
NetVigil: Robust and Low-Cost Anomaly Detection for
East-West Data Center Security

Kevin Hsieh∗1 Mike Wong∗2,1 Santiago Segarra1,3 Sathiya Kumaran Mani1

Trevor Eberl1 Anatoliy Panasyuk1 Ravi Netravali2 Ranveer Chandra1 Srikanth Kandula1

1Microsoft 2Princeton University 3Rice University

Abstract– The growing number of breaches in data centers
underscores an urgent need for more effective security. Tra-
ditional perimeter defense measures and static zero-trust ap-
proaches are unable to address the unique challenges that arise
from the scale, complexity, and evolving nature of today’s
data center networks. To tackle these issues, we introduce
NetVigil, a robust and cost-efficient anomaly detection system
specifically designed for east-west traffic within data center
networks. NetVigil adeptly extracts security-focused, graph-
based features from network flow logs and employs domain-
specific graph neural networks (GNNs) and contrastive learn-
ing techniques to strengthen its resilience against normal
traffic variations and adversarial evasion strategies. Our evalu-
ation, over various attack scenarios and traces from real-world
production clusters, shows that NetVigil delivers significant
improvements in accuracy, cost, and detection latency com-
pared to state-of-the-art anomaly detection systems, providing
a practical, supplementary security mechanism to protect the
east-west traffic within data center networks.

1 Introduction

The modern era of digitalization has brought about unprece-
dented growth in data center networks, ushering in a period
where the need for robust security measures is more critical
than ever before. Recent high-profile breaches, such as the
Equifax breach [1] and the SolarWinds attack [3, 82] have
exposed vulnerabilities in data center network security and
demonstrate catastrophic consequences that can arise from
a lack of adequate protection. As cyber threats continue to
evolve and grow in sophistication, there is an urgent need to
develop innovative solutions to safeguard sensitive informa-
tion and ensure the integrity of data center networks.

One such area that warrants particular attention is the se-
curity of east-west traffic within data centers. Traditional
security measures have focused primarily on securing north-
south traffic at the network perimeter, which has left inter-
nal systems susceptible to lateral movements and persistent
threats from compromised nodes, SSH keys, or other creden-
tials [73, 75]. Zero-trust architecture [44, 66] aims to mitigate
these risks by securing east-west communication and data

* Equal contribution.

flows. However, current zero-trust solutions, such as micro-
segmentation [40,59,70,77], rely only on static access control
rules and are ill-equipped to detect dynamic and unusual be-
haviors, leaving networks exposed to potential attacks and
lateral movement.

Addressing the critical gap in data center network security
necessitates the development of an effective and always-on
network anomaly detector specifically tailored for east-west
traffic. Although existing network anomaly detection solu-
tions have achieved significant progress in handling north-
south traffic [32, 47], they struggle to overcome the unique
challenges associated with east-west traffic. First, the majority
of these solutions require capturing and analyzing network
packets, leading to a cost that becomes prohibitively high
when implemented across all nodes. For example, a recent
high-throughput malicious traffic detection system [31] de-
mands at least 17 cores and 10 GB of memory per node to
secure a 10 Gb NIC, resulting in an annual cost of six million
dollars for an application comprising 1,000 nodes. Second, ex-
isting solutions are known for generating false alarms [43,57],
an issue further amplified by the dynamic nature of east-west
traffic. Even a marginal false alarm rate can significantly es-
calate operational overhead at scale, causing security teams
to inadvertently neglect genuine threats. Third, a multitude of
solutions depend on labeled malicious datasets or signatures
for training their detectors [22,46,51,53], a strategy that is not
only impractical at scale but also renders systems susceptible
to novel zero-day attacks [23, 55].
Objectives and Techniques. We introduce NetVigil, a novel
anomaly detection system explicitly designed for securing
east-west traffic in large-scale networks. In light of the chal-
lenges and limitations associated with existing solutions,
NetVigil is designed to fulfill three primary objectives: (a)
guaranteeing cost-effectiveness when monitoring numerous
nodes, (b) precisely identifying anomalous behaviors while
emphasizing the reduction of false alarms, and (c) demonstrat-
ing robustness to normal traffic changes without depending
on prior knowledge of malicious attacks.

NetVigil achieves these objectives with three core ideas:
(1) Deriving security-focused graph features from flow sum-

maries. To ensure cost-efficiency, NetVigil leverages low-cost
flow summaries, available at both network level (e.g., VPC
Flow Logs [21] and NSG Flow Logs [54]) and service level

(e.g., Calico flow logs [6] and Cilium/Hubble [9]). These
loggers offer substantial cost savings over packet traces by
logging only aggregated statistics. NetVigil adeptly extracts
security-oriented graph features from these summaries, ef-
fectively compensating for the absence of packet-level infor-
mation. This approach enables scalable monitoring of large
networks without sacrificing anomaly detection accuracy.

(2) Leveraging graph neural networks (GNNs) and domain-
specialized contrastive learning for context-aware robust
anomaly detection. NetVigil employs GNNs to model com-
plex relationships between nodes in the network. The key
insight is that different nodes within a network (e.g., microser-
vices) carry diverse contextual information. By integrating
contextual information from adjacent nodes, GNNs can detect
anomalous behaviors that might be overlooked by traditional
solutions focusing on individual flows [31, 56]. To further
strengthen the model’s resilience against normal traffic fluc-
tuations, NetVigil adopts graph contrastive learning [85] with
domain-specialized data augmentation. This approach guides
the model toward capturing meaningful representations of
standard traffic patterns, enabling it to distinguish between
benign and malicious behaviors with greater precision.

(3) Adapting to temporal dynamics via smoothing and con-
tinuous retraining. NetVigil addresses the evolving nature of
network traffic by integrating a temporal loss that encourages
similarity between embeddings of temporally-adjacent graphs.
Moreover, NetVigil continuously retrains its model using re-
cent clean logs by excluding anomalous flows. This approach
keeps the model updated with network behavior, maintaining
high detection accuracy over time.
Implementation and Evaluation. We build NetVigil as an
end-to-end streaming data pipeline, continuously analyzing
network flow summaries and dynamically updating its model.
To evaluate its effectiveness, we design a new east-west se-
curity benchmark, Yatesbury, using a microservice demo ap-
plication [11], generating a diverse array of live traces and
simulating evasive attack scenarios. Our extensive evaluation,
including the benchmark and week-long to month-long traces
from production clusters, demonstrates that NetVigil signifi-
cantly outperforms existing malicious traffic detectors [31,56].
We achieve an average AUC (area under the ROC Curve) im-
provement of 0.22 (up to 0.62) and reduce operational costs
by 2.7 – 16.7× for our 16-VM deployment. We release our
benchmark Yatesbury 1 to enable researchers to explore novel
attack scenarios in a cloud environment and contribute inno-
vative solutions in this crucial domain.
Contributions. We make the following contributions:

• We introduce a novel network anomaly detection architec-
ture designed to secure east-west traffic within data cen-
ters. This architecture utilizes low-cost network flow logs,
security-oriented graph features, and graph neural networks
(GNNs) to achieve cost-effectiveness and robustness.

1https://github.com/microsoft/Yatesbury

Permissible
micro-segmented

paths

Perimeter defense

Static micro-segmentation

Figure 1: Difference between perimeter defense and static micro-
segmentation

• We propose an innovative end-to-end training mechanism
that combines graph representation learning, graph con-
trastive learning, and temporal smoothing. This approach
enables the learning of east-west traffic dynamics for accu-
rate anomaly detection.

• We build our solution alongside an east-west security bench-
mark tailored for cloud deployment, validating the perfor-
mance of our proposed solution through various attack sce-
narios and long-term traces from two production clusters.

2 Background and Motivation

We briefly discuss key concepts and challenges in securing
east-west traffic in data center networks. We focus on the im-
portance of this task and the limitations of traditional security
measures, and we provide an overview of network anomaly
detection techniques specific to east-west traffic.

2.1 Securing East-West Traffic with Zero-
Trust Solutions

Traditional security measures, such as firewalls [69] and intru-
sion detection systems (IDSes) [43], have primarily focused
on securing north-south traffic (interactions between data cen-
ter nodes and external systems) at the network perimeter, as
illustrated in Figure 1. While these measures are essential,
they often do not protect east-west traffic (communication
between nodes within a data center). Traditional security
measures tend to rely on static access control rules or attack
signatures, which can be easily bypassed by attackers using
compromised credentials or exploiting network vulnerabili-
ties. Once inside the network, an attacker can perform lateral
movement with relative ease. The limited visibility into the
communication between nodes within the data center renders
traditional security measures less effective in detecting and
responding to emerging threats.

The zero-trust security model [44, 66] represents a
paradigm shift in network security, aiming to address the
limitations of traditional security measures and improve the
protection of east-west traffic within data center networks.

https://github.com/microsoft/Yatesbury

IDS Low compute
overhead

Low network
overhead

Easy
management

Zero-day attack
protection

Computation cost (CPU
cores/100Gbps) or Licens-
ing cost (US dollars)

Zeek (formerly Bro) [61] ✗ ✗ ✓ ✗ 400 [2]
Snort [65] ✗ ✗ ✗ ✗ 250 [88]
Pigasus [88] ✓ ✗ ✗ ✗ 5 + 1 FPGA [88]
Suricata [15] ✗ ✗ ✗ ✗ 53 + 1 SmartNIC [14]
Whisper [31] ✗ ✓ ✓ ✓ 170
VMware NSX [17] ✗ ✓ ✓ ✗ $4,495/processor/yr [18]
Aviatrix DCF [5] ✗ ✗ ✓ ✗ [4] ∼$3,000/gateway/yr

Table 1: Characteristics of popular IDSes. The characteristics of commercial options are obtained from their websites, which are
subject to changes. The licensing costs associated with commercial solutions may not directly correspond to their computation costs.

The main principles of zero-trust include: (a) least privilege
access [68], where users and devices are granted the mini-
mum access rights necessary to perform their tasks; (b) micro-
segmentation [70,77], which divides the network into smaller
segments or zones to limit lateral movement (see Figure 1);
and (c) continuous monitoring and validation of user and
device behavior to ensure compliance with security policies.

