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Abstract

We introduce LightGlue, a deep neural network that
learns to match local features across images. We revisit
multiple design decisions of SuperGlue, the state of the art
in sparse matching, and derive simple but effective improve-
ments. Cumulatively, they make LightGlue more efficient — in
terms of both memory and computation, more accurate, and
much easier to train. One key property is that LightGlue
is adaptive to the difficulty of the problem: the inference is
much faster on image pairs that are intuitively easy to match,
for example because of a larger visual overlap or limited
appearance change. This opens up exciting prospects for
deploying deep matchers in latency-sensitive applications
like 3D reconstruction. The code and trained models are
publicly available at github.com/cvg/LightGlue.

1. Introduction

Finding correspondences between two images is a funda-
mental building block of many computer vision applications
like camera tracking and 3D mapping. The most common
approach to image matching relies on sparse interest points
that are matched using high-dimensional representations en-
coding their local visual appearance. Reliably describing
each point is challenging in conditions that exhibit symme-
tries, weak texture, or appearance changes due to varying
viewpoint and lighting. To reject outliers that arise from
occlusion and missing points, such representations should
also be discriminative. This yields two conflicting objectives,
robustness and uniqueness, that are hard to satisfy.

To address these limitations, SuperGlue [56] introduced a
new paradigm — a deep network that considers both images
at the same time to jointly match sparse points and reject
outliers. It leverages the powerful Transformer model [74] to
learn to match challenging image pairs from large datasets.
This yields robust image matching in both indoor and out-
door environments. SuperGlue is highly effective for visual
localization in challenging conditions [59, 55, 58, 57] and
generalizes well to other tasks like aerial matching [83], ob-
ject pose estimation [69], and even fish re-identification [47].

These improvements are however computationally ex-
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Figure 1. LightGlue matches sparse features faster and better
than existing approaches like SuperGlue. Its adaptive stopping
mechanism gives a fine-grained control over the speed vs. accuracy
trade-off. Our final, optimized model * delivers an accuracy closer
to the dense matcher LoFTR at an 8 x higher speed, here in typical
outdoor conditions.

pensive, while the efficiency of image matching is critical
for tasks that require a low latency, like tracking, or a high
processing volume, like large-scale mapping. Additionally,
SuperGlue, as with other Transformer-based models, is noto-
riously hard to train, requiring computing resources that are
inaccessible to many practitioners. Follow-up works [8, 65]
have thus failed to reach the performance of the original Su-
perGlue model. Yet, since its initial publication, Transform-
ers have been extensively studied, improved, and applied to
numerous language [17, 51, 13] and vision [18, 6, 29] tasks.

In this paper, we draw on these insights to design Light-
Glue, a deep network that is more accurate, more efficient,
and easier to train than SuperGlue. We revisit its design
decisions and combine numerous simple, yet effective, ar-
chitecture modifications. We distill a recipe to train high-
performance deep matchers with limited resources, reach-
ing state-of-the-art accuracy within just a few GPU-days.
As shown in Figure 1, LightGlue is Pareto-optimal on the
efficiency-accuracy trade-off when compared to existing
sparse and dense matchers.

Unlike previous approaches, LightGlue is adaptive to the
difficulty of each image pair, which varies based on the
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Figure 2. Depth adaptivity. LigthGlue is faster at matching easy
image pairs (top) than difficult ones (bottom) because it can stop at
earlier layers when its predictions are confident.

amount of visual overlap, appearance changes, or discrimi-
native information. Figure 2 shows that the inference is thus
much faster on pairs that are intuitively easy to match than
on challenging ones, a behavior that is reminiscent of how
humans process visual information. This is achieved by 1)
predicting a set of correspondences after each computational
blocks, and 2) enabling the model to introspect them and
predict whether further computation is required. LigthGlue
also discards at an early stage points that are not matchable,
thus focusing its attention on the covisible area.

Our experiments show that LightGlue is a plug-and-play
replacement to SuperGlue: it predicts strong matches from
two sets of local features, at a fraction of the run time. This
opens up exciting prospects for deploying deep matchers
in latency-sensitive applications like SLAM [45, 5] or re-
constructing larger scenes from crowd-sourced data [25, 60,
39, 57]. The LightGlue model and its training code will be
released publicly with a permissive license.

