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Abstract

Dense 3D reconstruction and ego-motion estimation are
key challenges in autonomous driving and robotics. Com-
pared to the complex, multi-modal systems deployed today,
multi-camera systems provide a simpler, low-cost alterna-
tive. However, camera-based 3D reconstruction of com-
plex dynamic scenes has proven extremely difficult, as ex-
isting solutions often produce incomplete or incoherent re-
sults. We propose R3D3, a multi-camera system for dense
3D reconstruction and ego-motion estimation. Our ap-
proach iterates between geometric estimation that exploits
spatial-temporal information from multiple cameras, and
monocular depth refinement. We integrate multi-camera
feature correlation and dense bundle adjustment operators
that yield robust geometric depth and pose estimates. To
improve reconstruction where geometric depth is unreli-
able, e.g. for moving objects or low-textured regions, we
introduce learnable scene priors via a depth refinement net-
work. We show that this design enables a dense, consistent
3D reconstruction of challenging, dynamic outdoor envi-
ronments. Consequently, we achieve state-of-the-art dense
depth prediction on the DDAD and NuScenes benchmarks.

1. Introduction
Translating sensory inputs into a dense 3D reconstruc-

tion of the environment and tracking the position of the ob-
server is a cornerstone of robotics and fundamental to the
development of autonomous vehicles (AVs). Contemporary
systems rely on fusing many sensor modalities like cam-
era, LiDAR, RADAR, IMU and more, making hardware
and software stacks complex and expensive. In contrast,
multi-camera systems provide a simpler, low-cost alterna-
tive already widely available in modern consumer vehicles.
However, image-based dense 3D reconstruction and ego-
motion estimation of large-scale, dynamic scenes is an open
research problem as moving objects, uniform and repetitive
textures, and optical degradations pose significant algorith-
mic challenges.

*Equal contribution.
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Figure 1. Many methods use temporal context but neglect inter-
camera information, leading to incomplete results (top). Other
works focus on exploiting inter-camera context but neglect tempo-
ral information, yielding incoherent predictions (middle). In con-
trast, our method achieves a consistent, dense 3D reconstruction
by iteratively integrating geometric depth estimation from multi-
ple cameras with monocular depth refinement (bottom).

Existing works approaching the aforementioned task can
be divided into two lines of research. Many methods have
focused on recovering 3D scene structure via structure-
from-motion (SfM). In particular, simultaneous localiza-
tion and mapping (SLAM) methods focus on accurate ego-
motion estimation and usually only recover sparse 3D struc-
ture [9, 30, 35, 13, 12]. They typically treat dynamic objects
or uniformly textured regions as outliers yielding an incom-
plete 3D reconstruction result, which makes them less suit-
able for AVs and robotics. In addition, only a few works
have focused on multi-camera setups [25, 8, 34, 31, 27]. In
contrast, multi-view stereo (MVS) methods [32, 33, 42, 29,
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58, 28, 18] aim to estimate dense 3D geometry but focus
on static scenes and highly overlapping sets of images with
known poses.

The second line of research focuses on dense depth pre-
diction from monocular cues, such as perspective object ap-
pearance and scene context [66, 16, 17, 60, 50, 62, 20].
However, due to the injective property of projecting 3D
structures onto a 2D plane, reconstructing depth from a sin-
gle image is an ill-posed problem, which limits the accu-
racy and generalization of these methods. Recent meth-
ods [52, 19, 22], inspired by MVS literature, combine
monocular cues with temporal context but are focused on
front-facing, single-camera setups. A handful of recent
works extend monocular depth estimation to multi-camera
setups [23, 53, 55]. These methods utilize the spatial con-
text to improve accuracy and realize absolute scale depth
learning. However, those works neglect the temporal do-
main which provides useful cues for depth estimation.

Motivated by this observation, we introduce R3D3, a
system for dense 3D reconstruction and ego-motion esti-
mation from multiple cameras of dynamic outdoor environ-
ments. Our approach combines monocular cues with geo-
metric depth estimates from both spatial inter-camera con-
text as well as inter- and intra-camera temporal context. We
compute accurate geometric depth and pose estimates via
iterative dense correspondence on frames in a co-visibility
graph. For this, we extend the dense bundle adjustment
(DBA) operator in [49] to multi-camera setups, increasing
robustness and recovering absolute scene scale. To deter-
mine co-visible frames across cameras, we propose a sim-
ple yet effective multi-camera algorithm that balances per-
formance and efficiency. A depth refinement network takes
geometric depth and uncertainty as input and produces a re-
fined depth that improves the reconstruction of, e.g., moving
objects and uniformly textured areas. We train this network
on real-world driving data without requiring any LiDAR
ground-truth. Finally, the refined depth estimates serve as
the basis for the next iterations of geometric estimation, thus
closing the loop between incremental geometric reconstruc-
tion and monocular depth estimation.

We summarize our contributions as follows. 1) we pro-
pose R3D3, a system for dense 3D reconstruction and ego-
motion estimation in dynamic scenes, 2) we estimate geo-
metric depth and poses with a novel multi-camera DBA for-
mulation and a multi-camera co-visibility graph, 3) we inte-
grate prior geometric depth and uncertainty with monocular
cues via a depth refinement network.

As a result, we achieve state-of-the-art performance
across two widely used multi-camera depth estimation
benchmarks, namely DDAD [20] and NuScenes [3]. Fur-
ther, we show that our system exhibits superior accu-
racy and robustness compared to monocular SLAM meth-
ods [49, 5].

2. Related Work
Multi-view stereo. MVS methods aim to recover dense
3D scene structure from a set of images with known
poses. While earlier works focused on classical optimiza-
tion [32, 42, 4, 14, 15, 63, 33], more recent works capitalize
on the success of convolutional neural networks (CNNs).
They use CNNs to estimate features that are matched
across multiple depth-hypothesis planes in a 3D cost vol-
ume [29, 58, 65, 28, 18, 59, 61]. While early approaches
adopt multiple cost volumes across image pairs [65], recent
approaches use a single cost volume across the whole im-
age set [58]. These works assume a controlled setting with
many, highly overlapping images and known poses to create
a 3D cost volume. Instead, we aim to achieve robust, dense
3D reconstruction from an arbitrary multi-camera setup on
a moving platform with an unknown trajectory.
Visual SLAM. Visual SLAM approaches focus on jointly
mapping the environment and tracking the trajectory of the
observer from visual inputs, i.e. one or multiple RGB cam-
eras. Traditional SLAM systems are often split into differ-
ent stages, where first images are processed into keypoint
matches, which subsequently are used to estimate the 3D
scene geometry and camera trajectory [9, 10, 6, 35, 36, 5,
40]. Another line of work focuses on directly optimizing
3D geometry and camera trajectory based on pixel inten-
sities [13, 12, 57, 56]. A handful of works have focused
on multi-camera SLAM systems [25, 8, 34, 31, 27]. Re-
cent methods integrate CNN-based depth and pose predic-
tions [46, 57, 56] into the SLAM pipeline. The common
challenge these methods face is outliers in the pixel corre-
spondences caused by the presence of low-textured areas,
dynamic objects, or optical degradations. Hence, robust es-
timation techniques are used to filter these outliers, yielding
an incomplete, sparse 3D reconstruction result.

In contrast, dense 3D reconstruction and ego-motion es-
timation has proven to be more challenging. Early works
utilize active depth sensors [37, 65] to alleviate the above-
mentioned challenges. Recently, several works on dense
visual SLAM from RGB input have emerged [1, 45, 7, 47,
49]. While these methods are able to produce high-quality
depth maps and camera trajectories, they inherit the limita-
tions of their traditional counterparts, i.e. their predictions
are subject to noise when there are outliers in the pixel cor-
respondences. This can lead to artifacts in the depth maps,
inaccurate trajectories, or even a complete failure of the
system. On the contrary, we achieve robust, dense 3D re-
construction and ego-motion estimates by jointly leveraging
multi-camera constraints as well as monocular depth cues.
Self-supervised depth estimation. The pioneering work
of Zhou et al. [66] learns depth estimation as a proxy task
while minimizing a view synthesis loss that uses geometric
constraints to warp color information from a reference to a
target view. Subsequent research has focused on improv-



ing network architectures, loss regularization, and train-
ing schemes [16, 17, 21, 60, 50, 62, 20]. Recent meth-
ods draw inspiration from MVS and propose to use 3D
cost volumes in order to incorporate temporal informa-
tion [52, 19, 54, 22]. While these methods achieve promis-
ing results, they still focus on single-camera, front-facing
scenarios that do not reflect the real-world sensor setups of
AVs [3, 44, 20]. Another recent line of work focuses on ex-
ploiting spatial information across overlapping cameras in
a multi-camera setup [23, 53, 55]. These works propose to
use static feature matches across cameras at a given time to
guide depth learning and estimation, and to recover absolute
scale. Our work aims to exploit both spatial and temporal
cues in order to achieve a robust, dense 3D reconstruction
from multiple cameras in dynamic outdoor environments.

