which cannot fully exploit
the data features. As shown in Figure[I] One alternative is to
consider the sampling of a minimum set as an action taken by
an agent based on the current state, within the reinforcement
learning framework:

a1 ~ g (ar | se) - 3)

Here, the policy network 74 depends on the weights ¢. The
action a;4 is sampled by the policy 7 from the state s;
and a; at time ¢ 4 1, which can also be viewed as the process
of sampling a minimum set M ; from all data x. So the Eq.
[2 can be rewritten that the best hypothesis is selected by a
reinforcement learning enhanced sample consensus method:

hBest - ?r%;nax f (S (at) B X) . (4)
=1,4,...,]

In addition, the policy 74 is a trainable neural network,
and the state s; contains the features of the data x. Therefore,
the minimum set can be selected based on sufficient learned
knowledge of the data features, rather than being chosen
randomly. Furthermore, the evaluation result f (S (a;), x)
of the minimum solver S can serve as the reward in rein-
forcement learning to achieve unsupervised learning.

3.2. System Framework

With the problem formulation of modeling the process of
sampling consensus as a reinforcement learning problem, we
introduce RLSAC, which is illustrated in Figure 2] Although
the fundamental matrix estimation task is used as an example,
the pipeline is also applicable to other robust estimation
tasks. Firstly, RLSAC initiates multiple episodes for the
correspondences of a pair of images y at (I). An episode
contains many steps. At the start of each episode, a random
sampling of the minimum set M is performed to generate
the initial state s through state transition at 2). Specifically,
the initial state sg is obtained by concatenating each data
point with the memory features, which are consisting of
action, residual, and historical features (see Section @])

Next, the initial state s is input into the sampling consen-
sus loop. The agent receives the current state s; and feeds
it into the policy network 7 at (3), as shown in Section[3.3]
The network generates a probability for each data point. The
m points with the highest probabilities are selected as the
minimum set My, instead of random sampling.

Then, the minimum set M, serves as the action a; for the
agent, which generates a hypothesis h; in the environment
at @, as shown in Section The residuals of points to
the hypothesis are compared with a threshold to classify
points into inliers and outliers at (5). The ratio of inliers is
utilized as the reward r; for the current action a; to train the

policy network 74 at ®. Additionally, the action, inliers,
and residuals are used for the state transition to generate the
next state s;41 at (7), as shown in Section [3.5] Finally, the
environment outputs the next state s;41 and the reward r,
which are used by the agent to start the next step at ().

Furthermore, the state s;, action a;, reward r;, and the
next state s, in every step are collected as experiences in
the replay buffer [13] for training. After all episodes are
complete, the hypothesis with the highest inlier ratio across
all episodes is output as the best hypothesis h s for this
pair of images.

3.3. Sampling Minimum Set by Agent

The agent receives the state s, € RV*C, where N is
the number of the correspondences of a pair of images. The
channel C' = ¢+3, with c denoting the dimension of data fea-
tures and 3 representing the dimension of memory features
(see Section[3.5). In addition, the first hypothesis hq of each
episode is generated using a randomly sampled minimum
set, which provides a basic performance for RLSAC.

Then the state s, is fed into the policy network 7. To
achieve permutation invariance for the input data, RLSAC
uses edge convolution (EdgeConv) from the DGCNN [34]
as the basic module to establish the policy network 74. The
EdgeConv can model the interrelationship of correspon-
dences by graph neural networks. It can extract features
from neighboring nodes in a graph and aggregate them into
a central node. The policy network 74 extracts data features
and calculates the probabilities by softmax for each point of
being in the minimum set. The probability can be interpreted
as the probability of obtaining a greater return on the action
for the long term, rather than the probability of achieving the
best result in the current state. Consequently, the m points
with the highest probability are selected as the minimum set
M, in the current state s;. Importantly, all previously used
minimum sets are recorded to avoid selecting a duplicate
minimum set. Thus, when a new minimum set is selected, it
is checked whether it has been used. If the new minimum set
has already been used, then another m data set is selected
following the probability, which will be checked as well. Un-
til the unused data set is found, it is output as the minimum
set. Ultimately, the minimum set is as the action a; € RMXC
output by the agent.