Existing solutions [40, 59] primarily focus on micro-
segmentation to limit the attack surface and the potential
impact of a breach while preventing lateral movement of at-
tackers. However, continuous monitoring and validation of
user and device behavior remain a challenge due to the mas-
sive scale and dynamic nature of east-west traffic, requiring
advanced techniques and tools to effectively detect and re-
spond to anomalies in real time. Without this missing piece,
an attack can still find a way to propagate from one node to
another through permissible, micro-segmented paths, caus-
ing significant damage to critical infrastructure, data loss, or
unauthorized access to sensitive information.

2.2 Challenges of Network Intrusion Detection
Systems on East-West Traffic

A significant body of research [43, 48, 53] has been dedi-
cated to the study of network intrusion detection systems (ID-
Ses), which are tactically positioned at network choke points
(e.g., routers or gateways) to safeguard network perimeters.
Contemporary IDSes can be classified into signature-based
and anomaly-based systems, each offering unique advantages.
Signature-based systems efficiently detect known attack pat-
terns using their distinct signatures, while anomaly-based
systems focus on recognizing normal patterns to identify
novel attacks. Although signature-based systems are effective
for known attacks, the rise of zero-day attacks [23, 55] has
highlighted the importance of anomaly-based systems. By
employing deep learning techniques [32, 47], anomaly-based
systems serve as a valuable complement to signature-based
systems. Both systems have their merits, and a combination
of the two can offer a more robust security solution. Table 1
summarizes key attributes of popular IDSes. Although these
solutions work well for north-south traffic, their application
to east-west traffic presents fundamental challenges.

Challenge 1: Excessive Compute Overhead in Network
Packet Analysis. Past studies [16, 67] showed that only 17%
of data center traffic was attributed to north-south traffic. The
increasing adoption of micro-service architectures, cloud stor-
age, and software-defined networks has since exacerbated
the disparity between north-south and east-west traffic. Con-
sequently, applying existing security solutions to east-west
traffic would result in an unsustainable increase of already
considerable costs. For example, Pigasus [88] employs Field-
Programmable Gate Arrays (FPGAs) to substantially reduce
operational expenses for rule-based IDSes. Nevertheless, it
still requires five CPU cores and one FPGA to secure a 100
Gbps network. Commercial solutions like VMware NSX [17]
tackle this problem by operating IDSes on every hypervisor.
Although this method handles east-west traffic better, it re-
sults in substantial computational expenses for all data center
nodes. The situation is no better for anomaly-based IDSes.
Whisper [31], an efficient malicious traffic detection system,
surpasses its predecessor Kitsune [56] by achieving a 100-
fold increase in throughput. Despite this, securing a single 10
Gbps network necessitates 17 processing cores, potentially
doubling or even tripling the application’s operational costs.

The primary reason for the high overhead in existing solu-
tions is their dependence on capturing and analyzing network
packets, which offer rich and fine-grained information on net-
work traffic. Nevertheless, as Table 1 shows, this approach is
expensive and not scalable for large data center networks. A
cost-effective alternative involves using network or service
flow logs [6, 9, 21, 54], which utilize aggregation intervals to
condense network packet telemetry into periodic 5-tuples and
statistics. While service flow logs offer valuable application-
level data, such as service names and request types, they often
necessitate an agent in guest VMs or specialized environments
like Kubernetes [24]. In this study, we focus on network flow
logs due to their widespread availability in a cloud environ-
ment and consider integrating service flow logs in future work.

To evaluate this approach, we compare the effectiveness of
two contemporary solutions, Whisper [31] and Kitsune [56],
on network packet traces and network flow logs for similar
set of attacks. As Figures 2 and 3 illustrate, applying existing
solutions to network flow logs significantly compromises their
accuracy due to the absence of packet-level information.

Fuzzing OS Scan SSL DoS SSDP Flood0.0
0.2
0.4
0.6
0.8
1.0

AU
C

Kitsune
Whisper

Figure 2: AUC scores with packet traces

UDP Scan SYN Scan UDP DDoS SYN Flood0.0
0.2
0.4
0.6
0.8
1.0

AU
C

Kitsune
Whisper

Figure 3: AUC scores with flow traces

Challenge 2: Complexity and Congestion in Networking.
Numerous popular IDSes [15, 65, 88] are implemented by
redirecting (or hair-pinning) traffic to IDS appliances. How-
ever, for east-west traffic, this method generates excessive
network overheads, as traffic between VMs on the same ma-
chine or within the same rack must be rerouted to another
cluster, potentially causing significant congestion in the net-
work. Moreover, this approach adds complexity to network
management, as hair-pinning must be executed for all commu-
nication paths within a data center, making routing substan-
tially more complicated. Thus, commercial offerings [5] that
adopt this approach primarily focus on egress traffic rather
than encompassing all east-west traffic.
Challenge 3: Elevated False Alarms During Prolonged
Deployment. Applying existing solutions to secure east-west
traffic presents another challenge: an increased false alarm
rate over extended deployment periods. As network traffic pat-
terns evolve, security solutions must adapt to these changes to
maintain high detection accuracy. However, many current net-
work security systems struggle to keep up with the dynamic
nature of network traffic, such as load variation and workload
migration. This results in a high rate of false alarms.

We conduct an evaluation of Whisper [31] using two long-
term traces from our first-party production clusters (see Sec-
tion 6.5 for more detailed information). We find that there is a
substantial increase in false alarms over time, while the contin-
uous daily retraining of these solutions yields only marginal
improvements (not shown in plot). These false alarms not
only utilize significant resources for investigation but also
undermine trust in the system, potentially resulting in the
disregard of authentic threats.
Summary. The absence of a cost-efficient, robust and effec-
tive intrusion detection solution is a crucial impediment in

securing east-west traffic. A comprehensive solution must: (a)
ensure processing efficiency by eliminating dependence on
all network packets, (b) avoid incurring network congestion
or routing complexity, (c) proactively adapt to normal traffic
fluctuations and (d) demonstrate high efficacy on previously
unknown but malicious occurrences. These considerations
are the foundation of our design requirements for NetVigil.

3 Overview of NetVigil

We present a novel anomaly-based intrusion detection sys-
tem, NetVigil, that is explicitly designed to secure east-west
data center networks with cost efficiency and robustness
against normal traffic fluctuations. NetVigil achieves low op-
erational costs by extracting security-oriented graph features
from network flow logs, effectively eliminating the need for
fine-grained yet costly network packet traces. The insight
of NetVigil lies in the fact that network nodes within a data
center typically provide specific functionalities (e.g., micro-
services, storage, databases, etc.), and by employing graph
neural networks (GNNs), we can learn contextual informa-
tion to enhance anomaly detection accuracy. Furthermore, our
system incorporates graph contrastive learning and tempo-
ral smoothing techniques to achieve high detection accuracy
while maintaining low false alarm rates. Figure 4 provides an
overview of the NetVigil architecture.
Inference Time. During the inference phase (depicted on the
left side of Figure 4), cloud resources such as virtual machines
(VMs) and compute clusters continuously generate network
flow logs [6, 9, 21, 54] at intervals ranging from tens of sec-
onds to minutes. These data streams are processed by our
security graph feature extractor (I1 in Figure 4, more details
in Section 4.1), which groups network flow logs based on
their IP addresses, extracts crucial features, and transforms
the results into a featurized communication graph. In this
graph, each node represents an IP address, and each edge
summarizes all flows between respective IP pairs. NetVigil
subsequently feeds this featurized communication graph into
the continuously trained GNN autoencoder (I2 in Figure 4) to
compute anomaly scores for each edge. Edges identified as
potentially anomalous, along with the corresponding commu-
nication graphs and network flow logs, are then forwarded to
the security team for further investigation.
Training Time. At each retraining interval, which typically
spans hours or days based on network dynamics, NetVigil
gathers clean communication graphs from the inference phase
(i.e., excluding anomalous nodes and edges detected by the
model) to retrain the GNN autoencoder (depicted on the right
side of Figure 4). The GNN encoder (T1 in Figure 4) learns to
compress the features of each edge and its incident nodes into
an embedding space, allowing the GNN decoder (T2 in Figure
4) to reconstruct these features with minimal reconstruction
loss (L1 in Figure 4). Section 4.2 provides more details.

Cloud Resources

Network Flow Logs
Security

Graph Feature
Extractor

I1

Featurized
Communication
Graph

GNN
Autoencoder

Inference

I2

Security Team

Anomalies

Inference Training

Clean Featurized
Graphs

Graph Data
Augmentation

T3

GNN
Encoder

T1

Edge
embeddings

GNN
Decoder

Temporal Loss

L1

T2

Contrastive Loss

Reconstruction
Loss

L3L2

Figure 4: Overview of NetVigil

To enhance robustness, we design a graph data augmenta-
tion module (T3 in Figure 4) and train the system to encourage
similarity between the embeddings of original and augmented
graphs by minimizing the contrastive loss (L2, more details in
Section 4.3). Furthermore, we introduce a temporal loss (L3,
more details in Section 4.4) to promote embedding similarity
between temporally-adjacent graphs. The entire training pro-
cess is conducted end-to-end, resulting in an up-to-date GNN
autoencoder for the subsequent inference phase.

4 Design Details of NetVigil

We provide a comprehensive discussion of the key modules
within NetVigil and explain how these components collabo-
rate to fulfill our design objectives. We discuss the security-
oriented graph feature extractor (Section 4.1), graph repre-
sentation learning (Section 4.2), domain-specialized graph
contrastive learning (Section 4.3), and temporal smoothing
techniques (Section 4.4) employed by NetVigil to ensure a
cost-effective, accurate, and robust anomaly detection system
for east-west data center networks.

4.1 Security Graph Feature Extractor

Our security graph feature extractor aims to gather security-
oriented features from network flow logs, prioritizing cost
efficiency while maintaining essential information for down-
stream anomaly detection. Within each aggregation interval
(e.g., one minute), network flow logs typically contain the
following information: (a) 5-tuple data, encompassing pro-
tocol, source and destination IP addresses, and source and
destination ports, (b) the number of transmitted and received
packets, and (c) the volume of transmitted and received bytes.