3. Method

Problem formulation. At each timestep t ∈ T we are
given a set of images {Ict}Cc=1 from C cameras that are
mounted on a moving platform with known camera intrin-
sics Kc and extrinsics Tc with respect to a common ref-
erence frame. We aim to estimate the depth maps dct ∈
RH×W

+ and ego-pose Pt ∈ SE(3) at the current time step.
Overview. Our system is composed of three stages. First,
given a new set of images {Ict}Cc=1, we extract deep features
from each Ict . We maintain a co-visibility graph G = (V, E)
where a frame Ict represents a node v ∈ V and co-visible
frames are connected with edges. For each edge (i, j) ∈ E
in this graph, we compute the feature correlation Cij of the
two adjacent frames. Second, given initial estimates of the
depth di and the relative pose Gij =

(
PtjTcj

)−1
PtiTci

between the two frames, we compute the induced flow f∗ij .
We correct the induced flow with a recurrent update oper-
ator using the feature correlations Cij . We then globally
align the updated flow estimates at each edge (i, j) with
the current estimates of Gij and di across the co-visibility
graph G with our proposed multi-camera DBA. Third, we
introduce a depth refinement network that refines the geo-
metric depth estimates with monocular depth cues to better
handle scenarios that are challenging for geometric estima-
tion methods. We illustrate our architecture in Fig. 2.

3.1. Feature Extraction and Correlation

Given a new observation {Ict}Cc=1, we first extract deep
image features, update the co-visibility graph, and compute
feature correlations. We describe these steps next.
Feature extraction. We follow [48, 49] and extract both
correlation and context features from each image individu-
ally via deep correlation and context encoders gϕ and gψ .
Co-visibility graph. We store correlation and context fea-
tures in a graph G = (V, E). Each node corresponds to
an image Ict and an edge in the graph indicates that two

images are considered a pair in the feature correlation and
bundle adjustment steps. Contrary to [49], we construct G
with three kinds of edges: temporal, spatial, and spatial-
temporal. Since the number of possible edges is |V|2 and
the system runtime scales linearly with |E|, the degree of
sparsity in the co-visibility graph is crucial. We thus care-
fully design a simple yet effective co-visibility graph con-
struction algorithm in multi-camera setups (see Fig. 3).

For temporal edges (Fig. 3 in green), we examine the
time window t−∆tintra and connect all frames of the same
camera that are less than rintra time steps apart. For spatial
and spatial-temporal edges we exploit three priors. 1) we
know camera adjacency from the given calibration, 2) we
assume motion in the direction of the forward-facing cam-
era and 3) the observer undergoes limited motion within the
local time window. We establish spatial edges (Fig. 3 in red)
between adjacent cameras within time step t. We further
establish spatial-temporal edges (Fig. 3 in orange) given the
static camera adjacency within t−∆tinter. In particular, we
connect camera ci and cj from any t′ to t′ − rinter, if ci and
cj connect within t and if cj is closer to the forward-facing
camera than ci under forward motion assumption. Finally,
we remove an edge (i, j) if node i or j is outside the local
time windows t −∆tinter or t −∆tintra. We remove uncon-
nected nodes from the graph. We provide pseudo-code and
additional discussion in the supplemental material.
Feature correlation. For each edge (i, j) ∈ E we compute
the 4D feature correlation volume via the dot-product

Cij = ⟨gϕ(Ii), gϕ(Ij)⟩ ∈ RH×W×H×W . (1)

As in [48, 49], we constrain the correlation search region to
a radius r with a lookup operator

Lr : RH×W×H×W × RH×W×2 → RH×W×(r+1)2 , (2)

that samples a H ×W grid of coordinates from the correla-
tion volume using bilinear interpolation.

3.2. Depth and Pose Estimation

Given the correlation volume Cij , we here describe how
to estimate the relative pose Gij and depth di for each edge
(i, j) ∈ E in the co-visibility graph.
Flow correction. Given an initial estimate of Gij and
di, we first compute the induced flow f∗ij to sample the cor-
relation volume Cij using (2). We then feed the sampled
correlation features, the context features gψ(Ii), and the in-
duced flow f∗ij into a convolutional GRU. The GRU predicts
a flow residual rij and confidence weights wij ∈ RH×W×2

as in [49]. A challenge of correspondence estimation in a
multi-camera setup is that the flow magnitude varies greatly
among edges in the co-visibility graph due to inter-camera
edges with large relative rotation. To this end, we propose
to subtract the rotational part of f∗ij in those edges via

f ′ij = (xi + f∗ij)−Πcj (R
−1
cj Rci ◦Π−1

ci (1)) , (3)
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Figure 2. Method overview. First, frames {Ict}Cc=1 from C cameras at time t are encoded and integrated into the co-visibility graph
G = (V, E) with initial guesses of depth maps dc

t and ego-pose Pt (Sec. 3.1). Second, for each edge (i, j) ∈ E , we compute the induced
flow f∗ij from di and relative camera pose Gij derived from ego-poses P and camera extrinsics T. Given f∗ij , we pool feature correlations
from Cij with operator Lr as input to a GRU that estimates flow update rij and confidence wij . We globally align depths d and poses P
with the new flow estimates f via our multi-camera DBA operator in k iterations (Sec. 3.2). Finally, for each node i ∈ V , we refine the
initial geometric estimate di given the aggregated confidence wi via Dθ (Sec. 3.3). We highlight our contributions in color.
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Figure 3. Co-visibility graph. We illustrate an example of the con-
nectivity pattern of the co-visibility graph using our multi-camera
graph construction algorithm. We use ∆tintra = 3, ∆tinter = 2,
rintra = 2, rinter = 2 with six cameras. We depict temporal, spatial,
and spatial-temporal edges.

where xi are pixel coordinates of frame i, Πc denotes the
projection operator under camera c and R is the rotation
of transformation T = (Rt). This aligns the flow mag-
nitude with temporal, intra-camera edges. Note that, while
we input f ′ij instead of f∗ij to the GRU, we still sample the
correlation volume Cij based on f∗ij .
Pose and depth correction. We update our pose and depth
estimates given the updated flow fij = f∗ij + rij by mini-
mizing the re-projection error, defined as

E =
∑

(i,j)∈E

∥∥(xi + fij)−Πcj (Gij ◦Π−1
ci (di))

∥∥2
Σij

, (4)

where ∥.∥Σij
is the Mahalanobis norm and Σij =

diag(wij). Thus, only matched pixels where the confidence
wij is greater than zero contribute to the total cost. We ex-
tend the dense bundle adjustment (DBA) proposed in [49]
to include the known extrinsics of the multi-camera setup.
In particular, we decompose the relative poses between two
frames Gij into the unknown, time-varying poses P in the
reference frame and the known static relative transforma-
tions T between the cameras and the reference frame via

Gij =
(
PtjTcj

)−1
PtiTci . (5)

We linearize the residual of the energy function in Eq. 4
with a first-order Taylor expansion. We use Eq. 5 and treat
Tcj and Tci as constants when calculating the Jacobians,
thus computing updates only for ego-pose P. We apply
the Gauss-Newton step to compute the updated P(k) =
exp(δξ(k−1))P(k−1) and depth d(k) = δd(k−1) + d(k−1)

with δξ(k−1) ∈ se(3). We provide a detailed derivation in
the supplementary material.

Our formulation has two advantages over DBA [49].
First, the optimization is more robust since C frames are
connected through a single ego-pose P. If one or multi-
ple frames have a high outlier ratio in feature matching,
e.g. through lens-flare, low textured regions, or dynamic ob-
jects, we can still reliably estimate P with at least one undis-
turbed camera. Second, if there are not only pixels matched
across the temporal context but also pixels matched across
the static, spatial context, we can recover the absolute scale
of the scene. This is because for static, spatial matches the
relative transformation Gij = T−1

cj Tci is known to scale so
that E is minimized if and only if d is in absolute scale.
Training. We train the networks gϕ and gψ as well as
the flow correction GRU on dynamic scenes following the



procedure in [49]. As shown in [49], the geometric fea-
tures learned from synthetic data can generalize to real-
world scenes. We can therefore leverage existing synthetic
driving datasets without relying on real-world ground-truth
measurements from sensors like LiDAR or IMU to adjust
our method to dynamic, multi-camera scenarios.

3.3. Depth Refinement

SfM relies on three assumptions: accurate pixel matches,
sufficient camera movement, and a static scene. These as-
sumptions do not always hold in the real world due to, e.g.,
low-textured areas, a static ego vehicle, or many dynamic
agents. Still, we would like the system to produce reason-
able scene geometry to ensure safe operation.