3.4. Evaluating Hypothesis in Environment

The environment generates a hypothesis h; based on the
received action a; from the agent. Next, the residuals R are
calculated for all data x with respect to the hypothesis:

Ry ={D (v, ht) |z € x,i =1,2,...,N }, (5)

where the function D is for residual calculation. The scalar
valued residuals R are calculated at all data y. With the
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Figure 3. The state transition in RLSAC. To form the next state,
the data features are added with the memory features, which contain
action features, residual features, and historical features.

pre-defined threshold, the data x is divided into inliers I; €
R=*C and outliers O; € RW—2)%C pased to the residuals.
In the sampling consensus methods, the inlier ratio com-
monly represents the quality of the hypothesis. Since the
hypothesis h, is generated by the action a; in RLSAC, the
inlier ratio can be considered as the reward r; of the current
action ay to train the policy network 74 without ground truth.
With the hypotheses related-rewards, RLSAC can update
weights ¢ of the policy network 7 without differentiating the
sampling process. By modeling sampling consensus as an in-
teractive process in reinforcement learning, RLSAC achieves
end-to-end robust estimation while avoiding differentiating.

3.5. State Transition

The state transition module allows RLSAC to encode
the previous state and action, enabling RLSAC to explore
the state space effectively. As illustrated in Figure [3] the
next state s;;; is obtained by concatenating the original
data features N x ¢ with memory features { A, R, H}, which
comprise action features N x 1, residual features [V x 1 and
historical features N x 1.

The action features are derived from the current action a;.
If a data point z; is used in the action a;, the corresponding
entry in the action features «; is set to 1, otherwise it is —1:

. _ o 1 if z; € a4 -
Ay ={ai},a; = { "1 otherwise '\ = 1,2,...,N.
(6)

The action features could provide the agent with information
on the current action, like the current location in the data for
the next state.

The residual features are obtained from the residuals R;
computed in Eq. 5] They encode the relative relationship
between the hypothesis and the data, which can be thought
of as the direction for the agent.

The historical features collect how often is a data point
used up to the current step. They are initialized to 0 and
updated as follow: for each data point z; used in the current
action a,, the corresponding entry in the historical features

T; is incremented by 1:
He={rn},i=n+1lifz; €ar,i=1,2,..,N. (7)

The historical features can provide the agent with informa-
tion on the actions taken so far, enabling it to keep track of
its path through the data.

By encoding the state in this way, the agent has access to
both current and historical information, allowing it to reach
the goal state. Furthermore, the memory features serve as a
director of local navigation, guiding the agent to explore the
data features and reach its destination gradually.

4. Experiments

We evaluate the performance of RLSAC on classic tasks,
including 2D line fitting and fundamental matrix estimation.
The 2D line fitting task serves as a basic benchmark to as-
sess the performance of the robust estimation algorithm and
provides visualization of the sampling process. The funda-
mental matrix estimation task can show the performance of
algorithms on complex camera pose estimation task in the
real world, which is a critical task in computer vision.

4.1. Settings

RLSAC is built on the widely used reinforcement learning
framework SAC-Discrete [13]]. As shown in Figure |Z[, the
collected replay buffer is retrieved for off-policy to update
the actor and critic network in reinforcement learning.

Since RLSAC uses the inlier ratio as the reward for train-
ing, it is an unsupervised method. To explore more images,
only one episode with multiple steps is collected per im-
age pair during training. The framework is trained for 100
epochs. During training, the episode termination conditions
are set as follows: (i) if the number of inliers is unchanged
for k = 2 steps; (ii) if the inlier ratio does not exceed the
maximum inlier ratio in the episode for ¢ = 3 steps; (iii) if
the maximum number of steps 1 = 15 is reached. During
testing, only the third condition is valid, and each pair of
images can be tested in v episodes.

As with the standard reinforcement learning [13]], RLSAC
uses probabilistic sampling during training and max sam-
pling during testing. For the EdgeConv module in the policy
network, the value of k-nearest neighbors is set to k = 15.
The network architecture and additional information can be
found in the supplementary material. Moreover, we have
included ablation experiments to analyze the impact of spe-
cific network details, also provided in the supplementary
material. Similar to the RANSAC implementation, RLSAC
also employs refinement using the inliers of the final best
hypothesis as the final model polishing.

The experiments are conducted on a Linux computer with
an Intel 7 3.6GHz CPU and an NVIDIA RTX 2080Ti GPU.
Our implementation is based on PyTorch.



Table 1. 2D line fitting. The mAA @0.5° and median error(°) on various outlier rates are reported.