Our graph feature extractor operates at the IP address level
instead of the network flow (IP and port) level for two primary
reasons. First, operating at the network flow level leads to
much larger graphs and increases the burden on both inference
and training processes. For instance, we observe orders of

Feature Statistics
Number of transmitted packets

min, max, mean, sum, std
Number of received packets
Total received bytes
Total transmitted bytes
Number of TCP flows

count
Number of UDP flows
Number of local unseen ports
Number of global unseen ports
Number of ports

Table 2: Features obtained for each distinct IP pair

magnitude increases in the number of nodes and edges in our
production traces when constructing communication graphs at
the network flow level (139k nodes and 115k edges) compared
to the IP level (300 nodes and 10-20k edges). Furthermore,
aggregating at the IP address level facilitates the identification
of correlations between flows associated with the same IP
address (e.g., a notable increase in the number of flows or
usage of different ports). This, in turn, simplifies the detection
of anomalous attacks, such as port scanning.

Our graph feature extractor offers additional operational
cost reductions through a tunable detection window (e.g., two
or three minutes). By generating a single communication
graph per detection window, the feature extractor effectively
balances detection latency with cost efficiency. Although a
larger detection window might marginally impact detection
accuracy for evasive attacks, this approach enables network
operators to harmonize the requirement for prompt detection
with limited resource constraints. Consequently, it becomes
a suitable solution for large-scale network monitoring and
security applications.

Table 2 summarizes the features we obtain for each distinct
IP pair. We exclude ephemeral ports from the port-related fea-
tures, as they do not provide learnable information. In addition
to common features like the number of packets and bytes, we
monitor critical security-oriented features such as the number
of flows and unseen ports, which strongly indicate unusual
occurrences. We maintain a record of globally observed ports

across all flows, as well as the locally observed ports for each
IP pair within the training dataset. By maintaining port in-
formation as statistics, our feature extractor can function at
the IP address level without sacrificing essential information.
This approach allows us to capture crucial correlations among
distinct flows associated with the same IP address while main-
taining scalability and facilitating the detection of anomalous
attacks involving multiple flows.

4.2 Graph Representation Learning

In order to discover relationships within the communication
graph, NetVigil employs Graph Neural Networks (GNNs).
These advanced machine learning models are specifically
designed to analyze and extract patterns from complex graph-
structured data. The key insight is that nodes within our com-
munication graph correspond to various roles in an appli-
cation and, as a result, each node and its neighbors exhibit
a particular pattern over time. This contextual information
enables NetVigil to identify anomalous behaviors that may
seem normal if analyzed individually (e.g., C&C communi-
cation patterns or DNS amplification) without requiring the
costly processing of granular packet-level information such as
packet sizes, arrival times, and payloads. The ability to forego
detailed packet-level data stems from the sufficiency of flow-
level information for communication graph construction, cap-
turing many key characteristics that distinguish a malicious
flow from a normal one, including traffic volume, flow count,
and interactions with various ports and IPs. Similar to prior
work, E-GraphSage [51], we first aggregate edge features on
each node as contextual information, and then concatenate the
original edge features with this contextual information as the
input to our edge encoder. Since E-GraphSage relies on su-
pervised training, which is not practical at scale, we build our
solution using an autoencoder by mapping each concatenated
edge feature into a compressed embedding space.

Algorithm 1 presents the pseudocode for our GNN autoen-
coder. Lines 1–3 aggregate edge features using an AGG func-
tion, which can be mean, median, or element-wise pooling.
Line 5 concatenates the aggregated contextual information
with the original edge features, and Lines 6–8 encode the
concatenated edge features into edge embeddings (Line 9).
Lines 11-19 decode the embeddings back to the original edge
features, and the reconstruction loss between euv and ẽuv cor-
responds to the L1 in Figure 4. Formally, for a (mini)batch
B(G) of graphs, we have that

L1 =
1

∑i|Gi∈B(G) |Ei| ∑
i|Gi∈B(G)

∑
(u,v)∈Ei

∥euv− ẽuv∥2, (1)

where Ei corresponds to the edge set of Gi.
It is worth noting that although we employ simple graph

convolutional networks (GCNs) [45] in Algorithm 1, the GNN
architecture can be interchangeable, provided that the encoder

Algorithm 1 GNN Autoencoder for Edge Embedding

Input: Graph G(V,E)
Input: Edge features euv,∀uv ∈ E
Input: Number of autoencoder layers L
Input: Encoder/decoder weights W l

E ,W
l
D,∀l ∈ 1, ...,L

1: for v ∈ V do ▷ Aggregate neighboring edge features
2: hv← AGG(euv,∀u ∈ N(v),(u,v) ∈ E)
3: end for
4: for (u,v) ∈ E do
5: h0

uv← CONCAT(hu,euv)
6: for l ∈ 1, ...,L do ▷ Edge Encoder
7: hl

uv← σ(W l
E ·hl−1

uv)
8: end for
9: zuv = hL

uv ▷ Edge embedding
10: end for
11: for v ∈ V do ▷ Broadcast edge embedding
12: hv← AGG(zuv,∀u ∈ N(v),(u,v) ∈ E)
13: end for
14: for (u,v) ∈ E do
15: h0

euv
← CONCAT(hu,zuv)

16: for l ∈ 1, ...,L do ▷ Edge Decoder
17: hl

uv← σ(W l
D ·hl−1

uv)
18: end for
19: ẽuv = hL

uv ▷ Reconstructed edge features
20: end for

takes into account both original edge features and aggregated
neighboring features. While our experiments do not show a
significant accuracy gain from using additional convolutional
layers or alternate GNN architectures, some domain-specific
GNN architectures may still perform better. We leave the
exploration of domain-specific architectures for future work.

4.3 Domain-Specific Contrastive Learning
One of the primary challenges faced by existing network
anomaly detectors is the generation of numerous false alarms
for normal changes that were not encountered during the
training process. A common approach to address this issue
involves curating an extensive long-term dataset for training,
with the expectation that all normal behaviors will be en-
compassed within this dataset. However, this approach is not
scalable for east-west traffic, as they frequently experience
normal changes, such as configuration updates, load varia-
tions, and node failures. To tackle this challenge, we employ
graph contrastive learning [50], which augments the training
data with general and domain-specific perturbations to en-
hance the model’s generality. This approach allows the model
to better accommodate and adapt to the dynamic nature of
network traffic, thereby reducing the incidence of false alarms
while accurately detecting genuine anomalies.

We find that most normal traffic fluctuations arise from (1)
not all edges appearing consistently, (2) traffic volume varying
over time, and (3) noisy behavior from non-application edges.
Based on these observations, we employ the following data

augmentation strategies to enhance the model performance:
• Randomly removing edges and nodes: By presenting sub-

graphs to the model, the system gains the ability to more
effectively analyze network communication patterns, at-
tributable to the simplified structure and reduced noise.

• Adding noise to edge features: Edge features, such as the
number of packets and the volume of transmitted/received
bytes, are perturbed to test the model’s robustness against
variations in feature values.

• Removing non-application edges: It has been observed that
application traffic within the network exhibits greater pre-
dictability compared to inter-service communications. Con-
sequently, by removing nodes and edges unrelated to the
application running within the network, the model can bet-
ter learn and recognize application-level communication
patterns, thereby enhancing its robustness and reducing the
occurrence of false positives.
Formally, during training, a minibatch B(G) of graphs is

randomly sampled. For every graph G ∈ B(G), we generate
two augmented versions G (1) and G (2) by randomly selecting
two of the data augmentation strategies mentioned above. We
denote the corresponding embeddings of an edge uv ∈ E by
z(1)uv and z(2)uv ; see Line 9 in Algorithm 1. Recalling that the
cosine similarity between two vectors x and y is given by
cos(x,y) = x⊤y/(∥x∥∥y∥), we define the contrastive loss of a
given edge uv as [85]

ℓuv =− log

(
exp(2cos(z(1)uv ,z

(2)
uv))

∑u′v′ exp(2cos(z(1)uv ,z
(2)
u′v′))

)
, (2)

where the negative edges u′v′ are randomly selected from aug-
mented versions of other graphs in the minibatch. Notice that
minimizing ℓuv promotes z(1)uv and z(2)uv to be similar, i.e., the
embeddings corresponding to the same edge for two different
augmented versions should be close to each other. Moreover,
minimizing ℓuv also promotes z(1)uv and z(2)u′v′ (the embeddings
of different edges in augmented versions of different graphs)
to be different from each other. In this way, we avoid the col-
lapse of different embeddings into a common representation
and encourage the full utilization of the embedding space.
Our contrastive loss (L2 in Figure 4) is given by the average
value of ℓuv over all edges in the minibatch

L2 =
1

∑i|Gi∈B(G) |Ei| ∑
i|Gi∈B(G)

∑
uv∈Ei

ℓuv, (3)

where Ei corresponds to the edge set of Gi. As defined, the
loss L2 depends on the randomly selected augmentation strate-
gies to compute the contrastive pairs of every graph. During
training, we randomly choose new augmentation strategies
for each minibatch, ensuring every gradient step is based on
new contrastive pairs, thereby promoting generalization.

4.4 Temporal Smoothing and Continuous Re-
training

Another crucial aspect that our model seeks to capture is tem-
poral dynamics. Through our analysis of several traces from
production clusters, we observe that network traffic within a
short time window (e.g., minutes) tends to exhibit similarity,
while patterns can undergo significant changes over longer
periods (e.g., hours or days). This observation aligns with the
understanding that major network traffic changes are typically
driven by rare events (e.g., failures), periodicity (e.g., time of
day), or application changes (e.g., code updates), which do
not generally occur within short time frames.

We incorporate these temporal dynamics with a two-fold
strategy. First, we define a temporal loss (L3 in Figure 4)
during training to encourage embedding similarity between
temporal adjacent graphs. For every pair of temporally ad-
jacent graphs G t and G t+1, we minimize the norm of the
difference between consecutive embeddings of the same edge.
More precisely, we have that

L3 =
1

∑t |Et ∩Et+1| ∑t
∑

uv |uv∈Et∩Et+1

∥zt
uv− zt+1

uv ∥2, (4)

where Et denotes the edge set of G t . By minimizing L3, we
promote the embeddings of the same edge in two consecutive
time steps to be close to each other. Notice that, as a result of
the dynamic nature of our graph, it might be that an edge uv
that exists at time t is no longer present at time t +1. Hence,
in (4), we account for this by only considering edges that
belong to the intersection of two consecutive edge sets.