On the contrary, monocular depth cues are inherently not
affected by these issues. However, they usually lack the ac-
curate geometric detail of SfM methods. Hence, for each
node i ∈ V , we complement the accurate, but sparse geo-
metric depth estimates with monocular cues.
Network design. We use a CNN Dθ parameterized by
θ. We input the depth di, confidence wi, and the cor-
responding image Ii. The network predicts an improved,
dense depth d′

i = Dθ(Ii,di,wi). We obtain the per-frame
depth confidence wi for frame i by using the maximum
across the per-edge confidence weights wij . We compute
wi = maxj

1
2 (w

x
ij +wy

ij) where x and y are the flow direc-
tions. We use max(·) because we observe that depth trian-
gulation will be accurate if at least one pixel is matched with
high confidence. We sparsify input depth and confidence
weights by setting regions with confidence wi < β to zero.
We concatenate these with the image Ii. We further con-
catenate depth and confidence with features at 1/8th scale.
As in [17], the output depth is predicted at four scales. To
accommodate different focal lengths among cameras in the
sensor setup, we do focal length scaling of the output [46].
Training. Contrary to geometric approaches, monocu-
lar depth estimators infer depth from semantic cues, which
makes it hard for them to generalize across domains [24].
Hence, instead of relying on synthetic data, we train Dθ on
raw, real-world video in a self-supervised manner by mini-
mizing a view synthesis loss [66]. We minimize the photo-
metric error pe(Ict , I

c′→c
t′→t ) between a target image Ict and a

reference image Ic
′

t′ warped to the target viewpoint via

Ic
′→c
t′→t = Φ(Ic

′

t′ ; Πc′(G(t,c)(t′,c′) ◦Π−1
c (dct))) , (6)

with Φ the bi-linear sampling function, dct the predicted
depth, c′ = c ± 1 and t′ = t ± 1. We compute photo-
metric similarity with SSIM [51] and L1 distances. We use
G(t,c)(t′,c′) = (Pt′Tc′)

−1PtTc generated by the first two
stages of our system (see Sec. 3.2). Further, self-supervised
depth estimation is well-studied, and we follow the com-
mon practice of applying regularization techniques to filter
the photometric error [17, 64, 21]. First, we mask areas

where Mst =
[
pe(Ict , I

c′→c
t′→t ) < pe(Ict , I

c′

t′ )
]
, i.e. we filter

regions where assuming a stationary scene would induce a
lower loss than re-projection. Second, we compute an in-
duced flow consistency mask from f∗,

Mfc=
[∥∥∥f∗(t,c)(t′,c′) +Φ(f∗(t′,c′)(t,c);x+ f∗(t,c)(t′,c′))

∥∥∥
2
<γ

]
.

(7)
This term warps pixel coordinates x from target to reference
view, looks up their value in f∗(t′,c′)(t,c), and compares them
to f∗(t,c)(t′,c′). Therefore, pixels not following the epipolar
constraint like dynamic objects are masked. Third, to han-
dle the self-occlusion of the ego-vehicle, we manually draw
a static mask Moc. We can use a single mask for all frames
since the cameras are mounted rigidly. Further, to handle
occlusions due to change in perspective, we take the mini-
mum loss mint′,c′ pe(I

c
t , I

c′→c
t′→t ) across all reference views.

The overall loss for Dθ is thus

L = min
t′,c′

(
MstMfcMoc · pe(Ict , Ic

′→c
t′→t )

)
+ λLsmooth , (8)

with Lsmooth a spatial smoothness regularization term [16].

3.4. Inference Procedure

Given an input stream of multi-camera image sets, we
perform incremental 3D reconstruction in three phases.
Warmup phase. First, we add frames to the co-visibility
graph if a single GRU step of a reference camera yields
a large enough mean optical flow until we reach nwarmup
frames. At this stage, we infer depth with our refinement
network dct = Dθ(Ict ,0,0). We write the depth into the co-
visibility graph so that it can be used during initialization.
Initialization phase. We initialize the co-visibility graph
with the available frames and run nitr-wm GRU and bundle
adjustment iterations. For the first nitr-wm/2 iterations, we
fix depths in the bundle adjustment and only optimize poses,
which helps with inferring the absolute scale of the scene.
Active phase. We now add each incoming frame to
the co-visibility graph. We initialize the new frames with
dct = mean(dct−4:t−1) and Pt = Pt−1. Then, we perform
niter1 GRU and bundle adjustment updates, and apply the
refinement network to all updated frames. If the mean op-
tical flow of the reference camera between t and t − 1 is
low, we remove all frames at t − 1 from the co-visibility
graph. This helps to handle situations with little to no ego-
motion. In case no frame is removed, we do another niter2
iterations. Finally, we write the updated depths and poses
into the co-visibility graph.

4. Experiments
4.1. Experimental Setup

We perform extensive experiments on large-scale driv-
ing datasets that contain recordings from vehicles equipped



Table 1. Method ablation. We ablate our method components on the DDAD [20] dataset. We examine the influence of each component
given the geometric estimation as in [49] with naive DBA as the baseline. Further, we show the influence of VKITTI [2] fine-tuning on the
geometric estimation. We enumerate each variant for better reference. * median scaled depth, ** scaled trajectory.

No. Geom. Est. VKITTI Multi-Cam DBA Refinement Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1.25 ↑ ATE [m] ↓ ATE** [m] ↓
1a* ✓ ✓ 0.438 26.97 19.109 0.636 - 2.134
1b ✓ ✓ 0.442 36.39 18.664 0.736 1.672 0.435
1c ✓ ✓ ✓ 0.320 15.45 16.303 0.727 2.356 0.922

2a ✓ 0.211 3.806 12.668 0.715 - -

3a ✓ ✓ ✓ ✓ 0.162 3.019 11.408 0.811 1.235 0.433

Table 2. Co-visibility graph ablation. We compare our co-
visibility graph construction algorithm to the original algorithm
in [49] on the DDAD [20] dataset. We observe that our algorithm
improves the overall runtime by an order of magnitude while main-
taining the same level of performance.

Graph Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1.25 ↑ ATE [m] ↓ tinf [s] ↓
Original 0.162 2.968 11.156 0.816 0.982 3.23
Ours 0.162 3.019 11.408 0.811 1.235 0.35

Table 3. Refinement network ablation. We show on the
DDAD [20] dataset that both adding confidence weights wi and
sparsifying the depth input via wi < β to filter outliers in the in-
put of depth refinement network Dθ is vital to depth accuracy.

wi wi < β Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1.25 ↑
0.181 4.078 12.108 0.789

✓ 0.173 3.497 11.924 0.792
✓ ✓ 0.162 3.019 11.408 0.811

with multiple cameras, LiDARs, and other sensors. Note
that we only use camera data for training and inference, and
use LiDAR data only as ground-truth for evaluation. We
evaluate our method in inference mode (cf. Sec. 3.4), i.e.
we obtain predictions in a fully online (causal) manner to
mimic real-world deployment.
DDAD. This dataset consists of 150 training and 50 vali-
dation scenes from urban areas. Each sequence has a length
of 50 or 100 time steps at a frame rate of 10Hz. The sensor
setup includes six cameras in a surround-view setup with
up to 20% overlap. We follow [20] and evaluate depth up to
200m averaged across all cameras. We use self-occlusion
masks from [53] to filter the ego-vehicle in the images. Im-
ages have a resolution of 1216×1936 and are downsampled
to 384× 640 in our experiments.
NuScenes. This dataset contains 700 training, 150 valida-
tion, and 150 testing sequences of urban scenes with chal-
lenging conditions such as nighttime and rain. Each scene is
composed of 40 keyframes at 2Hz synchronized across sen-
sors. The six cameras have a sampling rate of 12Hz and are
arranged in a surround-view setup with up to 10% overlap.
We follow [23] and evaluate depth averaged across all cam-
eras on the validation set. We use a single self-occlusion
mask for all scenes. While the raw images have a resolution
of 900× 1600, we use 768× 448.
Implementation details. We implement our system in
PyTorch [38]. Our multi-camera DBA is implemented in

Input Geom. Depth Refined

Figure 4. Depth refinement. We plot images overlayed with con-
fidence wi, the geometric depth estimate d, and the refined depth
d′ from Dθ . We observe a smoother ground plane, corrected dy-
namic objects, and filtered outliers.

CUDA. We fine-tune gϕ, gψ and the flow correction GRU
on VIKITTI2 [2] for 10 epochs with a batch size of 1, se-
quence length of 7, and learning rate 10−4 with the pre-
trained model in [49]. For Dθ, we use a U-Net [39] with
ResNet18 [26] encoder and initialize it with ImageNet [41]
pre-trained weights. We use β = 0.5, γ = 3 and λ = 10−3.
We train for 20 epochs with batch size of 6 and the Adam
optimizer with learning rate 10−4, β1 = 0.9, and β2 =
0.999. We reduce the learning rate by a factor of 10 after
15 epochs. For inference, the runtime is measured for a set
of six images on a single RTX3090 GPU. Each sequence is
initialized with 3 warmup frames filtered at a mean flow
threshold of 1.75. We build the co-visibility graph with
∆tintra = 3, rintra = 2, ∆tinter = 2 and rinter = 2.