2. Related work

Matching images that depict the same scene or object typi-
cally relies on local features, which are sparse keypoints each
associated with a descriptor of its local appearance. While
classical algorithms rely on hand-crafted criteria and gradient
statistics [41, 23, 4, 53], much of the recent research has fo-
cused on designing Convolutional Neural Networks (CNNs)
for both detection [81, 16, 19, 52, 73] and description [42,
72]. Trained with challenging data, CNNs largely improve
the accuracy and robustness of matching. Local features now
come in many flavors: some are better localized [41], highly
repeatable [16], cheap to store and match [54], invariant to
specific changes [46], or ignore unreliable objects [73].
Local features are then matched with a nearest neighbor
search in descriptor space. Because of non-matchable key-

points and imperfect descriptors, some correspondences are
incorrect. Those are filtered out by heuristics, like Lowe’s
ratio test [41] or the mutual check, inlier classifiers [44, 82],
and by robustly fitting geometric models [22, 7]. This pro-
cess requires extensive domain expertise and tuning and is
prone to failure when conditions are too challenging. These
limitations are largely solved by deep matchers.

Deep matchers are deep networks trained to jointly match
local features and reject outliers given an input image pair.
The first of its kind, SuperGlue [56] combines the expres-
sive representations of Transformers [74] with optimal trans-
port [48] to solve a partial assignment problem. It learns
powerful priors about scene geometry and camera motion
and is thus robust to extreme changes and generalizes well
across data domains. Inheriting the limitations of early Trans-
formers, SuperGlue is hard to train and its complexity grows
quadratically with the number of keypoints.

Subsequent works make it more efficient by reducing
the size of the attention mechanism. They restrict it to a
small set of seed matches [8] or within clusters of similar
keypoints [65]. This largely reduces the run time for large
numbers of keypoints but yields no gains for smaller, stan-
dard input sizes. This also impairs the robustness in the most
challenging conditions, failing to reach the performance
of the original SuperGlue model. LightGlue instead brings
large improvements for typical operating conditions, like in
SLAM, without compromising on performance for any level
of difficulty. This is achieved by dynamically adapting the
network size instead of reducing its overall capacity.

Conversely, dense matchers like LoOFTR [68] and follow-
ups [9, 78] match points distributed on dense grids rather
than sparse locations. This boosts the robustness to impres-
sive levels but is generally much slower because it processes
many more elements. This limits the resolution of the input
images and, in turn, the spatial accuracy of the correspon-
dences. While LightGlue operates on sparse inputs, we show
that fair tuning and evaluation makes it competitive with
dense matchers, for a fraction of the run time.

Making Transformers efficient has received significant
attention following their success in language processing. As
the memory footprint of attention is a major limitation to
handling long sequences, many works reduce it using linear
formulations [79, 32, 33] or bottleneck latent tokens [35, 30].
This enables long-range context but can impair the perfor-
mance for small input sizes. Selective checkpointing [49]
reduces the memory footprint of attention and optimizing
the memory access also drastically speeds it up [14].

Other, orthogonal works instead adaptively modulate
the network depth by predicting whether the prediction of
a token at a given layer is final or requires further com-
putations [15, 20, 62] . This is mostly inspired by adap-
tive schemes developed for CNNs by the vision commu-
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Figure 3. The LightGlue architecture. Given a pair of input local features (d, p), each layer augments the visual descriptors (e,e) with
context based on self- and cross-attention units with positional encoding ®. A confidence classifier ¢ helps decide whether to stop the
inference. If few points are confident, the inference proceeds to the next layer but we prune points that are confidently unmatchable. Once a
confident state if reached, LightGlue predicts an assignment between points based on their pariwise similarity and unary matchability.

nity [71, 80, 40, 21, 36, 76]. In Transformers, the type of po-
sitional encoding has a large impact on the accuracy. While
absolute sinusoidal [74] or learned encodings [17, 51] were
initially prevalent, recent works have studied relative en-
codings [63, 67] to stabilize the training and better capture
long-range dependencies.

LightGlue adapts some of these innovations to 2D feature
matching and shows gains in both efficiency and accuracy.