Second, we employ a periodic training procedure (e.g.,
hours or days) to update the model with the most recent traffic
patterns. In each retraining window, we compile clean com-
munication graphs (i.e., nodes and edges without any potential
anomalies) from the inference phase (left side of Figure 4),
as well as the false alarms cleared by the security team, to
form the training set. Subsequently, we retrain the model by
minimizing the composite loss, L , which combines the recon-
struction loss L1, contrastive loss L2, and temporal loss L3.
The composite loss is defined as L = L1 +αL2 +βL3, where
α and β are hyperparameters that trade off the relative impor-
tance of the different losses. This approach helps the model
stay up-to-date and can effectively detect genuine anomalies
and adapt to fluctuations in network traffic patterns.

5 Benchmarks and datasets

Datasets and network traces for intrusion and anomaly detec-
tion are available, but they primarily consist of packet traces.
As stated in Section 2.2, conducting inference for each packet
leads to considerable computational burdens, particularly in
east-west traffic where there is a larger volume of network traf-
fic. In light of this, we collect flow-level logs that summarize

network traffic. We deploy a 16-VM scale set on Microsoft
Azure, activate Azure Network Watcher, and enable network
security group (NSG) flow logging [54]. NSG logs record
essential flow-level information such as 5-tuple, timestamp,
number of bytes and packets transmitted, similar to other com-
mercial flow logging offerings (e.g., [21]). For our 16-VM
scale set, we deploy a web-based e-commerce app [11] that
allows users to browse clothing items, add them to the cart,
and complete purchases. Our application consists of 11 mi-
croservices for components such as ad generation, product
catalog, payment, and product cart, as well as a load generator
to send GET and POST requests, simulating user behavior
like viewing items, setting currency, adding items to the cart,
and submitting payment information.

On top of this setup, we develop and introduce a new bench-
mark, Yatesbury 1, designed to evaluate the performance and
efficiency of anomaly detectors in east-west network traffic.
We evaluate NetVigil with 13 distinct attacks that accurately
represent a variety of malicious behaviors. Table 3 enumerates
these attacks, each of which involves one or more compro-
mised malicious nodes. Each trace lasts for 1-2 hours, and we
label each trace for each 2-minute window and mark a connec-
tion as anomalous if any malicious traffic is sent or received
between the two nodes. Malicious nodes communicate with
each other and send malicious network traffic to the benign
nodes. We utilize traditional network attacks that encompass
various port scan methods, including traditional exhaustive
port scanning, distributed scanning of multiple targets, stealth
scanning using SYN packets to bypass firewalls, and acceler-
ated scanning using UDP packets. Other traditional attacks
we implement are DoS attacks, such as SYN flooding, which
inundate victims with SYN requests, DDoS attacks involving
multiple attackers, and DDoS attacks using UDP packets.

Furthermore, we incorporate attacks featuring more intri-
cate communication patterns, which better represent mali-
cious activity in east-west traffic. For these attacks, analyzing
each flow in isolation (as done in traditional IDSes) is less
effective, as it does not provide a holistic and comprehensive
view of the network. We first employ Infection Monkey [8], an
open-source breach and attack simulator for evaluating data
center resiliency to perimeter breaches and internal host infec-
tion. It supports a wide range of different features such as port
scanning, credential exploitation, and lateral movement to in-
fect hosts. We also incorporate C&C communication patterns,
which consist of a C&C server sending file updates, periodic
heartbeat messages, and commands to control compromised
hosts. These patterns are indicative of the communication ob-
served in high-profile data breaches [1,3]. Further, we employ
DNS amplification attacks, where multiple attackers send
DNS requests to a DNS server and direct the responses to the
victims. The DNS requests are crafted so that the responses
are much larger in size to overwhelm the target machine.

6 Evaluation

6.1 Methodology

Benchmarks and datasets. We evaluate NetVigil on Yates-
bury with our demo microservice application along with live
production traces from our two first-party compute clusters.

Implementation. We implement NetVigil as an end-to-end
data streaming pipeline using 1,400 lines of Python code. The
inference pipeline extracts featurized communication graphs
utilizing NetworkX [10] and pandas [12] libraries, while the
training pipeline is built on PyTorch [13] and the Deep Graph
Library (DGL) [7].

Baselines. We compare NetVigil against two state-of-the-art
anomaly-based IDSes: Kitsune [56] and Whisper [31]. To
evaluate Kitsune on our datasets, we modify its autoencoders
to ingest flow-level features. Due to Kitsune’s slow runtime,
we implement several optimizations to reduce unnecessary
computation that improves inference time by 5–10×; we refer
to this optimized version of Kitsune as Kitsune+. Whisper’s
frequency domain analysis necessitates packet-level traces.
Modifying it to utilize connection-level traces is challeng-
ing, as it performs frequency domain analysis on individual
packets within each flow. Using only a single data point (ag-
gregated flow-level statistics) would render it ineffective. To
make Whisper compatible with flow logs, we utilize aggre-
gated flow-level statistics to convert flow logs into packet
traces. To understand the difference between flow and packet
traces, we also carry out additional evaluations using packet
traces for both Kitsune+ and Whisper.

Metrics. To evaluate NetVigil, we use the area under the ROC
curve (AUC) as our primary metric, along with the true pos-
itive rate (TPR) and false positive rate (FPR). Importantly,
AUC provides a measure of how well the detector can dis-
tinguish between the positive and negative classes, across all
possible threshold settings. TPR and FPR are also crucial
because the goal is to detect as many anomalies as possible
while minimizing false alarms, which, as mentioned in Sec-
tion 2, can significantly lower trust in an anomaly detector
and is a fundamental challenge due to the dynamism of net-
work traffic. To get these numbers, we select the threshold that
maximizes (T PR−FPR). Additionally, we compare latencies
in running each anomaly detector. All latency experiments
were run on a single 36-core, 72-hyperthread, 256-GB RAM
machine (Intel(R) Xeon(R) Gold 5220).

6.2 Overall Results
We first compare the detection accuracy of NetVigil with our
baselines, Kitsune+ and Whisper. For all attacks except one,
NetVigil yields significantly higher performance over the base-
lines with AUC scores ranging from 0.6400 to 1.000, resulting
in AUC improvements of up to 0.6591 over Kitsune+ and up

Attack Description # flows Ratio malicious
Vertical Port Scan Run an exhaustive scan of open ports 1429 0.0265

SYN Flood DoS attack where connections are rapidly initialized but not completed 2817 0.0184
SYN Flood DDoS DoS attack where connections are rapidly initialized but not completed (multiple attackers) 2437 0.0439

UDP DDoS DoS attack with UDP packets (multiple attackers) 1473 0.0081
Distributed Stealth Port Scan Run a targeted stealth scan of several key ports across many nodes with SYN packets 4069 0.0058

Distributed Port Scan Run a targeted scan of several key ports across many nodes 4054 0.0051
Distributed UDP Port Scan Run a targeted stealth scan of several key across many nodes with UDP packets 4319 0.0050

Infection Monkey 1 Scans key ports and launches network exploits 2768 0.0122
Infection Monkey 2 Scans key ports and launches network exploits (target limited number of hosts) 1490 0.0107
Infection Monkey 3 Scans key ports and launches network exploits (mount limited number of exploits) 4677 0.0027

C&C communication Compromised nodes receive commands, heartbeats, and file updates from C&C server 2163 0.0254
DNS amplification Attackers send DNS requests and direct responses to victim 4410 0.0825

Table 3: Attack datasets

Kitsune+ Whisper NetVigil

AUC TPR FPR AUC TPR FPR AUC TPR FPR
Moderate
Vertical Port Scan 0.9300 0.8684 0.0057 0.9049 0.9736 0.1315 0.9843 0.9473 0.0000
SYN Flood 0.9322 0.8653 0.0014 0.7609 0.7307 0.1414 1.0000 1.0000 0.0000
Medium
SYN Flood DDoS 0.9455 0.8971 0.0141 0.9148 0.9719 0.1283 1.0000 1.0000 0.0000
UDP DDoS 0.8676 0.7500 0.0199 0.6403 0.4166 0.1457 0.9998 1.0000 0.0000
Distributed Port Scan 0.4059 0.0952 0.0300 0.3961 0.0476 0.0329 0.9968 0.9523 0.0000
Distributed Stealth Port Scan 0.7542 0.6666 0.0758 0.6186 0.4166 0.1070 0.9892 0.8333 0.0000
Distributed UDP Port Scan 0.3367 0.0000 0.0281 0.3732 0.0000 0.4449 0.9958 0.9545 0.0183
Difficult
Infection Monkey 1 0.5586 0.1176 0.0003 0.4395 0.0588 0.0190 0.9997 1.0000 0.0029

Infection Monkey 2 0.7497 0.5000 0.0006 0.4396 - - 0.9997 1.0000 0.0033

Infection Monkey 3 0.5000 - - 0.5000 - - 0.9998 1.0000 0.0006
C&C communication 0.6347 0.4727 0.1480 0.5000 - - 0.9301 0.7636 0.0896
DNS amplification 0.3962 0.0000 0.0244 0.8149 0.8928 0.2913 0.8915 0.3736 0.0692

SQL injection 0.8531 1.0000 0.2237 0.0900 - - 0.6400 0.6428 0.2648

Unauthorized DB access 0.5976 0.7500 0.4720 0.7214 0.5833 0.0275 0.8000 0.7083 0.1732

Table 4: Comparison of Kitsune+, Whisper, and NetVigil for various attacks.

Attack Kitsune+ Whisper NetVigil

Vertical Port Scan 0.9817 0.9876 0.9843
UDP DDoS 0.9974 0.6414 0.9998
Dist. Stealth Port Scan 0.7267 0.6487 0.9892
Infection Monkey 1 0.8100 0.6188 0.9997
DNS Amplification 0.6759 0.8247 0.8915

Table 5: AUC scores of Kitsune+ and Whisper using packet-level
traces and NetVigil with flow-level logs for various attacks.

to 0.6226 over Whisper. Table 4 presents the overall results for
AUC, TPR, and FPR. Crucially, we observe that NetVigil out-
performs the baselines because of two factors: (1) our novel
security-centric feature extractor that effectively identifies
lower-level malicious traffic characteristics in each connec-
tion that adversaries employ to fly under the radar, and (2) our
use of graphs and a GNN architecture to obtain a holistic and

comprehensive view of network behavioral patterns across
many nodes.