4.2. Ablation Studies

Method ablation. We ablate our method components
on the DDAD dataset in Tab. 1. The geometric estimation
baseline (1a) consists of [49] with the naive DBA formu-
lation applied to all cameras and the co-visibility graph as
described in Sec. 3.1. It performs poorly in depth and pose
estimation, with an Abs. Rel. score of 0.438 and an absolute
trajectory error (ATE) [43] of 2.134m, even when adjusting
for scale. Next, we add our multi-camera DBA (1b). We ob-
serve that, even without VKITTI fine-tuning, the pose esti-



Table 4. Comparison to state-of-the-art on DDAD. We com-
pare favorably to existing methods on both scale-aware and scale-
invariant depth prediction. * median scaled depth.

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1.25 ↑
FSM [23] 0.201 - - -
SurroundDepth [53] 0.208 3.371 12.977 0.693
Ours 0.162 3.019 11.408 0.811

FSM* [23] 0.202 - - -
SurroundDepth* [53] 0.200 3.392 12.270 0.740
MCDP* [55] 0.193 3.111 12.264 0.811
Ours* 0.169 3.041 11.372 0.809

Table 5. Per-camera evaluation on DDAD. We show a per-
camera breakdown of previous works, our Dθ only (cf. 2a in
Tab. 1), and our full method. Our full method performs the best
with a particularly significant improvement on the side-view cam-
eras while Dθ performs similarly to previous works.

Abs Rel ↓
Method Front F.Left F.Right B.Left B.Right Back

FSM [23] 0.130 0.201 0.224 0.229 0.240 0.186
SurroundDepth [53] 0.152 0.207 0.230 0.220 0.239 0.200

Dθ only 0.154 0.213 0.237 0.231 0.237 0.194
Ours 0.128 0.160 0.168 0.172 0.174 0.169

Table 6. Comparison to multi-frame methods on DDAD. We
compare to methods that exploit temporal context from a single
camera [52, 19]. We evaluate only the front camera since these
methods were trained only on this camera.

Front Camera

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1.25 ↑
ManyDepth [52] 0.146 3.258 14.098 0.822
DepthFormer [19] 0.135 2.953 12.477 0.836
Ours 0.128 3.168 13.214 0.868

Table 7. Pose evaluation on DDAD. We compare our method to
state-of-the-art monocular SLAM methods for which we report
the average ATE across the cameras that successfully tracked the
camera path. ** scaled trajectory.

DROID-SLAM [49] ORB-SLAMv3 [5] Ours

ATE** [m] ↓ 7.500 6.179 0.433

mation accuracy improves dramatically over the naive DBA
baseline. The relative scale ATE drops from 2.134m to only
0.435m. The absolute scale ATE is only about 1.2m higher,
indicating the scene scale is recovered accurately.

Using VKITTI fine-tuning (1c), we achieve significant
gains in depth accuracy, where Abs. Rel. drops to 0.32 and
δ1.25 increases to 72.7%. However, note that VKITTI fine-
tuning does not affect the δ1.25 score, i.e. it helps mostly
with depth outliers. We attribute this to the absence of
dynamic objects in the training data of [49] so that fine-
tuning helps to adjust the confidence prediction to handle
such outliers (cf. Sec. 3.2). We further test the depth re-
finement network (Sec. 3.3) without geometric estimation
prior (2a). The depth obtained from Dθ is less prone to out-
liers, as evidenced by its low Abs. Rel., Sq. Rel. and RMSE
scores. However, note that its δ1.25 is only 71.5%, i.e. its
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Table 8. Comparison to state-of-the-art on NuScenes. Evaluated
up to 80m for scale-aware depth as in [23, 53] and 60m for median-
scaled depth (denoted with *) as in [55].

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1.25 ↑
FSM [23] 0.297 - - -
SurroundDepth [53] 0.280 4.401 7.467 0.661
Ours 0.253 4.759 7.150 0.729

PackNet*[20] 0.303 3.154 7.014 0.655
FSM* [23] 0.270 3.185 6.832 0.689
SurroundDepth* [53] 0.245 3.067 6.835 0.719
MCDP* [55] 0.237 3.030 6.822 0.719
Ours* 0.235 3.332 6.021 0.749

depth accuracy compared to the geometric depth estimates
is actually lower when disregarding outliers. Finally, we
test our full system (3a). Compared to geometric estimation
(1d), we observe a significant improvement in outlier sen-
sitive metrics like RMSE, but also in outlier robust metrics
like δ1.25. Additionally, the pose estimation accuracy is in-
creased and the difference between scaled and non-scaled
ATE is smaller. Compared to depth obtained from Dθ (2a),
the increase in outlier sensitive metrics is smaller but still
significant, e.g. 1.26m in RMSE. Further, we observe a siz-
able gain in δ1.25 of 9.6 percentage points.

Further, in Fig. 5, we compare the δ1.25n scores at dif-
ferent accuracy thresholds n of our geometric depth es-
timation without refinement (‘Ours (Geometric)’), our re-
finement network only (‘Ours (Monocular)’) and our full
method (‘Ours’). The results confirm our hypothesis that
while geometric estimates are more accurate than monocu-
lar depth estimates, they are also noisier. Importantly, the
results further illustrate that our full method can effectively
combine the strengths of both approaches while not suffer-
ing from their weaknesses.
Co-visibility graph construction. In Tab. 2, we compare
our co-visibility graph construction algorithm (Sec. 3.1) to
a multi-camera adaption of the algorithm in [49]. Ours



Table 9. Per-camera evaluation on NuScenes. We compare
our method with previous works on scale-aware depth estimation.
Evaluated up to 80m as in Tab. 8. We observe the same trend as
on DDAD, i.e. our method performs best across all cameras, with
a particularly high improvement on the side views.

Abs Rel ↓
Method Front F.Left F.Right B.Left B.Right Back

FSM [23] 0.186 0.287 0.375 0.296 0.418 0.221
SurroundDepth [53] 0.179 0.260 0.340 0.282 0.403 0.212

Ours 0.174 0.230 0.302 0.249 0.360 0.201

Table 10. Cross-dataset transfer. We use models trained on
DDAD to evaluate scale-aware depth prediction on the NuScenes
dataset. We compare to state-of-the-art methods [23, 53] and ob-
serve that our method exhibits better generalization ability (cf.
Tab. 8).

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1.25 ↑
FSM [23] 0.349 5.064 8.785 0.499
SurroundDepth [53] 0.364 5.476 8.447 0.525
Ours 0.292 4.800 7.677 0.660

yields similar performance in depth estimation, with the ex-
act same Abs. Rel. score and only minor difference in other
metrics. Further, the absolute scale ATE is only slightly
(25cm) higher. In contrast, using our algorithm, we achieve
a runtime reduction of nearly 10× on the full system.
Depth refinement network. We verify the choice of our
inputs to Dθ in Tab. 3. If we do not input the confidence
wi and do not sparsify the depth via wi < β before feeding
it to Dθ, we observe the lowest performance. If we input
the confidence wi but do not sparsify the depth, we see an
improvement over not using them. We achieve the best per-
formance with the inputs described in Sec. 3.3.

Moreover, we show qualitative examples of our depth
refinement in Fig. 4. The confidence wi (overlaid with the
image) segments regions where geometric estimation is am-
biguous, i.e. dynamic objects and uniformly textured areas
like the sky and the road surface. The geometric depth maps
exhibit severe artifacts in such regions. After refinement,
these artifacts are corrected.

4.3. Comparison to State-of-the-Art

DDAD. In Tab. 4, we compare our method to existing self-
supervised multi-camera depth estimation methods. We
achieve significant improvements in scale-aware and scale-
invariant depth prediction with only minor differences in ab-
solute and relative scale results. In both settings, we achieve
state-of-the-art results with the lowest Abs. Rel. scores of
0.162 and 0.169, respectively.

In Fig. 5 we compare the δ1.25n scores of our method
to the state-of-the-art approaches on DDAD at different n.
For small values of n, we observe a particularly pronounced
performance gain over existing methods. This shows the ad-
vantage of combining highly accurate geometric estimates
with monocular cues. Further, our method consistently out-

performs the baselines over all values of n for δ < 1.25n.
In Fig. 6, we show a qualitative comparison to existing

works. On the left side, we illustrate depth maps across
three cameras. Compared to FSM [23] and Surround-
Depth [53], we produce sharper depth boundaries. On the
right side, we illustrate point clouds accumulated over time.
We produce a more consistent reconstruction, as can be seen
when focusing on the vehicles or the fences beside the road.

Tab. 5 shows the per-camera breakdown of the scale-
aware depth prediction comparison. The advantage of our
method is particularly pronounced on the side cameras.
Other methods struggle with the side views because the
static spatial context is limited and they do not exploit any
temporal or spatial-temporal context. The temporal and
spatial-temporal contexts are conducive in the side views
since sideward motion leads to better triangulation angles
than forward motion. This is also evidenced by the results of
Dθ without geometric estimation, which performs similarly
to the baseline methods, struggling with the side views. In
contrast, our full system performs well across all cameras.