3. Fast feature matching

Problem formulation: LightGlue predicts a partial assign-
ment between two sets of local features extracted from im-
ages A and B, following SuperGlue. Each local feature i is
composed of a 2D point position p; := (z,%); € [0, 1]2, nor-
malized by the image size, and a visual descriptor d; € R
Images A and B have M and N local features, indexed by
A:={1,..,M}and B := {1, ..., N}, respectively.

We design LightGlue to output a set of correspondences
M = {(i,j)} C A x B. Each point is matchable at least
once, as it stems from a unique 3D point, and some keypoints
are unmatchable, due to occlusion or non-repeatability. As
in previous works, we thus seek a soft partial assignment
matrix P € [0, 1] %Y between local features in A and B,
from which we can extract correspondences.

Overview — Figure 3: LightGlue is made of a stack of L
identical layers that process the two sets jointly. Each layer
is composed of self- and cross-attention units that update
the representation of each point. A classifier then decides,
at each layer, whether to halt the inference, thus avoiding
unnecessary computations. A lightweight head finally com-
putes a partial assignment from the set of representations.

3.1. Transformer backbone

We associate each local feature ¢ in image I € {4, B}
with a state x! € R?. The state is initialized with the cor-

responding visual descriptor x/ «+ diI and subsequently

updated by each layer. We define a layer as a succession of
one self-attention and one cross-attention units.

Attention unit: In each unit, a Multi-Layer Perceptron
(MLP) updates the state given a message m! < aggregated
from a source image S € {A, B}:

xfexfnLMLP([xﬂmf“S]) , (D

where [- | -] stacks two vectors. This is computed for all points
in both images in parallel. In a self-attention unit, each image
I pulls information from points of the same image and thus
S = I. In a cross-attention unit, each image pulls informa-
tion from the other image and S = {4, B}\I.

The message is computed by an attention mechanism as
the weighted average of all states j of image S:

m! <5 = 26;9 Sogcergax (af,f)j Wx? 2
j

where W is a projection matrix and a! jS is an attention score
between points ¢ and j of images I and S. How this score is
computed differs for self- and cross-attention units.

Self-attention: Each point attends to all points of the same
image. We perform the same following steps for each im-
age I and thus drop the superscript [ for clarity. For each
point ¢, the current state x; is first decomposed into key and
query vectors k; and q; via different linear transformations.
We then define the attention score between points ¢ and j as

a; =q; R(p; —p;) kj , (3)

where R(-) € R%*? is a rotary encoding [67] of the relative
position between the points. We partition the space into d/2
2D subspaces and rotate each of them by an angle corre-
sponding, following Fourier Features [37], to the projection



onto a learned basis b, € R?:

R(b] p) 0

' R(0) =

R(p)z (cosQ—sinO).

. sinf cos 6
0 R(bjir/z P)
“)

Positional encoding is a critical part of attention as it
allows addressing different elements based on their position.
We note that, in projective camera geometry, the position of
visual observations is equivariant w.r.t. a translation of the
camera within the image plane: 2D points that stem from 3D
points on the same fronto-parallel plane are translated in an
identical way and their relative distance remains constant.
This calls for an encoding that only captures the relative but
not the absolute position of points.

The rotary encoding [67] enables the model to retrieve
points j that are located at a learned relative position from 3.
The positional encoding is not applied to the value v; and
thus does not spill into the state x;. The encoding is identical
for all layers and is thus computed once and cached.

Cross-attention: Each point in [ attends to all points of the
other image S. We compute a key k; for each element but
no query. This allows to express the score as

I8 ITyS 1 sr
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We thus need to compute the similarity only once for both
I+ S and S <+ I messages. This trick has been previously
referred to as bidirectional attention [77]. Since this step is
expensive, with a complexity of O(NMd), it saves a signifi-
cant factor of 2. We do not add any positional information
as relative positions are not meaningful across images.

3.2. Correspondence prediction

We design a lightweight head that predicts an assignment
given the updated state at any layer.