Illustrating the efficacy of our feature selection approach,
NetVigil exhibits strong performance in identifying DDoS at-
tacks and vertical port scanning, achieving an AUC greater
than 0.98 and an FPR approaching 0.0 for SYN Flood, SYN
Flood DDoS, UDP DDoS, and Vertical Port Scanning. The
extraction of packet- and connection-level statistics facili-
tates the detection of abnormal communications, such as sub-
stantial quantity of initiated connections in the SYN Flood
scenario and the packet volume in other DDoS attacks.

Our GNN architecture excels in detecting reconnaissance
patterns that span multiple nodes, an area where Kitsune+
and Whisper baselines demonstrate subpar performance. For
Distributed Port Scan, Distributed Stealth Port Scan, and Dis-
tributed UDP Port Scan, Kitsune+ and Whisper yield AUC
scores of 0.4059, 0.7542, 0.3367 and 0.3961, 0.6186, 0.3732

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NetVigil (AUC = 1.00)
Kitsune (AUC = 0.87)
Whisper (AUC = 0.64)

(a) UDP DDoS

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NetVigil (AUC = 1.00)
Kitsune (AUC = 0.56)
Whisper (AUC = 0.44)

(b) Infection Monkey 1

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

NetVigil (AUC = 0.98)
Kitsune (AUC = 0.75)
Whisper (AUC = 0.62)

(c) Distributed Stealth Port Scan

Figure 5: Area under the ROC curve for 3 sample attack traces.

respectively. These scans involve an adversary probing a se-
lected number of ports across various victim machines. The
low traffic volume and variation from these network patterns
enable them to evade detection. Similarly, our baselines ex-
hibit inadequate performance in detecting infection monkey
attacks due to similar reasons.

In contrast to these efforts, NetVigil uses its feature extractor
in tandem with a graphical view of the network to success-
fully identify these scans and attacks. The features include
previously unseen ports, a key characteristic in many scans
and attacks. NetVigil also analyzes the number of ports as
well as statistics on the number of bytes and packets that are
sent/received. A large number of different ports with a com-
paratively small amount of traffic volume can be indicative of
port scanning or of an adversary attempting multiple differ-
ent exploits that target different ports/services. Furthermore,
our GNN architecture detects higher-level behavioral patterns
and relationships, rather than just relying on detecting each
connection in isolation, as traditional host-based IDSes do.
This is useful for detecting distributed port scanning and infec-
tion monkey attacks since, contrary to vertical port scanning
and DoS attacks, each individual connection exhibits little
abnormality in volume and variation, but each malicious actor
makes connections to many different hosts, deviating from
their typical communication patterns.

Although NetVigil performs well on detecting C&C com-
munication and DNS amplification, it struggles to achieve the
same performance as the other attacks. In addition to these
scenarios encompassing behavioral patterns of many different
nodes, each communication is more similar to traditional net-
work traffic due to the file transfers and DNS queries, making
them more difficult for our feature extractor to pick up.

Table 5 shows the results on several selected attacks in
which we evaluated Kitsune+ and Whisper in their intended
environment using packet-level traces. Overall, their AUC
scores are significantly higher when using packet-level traces
compared to flow-level traces, with Kitsune+ achieving near-

perfect AUC scores for vertical port scanning and UDP DDoS.
However, these approaches still fall short in matching NetVigil
for other attacks due to the limitations of their extracted fea-
tures and host-based detection models.

6.3 Efficiency Results
Figure 6 illustrate the wall clock and CPU times of NetVigil
compared to Kitsune+ [56] and Whisper [31] for five dif-
ferent attacks. Each experiment involved feature extraction,
training, and inference. NetVigil achieves key performance
improvements through the following features:

1. Using flow-based features instead of packet-level data,
reducing the amount of data significantly since only the
aggregated statistics for each flow need to be processed.

2. Using a graph representation that aggregates features
across multiple instances of the same connection.

3. An efficient GNN architecture with an autoencoder of two
fully-connected layers.

Due to these components, the majority of time is spent
during feature extraction. GNN inference takes only 2-3 sec-
onds on average for a network trace with 16 VMs. Across 5
different attack traces, NetVigil achieves significantly lower
execution times, yielding speedups of >= 37.59× and 2.87×
– 7.38× over Kitsune+ and Whisper, respectively, for wall
clock time, and speedups of >= 29.67× and 2.04× – 6.93×
for CPU time. Further latency experiments where we varied
the number of VMs and cores can be found in Appendix A.1.

6.4 System cost
When evaluating the system costs for Kitsune+ and Whis-
per, it is important to note that both of these tools necessitate
packet traces, which can result in significant CPU and storage
overheads to acquire. In addition, both baselines also incur
considerable compute overheads during inference, requiring

Vertical
Port Scan

UDP DDoS Dist Stealth
Port Scan

Infection
Monkey 1

DNS Amplif.

102

103

El
ap

se
d

Ti
m

e
(s

) Kitsune+
Whisper
NetVigil

Vertical
Port Scan

UDP DDoS Dist Stealth
Port Scan

Infection
Monkey 1

DNS Amplif.
102

103

CP
U

Ti
m

e
(s

)

Kitsune+
Whisper
NetVigil

Figure 6: Comparing detection latencies of Kitsune+, Whisper, and NetVigil in elapsed seconds and CPU time across several attacks.
The y-axes use a logarithmic scale.

Kitsune+
w/ Flow Logs

Kitsune+ w/
Packet Traces

Whisper w/
Flow Logs

Whisper w/
Packet Traces

NetVigil
0

10000

20000

30000

40000

50000

Co
st

 p
er

 y
ea

r (
$)

Logger
Compute
Storage

Figure 7: System cost breakdown for Kitsune+, Whisper, and
NetVigil for our 16-VM deployment

an 8 vCPU VM for Whisper and a 56 vCPU VM for Kitsune+
to match the performance of NetVigil. Thus, we estimate, for
our 16-VM deployment, a total system cost of $49159/year
with packet traces and $48428/year with flow traces for Kit-
sune+ and a cost of $8602/year with packet traces and $7871
with flow traces for Whisper. To put these costs into perspec-
tive, we also analyze NetVigil. Because of the low cost of
NetVigil, using a 2 vCPU VM is sufficient for performing all
inference with flow logs, resulting in a total system cost of
$2939/year. Figure 7 shows the system cost breakdown.

We perform a cost assessment of the system at larger
scales by analyzing the trace data from our production clus-
ter (see Section 6.5), which consists of 400 virtual machines
(VMs). The outcomes are depicted in Figure 8. In comparison
with Figure 7, it is clear that NetVigil exhibits superior cost-
efficiency than Whisper under this scenario. This observation
is primarily attributable to two factors. First, the network
throughput in this setting exceeds that of our 16-VM deploy-
ment. As a result, Whisper’s processing overhead, which is
directly proportional to the number of packets, is substan-
tially larger, while NetVigil’s overhead remains independent
of network throughput. Second, the production cluster pri-
marily utilizes TCP connections, leading to a significantly
reduced quantity of network flow records in contrast to the
predominantly employed UDP connections in our 16-VM
deployment.

0 50 100 150 200 250 300 350 400
Number of VMs

100

200

300

400

Co
st

 p
er

 y
ea

r
(in

 te
ns

 o
f t

ho
us

an
ds

 $
)

Whisper
NetVigil

Figure 8: Estimated monetary system cost for Whisper and
NetVigil for production cluster of 400 VMs.

6.5 Production Traces

We collect network flow records from two first-party com-
pute clusters. The first cluster, Service-Cluster, contains
approximately 400 VMs, and we gather traces for a week.
The second cluster, Compute-Cluster, consists of around
200 VMs, and we acquire traces for two months. We confirm
that no known attacks are present in these traces and use them
to evaluate the false alarm rate of NetVigil.

We assess the number of false alarms without model re-
training. For Service-Cluster, there are 4,356 false alarms
on the last day of the week if the model isn’t retrained,
while model retraining reduces false alarms to 10. For
Compute-Cluster, there are 1,231 false alarms without
model retraining at the end of the week, and the number in-
creases to 2,315 on the last day of the month. This cluster has
less activity than Service-Cluster, explaining the lower
dynamics. Model retraining reduces false alarms to fewer
than 5 per day. The results from both product traces validate
the importance of continuous retraining (Section 4.4).

Additionally, we inject attack traces into these production
records to examine the performance of NetVigil. We incorpo-
rate Infection Monkey 1, 2, and 3, and replace the IP addresses
and timestamps to blend the injected attack traces with nor-
mal ones. We observe that the detection accuracy of NetVigil
remains consistent (similar to Table 4).

Vertical
Port Scan

UDP DDoS Dist Stealth
Port Scan

Infection
Monkey 1

DNS Amplif.0.0

0.2

0.4

0.6

0.8

1.0

AU
C

NetVigil no mods
NetVigil

Figure 9: AUC on several attack traces with and without tempo-
ral smoothing and data augmentation

Vertical
Port Scan

UDP DDoS Dist Stealth
Port Scan

Infection
Monkey 1

DNS Amplif.0.0

0.2

0.4

0.6

0.8

1.0

AU
C NetVigil-FC

NetVigil-Conv1
NetVigil-Conv2
NetVigil-Conv3
NetVigil-Agg1
NetVigil-Agg2

Figure 10: AUC on several attack traces with different model
modifications

6.6 Ablation Study

We perform experiments to determine the importance of tem-
poral smoothing and data augmentation. Figure 9 shows the
AUC for NetVigil both with and without data augmentation and
temporal smoothing. Using both techniques yields 1-2% AUC
improvement for most baselines and 10% improvement for
DNS amplification. Crucially, data augmentations add more
heterogeneity to the dataset allowing it to become more robust
to the dynamism in network traffic patterns. Temporal smooth-
ing helps by ensuring that temporally similar graphs should
be similar in structure and composition. Further, NetVigil
no mods still performs highly, yielding over 0.95 AUC for
all but 1 attack trace showing the efficacy of our approach on
new network patterns even without any modifications.