We further compare to self-supervised single-camera
methods that leverage temporal information in Tab. 6. For
a fair comparison, we evaluate only the front camera.
We compare favorably to DepthFormer [19] and Many-
Depth [52]. In particular, we substantially improve in the
outlier robust metric δ1.25 and perform competitively in all
others. Our Abs. Rel. score is the lowest at 0.128.

To evaluate ego-motion estimation, we compare our sys-
tem to state-of-the-art monocular SLAM methods [49, 5] in
Tab. 7. We run the baselines on each camera and report the
average ATE across the cameras that successfully tracked
the camera path. Note that, contrary to our approach, the
competing methods frequently failed to produce a trajec-
tory. We observe that state-of-the-art monocular SLAM
methods exhibit a large error (ATE), while our method re-
covers accurate trajectories.
NuScenes. In Tab. 8, we compare our system to pre-
vious self-supervised multi-camera depth estimation meth-
ods. We outperform previous methods by a significant mar-
gin, corroborating our findings on DDAD. Notably, we ob-
serve substantial improvements in scale-aware depth esti-
mation, while previous works usually struggle with recover-
ing absolute scale on this dataset since the overlap between
cameras is smaller than in DDAD [23]. Therefore, previ-
ous works like MCDP [55] report results on scale-invariant
depth prediction. We outperform existing methods also in
this setting, although the performance gap is smaller. Note
that the gap between scale-aware and scale-invariant eval-
uation is only 2 percentage points in δ1.25 for our method,
while for SurroundDepth [53] the gap is much larger with
5.8 percentage points. We show a per-camera breakdown of
the comparison to the state-of-the-art in scale-aware depth
estimation in Tab. 9. The results corroborate our findings
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Figure 6. Qualitative comparison on DDAD. We show depth maps and point clouds accumulated over time along with input images,
ground-truth LiDAR 3D Reconstruction, and the ego-vehicle in red. Our depth maps are sharper and more accurate. Our accumulated
point clouds yield a more consistent 3D reconstruction. Note that we use our pose predictions for [23, 53] since these do not predict pose.

on DDAD, namely that our method outperforms previous
works across all cameras with a particularly pronounced im-
provement on the side views.
Cross-dataset transfer. We finally test the cross-dataset
generalization of our method versus FSM [23] and Sur-
roundDepth [53]. In Tab. 10, we show scale-aware depth
estimation results of models trained on DDAD, evaluated
on NuScenes. We observe that the gap in Abs. Rel. widens
compared to Tab. 8, with our method outperforming Sur-
roundDepth by 0.072 in Abs. Rel. and FSM by 0.057. Fur-
ther, our method maintains much higher levels of δ1.25 and
Sq. Rel., while SurroundDepth drops significantly in both
metrics. Note that we apply focal length scaling [46] to all
methods to accommodate differences in camera intrinsics.

5. Conclusion

We introduced R3D3, a multi-camera system for dense
3D reconstruction of dynamic outdoor environments. The
key ideas we presented are a multi-camera DBA operator
that greatly improves geometric depth and pose estimation,
a multi-camera co-visibility graph construction algorithm
that reduces the runtime of our system by nearly 10× with-
out significant performance drop, and a depth refinement
network that effectively fuses geometric depth estimates
with monocular cues. We observe that our design choices
enable dense 3D mapping in challenging scenes presenting
many dynamic objects, uniform and repetitive textures, and

complicated camera phenomena like lens flare and auto-
exposure. We achieve state-of-the-art performance in dense
depth prediction across two multi-camera benchmarks.
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[13] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-
slam: Large-scale direct monocular slam. In ECCV, 2014.

[14] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and
robust multiview stereopsis. IEEE TPAMI, 2009.

[15] Silvano Galliani, Katrin Lasinger, and Konrad Schindler.
Massively parallel multiview stereopsis by surface normal
diffusion. In ICCV, 2015.

[16] Clément Godard, Oisin Mac Aodha, and Gabriel J. Bros-
tow. Unsupervised monocular depth estimation with left-
right consistency. In CVPR, 2017.

[17] Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J. Brostow. Digging into self-supervised monocular
depth prediction. In ICCV, 2019.

[18] Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong
Tan, and Ping Tan. Cascade cost volume for high-resolution
multi-view stereo and stereo matching. In CVPR, 2020.

[19] Vitor Guizilini, Rares Ambrus, Dian Chen, Sergey Zakharov,
and Adrien Gaidon. Multi-frame self-supervised depth with
transformers. In CVPR, 2022.

[20] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raven-
tos, and Adrien Gaidon. 3d packing for self-supervised
monocular depth estimation. In CVPR, 2020.

[21] Vitor Guizilini, Rui Hou, Jie Li, Rares Ambrus, and Adrien
Gaidon. Semantically-guided representation learning for
self-supervised monocular depth. In ICLR, 2020.

[22] Vitor Guizilini, Kuan-Hui Lee, Rares Ambrus, and Adrien
Gaidon. Learning optical flow, depth, and scene flow without
real-world labels. In RA-L, 2022.

[23] Vitor Guizilini, Igor Vasiljevic, Rares Ambrus, Greg
Shakhnarovich, and Adrien Gaidon. Full surround mon-
odepth from multiple cameras. In RA-L, 2022.

[24] Xiaoyang Guo, Hongsheng Li, Shuai Yi, Jimmy Ren, and
Xiaogang Wang. Learning monocular depth by distilling
cross-domain stereo networks. In ECCV, 2018.

[25] Adam Harmat, Inna Sharf, and Michael Trentini. Paral-
lel tracking and mapping with multiple cameras on an un-
manned aerial vehicle. In ICRA, 2012.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

[27] Lionel Heng, Benjamin Choi, Zhaopeng Cui, Marcel Gep-
pert, Sixing Hu, Benson Kuan, Peidong Liu, Rang Nguyen,
Ye Chuan Yeo, Andreas Geiger, et al. Project autovision:
Localization and 3d scene perception for an autonomous ve-
hicle with a multi-camera system. In ICRA, 2019.

[28] Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra
Ahuja, and Jia-Bin Huang. Deepmvs: Learning multi-view
stereopsis. In CVPR, 2018.
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[50] Chaoyang Wang, José Miguel Buenaposada, Rui Zhu, and
Simon Lucey. Learning depth from monocular videos using
direct methods. In CVPR, 2018.

[51] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: from error visibility
to structural similarity. IEEE TIP, 2004.

[52] Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel
Brostow, and Michael Firman. The Temporal Opportunist:
Self-Supervised Multi-Frame Monocular Depth. In CVPR,
2021.

[53] Yi Wei, Linqing Zhao, Wenzhao Zheng, Zheng Zhu, Yong-
ming Rao, Guan Huang, Jiwen Lu, and Jie Zhou. Surround-
depth: Entangling surrounding views for self-supervised
multi-camera depth estimation. In CoRL, 2022.

[54] Felix Wimbauer, Nan Yang, Lukas Von Stumberg, Niclas
Zeller, and Daniel Cremers. Monorec: Semi-supervised
dense reconstruction in dynamic environments from a single
moving camera. In CVPR, 2021.

[55] Jialei Xu, Xianming Liu, Yuanchao Bai, Junjun Jiang, Kaix-
uan Wang, Xiaozhi Chen, and Xiangyang Ji. Multi-camera
collaborative depth prediction via consistent structure esti-
mation. In ACM MM, 2022.

[56] Nan Yang, Lukas von Stumberg, Rui Wang, and Daniel Cre-
mers. D3vo: Deep depth, deep pose and deep uncertainty for
monocular visual odometry. In CVPR, 2020.

[57] Nan Yang, Rui Wang, Jorg Stuckler, and Daniel Cremers.
Deep virtual stereo odometry: Leveraging deep depth predic-
tion for monocular direct sparse odometry. In ECCV, 2018.

[58] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan.
Mvsnet: Depth inference for unstructured multi-view stereo.
In ECCV, 2018.

[59] Yao Yao, Zixin Luo, Shiwei Li, Tianwei Shen, Tian Fang,
and Long Quan. Recurrent mvsnet for high-resolution multi-
view stereo depth inference. In CVPR, 2019.

[60] Zhichao Yin and Jianping Shi. Geonet: Unsupervised learn-
ing of dense depth, optical flow and camera pose. In CVPR,
2018.

[61] Zehao Yu and Shenghua Gao. Fast-mvsnet: Sparse-to-
dense multi-view stereo with learned propagation and gauss-
newton refinement. In CVPR, 2020.

[62] Huangying Zhan, Ravi Garg, Chamara Saroj Weerasekera,
Kejie Li, Harsh Agarwal, and Ian Reid. Unsupervised learn-
ing of monocular depth estimation and visual odometry with
deep feature reconstruction. In CVPR, 2018.

[63] Enliang Zheng, Enrique Dunn, Vladimir Jojic, and Jan-
Michael Frahm. Patchmatch based joint view selection and
depthmap estimation. In CVPR, 2014.

[64] Yiran Zhong, Pan Ji, Jianyuan Wang, Yuchao Dai, and Hong-
dong Li. Unsupervised deep epipolar flow for stationary or
dynamic scenes. In CVPR, 2019.