Assignment scores: We first compute a pairwise score
matrix S € RM*¥ between the points of both images:

S;; = Linear (x;') " Linear (x}g) V(i,5) € AxB, (6)

where Linear(-) is a learned linear transformation with bias.
This score encodes the affinity of each pair of points to be
in correspondence, i.e. 2D projections of the same 3D point.
We also compute, for each point, a matchability score as

o; = Sigmoid (Linear(x;)) € [0,1] . (7)

This score encodes the likelihood of 7 to have a correspond-
ing point. A point that is not detected in the other image,
e.g. when occluded, is not matchable and thus has o; — 0.

Correspondences: We combine both similarity and match-
ability scores into a soft partial assignment matrix P as

B

_ A B
Pij =0 Uj SOEngltaX(Skj)i SO£t€nBlalX(Sik)j . (8)

Figure 4. Point pruning. As LigthGlue aggregates context, it can
find out early that some points (e) are unmatchable and thus exclude
them from subsequent layers. Other, non-repeatable points are
excluded in later layers: © — - — . This reduces the inference
time and the search space (e) to ultimately find good matches fast.

A pair of points (i, j) yields a correspondence when both
points are predicted as matchable and when their similarity
is higher than any other point in both images. We select pairs
for which P;; is larger than a threshold 7 and than any other
element along both its row and column.

3.3. Adaptive depth and width

We add two mechanisms that avoid unnecessary compu-
tations and save inference time: i) we reduce the number of
layers depending on the difficulty of the input image pair;
ii) we prune out points that are confidently rejected early.

Confidence classifier: The backbone of LightGlue aug-
ments input visual descriptors with context. These are often
reliable if the image pair is easy, i.e. has high visual overlap
and little appearance changes. In such case, predictions from
early layers are confident and identical to those of late layers.
We can then output these predictions and halt the inference.

At the end of each layer, LightGlue infers the confidence
of the predicted assignment of each point:

¢; = Sigmoid (MLP(x;)) € [0,1] . )

A higher value indicates that the representation of % is reliable
and final — it is confidently either matched or unmatchable.
This is inspired by multiple works that successfully apply
this strategy to language and vision tasks [62, 20, 71, 80, 40].
The compact MLP adds only 2% of inference time in the
worst case but most often saves much more.

Exit criterion: For a given layer ¢, a point is deemed confi-
dent if ¢; > A,. We halt the inference if a sufficient ratio «
of all points is confident:

exit =

N—il—M Yo Dl >Ad| >a . (10

Ie{A,B} i€l

We observe, as in [62], that the classifier itself is less confi-
dent in early layers. We thus decay ), throughout the layers
based on the validation accuracy of each classifier. The exit



threshold « directly controls the trade-off between accuracy
and inference time.

Point pruning: When the exit criterion is not met, points
that are predicted as both confident and unmatchable are
unlikely to aid the matching of other points in subsequent
layers. Such points are for example in areas that are clearly
not covisible across the images. We therefore discard them at
each layer and feed only the remaining points to the next one.
This significantly reduces computation, given the quadratic
complexity of attention, and does not impact the accuracy.

3.4. Supervision

We train LightGlue in two stages: we first train it to pre-
dict correspondences and only after train the confidence
classifier. The latter thus does not impact the accuracy at the
final layer or the convergence of the training.

Correspondences: We supervise the assignment matrix P
with ground truth labels estimated from two-view transfor-
mations. Given a homography or pixel-wise depth and a
relative pose, we wrap points from A to B and conversely.
Ground truth matches M are pairs of points with a low re-
projection error in both images and a consistent depth. Some
points A C A and B C B are labeled as unmatchable when
their reprojection or depth errors are sufficiently large with
all other points. We then minimize the log-likelihood of the
assignment predicted at each layer ¢, pushing LightGlue to
predict correct correspondences early:

1 1
loss = I ; (W Z logEPij

(i,7)EM
1 L _A
+m§log(l— Ui) (11)
1
+ m Zlog (]. — ZUjB) >
jEB

The loss is balanced between positive and negative labels.

Confidence classifier: We then train the MLP of Eq. (9) to
predict whether the prediction of each layer is identical to the
final one. Let “m#* € B U {e} be the index of the point in B
matched to 7 at layer £, with “m*= e if i is unmatchable. The
ground truth binary label of each point is [‘m{ = m:] and
identically for B. We then minimize the binary cross-entropy
of the classifiers of layers £ € {1, ..., L—1}.