We experiment further with different architectural modi-
fications. Figure 10 shows the AUC results across 5 differ-
ent attack traces with different model modifications. First
we use a simple GNN architecture with fully-connected lay-
ers that operate on the graph’s node and edge features (de-
noted by NetVigil-FC). We also used 3 different graph
convolutional architectures (denoted by NetVigil-Conv1,
NetVigil-Conv2, NetVigil-Conv3) that use graph atten-
tion layers [78], GraphSAGE layers [34], and EdgeConv
layers [81]. We also try different aggregations for our mes-
sage passing function using min() and max() instead of
mean(), denoted by NetVigil-Agg1 and NetVigil-Agg2,

respectively. In summary, while NetVigil-FC performs the
best overall due to its simpler architecture (and lower likeli-
hood of overfitting) compared to the other architectures that
use convolutional layers, all model variants perform similarly.
We highlight that our approach is not tied to a particular model
or architecture and that NetVigil is still able to reap significant
performance gains on many different model variants.

7 Related Work

Related work on data center network security is discussed in
Sections 1 and 2, and the advantages of NetVigil compared
with the most relevant baselines are demonstrated and dis-
cussed in detail in Section 6. In this section, we focus on work
related to GNNs, graph contrastive learning, and anomaly
detection in graphs.

Graph Neural Networks. GNNs have gained significant at-
tention in recent years as powerful tools for analyzing and
modeling structured data represented as graphs. A consider-
able amount of research has been conducted in this field, and
a variety of GNN architectures have been proposed. The most
common ones include graph convolutional networks [45],
graph attention networks [78], and GraphSAGE [34]. We
refer the reader to relevant surveys [83, 87, 91] for further
details on these and other related architectures. GNNs have
achieved state-of-the-art performance in a series of problems
in (wired and wireless) communication networks [28, 36, 41].
The NetVigil framework is agnostic to the specific GNN cho-
sen for the encoder and the decoder. Thus, practitioners can
seamlessly experiment with different architectures that might
better accommodate their data.

Graph Contrastive Learning. Graph contrastive learning has
emerged as a potential solution to several challenges faced by
GNNs, such as heavy label reliance and weak robustness [50].
The core idea behind graph contrastive learning is to em-
bed augmented versions of the same sample (node, edge, or
graph) close to each other while trying to push away embed-
dings from different samples. Generating these augmented
versions of a given sample can be challenging in a graph set-
ting. Unlike images for which different augmented versions
(contrastive pairs) can be generated by imposing different
color filters or rotation operations, designing contrastive pairs
can be challenging in graph settings. Some works use differ-
ent parts of a graph to build these contrastive pairs [62,71,79]
by comparing, e.g., nodes with subgraphs [38, 42]. Other
works adopt graph data augmentations to generate contrastive
pairs [35, 63, 72, 84, 86, 92]. Instead of relying on a generic
set of augmentations, in NetVigil we leverage domain-specific
knowledge to determine graph transformations that constitute
valid contrastive pairs.

Anomaly Detection in Graphs. Anomaly detection is the
data mining process that aims to identify patterns in data that
do not conform to expected behavior [26]. If we focus on

the graph context, the objective is to find the graph objects
(nodes, edges, or substructures) that are rare and that differ
significantly from the majority of the reference objects in
the given graph [20]. Graph anomaly detection has been ap-
plied to myriad settings, including telecom fraud [29], opinion
spam [30], and malware detection [64]. Graphs bring specific
challenges to the anomaly detection problem related to the
inter-dependency of objects (a node being anomalous is not
only a function of itself but also of its neighborhood) and the
size of the search space (the search space of complex anoma-
lies such as graph substructures is huge). Methods have been
derived for the unsupervised [33] and (semi-)supervised [27]
settings, for static [25] and dynamic [39] graphs, and for at-
tributed [58] and plain (no attributes) [19] graphs. Notice that
our problem falls in the most challenging category of unsu-
pervised learning for dynamic and attributed graphs. Over the
last five years, there has been an increasing interest in apply-
ing deep learning techniques to graph anomaly detection [52].
The idea is to depart from non-deep learning techniques with
limited (linear) representation power [60] and use deep graph
representation learning and GNNs to extract expressive repre-
sentations such that graph anomalies and normal objects can
be easily separated. Several methods have been developed for
the simpler cases of static or plain graphs [37, 49, 80]. For
the dynamic and attributed case, the existing techniques are
limited [74,89,90]. Moreover, real-world networks (including
our application) usually exhibit changes in both the network
structure and node attributes. However, most existing works
only consider changes in one of these aspects [74, 90]. To
the best of our knowledge, we are the first to consider an au-
toencoder architecture enhanced by contrastive learning and
temporal smoothing to tackle the challenging dynamic setting
where both the network structure and attributes are changing.

8 Discussion

Privacy Consideration. Network flow logs may contain per-
sonally identifiable information (PII), such as user IP ad-
dresses, which are subject to data privacy compliance require-
ments [22, 76]. To address these privacy concerns, NetVigil
employs two strategies. First, our model can be deployed
using the Software as a Service (SaaS) model, where users
continuously stream anonymized network flow logs to a server
running our system. Anonymization can be achieved through
encrypted IP addresses, as our model does not require plain-
text IP addresses for anomaly detection, and users can inter-
pret the encrypted results accordingly. Second, our model can
be deployed within a user’s cloud subscription as a standalone
service, ensuring that all network flow logs remain entirely
under the user’s control. By implementing these strategies, we
maintain a high level of privacy while still providing effective
anomaly detection in network traffic patterns.
Initial Clean Training Set. NetVigil requires at least one clean
dataset to train the initial model, with subsequent models ob-

tained as discussed in Section 4.4. As with all anomaly-based
intrusion detection systems, if a cloud deployment is already
compromised from the outset, some anomalous behaviors
might contaminate the model. Therefore, it is much safer to
obtain the initial training set in a secure environment (e.g., a
sandbox). This precautionary measure helps ensure that the
model’s foundation is built upon clean and reliable data, al-
lowing it to effectively detect and adapt to genuine anomalies
and fluctuations in network traffic patterns.
Applying to North-South Traffic. Although our primary
focus in this study is on east-west traffic, the principles of
NetVigil, such as employing GNNs for intrusion detection us-
ing flow-level logs, can potentially be extended to north-south
traffic. This method could further decrease the significant
computational costs of existing IDSes or create a compre-
hensive security solution for both east-west and north-south
traffic simultaneously. North-south traffic typically exhibits
increased node and contextual information variability, which
may necessitate specialized learning techniques. Exploring
this design would be an interesting future direction.

9 Conclusion

We present NetVigil, a novel network anomaly detection sys-
tem specifically designed for securing east-west traffic in
large-scale data center networks. Addressing the limitations
of existing solutions, our approach focuses on three key objec-
tives: (a) ensuring cost-effectiveness in monitoring numerous
nodes, (b) accurately identifying anomalous behaviors while
minimizing false alarms, and (c) exhibiting robustness against
normal traffic fluctuations without reliance on prior knowl-
edge of malicious attacks. By employing low-cost network
flow logs, security-oriented graph features, graph neural net-
works, and a novel end-to-end training mechanism, our system
achieves substantial improvements over existing malicious
traffic detectors. We hope that the insights gained from our
solution, along with the new east-west security benchmark,
Yatesbury, will facilitate the validation of our proposed archi-
tecture and foster future research and innovation in this vital
area of study.

Acknowledgments

We extend our gratitude to our shepherd, Bruce Davie, and
the anonymous reviewers for providing invaluable and con-
structive feedback. Our thanks also go to our engineering and
product collaborators, including Narayan Annamalai, Umair
Aftab, Eliran Azulai, Wyman Chong, Jamie Lee, Kiran Mutha-
batulla, Mariana Alanis Tamez, and Roger Wong, for their
contributions to production traces, data processing pipelines,
and system requirements.

References

[1] 2017 Equifax data breach. https://en.wikipedia.
org/wiki/2017_Equifax_data_breach, Retrieved
on 2023-04.

[2] 2019 Zeek specs needed for 10gbps. http:
//mailman.icsi.berkeley.edu/pipermail/
zeek/2019-September/014574.html, Retrieved on
2023-09.

[3] 2020 United States federal government data breach.
https://en.wikipedia.org/wiki/2020_United_
States_federal_government_data_breach, Re-
trieved on 2023-04.

[4] A Deeper Look at the Distributed Cloud Firewall: A
Firewall for the Cloud Era. https://aviatrix.com/blog/a-
deeper-look-at-the-distributed-cloud-firewall-a-
firewall-for-the-cloud-era/, Retrieved on 2023-09.

[5] Aviatrix Distributed Cloud Firewall. https:
//aviatrix.com/distributed-cloud-firewall/,
Retrieved on 2023-09.

[6] Calico flow logs. https://docs.tigera.io/
calico-cloud/visibility/elastic/flow/, Re-
trieved on 2023-10.

[7] Deep Graph Library. https://www.dgl.ai/, Re-
trieved on 2022-11.

[8] Infection monkey. https://www.akamai.com/
infectionmonkey, Retrieved on 2023-03.

[9] Introduction to Cilium & Hubble. https:
//docs.cilium.io/en/stable/overview/intro/,
Retrieved on 2023-10.

[10] NetworkX: network analysis in python. https://
networkx.org/, Retrieved on 2023-01.

[11] Online boutique. https://github.com/
GoogleCloudPlatform/microservices-demo,
Retrieved on 2022-07.

[12] pandas - python data analysis library. https://pandas.
pydata.org/, Retrieved on 2023-01.

[13] PyTorch. https://pytorch.org/, Retrieved on 2022-
11.

[14] Scaling Suricata performance to
100 Gbps with Napatech SmartNICs.
https://www.napatech.com/support/resources/solution-
descriptions/scaling-suricata-performance-to-100-
gbps-with-napatech-smartnics/, Retrieved on 2023-09.

[15] Suricata. https://suricata.io/, Retrieved on 2023-
09.