[65] Huizhong Zhou, Benjamin Ummenhofer, and Thomas Brox.
Deeptam: Deep tracking and mapping. In ECCV, 2018.

[66] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G.
Lowe. Unsupervised learning of depth and ego-motion from
video. In CVPR, 2017.



Appendix

This supplementary material provides further details on
our method, our experimental setup, and more quantita-
tive and qualitative results and comparisons. In Sec. A,
we provide further details and discussion on the geomet-
ric pose and depth estimation, the refinement network, our
co-visibility graph, and training and inference procedures.
In Sec. B, we provide additional ablation studies and more
quantitative and qualitative comparisons and results. In
Sec. C, we provide a detailed derivation of our multi-camera
DBA. Note that we group large qualitative comparisons at
the end of this document for better readability.

A. Implementation Details
A.1. Geometric Depth and Pose Estimation

We follow [49] for the context feature encoder gψ and
correlation feature encoder gϕ and GRU architecture. In
addition to the context features, gψ also outputs an initial-
ization to the GRU hidden state h(0)

ij from input Ii. The hid-
den state after the last iteration is pooled among all outgoing
edges from node i to predict a damping factor λi that serves
as a parameter to the multi-camera DBA, which improves
convergence when the current depth estimate is inaccurate.
We perform feature matching and geometric depth updates
at 1/8th of the original image resolution. We predict upsam-
pling masks from the pooled hidden state to upsample depth
to the original resolution. The confidence maps wi are lin-
early interpolated. Furthermore, following RAFT [48], the
correlation volume is built as a 4-level pyramid, and sam-
pled features from all layers are concatenated. Further, each
GRU update is followed by a multi-camera DBA with two
Gauss-Newton steps.

A.2. Depth Refinement

We show the architecture of the depth refinement net-
work in Tab. 11. Note that we input full-resolution frames
and up-sampled depth and confidence. Further, we concate-
nate the depth and confidence predicted at 1/8th scale with
features after the third skip connection. We use the inverse
of the input depth. Further, we obtain the refined depth pre-
diction from the sigmoid output oct ∈ [0, 1]H×W via

1

dct
=

fc
fnorm

·
( 1

dmax
+ (

1

dmin
− 1

dmax
) · oct

)
, (9)

where fc is the focal length, fnorm a constant normaliza-
tion factor and dmin and dmax are pre-defined minimum and
maximum depth. For experiments on the DDAD dataset we
set dmin = 1, dmax = 200, fnorm = 715 aligned with the
focal length of the front-facing camera, for NuScenes we
choose dmin = 1, dmax = 80, fnorm = 500.

Dataset generation. To train the refinement network, we
first generate a dataset of samples that contain the prior geo-
metric depth, confidence maps, and poses with the first two
stages of our system. We filter scenes with inaccurate scene
scale by measuring how many reliable feature matches there
are across both temporal and spatial edges with the given
confidences wij . The fewer reliable matches, the weaker
the constraint on the metric scale. Furthermore, based on
the generated poses, we remove static scenes. This allows
us to train an absolute scale monocular depth estimation
model from the raw video data.
Training details. During the training of refinement net-
work Dθ, we randomly set input depth and confidence
weights to zero to learn depth prediction with and with-
out prior geometric estimates as input. We use color-jitter
and random horizontal flipping as augmentations. Further,
we follow a two-stage training paradigm as in [21]. Af-
ter training Dθ in the first stage, we remove training sam-
ples with outliers in the depth estimates of the current
Dθ. In particular, we apply RANSAC to determine the
ground plane in the front view and calculate the height of
each pixel in all views. We omit training samples with

1
H·W

∑
u,v [hu,v < −0.5m] > ϵ where hu,v is the height

of pixel (u, v) w.r.t. the ground plane and ϵ is set to 0.005
for the front and backward-facing cameras and 0.02 for the
side views. This filters frames where a significant amount
of pixels are below the ground plane. In the second stage,
we re-train the network from scratch on the filtered dataset
for 20 epochs with the same settings. On NuScenes, we
train our refinement network with all available camera im-
ages (12Hz) instead of only keyframes (2Hz).

A.3. Co-visibility Graph

We detail our multi-camera co-visibility graph construc-
tion described in Sec. 3.1 of the main paper in Algorithm 1.
Note that GetAdjacentNodes returns a different adja-
cency pattern than the spatial edges in A, as described in
Sec. 3.1 of the main paper. In particular, we leverage the
forward motion assumption in order to connect two frames
(i, j) if camera cj is closer to the forward-facing camera
than camera ci. For further clarification, please refer to
Fig. 3 of the main paper.
Dynamic alternative. We further implement a dynamic
algorithm without the assumptions stated in Sec. 3.1 of
the main paper. The dynamic algorithm establishes edges
based on camera frustum overlap, i.e. it measures the in-
tersection over union (IoU) of the camera frustums of each
frame across a local time window in world space given the
current camera pose estimates G. We order frame pairs
by their IoU in descending order and choose the N high-
est overlapping pairs as co-visible frames. These establish
the temporal and spatial-temporal edges.

We found empirically that the static algorithm performs



Table 11. Depth refinement network architecture. K describes the kernel size, S the stride. ResidualBlock consists of two convolutional
layers and a skip-connection as proposed in [26]. We generate output at four scales in [0, 1] which is normalized by focal length of the
respective camera and scaled to [1/dmax, 1/dmin].

No. Input Layer Description K S Output Size

(#A, #B) UpBlock

#i (#A) Conv2d→ ELU → Up 3 1
#ii (#i, #B) Concatenate → Conv → ELU 3 1

Encoder

#0 Input: Image + Inv. Geometric Depth + Confidence 5×H ×W
#1 (#0) Conv → BN → ReLU 7 2 64×H/2×W/2
#2 (#1) MaxPool → Skip 3 2 64×H/4×W/4
#3 (#2) 2xResidualBlock → Skip 3 1 64×H/4×W/4
#4 (#3) 2xResidualBlock → Skip 3 2 128×H/8×W/8
#5 Input: Inv. Geometric Depth + Confidence 2×H/8×W/8
#6 (#3, #5) Concatenate 130×H/8×W/8
#7 (#6) 2xResidualBlock → Skip 3 2 256×H/16×W/16
#8 (#7) 2xResidualBlock 3 2 512×H/32×W/32

Decoder

#9 (#8, #7) UpBlock 3 1 256×H/16×W/16
#10 (#9, #4) UpBlock 3 1 128×H/8×W/8
#11 (#10) Conv2d → Sigmoid → Output 3 1 1×H/8×W/8
#12 (#10, #3) UpBlock 3 1 64×H/4×W/4
#13 (#12) Conv2d → Sigmoid → Output 3 1 1×H/4×W/4
#14 (#12, #2) UpBlock 3 1 32×H/2×W/2
#15 (#14) Conv2d → Sigmoid → Output 3 1 1×H/2×W/2
#16 (#15) UpBlock 3 1 16×H ×W
#17 (#16) Conv2d → Sigmoid → Output 3 1 1×H ×W

Algorithm 1 Co-visibility graph construction
Input: K,T,G, {Ict}Cc=0

1: A = ComputeStaticAdjacency(K, T)
2: N = GetNodes(G)
3: M = AddNodes(G, Ict )
4: for i ∈ M # add temporal edges
5: for j ∈ N
6: if Radius(i, j) < rintra
7: AddEdge(G, i, j)
8: end if
9: end for

10: end for
11: for (i, j) ∈ A # add spatial edges
12: AddEdge(G, i, j)
13: end for # add spatial-temporal edges
14: O = GetNodesAtTime(G, t− rintra)
15: O′ = GetAdjacentNodes(G, A, M , O)
16: for (i, j) ∈ O′

17: AddEdge(G, i, j)
18: end for
19: # Remove out-of-context edges and nodes
20: RemoveTemporalEdges(G, t−∆tintra )
21: RemoveSpatialTemporalEdges(G, t−∆tinter )
22: RemoveUnconnectedNodes(G)

similarly to the dynamic alternative while being simpler and
more efficient, so we use it in our experiments. However,
for applications where the assumptions in Sec. 3.1 of the
main paper do not hold, this algorithm provides a suitable
alternative.

A.4. Inference Details

For both datasets, we observe that camera shutters are
not well synchronized in both datasets. This poses a prob-
lem, especially at high speeds. Thus, instead of using con-
stant camera extrinsics, we compute time-dependent rela-
tive camera extrinsics. For inference, we set nitr-wm = 16,
niter1 = 4 and niter2 = 2. For Nuscenes, use a different
threshold β = 0.8.