3.5. Comparison with SuperGlue

LightGlue is inspired by SuperGlue but differs in aspects
critical to its accuracy, efficiency, and ease of training.

Positional encoding: SuperGlue encodes the absolute point
positions with an MLP and fuses them early with the de-
scriptors. We observed that the model tends to forget this
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Figure 5. Ease of training. The LightGlue architecture vastly im-
proves the speed of convergence of the pre-training on synthetic
homographies. After SM image pairs (only 2 GPU-days), LighGlue
achieves -33% loss at the final layer and +4% match recall. Super-
Glue requires over 7 days of training to reach a similar accuracy.

positional information throughout the layers. LightGlue in-
stead relies on a relative encoding that is better comparable
across images and is added in each self-attention unit. This
makes it easier to leverage the positions and improves the
accuracy of deeper layers.

Prediction head: SuperGlue predicts an assignment by
solving a differentiable optimal transport problem using the
Sinkhorn algorithm [66, 48]. It consists in many iterations of
row-wise and column-wise normalization, which is expen-
sive in terms of both compute and memory. SuperGlue adds
a dustbin to reject unmatchable points. We found that the
dustbin entangles the similarity score of all points and thus
yields suboptimal training dynamics. LightGlue disentangles
similarity and matchability, which are much more efficient
to predict. This also yields cleaner gradients.

Deep supervision: Because of how expensive Sinkhorn is,
SuperGlue cannot make predictions after each layer and is
supervised only at the last one. The lighter head of LightGlue
makes it possible to predict an assignment at each layer and
to supervise it. This speeds up the convergence and enables
exiting the inference after any layer, which is key to the
efficiency gains of LightGlue.

4. Details that matter

Recipe: LightGlue follows the supervised training setup of
SuperGlue. We first pre-train the model with synthetic homo-
graphies sampled from 1M images [50]. Such augmentations
provide full and noise-free supervision but require careful
tuning. LightGlue is then fine-tuned with the MegaDepth
dataset [38], which includes 1M crowd-sourced images de-
picting 196 tourism landmarks, with camera calibration and
poses recovered by SfM and dense depth by multi-view
stereo. Because large models easily overfit to such distinc-
tive scenes, the pre-training is critical to the generalization
of the model but was omitted in recent follow-ups [8, 65].

Training tricks: While the LightGlue architecture improves
the training speed, stability, and accuracy, we found that
some details have a large impact too. Figure 5 shows that



this reduces the resources required to train a model compared
to SuperGlue. This lowers the cost of training and makes
deep matchers more accessible to the broader community.

Since the depth maps of MegaDepth are often incomplete,
we also label points with a large epipolar error as unmatch-
able. Carefully tuning and annealing the learning rate boosts
the accuracy. Training with more points also does: we use
2k per image instead of 1k. The batch size matters: we use
gradient checkpointing [10] and mixed-precision to fit 32
image pairs on a single GPU with 24GB VRAM.

Implementation details: LighGlue has L=9 layers. Each
attention unit has 4 heads. All representations have dimen-
sion d=256. Throughout the paper, run-time numbers la-
beled as optimized use an efficient implementation of self-
attention [14]. More details are given in the Appendix.

We train LightGlue with both SuperPoint [16] and
SIFT [41] local features but it is compatible with any other
type. When fine-tuning the model on MegaDepth [38], we
use the data splits of Sun et al. [68] to avoid training on
scenes included in the Image Matching Challenge [31].

5. Experiments

We evaluate LightGlue for the tasks of homography esti-
mation, relative pose estimation, and visual localization. We
also analyze the impacts of our design decisions.

5.1. Homography estimation

We evaluate the quality of correspondences estimated by
LightGlue on planar scenes of the HPatches [2] dataset. This
dataset is composed of sequences of 5 image pairs, each
under either illumination or viewpoint changes.