[16] Trends in data center security: Part 1 – traffic
trends. https://blogs.cisco.com/security/trends-in-data-
center-security-part-1-traffic-trends, Retrieved on 2023-
09.

[17] VMware NSX. https://www.vmware.com/
products/nsx.html, Retrieved on 2023-09.

[18] VMware NSX: The platform for network virtual-
ization. https://www.virtualizationworks.com/
NSX.asp, Retrieved on 2023-09.

[19] Leman Akoglu, Mary McGlohon, and Christos Falout-
sos. Oddball: Spotting anomalies in weighted graphs.
In Advances in Knowledge Discovery and Data Mining:
14th Pacific-Asia Conference, PAKDD 2010, Hyderabad,
India, June 21-24, 2010. Proceedings. Part II 14, pages
410–421. Springer, 2010.

[20] Leman Akoglu, Hanghang Tong, and Danai Koutra.
Graph based anomaly detection and description: a sur-
vey. Data mining and knowledge discovery, 29:626–688,
2015.

[21] Amazon. Logging IP traffic using VPC Flow Logs.
https://docs.aws.amazon.com/vpc/latest/
userguide/flow-logs.html, Retrieved on 2023-04.

[22] Behnaz Arzani, Selim Ciraci, Stefan Saroiu, Alec Wol-
man, Jack W Stokes, Geoff Outhred, and Lechao Diwu.
PrivateEye: Scalable and privacy-preserving compro-
mise detection in the cloud. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2020.

[23] Leyla Bilge and Tudor Dumitraş. Before we knew it: an
empirical study of zero-day attacks in the real world. In
Proceedings of the ACM conference on Computer and
communications security (CCS), 2012.

[24] Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. Borg, Omega, and Kubernetes.
Communications of the ACM, 59(5), 2016.

[25] Deepayan Chakrabarti. Autopart: Parameter-free graph
partitioning and outlier detection. In Knowledge Dis-
covery in Databases: PKDD 2004: 8th European Con-
ference on Principles and Practice of Knowledge Dis-
covery in Databases, Pisa, Italy, September 20-24, 2004.
Proceedings 8, pages 112–124. Springer, 2004.

[26] Varun Chandola, Arindam Banerjee, and Vipin Kumar.
Anomaly detection: A survey. ACM Comput. Surv.,
41(3), jul 2009.

[27] Duen Horng Chau, Shashank Pandit, and Christos
Faloutsos. Detecting fraudulent personalities in net-
works of online auctioneers. In Knowledge Discovery

https://en.wikipedia.org/wiki/2017_Equifax_data_breach
https://en.wikipedia.org/wiki/2017_Equifax_data_breach
http://mailman.icsi.berkeley.edu/pipermail/zeek/2019-September/014574.html
http://mailman.icsi.berkeley.edu/pipermail/zeek/2019-September/014574.html
http://mailman.icsi.berkeley.edu/pipermail/zeek/2019-September/014574.html
https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach
https://en.wikipedia.org/wiki/2020_United_States_federal_government_data_breach
https://aviatrix.com/distributed-cloud-firewall/
https://aviatrix.com/distributed-cloud-firewall/
https://docs.tigera.io/calico-cloud/visibility/elastic/flow/
https://docs.tigera.io/calico-cloud/visibility/elastic/flow/
https://www.dgl.ai/
https://www.akamai.com/infectionmonkey
https://www.akamai.com/infectionmonkey
https://docs.cilium.io/en/stable/overview/intro/
https://docs.cilium.io/en/stable/overview/intro/
https://networkx.org/
https://networkx.org/
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pytorch.org/
https://suricata.io/
https://www.vmware.com/products/nsx.html
https://www.vmware.com/products/nsx.html
https://www.virtualizationworks.com/NSX.asp
https://www.virtualizationworks.com/NSX.asp
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html

in Databases: PKDD 2006: 10th European Conference
on Principles and Practice of Knowledge Discovery
in Databases Berlin, Germany, September 18-22, 2006
Proceedings 10, pages 103–114. Springer, 2006.

[28] Arindam Chowdhury, Gunjan Verma, Chirag Rao, Anan-
thram Swami, and Santiago Segarra. Unfolding
WMMSE using graph neural networks for efficient
power allocation. IEEE Transactions on Wireless Com-
munications, 20(9):6004–6017, 2021.

[29] Corinna Cortes, Daryl Pregibon, and Chris Volinsky.
Communities of interest. In Advances in Intelligent
Data Analysis: 4th International Conference, IDA 2001
Cascais, Portugal, September 13–15, 2001 Proceedings
4, pages 105–114. Springer, 2001.

[30] Hanbo Dai, Feida Zhu, Ee-Peng Lim, and HweeHwa
Pang. Detecting anomalies in bipartite graphs with
mutual dependency principles. In 2012 IEEE 12th Inter-
national Conference on Data Mining, pages 171–180,
2012.

[31] Chuanpu Fu, Qi Li, Meng Shen, and Ke Xu. Realtime
robust malicious traffic detection via frequency domain
analysis. In Proceedings of the ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS),
2021.

[32] Sunanda Gamage and Jagath Samarabandu. Deep learn-
ing methods in network intrusion detection: A survey
and an objective comparison. Journal of Network and
Computer Applications, 169, 2020.

[33] Jing Gao, Feng Liang, Wei Fan, Chi Wang, Yizhou Sun,
and Jiawei Han. On community outliers and their effi-
cient detection in information networks. In Proceedings
of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 813–822,
2010.

[34] Will Hamilton, Zhitao Ying, and Jure Leskovec. Induc-
tive representation learning on large graphs. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017.

[35] Kaveh Hassani and Amir Hosein Khasahmadi. Con-
trastive multi-view representation learning on graphs.
In Hal Daumé III and Aarti Singh, editors, 37th Inter-
national Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pages
4116–4126. PMLR, 13–18 Jul 2020.

[36] Shiwen He, Shaowen Xiong, Yeyu Ou, Jian Zhang, Jia-
heng Wang, Yongming Huang, and Yaoxue Zhang. An

overview on the application of graph neural networks in
wireless networks. IEEE Open Journal of the Commu-
nications Society, 2:2547–2565, 2021.

[37] Renjun Hu, Charu C. Aggarwal, Shuai Ma, and Jinpeng
Huai. An embedding approach to anomaly detection. In
IEEE 32nd International Conference on Data Engineer-
ing (ICDE), pages 385–396, 2016.

[38] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik,
Percy Liang, Vijay Pande, and Jure Leskovec. Strategies
for pre-training graph neural networks. In International
Conference on Learning Representations, 2020.

[39] Tsuyoshi Idé and Hisashi Kashima. Eigenspace-based
anomaly detection in computer systems. In Proceedings
of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 440–449,
2004.

[40] Illumio. Zero trust: the security paradigm for the
modern organization. https://www.illumio.com/
solutions/zero-trust, Retrieved on 2023-04.

[41] Weiwei Jiang. Graph-based deep learning for communi-
cation networks: A survey. Computer Communications,
185:40–54, 2022.

[42] Yizhu Jiao, Yun Xiong, Jiawei Zhang, Yao Zhang, Tianqi
Zhang, and Yangyong Zhu. Sub-graph contrast for
scalable self-supervised graph representation learning.
In IEEE International Conference on Data Mining
(ICDM), pages 222–231, 2020.

[43] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and
Joarder Kamruzzaman. Survey of intrusion detection
systems: techniques, datasets and challenges. Cyberse-
curity, 2(1), 2019.

[44] John Kindervag, Stephanie Balaouras, and Lindsey Coit.
Build security into your network’s DNA: The zero trust
network architecture. Forrester Research Inc, 27, 2010.

[45] Thomas N. Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. In
International Conference on Learning Representations,
2017.

[46] Vinod Kumar and Om Prakash Sangwan. Signature
based intrusion detection system using SNORT. Interna-
tional Journal of Computer Applications & Information
Technology, 1(3), 2012.

[47] Donghwoon Kwon, Hyunjoo Kim, Jinoh Kim, Sang C
Suh, Ikkyun Kim, and Kuinam J Kim. A survey of
deep learning-based network anomaly detection. Cluster
Computing, 22, 2019.

https://www.illumio.com/solutions/zero-trust
https://www.illumio.com/solutions/zero-trust

[48] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin,
and Kuang-Yuan Tung. Intrusion detection system: A
comprehensive review. Journal of Network and Com-
puter Applications, 36(1), 2013.

[49] Ninghao Liu, Xiao Huang, and Xia Hu. Accelerated lo-
cal anomaly detection via resolving attributed networks.
In 26th International Joint Conference on Artificial Intel-
ligence, IJCAI’17, page 2337–2343. AAAI Press, 2017.

[50] Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng,
Feng Xia, and Philip S. Yu. Graph self-supervised learn-
ing: A survey. IEEE Transactions on Knowledge and
Data Engineering, 35(6):5879–5900, 2023.

[51] Wai Weng Lo, Siamak Layeghy, Mohanad Sarhan, Mar-
cus Gallagher, and Marius Portmann. E-graphsage: A
graph neural network based intrusion detection system
for IOT. In IEEE/IFIP Network Operations and Man-
agement Symposium (NOMS), 2022.

[52] Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou,
Quan Z. Sheng, Hui Xiong, and Leman Akoglu. A
comprehensive survey on graph anomaly detection with
deep learning. IEEE Transactions on Knowledge and
Data Engineering, pages 1–1, 2021.

[53] Mohammad Masdari and Hemn Khezri. A survey and
taxonomy of the fuzzy signature-based intrusion detec-
tion systems. Applied Soft Computing, 92, 2020.

[54] Microsoft. Flow logs for network secu-
rity groups. https://learn.microsoft.
com/en-us/azure/network-watcher/
network-watcher-nsg-flow-logging-overview,
Retrieved on 2023-04.

[55] Microsoft. Microsoft digital de-
fense report 2022. https://www.
microsoft.com/en-us/security/business/
microsoft-digital-defense-report-2022,
Retrieved on 2023-04.

[56] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and
Asaf Shabtai. Kitsune: An ensemble of autoencoders
for online network intrusion detection. In 25th Annual
Network and Distributed System Security Symposium
(NDSS), 2018.