B. Experiments
Evaluation metrics. We evaluate the proposed method in
terms of depth accuracy and trajectory accuracy.
Depth. Given the estimated depths dct and ground truth
depth d∗

t
c we use compare the following depth metrics

Abs Rel:
1

T · C
∑
d,c

|dct − d∗
t
c|

d∗
t
c (10)

Sqr Rel:
1

T · C
∑
d,c

∥dct − d∗
t
c∥2

d∗
t
c (11)



RMSE:
1

T · C

√∑
d,c

∥dct − d∗
t
c∥2 (12)

δ1.25: fraction of d ∈ d for which max

(
d

d∗
,
d∗

d

)
< 1.25

(13)
For up-to-scale evaluation, we resort to the camera-wise

metric scaling as described in [23] which results in scaling
factor s described as

s =
1

C
·
∑
c

median(d∗c)

median(dc)
(14)

We then scale the predicted depth as s · d.
Trajectory. For trajectory evaluation we use the absolute
trajectory error (ATE) score. Given an estimated trajectory
P1, ...,PT ∈ SE(3) and ground truth trajectory Q1, ...,QT

the ATE is defined as

Fi = Q−1
i SPi

ATE = RMSE(F1:T ) =

√
1

T

∑
i

∥trans(Fi)∥2
(15)

where trans defines the translational part of F and S is
identity I for unscaled evaluation or straj · I where straj is
determined via least squares for scaled evaluation.
Ablation studies. In Tab. 13, we show a comparison of our
depth refinement network trained with synthetic data only,
with both synthetic data and real-world data, and real-world
data only. As stated in Sec. 3.3 of the main paper, the re-
sults show that synthetic data cannot help the depth refine-
ment network performance, even when fine-tuning on real-
world data afterward. Instead, we observe the best perfor-
mance when starting training from real-world data directly.
This underlines the importance of our self-supervised train-
ing scheme for the refinement network, since contrary to
the geometric parts of our system, here we cannot rely on
synthetic data to provide us with ground-truth supervision.

For Tab. 14, we train two versions of our refinement net-
work described in Sec. 3.3 of the main paper. We train Dθ
as described in the main paper with sparsified input depth
and train Dω purely for monocular depth estimation without
refining geometric estimates. We evaluate both networks
on monocular depth estimation on DDAD. We observe that
the networks perform similarly, while Dθ can both refine
geometric depth estimates and estimate depth without geo-
metric depth input. This shows that the refinement network
learns strong scene priors that can estimate depth even with-
out any additional input. Further, we can conclude that the
network generalizes well to both depth prediction and depth
refinement.

In Fig. 7 we show an ablation of the covisibility graph
density by varying the parameters described in Sec. 3.1 of

Table 12. Masking scheme ablation on DDAD. We compare the
influence of the different masks used to train the refinement net-
work (cf. Eq. 8 of the main paper) on the final performance.

Mst Moc Mfc Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1.25 ↑
0.637 51.086 18.129 0.779

✓ 0.288 10.304 12.982 0.786
✓ ✓ 0.162 3.304 11.638 0.811
✓ ✓ ✓ 0.162 3.019 11.408 0.811

Table 13. Refinement network training. We show that train-
ing and pre-training the refinement network on the synthetic
VKITTI [2] dataset does not yield improvement over self-
supervised training with real-world data as proposed in Sec. 3.3
of the main paper.

VKITTI DDAD Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1.25 ↑
✓ 0.282 5.025 15.281 0.572
✓ ✓ 0.163 3.313 11.580 0.809

✓ 0.162 3.019 11.408 0.811

Table 14. Refinement network training comparison. We train
Dθ as described in the main paper with sparsified input depth and
train Dω purely for monocular depth estimation without prior ge-
ometric depth input. We evaluate both networks on monocular
depth estimation without geometric depth input on DDAD.

Dω(Ict) Dθ(Ict ,0,0) Abs Rel ↓ Sq Rel ↓ RMSE ↓ δ1.25 ↑
✓ 0.204 3.583 12.652 0.723

✓ 0.211 3.806 12.668 0.715

our paper. An increase in the number of edges in the co-
visibility graph only yields marginal improvement, while
resulting in a linear increase in runtime.

During training of Dθ, we mask regions that do not pro-
vide useful information for depth learning when minimizing
the view synthesis loss in Eq. 8 of the paper. We provide an
ablation study of the three masks used in Eq. 8 in Tab. 12.
The self-occlusion Moc and static Mst masks are essential
to depth learning by removing ego-vehicle and e.g. sky re-
gions, respectively. The flow consistency mask Mfc further
reduces outliers, caused by e.g. dynamic objects.
Qualitative comparisons. In Fig. 9, we qualitatively com-
pare our method to existing works in terms of scale-aware
depth estimation on DDAD. Further, we show our geomet-
ric depth estimate alongside the refined depth. We notice
that, especially for the side views, existing works struggle
to obtain accurate depth. On the other hand, the geometric
depth of our method produces many accurate depth predic-
tions, but is at the same time very noisy, especially in low-
textured areas and for dynamic objects. Our full method
demonstrates the best performance.

In Fig. 10, we show a comparison of our method to
the state-of-the-art approach SurroundDepth [53] on the
NuScenes dataset. We observe that our approach produces
significantly sharper and more accurate depth maps for all
three of the examples.
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Figure 7. Graph density analysis on DDAD. We plot the AbsRel, δ1.25 scores and runtime w.r.t. the number of edges in the co-visibility
graph. Our default setting is shown in orange.

Table 15. Inference runtime analysis. We list the runtime of each
component of our system during inference.
Component Complexity Runtime [ms] Percent [%]

Feature encoder O(|C|) 5 1.4
Context encoder O(|C|) 5 1.4
Create corr. volumes O(|Enew|) 13 3.7
Corr. volume sampling O(niter · |E|) 31 8.8
GRU steps O(niter · |E|) 196 55.4
Multi-cam. DBA steps O(niter) 1 0.3
Completion O(|V|) 98 27.7
Others - 5 1.4

Total 354 100

Finally, we show additional comparison on accumulated
point clouds on DDAD in Fig. 11 and on NuScenes in
Fig. 12. Our method produces significantly more consis-
tent 3D reconstructions than competing methods, as can be
seen by the more consistent reconstruction of road mark-
ings, sidewalks, and trucks in Fig. 11. In Fig. 12 we observe
that our method approaches the 3D reconstruction accuracy
of the LiDAR-based 3D reconstruction.
Runtime breakdown and memory consumption. In
Tab. 15 we show a component-wise breakdown of time-
complexity and measured runtime of our approach. Com-
pared to [49], we tackle a more complex scenario with six
images per timestep. This leads to many more possible
edges in the co-visibility graph, increasing the computa-
tional burden. Thus, the runtimes are slower than reported
in [49]. However, Tab. 15 shows that runtime is dominated
by the GRU, which scales with the number of edges |E|. The
breakdown and our observed 10× runtime improvement are
both at test time. The peak GPU memory consumption in
inference with our parameter setting is 6.08 GB (∼61 MB
per edge).
Limitations. The components of our system rely on
deep neural networks with downsampling operations. This
means a large chunk of the computation will happen at a
lower resolution. While this provides a computational ad-
vantage, it also comes at the cost of losing high-frequency
details that are important for thin structures like fences. In

Figure 8. Illustration of thin structures. We depict an example
frame, prediction, and error map from the NuScenes dataset. The
fence in the picture poses a problem for our depth estimator since
it is partially transparent. Further, since behind the fence, there is
a large free space, we observe a large Sq. Rel. score for the areas
that are predicted as background.

Fig. 8, we show an example of this phenomenon where
our depth estimate results in a large error because there is
an ambiguity between the background and the foreground
fence. Similarly, other thin structures like poles could be
missed, especially if they are far away.

C. Multi-Camera DBA
We provide a detailed derivation of our multi-camera

DBA. The goal of the bundle adjustment is to minimize
the energy function E, i.e. align edge-wise relative poses
Gij and frame-wise depth di whose reprojection minimizes
the Mahalanobis distance to the estimated flow fij over all
edges E in the co-visibility graph. In the following, let H
and W be the depth map’s height and width and T = |V|/C
the number of timesteps we consider, where C is the num-
ber of cameras.

E =
∑

(i,j)∈E

∥∥pij −Πcj (Gij ◦Π−1
ci (di))

∥∥2
Σij

(16)

With Σij = diag(wij), pij = xi + fij and

Gij =
(
PtjTcj

)−1
PtiTci (17)

where Tci and Tcj are known constants and Pti and Ptj

are optimization variables. This will lead to updates

P(k) = exp (δξ)P(k−1)

d(k) = d+ d(k−1)
(18)



where δξ and δd are the solution to the normal equation

J⊤ΣJ ·
[
δξ
δd

]
= −J⊤Σr (19)

where J ∈ R|E|·H·W ·2×(T ·6+|V|·H·W ) is the Jacobian
of the residuals w.r.t. all optimization variables and r ∈
R|E|·H·W ·2 is the vector of all residuals

C.1. Pose - Depth Decomposition

We can make three observations. First, pose Pk only
appears in rij if k is either i or j and ti ̸= tj . Second, there
are no loops, thus i ̸= j. Third, depth dk only appears in
rij if k = i, therefore ∂rij

∂dk
= 0 ∀k ̸= i.