Setup: Following SuperGlue [56], we report the precision
and recall compared to GT matches at a reprojection error
of 3px. We also evaluate the accuracy of homographies esti-
mated from the correspondences using robust and non-robust
solvers: RANSAC [22] and the weighted DLT [24]. For each
image pair, we compute the mean reprojection error of the
four image corners and report the area under the cumula-
tive error curve (AUC) up to values of 1px and 5px. Fol-
lowing best practices in benchmarking [31] and unlike past
works [56, 68], we use a state-of-the-art robust estimator [3]
and extensively tune the inlier threshold for each method
separately. We then report the highest scoring results.

Baselines: We follow the setup of [68] and resize all images
such that their smaller dimension is equal to 480 pixels. We
evaluate sparse matchers with 1024 local features extracted
by SuperPoint [16]. We compare LightGlue against nearest-
neighbor matching with mutual check and the deep matchers
SuperGlue [56] and SGMNet [8]. We use the official models
trained on outdoor datasets [38, 64]. For reference, we also
evaluate the dense matcher LoFTR [68], selecting only the
top 1024 predicted matches for the sake of fairness.

AUC - RANSAC AUC-DLT
@lpx @5px @lpx @5px
dense LoFTR - 927 415 78.8 38,5 70.6

NN+mutual 72.7 67.2 35.0 75.3 0.0 2.0
SuperGlue 94.9 87.4 383 79.3 33.8 76.7
SGMNet 955 83.0 38.6 79.0 31.7  76.0
LightGlue 94.3 88.9 383 79.6 359 78.6

features + matcher R P

SuperPoint

Table 1. Homography estimation on HPatches. LightGlue yields
better correspondences than sparse matchers, with the highest preci-
sion (P) and a high recall (R). This results in accurate homographies
when estimated by RANSAC or even a faster least-squares solver
(DLT). LightGlue is competitive with dense matchers like LoFTR.

Results: Table | shows that LightGlue yields correspon-
dences with higher precision than and similar recall to Su-
perGlue and SGMNet. When estimating homographies with
DLT, this results in much more accurate estimates than with
other matchers. LightGlue thus makes DLT, a simple solver,
competitive with the expensive and slower MAGSAC [3]. At
a coarse threshold of 5px, LightGlue is also more accurate
than LoFTR despite being constrained by sparse keypoints.

5.2. Relative pose estimation

We evaluate LightGlue for pose estimation in outdoor
scenes that exhibit strong occlusion and challenging lighting
and structural changes.

Setup: We use image pairs from the MegaDepth-1500 test
set following the evaluation of [68]. The test set contains
1500 image pairs from two popular phototourism destina-
tions: St. Peters Square and Reichstag. The data was col-
lected in a way that the difficulty is balanced based on visual
overlap. We evaluate our method on the downstream task of
relative pose estimation.

We estimate an essential matrix both with vanilla
RANSAC and LO-RANSAC [34], respectively, and decom-
pose them into a rotation and a translation. The inlier thresh-
old is tuned for each approach on the test data — we think that
this makes the comparison more fair as we do not evaluate
RANSAC itself. We compute the pose error as the maximum
angular error in rotation and translation and we report its
AUC at 5°, 10°, and 20°.

Baselines: We extract 2048 local features per images, each
resized such that its larger dimension is 1600 pixels. With
SuperPoint [16] features, we compare LightGlue to nearest-
neighbor matching with mutual check and to the official
implementations of SuperGlue [56] and SGMNet [8]. With
DISK [73] we only evaluate against its own strong baseline,
as no other trained matcher with DISK is publicly available.

We also evaluate the recent, dense deep matchers
LoFTR [68], MatchFormer [78], and ASpanFormer [9]. We
carefully follow their respective evaluation setups and resize
the input images such that their largest dimension is 840 pix-
els (LoFTR, MatchFormer) or 1152 pixels (ASpanFormer).