Method 0.1 0.2 0.3 0.4 0.5 0.6 0.7
mAAT Mid. [[mAAT Mid. [[mAAT Mid. [[mAAT Mid. [[mAAT Mid. [[mAAT Mid. [[mAAT Mid. |
RANSAC [16] || 0.870 0.049 | 0.863 0.052 | 0.850 0.056 | 0.829 0.061 | 0.796 0.071 | 0.746 0.087 | 0.608 0.135
Ours 0.875 0.047 | 0.874 0.049 | 0.872 0.048 | 0.865 0.050 | 0.858 0.052 | 0.845 0.056 | 0.824 0.062

4.2. Case Study 1: 2D Line Fitting

The 2D line fitting task is a basic problem in robust es-
timation, which can visualize the process of robust estima-
tion and assess the robustness quantitatively to different
outlier rates. In this task, each data point contains only
the coordinates, thus all data points can be expressed as:
x = {[zi,v:] |4 =1,2,..., N }, where x represents the data
features N x ¢, with ¢ = 2. Since two points are sufficient
to determine a 2D line, the agent can generate a hypothesis
by selecting two points from the set of all data points as the
minimum set N X m, where m = 2. For comparison, the
RANSAC [16] algorithm is evaluated with the same task.

To evaluate the performance of RLSAC in the 2D line
fitting task, we synthesize N = 100 data points for both
training and testing. Specifically, a ground truth 2D line is
randomly generated in a 10 x 10 picture. True inliers are
then randomly generated on the line based on the set outlier
rate. Next, the true inliers are uniformly disturbed within a
range of 0.1 around the line. Thus, the inlier threshold could
be set to ¢ = 0.1. Additionally, true outliers are randomly
scattered throughout the picture. Moreover, it is possible for
true outliers to be located within the inlier region, as is often
the case in real-world scenes.

For accurately evaluating and comparing the performance
of different methods, we adopt the mean Average Accuracy
(mAA) metric in [2]. The angular difference between the
estimated line and the ground truth line is used as the error
metric, which is used to calculate the mAA metric with a
tolerance threshold of 0.5°.

The performance of RLSAC and RANSAC at different
outlier rates with 150 iterations is evaluated and the results
are presented in Table When the outlier rate is lower
than 0.5, RANSAC can achieve a similar performance to
RLSAC. This is because the repeated random selection of the
minimum set can achieve good performance in simple low
outlier rate scenes. However, the performance of RANSAC
degrades more quickly than that of RLSAC as the outlier rate
increases. This suggests that RLSAC can explore hypotheses
closer to the ground truth in noisy scenes.

As the outlier rate increases beyond 0.5, RLSAC can still
maintain a low error and high mAA score. This indicates
that RLSAC is more robust to disturbances, providing a more
stable performance compared to RANSAC.

The qualitative results of RLSAC are shown in Figure
Ml which demonstrates its ability to quickly find the better
hypothesis even from a bad initial state. This means that the

Step 6

Figure 4. The qualitative results of RLSAC on 2D line fitting.
The hypothesis converges to the ground truth as the number of steps
increases. The green points represent inliers, while the red points
represent outliers. The sampled minimum set points are denoted
by black edges. The ground truth is represented by a yellow line,
while the hypothesis and inlier threshold are represented by blue
and dashed lines respectively.

Step 7 Step8 Step 9 Step 10

memory features can serve as a director of local navigation,
allowing RLSAC to move towards a better state through
outputting actions. Moreover, once RLSAC finds a high
inlier ratio hypothesis that is close to the ground truth, it
continues to explore the local state to further improve the
result, rather than randomly transitioning to other states.

The results of the 2D line fitting task show that RLSAC
can effectively utilize both data features and memory fea-
tures, maintaining robust and stable performance in noisy
environments. In addition, it can gradually explore a better
hypothesis with the help of memory features.

4.3. Case Study 2: Fundamental Matrix Estimation

The fundamental matrix estimation is a crucial robust
estimation task in computer vision, which solves the fun-
damental matrix by correspondences in a pair of images.
In this study, we use the data and settings in CVPR tuto-
rial RANSAC in 2020 [3]], where the correspondences are
detected by RootSIFT [1] and matched by the nearest neigh-
bor. The training data comprises 12 scenes, each with
100k image pairs, while the test data includes 2 scenes,
with 4950 image pairs. The dataset uses Second Near-
est Neighbor (SNN) ratio as the matching score. The
correspondences are sorted in descending order by SNN.
Then the top N = 150 SNN correspondences are selected.
Next, each point extracts a 128-dimensional descriptor desc
through the SIFT algorithm. Thus, the data points are: y =
{L\:{L‘ﬁ,yi,xé,y&SNNﬂdescﬁ,descé] li=1,2,..,N} €
RY*¢, where ¢ = 261. The 8-point solver is used to solve



Table 2. Fundamental matrix estimation. The mAA@10° and
median error(er and €;) of rotation and the direction of translation
at 1k iterations are reported in degrees.

mAA@10° 1 Median (°) |
R t €R €t

RANSAC[16] 0.644 0.488 | 2.307 5.100
USAC[24] 0.741 0.604 | 1.036 2.157
MAGSAC++[6] || 0.753 0.614 | 0.924 1.895
Ours 0.760 0.622 | 0.926 1.751
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Figure 5. The mAA @10° at different iterations. The results on
the fundamental matrix estimation task at different iterations.