[57] Chirag Modi, Dhiren Patel, Bhavesh Borisaniya, Hiren
Patel, Avi Patel, and Muttukrishnan Rajarajan. A survey
of intrusion detection techniques in cloud. Journal of
network and computer applications, 36(1), 2013.

[58] Caleb C Noble and Diane J Cook. Graph-based anomaly
detection. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 631–636, 2003.

[59] Palo Alto Networks. Prisma cloud: Cloud net-
work security. https://www.paloaltonetworks.
com/prisma/cloud/cloud-network-security, Re-
trieved on 2023-04.

[60] Guansong Pang, Chunhua Shen, Longbing Cao, and An-
ton Van Den Hengel. Deep learning for anomaly detec-
tion: A review. ACM Comput. Surv., 54(2), mar 2021.

[61] Vern Paxson. Bro: A system for detecting net-
work intruders in real-time. Comput. Netw.,
31(23–24):2435–2463, dec 1999.

[62] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua
Zheng, Yu Rong, Tingyang Xu, and Junzhou Huang.
Graph representation learning via graphical mutual in-
formation maximization. In Proceedings of The Web
Conference 2020, WWW ’20, page 259–270. Associa-
tion for Computing Machinery, 2020.

[63] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang,
Hongxia Yang, Ming Ding, Kuansan Wang, and Jie Tang.
GCC: Graph contrastive coding for graph neural net-
work pre-training. In 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
KDD ’20, page 1150–1160. Association for Computing
Machinery, 2020.

[64] Md Sazzadur Rahman, Ting-Kai Huang, Harsha V Mad-
hyastha, and Michalis Faloutsos. Efficient and scalable
socware detection in online social networks. In USENIX
Security Symposium, pages 663–678, 2012.

[65] Martin Roesch. Snort - lightweight intrusion detec-
tion for networks. In Proceedings of the 13th USENIX
Conference on System Administration, LISA ’99, page
229–238, USA, 1999. USENIX Association.

[66] Scott Rose, Oliver Borchert, Stu Mitchell, and Sean Con-
nelly. Zero trust architecture. Technical report, National
Institute of Standards and Technology, 2020.

[67] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter,
and Alex C. Snoeren. Inside the social network’s (data-
center) network. In Proceedings of the ACM Conference
on Special Interest Group on Data Communication (SIG-
COMM), 2015.

[68] Fred B Schneider. Least privilege and more computer
security. IEEE Security & Privacy, 1(5), 2003.

[69] Rupam Kumar Sharma, Hemanta Kumar Kalita, and
Biju Issac. Different firewall techniques: A survey. In
Fifth International Conference on Computing, Communi-
cations and Networking Technologies (ICCCNT), 2014.

[70] Nitin Singh Sikarwar and Dinesh Verma. Micro segmen-
tation: today’s success formulae. International Journal
of Operations Management and Services, 2(1), 2012.

https://learn.microsoft.com/en-us/azure/network-watcher/network-watcher-nsg-flow-logging-overview
https://learn.microsoft.com/en-us/azure/network-watcher/network-watcher-nsg-flow-logging-overview
https://learn.microsoft.com/en-us/azure/network-watcher/network-watcher-nsg-flow-logging-overview
https://www.microsoft.com/en-us/security/business/microsoft-digital-defense-report-2022
https://www.microsoft.com/en-us/security/business/microsoft-digital-defense-report-2022
https://www.microsoft.com/en-us/security/business/microsoft-digital-defense-report-2022
https://www.paloaltonetworks.com/prisma/cloud/cloud-network-security
https://www.paloaltonetworks.com/prisma/cloud/cloud-network-security

[71] Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian
Tang. InfoGraph: Unsupervised and semi-supervised
graph-level representation learning via mutual infor-
mation maximization. In International Conference on
Learning Representations, 2020.

[72] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville.
Adversarial graph augmentation to improve graph con-
trastive learning. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, edi-
tors, Advances in Neural Information Processing Sys-
tems, volume 34, pages 15920–15933, 2021.

[73] Colin Tankard. Advanced persistent threats and how
to monitor and deter them. Network security, 2011(8),
2011.

[74] Xian Teng, Yu-Ru Lin, and Xidao Wen. Anomaly detec-
tion in dynamic networks using multi-view time-series
hypersphere learning. In 2017 ACM on Conference on
Information and Knowledge Management, pages 827–
836, 2017.

[75] Zhihong Tian, Wei Shi, Yuhang Wang, Chunsheng Zhu,
Xiaojiang Du, Shen Su, Yanbin Sun, and Nadra Guizani.
Real-time lateral movement detection based on evi-
dence reasoning network for edge computing environ-
ment. IEEE Transactions on Industrial Informatics,
15(7), 2019.

[76] European Union. General data protection regula-
tion (GDPR). https://commission.europa.eu/
law/law-topic/data-protection_en, Retrieved on
2023-04.

[77] Romans Vanickis, Paul Jacob, Sohelia Dehghanzadeh,
and Brian Lee. Access control policy enforcement for
zero-trust-networking. In 29th Irish Signals and Systems
Conference (ISSC), 2018.

[78] Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph
attention networks. In International Conference on
Learning Representations, 2018.

[79] Petar Velickovic, William Fedus, William L. Hamilton,
Pietro Liò, Yoshua Bengio, and R Devon Hjelm. Deep
graph infomax. In International Conference on Learn-
ing Representations, 2019.

[80] Yanling Wang, Jing Zhang, Shasha Guo, Hongzhi Yin,
Cuiping Li, and Hong Chen. Decoupling representation
learning and classification for GNN-based anomaly de-
tection. In 44th international ACM SIGIR conference
on research and development in information retrieval,
pages 1239–1248, 2021.

[81] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dy-
namic graph cnn for learning on point clouds. ACM
Trans. Graph., 38(5), oct 2019.

[82] Marcus Willett. Lessons of the SolarWinds hack. Sur-
vival, 63(2), 2021.

[83] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and Philip S. Yu. A compre-
hensive survey on graph neural networks. IEEE Trans-
actions on Neural Networks and Learning Systems,
32(1):4–24, 2021.

[84] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang
Wang. Graph contrastive learning automated. In Ma-
rina Meila and Tong Zhang, editors, 38th International
Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pages 12121–
12132. PMLR, 18–24 Jul 2021.

[85] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen,
Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. Advances in neural infor-
mation processing systems (NeurIPS), 33, 2020.

[86] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen,
Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. In H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems, vol-
ume 33, pages 5812–5823, 2020.

[87] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning
on graphs: A survey. IEEE Transactions on Knowledge
and Data Engineering, 34(1):249–270, 2022.

[88] Zhipeng Zhao, Hugo Sadok, Nirav Atre, James C Hoe,
Vyas Sekar, and Justine Sherry. Achieving 100gbps
intrusion prevention on a single server. In Proceedings
of the 14th USENIX Conference on Operating Systems
Design and Implementation (OSDI), 2020.

[89] Li Zheng, Zhenpeng Li, Jian Li, Zhao Li, and Jun Gao.
Addgraph: Anomaly detection in dynamic graph using
attention-based temporal gcn. In 28th International
Joint Conference on Artificial Intelligence, IJCAI’19,
page 4419–4425, 2019.

[90] Panpan Zheng, Shuhan Yuan, Xintao Wu, Jun Li, and
Aidong Lu. One-class adversarial nets for fraud de-
tection. In AAAI Conference on Artificial Intelligence,
volume 33, pages 1286–1293, 2019.

[91] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang,
Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng
Li, and Maosong Sun. Graph neural networks: A review
of methods and applications. AI Open, 1:57–81, 2020.

https://commission.europa.eu/law/law-topic/data-protection_en
https://commission.europa.eu/law/law-topic/data-protection_en

[92] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu,
and Liang Wang. Graph contrastive learning with adap-
tive augmentation. In Proceedings of the Web Confer-
ence, WWW ’21, page 2069–2080, 2021.

A Appendix

A.1 Additional efficiency results
We demonstrate the scalability of our approach to larger net-
work log sizes. With a trace of 4 VMs, it takes 123 seconds
for Whisper and 96 seconds for NetVigil. As the trace size
increases, the execution time of Whisper also increases, re-
sulting in 373 seconds to process a trace with 16 VMs. Mean-
while, the execution time of NetVigil only increases slightly to
140 seconds. Furthermore, as Whisper is allocated more cores,
the CPU time increases from 508 seconds for 4 cores to 1520
seconds for 16 cores, while the wall clock time decreases
marginally from 173 seconds with 4 cores to 164 seconds
with 8 cores. In contrast, the runtime of NetVigil remains rel-
atively stable when changing the number of allocated cores
since it does not rely on parallelism for efficiency.

4 VMs 8 VMs 12 VMs 16 VMs1

10

Ti
m

e
(s

)

Kitsune
Whisper
NetVigil

4 cores 8 cores 12 cores 16 cores

101

Ti
m

e
(s

)

Kitsune
Whisper
NetVigil

Figure 11: Comparing detection latencies of Kitsune+, Whisper, and NetVigil in elapsed seconds while varying number of VMs in the
network trace (left), number of cores used for processing each trace (middle), and attack traces (right).

4 VMs 8 VMs 12 VMs 16 VMs1

10

CP
U

Ti
m

e
(s

)

Kitsune
Whisper
NetVigil

4 cores 8 cores 12 cores 16 cores

101

102

CP
U

Ti
m

e
(s

)

Kitsune
Whisper
NetVigil

Figure 12: Comparing detection latencies of Kitsune+, Whisper, and NetVigil in CPU seconds while varying number of VMs in the
network trace (left), number of cores used for processing each trace (middle), and attack traces (right).

	Introduction
	Background and Motivation
	Securing East-West Traffic with Zero-Trust Solutions
	Challenges of Network Intrusion Detection Systems on East-West Traffic

	Overview of NetVigil
	Design Details of NetVigil
	Security Graph Feature Extractor
	Graph Representation Learning
	Domain-Specific Contrastive Learning
	Temporal Smoothing and Continuous Retraining

	Benchmarks and datasets
	Evaluation
	Methodology
	Overall Results
	Efficiency Results
	System cost
	Production Traces
	Ablation Study

	Related Work
	Discussion
	Conclusion
	Appendix
	Additional efficiency results