features + RANSACAUC  LO-RANSACAUC ;e SuperPoint Day Night pairs per
matcher 5°/10°/20° (ms) + matcher (0.25m,2°) / (0.5m,5°) / (1.0m,10°) second
g LoFTR 52.8/69.2/81.2 66.4/78.6/86.5 181 SuperGlue 88.2/95.5/98.7 86.7/92.9/100 6.5
S MatchFormer 53.3/69.7/81.8 66.5/78.9/87.5 388 SGMNet 86.8/94.2/97.7 83.7/91.8/99.0 10.2
= ASpanFormer 55.3/71.5/83.1 69.4/81.1/88.9 369 ClusterGNN  89.4/95.5/98.5 81.6/93.9/100 13*
% NN-ratio 38.1/554/69.6 572/69.5/73.6 74 LightGlue 89.2/95.4/98.5 87.8/93.9/100 17.2/26.1
A LightGlue 43.5/61.0/753  61.3/74.3/83.8 445 Table 3. Outdoor visual localization. On the Aachen Day-Night
~  NN+mutual 317/468/60.1 51.0/54.1/73.6 57 dataset, LightGlue performs on par with SuperGlue but runs 2.5 X
-§ SuperGlue 49.7/67.1/80.6 65.8/78.7/87.5  70.0 faster, 4x when optimized. SGMNet and ClusterGNN are both
% SGMNet 432/61.6/75.6  59.8/74.1/83.9  73.8 slower and less robust on night-time images (*approximation).
5‘ LightGlue 49.9/67.0/80.1 66.7/79.3/87.9 442
L> adaptive 49.4/67.2/80.1 66.3/79.0/87.9 314

Table 2. Relative pose estimation. On the MegaDepth1500 dataset,
LightGlue predicts more precise correspondences with higher pose
accuracy (AUC), and speed than existing sparse matchers. It is
competitive with dense matchers for a fraction of the inference
time, and even outperforms LoFTR and MatchFormer with the
superior LO-RANSAC estimator. The adaptive scheme greatly
reduces the run time for only a minor loss of accuracy.

Larger images would improve their accuracy, as with sparse
features, but would incur prohibitive and unpractical run
time and memory requirements.

Results: Table 2 shows that LightGlue largely outperforms
the existing approaches SuperGlue and SGMNet on Super-
Point features, and can greatly improve the matching accu-
racy over DISK local features. It yields better correspon-
dences and more accurate relative poses and reduces the
inference time by 30%. LightGlue typically predicts slightly
fewer matches than SuperGlue but those are more accu-
rate. By detecting confident predictions early in the model,
the adaptive variant is over 2x faster than SuperGlue and
SGMNet and still more accurate. With a carefully tuned LO-
RANSAC [34], LightGlue can achieve higher accuracy than
some popular dense matcher which are between 5 and 11
times slower. Among the evaluated dense matchers, ASPAN-
Former is the most accurate. Considering trade-off between
accuracy and speed, LightGlue outperforms all approaches
by a large margin.

5.3. Outdoor visual localization

Setup: We evaluate long-term visual localization in chal-
lenging conditions using the large-scale Aachen Day-Night
benchmark [59]. We follow the Hierarchical Localization
framework with the hloc toolbox [55]. We first triangu-
late a sparse 3D point cloud from the 4328 daytime ref-
erence images, with known poses and calibration, using
COLMAP [60]. For each of the 824 daytime and 98 night-
time queries, we retrieve 50 images with NetVLAD [1],
match each of them, and estimate a camera pose with
RANSAC and a Perspective-n-Point solver. We report the
pose recall at multiple thresholds and the average throughput
of the matching step during both mapping and localization.

Baselines: We extract up to 4096 features with Super-
Point and match them with SuperGlue, SGMNet [8], Clus-
terGNN [65], and LightGlue with adaptive depth and width.
Since the implementation of ClusterGNN is not publicly
available, we report the accuracy found in the original paper

and the time estimates kindly provided by the authors.

Results: Table 3 shows that LightGlue reaches a similar
accuracy as SuperGlue but at a 2.5x higher throughput.
The optimized variant, which leverages an efficient self-
attention [14], increases the throughput by 4 x. LightGlue
thus matches up to 4096 keypoints in real time.

5.4. Insights

Ablation study: We validate our design decisions by eval-
uating LightGlue after its pre-training on the challenging
synthetic homography dataset with extreme photometric
augmentations. We train different variants with SuperPoint
features and SM samples, all within 4 GPU-days. We create
a test set from the same augmentations applied to images
unseen during training. We extract 512 keypoints from each.
We also compare against SuperGlue, which we train with
the same setup. More details are provided in the Appendix.