(a) Inlier Ratio: 0.92, r:3.977°,%:4.875° (b) Inlier Ratio: 0.99, €r: 0.400°,: 0.834°

(c) Inlier Ratio: 0.97, €r:1.038°%:1.478° (d) Inlier Ratio: 0.86, “r: 1.026°%: 0.149°

Figure 6. The qualitative results of RLSAC on the fundamental
matrix estimation task. Inlier rate, rotation and translation errors
are reported. The blue lines represent the sampled minimum set
points, and the green lines represent the inliers.

Stepl: Inlier Ratio: 0.30, €r:49.555°, €, :67.959°, Stepl: Inlier Ratio: 0.42, €r: 30.241°, €, :67.787°

Step2: Inlier Ratio: 0.88, €x:4.182°, ¢, : 7.803° Step2: Inlier Ratio: 0.79, €r:5.934°, ¢, :14.009°

Step3: Inlier Ratio: 0.89, €r: 4.018°, €, : 7.543° Step3: Inlier Ratio: 0.89, €r: 3.249°, €, :7.529°

Figure 7. The step results of RLSAC on the fundamental matrix
estimation task. The meaning of the lines and the evaluation
metrics are consistent with Figure|[6]

the hypotheses [21]. The inlier threshold of RLSAC is set to
€ = 4. The evaluation settings follow [3]. To compare with
other methods, RANSAC [16]], USAC [24]], MAGSAC++
[6] are tested, which use the recommended settings in [3]].

As shown in Figure[5] RLSAC outperforms other methods
in estimating both the rotation matrix and translation vector.
Remarkably, RLSAC can achieve high accuracy with only
100 iterations. Comparisons reveals that RLSAC possesses
a higher upper bound in performance than MAGSAC.

The quantitative results of the methods at 1k iterations are
presented in Table[2] RLSAC achieves great performance
with small errors, a little higher than MAGSAC++[6]. Specif-
ically, RLSAC shows high performance in estimating the
direction of the translation vector compared to other methods.
Since RLSAC could effectively learn features from the data
to exclude noise disturbances, it has significant performance
on translation vector estimation.

Figure [6]shows the qualitative results of the fundamental
matrix estimation of RLSAC in each scene. The figure
demonstrates that RLSAC selects rigid and fixed feature
points on buildings as the minimum sets, which can help to
find better poses. Furthermore, the step-by-step fundamental
matrix estimation results of RLSAC are visualized in Figure
It demonstrates a gradual increase in the inlier ratio of
the hypothesis and a decrease in the rotation and translation
errors. This illustrates that RLSAC can progressively explore
the state space to find a better hypothesis.

5. Ablation Study

We perform ablation studies by modifying or removing
modules to analyze their effectiveness. The experimental
data and settings remain the same as in Section 4]

Robustness and Generalization of RLSAC in 2D Line
Fitting: The Ours-0.5 in Table 1| shows the result of eval-
uating the robustness and generalization of RLSAC in 2D
Line Fitting. We train RLSAC on data with the outlier rate
of 0.5 and then test it on various outlier rates. In most cases,
Ours-0.5 can outperform RANSAC. Notably, when the out-
lier rate exceeds 0.5, Ours-0.5 performs even better than the
model trained at that outlier rate. This is because, in scenes
with high outlier rates, the point distribution is closer to a
uniform distribution, which lacks the features of a dense
distribution. As a result, the model RLSAC ;g trained
on high outlier rates may not have learned the dense dis-
tribution in low outlier rates. This results in a mediocre
performance of RLSACH;4, in low outlier rates scenes.
Conversely, scenes of low outlier rates exhibit both sparse
and dense point distributions in different regions, providing
more diverse features for the model RLSACT ., to learn.
Consequently, the RLSACT,., can predict better results
when the dense distribution of points is occasionally present
in the high outlier scene. These results demonstrate that
RLSAC can effectively learn the distribution in point groups
to classify inliers and outliers.