Let us now consider a single edge (i, j) ∈ E with
rij ∈ RH·W ·2 the residuals and Jij ∈ RH·W ·2×(12+H·W )

the Jacobian w.r.t. all optimization variables. We can
decompose the Jacobian into its components, i.e. Jij =[
Jξi + Jξj Jdi

]
where Jdi is diagonal. Now, when only

considering the aforementioned edge, Eq. 19 can be written
as

Bii Bij Eii
Bji Bjj Eji
E⊤
ii E⊤

ji Ci

δξi
δξj
δdi

 =

vi
vj
wi

 (20)

with

Bii = J⊤
ξiΣrijJξi Eii = J⊤

ξiΣrijJdi

Bij = J⊤
ξiΣrijJξj Eji = J⊤

ξjΣrijJdi

Bji = J⊤
ξjΣrijJξi vi = −J⊤

ξiΣrijrij

Bjj = J⊤
ξjΣrijJξj vj = −J⊤

ξjΣrijrij

Ci = J⊤
di
ΣrijJdi wi = −J⊤

di
Σrijrij

(21)

We now consider again all edges E . Because the energy
function in Eq. 16 is the sum of the energies for all edges,
we can apply the sum rule for derivatives. Thus, we can
combine the components of the normal equation. Since the
block matrices from Eq. 21 are dependent on their respec-
tive residual rij , we can combine the blocks via a scattered
sum

B =
∑

(i,j)∈E

ΦT×T
titi [Bii(rij)] + ΦT×T

titj [Bij(rij)]

+ ΦT×T
tjti [Bji(rij)] + ΦT×T

tjtj [Bjj(rij)]

E =
∑

(i,j)∈E

Φ
T×|V|
tii

[Eii(rij)] + Φ
T×|V|
tji

[Eji(rij)]

C =
∑

(i,j)∈E

Φ
|V|×|V|
ii [Ci(rij)]

v =
∑

(i,j)∈E

ΦT×1
ti [vi(rij)] + ΦT×1

tj [vj(rij)]

w =
∑

(i,j)∈E

Φ
|V|×1
i [wi(rij)]

(22)

where ΦM×N
mn : RU×V → RM ·U×N ·V is the function

which maps a block matrix to row m ∈ {1, ...,M} and
column n ∈ {1, ..., N} while the other elements are set to
zero. To improve convergence, the Levenberg-Marquardt
method is used on C, leading to[

B E
E⊤ C+ λI

] [
δξ
δd

]
=

[
v
w

]
(23)

With I the identity matrix and pixel-wise damping factor
λ is predicted by the GRU (see Sec. A) for each node i. We
observe that C is diagonal. We can use the Schur comple-
ment to solve Eq. 23 efficiently, due to (C + λI)−1 being
very easy to invert. Thus the updates are given by

S = B−EC−1E⊤

δξ = S−1(v −EC−1w)

δd = (C+ λI)−1(w −E⊤δξ)

(24)

Lastly, it can be shown that S ≻ 0, thus the Cholesky-
decomposition can be used to efficiently solve for S−1.

C.2. Jacobians

Given the decomposition above, we now define the Jaco-
bians Jξi , Jξj , and Jdi . Let us consider a single depth d of
node i at location (u, v). The residual is given by

rij,uv = pij,uv − p̂ij,uv ∈ R2 (25)

where p̂ij,uv = Πcj (Gij ◦ Π−1
ci (d)). We further de-

fine the 3D point corresponding to pixel (u, v) as X =[
X Y Z W

]⊤
which is given by X = Π−1

ci (d) and
the transformed point X′ = GijX. We can thus define the
projection and unprojection operators for pinhole cameras
ci and cj

Πcj (X
′) =

[
fxcj

X′

Z′ + cxcj
fycj

Y ′

Z′ + cycj

]
(26)



Π−1
ci (d) =


u−cxci
fx
ci

v−cyci
fy
ci

1
d

 (27)

where fxc , f
y
c are the camera c’s focal lengths in x and y

direction, cxc , c
y
c are the respective principal points.

Depth The Jacobian Jd w.r.t. depth d is defined as

Jd =
∂rij
∂d

= −∂p̂ij
∂d

= −
∂Πcj (X

′)

∂X′
∂X′

∂d

= −
∂Πcj (X

′)

∂X′ Gij

∂Π−1
ci (d)

∂d

(28)

∂Πcj (X
′)

∂X′ =

[
fxcj

1
Z′ 0 −fxcj

X′

Z′2 0

0 fycj
1
Z′ −fycj

Y ′

Z′2 0

]
(29)

∂Π−1
ci (d)

∂d
=


0
0
0
1

 (30)

Pose The Jacobian Jξ w.r.t. ξ where ξ ∈ se(3) is either ξi
or ξj .

Jξ =
∂rij
∂ξ

= −∂p̂ij
∂ξ

= −
∂Πcj (X

′)

∂X′
∂X′

∂ξ
(31)

The partial derivative
∂Πcj

(X′)

∂X′ has been derived in
Eq. 29. For ∂Gij

∂ξ , we can again decompose Gij into the
static parts Tci and Tcj and the unknown, to be optimized
parts, Pti and Ptj

X′ = (PtjTcj )
−1PciTciX (32)

First, similar to Eq. 39 to 44 in [11], for A = A1(A0)
−1

we can write

∂A

∂A0
=

∂ log
(
A1(exp (ξ)A0)

−1(A1A
−1
0 )−1

)
∂ξ

|ξ=0

=
∂

∂ξ
|ξ=0

[
log

(
A1A

−1
0 exp (−ξ)A0A

−1
1

)]
=

∂

∂ξ
|ξ=0

[
log

(
exp (−AdjA1A

−1
0

ξ)A1A
−1
0 A0A

−1
1

)]
=

∂

∂ξ
|ξ=0

[
log

(
exp (−AdjA1A

−1
0

ξ)
)]

=
∂

∂ξ
|ξ=0

[
−AdjA1A

−1
0

ξ
]

= −AdjA1A
−1
0

(33)

In the following, we omit the explicit perturbation
around ξ = 0. Let now G1, ...,G6 ∈ R4×4 be generators
as defined in Eq. 65 in [11]. With the chain rule and Eq. 94
in [11] and Eq. 33 above, the derivative w.r.t. the pose of
incoming node j is given by

∂X′

∂ξj
=

∂

∂ξj

[
(exp (ξj)PtjTcj )

−1PtiTciX
]

=
∂

∂ξj
[T−1

cj (exp (ξj)Ptj )
−1︸ ︷︷ ︸

A

PtiTciX︸ ︷︷ ︸
Xw

]

=
∂

∂A
[AXw] · ∂

∂ξj
[T−1

cj︸︷︷︸
A1

(exp (ξj)Ptj︸ ︷︷ ︸
A0

)−1]

=
∂

∂A
[AXw] · ∂

∂A0
[A1A

−1
0 ]

=
[
G1X

w ... G6X
w
]
· (−AdjA1A

−1
0
)

= −
[
G1X

w ... G6X
w
]
·AdjT−1

cj
P−1

tj

(34)

Finally, with Eq. 94 and 97 in [11] and the derivative
w.r.t. the pose of the outgoing node i

∂X′

∂ξi
=

∂

∂ξi
[(PtjTcj )

−1 exp (ξi)Pti︸ ︷︷ ︸
A

TciX︸ ︷︷ ︸
Xti

]

=
∂

∂A
[AXti ] · ∂

∂ξi
[(PtjTcj )

−1 exp (ξi)Pti ]

=
[
G1X

ti ... G6X
ti
]
·AdjT−1

cj
P−1

tj

(35)

Finally, we compose the component-wise Jacobians
above into the Jacobian J as stated in Sec. C.1. We can
now use J to compute the updates δξ and δd in Eq. 19.
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Figure 9. Qualitative comparison on DDAD. We compare existing works to both our geometric and refined depth estimates. Especially
for the side views, existing works struggle to obtain accurate depth. The geometric depth produces many accurate depth predictions, but
contains many noisy points, especially in low-textured areas and for dynamic objects. Our full method demonstrates the best performance.
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Figure 10. Qualitative comparison on NuScenes. We show a comparison of depth maps from our method to the depth maps of the state-
of-the-art approach SurroundDepth [53]. We observe that our approach produces significantly sharper and more accurate depth predictions.
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Figure 11. Qualitative comparison of 3D reconstructions on DDAD. We show the 3D reconstructions of our method compared to
SurroundDepth [53] and FSM [23]. Additionally, we plot the ground-truh LiDAR 3D reconstruction at the top. The ego-vehicle trajectory
is marked in red. We observe that our method produces significantly more consistent and accurate 3D reconstructions than competing
methods, as can be seen when focusing on the trucks (right) and the street markings and pedestrians (left).
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Figure 12. Qualitative 3D reconstruction results on NuScenes. We show our 3D reconstruction results alongside the LiDAR ground-truth
3D reconstruction. The ego-vehicle trajectory is marked in red. We observe that our method yields similarly consistent 3D reconstruction
results as the LiDAR ground-truth while being denser.