Effect of Descriptors: To investigate the effect of descrip-
tors with image semantic features, we conduct experiments
as shown in Table[3](a). This suggests that descriptors with



Table 3. The ablation study results of RLSAC on fundamental
matrix estimation.

mAA@10° 1 | Median (°) |

Method R T - o
@ Ours (w/o descriptors) 0.702 0.568 | 1.400 2.963

Ours (full, with 128 DIM descriptors) 0.760 0.622 | 0.926 1.751

Ours (with max sampling in training 0730 0591 |1.132 2.331

and max sampling in testing)

Ours (with max sampling in training

(b) and probabilistic sampling in testing)

Ours (with probabilistic sampling in training

and probabilistic sampling in testing)

Ours (full, with probabilistic sampling in training

0.706 0.531 | 1.415 2.893

0.720 0.581 | 1.150 2.508

L . 0.760 0.622 |0.926 1.751

and max sampling in testing)
Ours (with N=100 points) 0.727 0.588 | 1.216 2.464
© Ours (with N=200 points) 0.747 0.604 |1.050 2.108
Ours (with N=300 points) 0.733  0.594 | 1.180 2.364
Ours (full, with N=150 points) 0.760 0.622 |0.926 1.751

semantic features are helpful for RLSAC to effectively learn
and sample minimum sets.

Different Sampling Approaches: In Table 3| (b), four
different sampling strategies are compared. The results il-
lustrate that the best performance can be achieved by proba-
bilistic sampling during training and max sampling during
testing. This is consistent with the sampling strategy for
actions in reinforcement learning. Specifically, probabilistic
sampling can provide randomness and exploratory during
training, while max sampling can output the optimal strategy
during testing to improve performance and efficiency.

Number of State Points: In RLSAC, the state points are
selected from the top N correspondences sorted by SNN.
Different values of IV are evaluated in Table (3| (c). The
best performance is obtained when N = 150. We count
the number of correspondences in images at SNN < 0.8
recommended in [3]], which is also around 150 points. This
is reasonable that a smaller number of points may exclude
points, which would solve the better hypothesis. While more
points will introduce more noise, making it more difficult
for RLSAC to learn effective sampling strategies.

6. Discussion

The methods of estimating results directly with neural
networks in one shot [23]] are not robust and generalized
in the scenes that have not been learned. Moreover, their
poor interpretability leads to poor practicality in engineering
applications. In contrast, traditional methods based on math-
ematical theory, such as multiple sampling consensus for
model estimation and noise covariance matrix estimation in
simultaneous localization and mapping (SLAM), offer clear
interpretability and well-defined scopes of application. How-
ever, many traditional methods cannot be integrated into a
learning-based framework due to their non-differentiability.

Therefore, combining these traditional methods with
learning-based methods can provide both interpretability
and high performance. RLSAC combines sampling consen-
sus with reinforcement learning to avoid differentiation of

sampling while better extracting data features and memory
features. In addition, RLSAC can be easily transferred to
other sampling consensus tasks due to:

* The input data of RLSAC is not limited to coordinates
and descriptors. Additional features such as depth es-
timation information and semantic segmentation infor-
mation can also be used as input for the policy network.

* RLSAC retains random sampling at the beginning
of each episode and each sample result is de-
duplicated. This provides basic performance for sam-
pling consensus-based tasks.

* The rewards in RLSAC are linked with the evaluation
of the hypothesis. Therefore, RLSAC can be extended
to other robust estimation tasks, which require differ-
ent evaluation methods. Moreover, RLSAC does not
require differentiation of the sampling process, the hy-
pothesis solving process, and the evaluation process.

In this way, RLSAC enables end-to-end learning that in-
corporates traditional methods. This allows for consistent
optimization objectives across modules.

7. Conclusion

In this paper, we propose RLSAC, a reinforcement learn-
ing enhanced sample consensus framework for end-to-end
robust estimation. RLSAC models the sampling consensus
process as a reinforcement learning task to achieve end-to-
end robust estimation. The basic performance of RLSAC is
provided by the initial random sampling in each episode. In
RLSAC, a new state transition strategy is designed to effec-
tively extract current and historical information, which can
guide RLSAC to explore state space. Furthermore, the inlier
ratio of the hypothesis is used as a reward to realize unsuper-
vised policy network learning. In experiments, the 2D line
fitting task illustrates that RLSAC is robust to various distur-
bances and exhibits strong generalization. The visualization
of the sampling process shows that RLSAC can progres-
sively explore to better models and continues to explore
locally. Additionally, the fundamental matrix estimation task
demonstrates that RLSAC outperforms other methods in the
complex camera pose estimation problem. Notably, RLSAC
is not limited to specific tasks and can easily perform end-to-
end learning on various sampling consensus-based tasks. In
future work, it is worthwhile to explore the integration of tra-
ditional and learning-based methods within this framework,
while trying to maintain the strengths of each method.
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