We report the ablation results in Table 4. Compared to
SuperGlue, LightGlue converges significantly faster, and
achieves +4% recall and +12% precision. Note that Super-
Glue can achieve similar accuracies as LightGlue with a
long-enough training, but the improved convergence makes
it much more practical to train on new data.

Without the matchability classifier, the network loses its
ability to discriminate between good and bad matches, as
shown in Figure 6. Intuitively, the similarity matrix proposes
many likely matches while the matchability filters incorrect
proposals. Thus, our partial assignment can be viewed as
an elegant fusion of mutual nearest neighbor search and a
learned inlier classifier [44, 82]. This is significantly faster
than solving the optimal transport problem of SuperGlue.

Replacing learned absolute positional encoding with ro-
tary embeddings improves the accuracy, with a minor penalty
on run time from rotating queries and keys at each self-
attention layer. Using relative positions, LightGlue learns to
match geometric patterns across images. Reminding the net-
work about positions at each layer improves the robustness



architecture precision  recall  time (ms)
SuperGlue 74.6 90.5 29.1
LightGlue (full) 86.8 96.3 19.4
L a) no matchability 67.4 97.0 18.9
L> b) absolute positions 84.2 94.7 18.7
L> ¢) full cross-attention 86.6 96.1 22.8
L d) early layer (#5/9) 78.1 92.7 11.9

Table 4. Ablation study on synthetic homographies. a-b) Both
matchability and positional encoding improve the accuracy without
impact on the time. ¢) The bidirectional cross-attention is faster
without drop of accuracy. d) Thanks to the deep supervision, early
layers yield good predictions on pairs with low difficulty.

Figure 6. Benefit of the matchability. The matchability helps filter
out outliers (red) that are visually similar, retaining only inlier
correspondences (green).

of the network, resulting in +2% precision.

Bidirectional cross-attention is equally accurate as stan-
dard cross-attention, but saves 20% run time by only com-
puting the similarity matrix once. Currently, the bottleneck
is computing the softmax along two dimensions. With a
dedicated bidirectional softmax kernel, plenty of redundant
computations could be avoided.

Using deep supervision, also intermediate layers have
meaningful outputs. Already after 5 layers, the network can
predict robust matches, achieving > 90% recall. In the fi-
nal layers, the network focuses on rejecting outliers, thus
improving the match precision.

Adaptivity: By predicting matchability scores and confi-
dences, we can adaptively reduce the computations during a
forward-pass on a case-by-case basis. Table 5 studies the ef-
fectiveness of the two pruning mechanisms — adaptive depth
and width — on MegaDepth image pairs for different ranges
of visual overlap. For easy samples, such as the successive
frames of a video, the network quickly converges and exits
after a few layers, resulting in a 1.86x speedup. In cases of
low visual overlap, e.g. loop closure, the network requires
more layers to converge. It however rejects confident and

difficulty

metric ———————— average
easy medium hard

average index of stopping layer | 4.7 55 6.9 5.7
ratio of unmatchable points (%) T 19.8 234 27.9 23.7
speedup over non-adaptive 1 1.86 1.33 1.16 1.45

Table 5. Impact of adaptive depth and width. Early stopping
helps most on smaller scenes, where the network stops after just
half the layers. On harder scenes, the network requires more layers
to converge, but smaller view overlap between image pairs allows
the network to more aggressively prune the width of the network.
Overall, adaptive depth- and width- pruning reduces the run time
by 33% and is particularly effective on easy pairs.
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Figure 7. Run time vs number of keypoints. The full LightGlue
model is 35% faster than SuperGlue and the adaptive depth and
width make it even faster. SGMNet is comparably fast only for 4k
keypoints and above but is much slower for standard input sizes.

unmatchable points early and leaves them out of the inputs to
subsequent layers, thus avoiding unnecessary computations.

Efficiency: Figure 7 shows run times for different numbers
of input keypoints. For up to 2K keypoints per image, which
is a common setting for visual localization, LightGlue is
faster than both SuperGlue [56] and SGMNet [8]. Adaptive
pruning further reduces the run time for any input size.

6. Conclusion

This paper introduces LightGlue, a deep neural network
trained to match sparse local features across images. Build-
ing on the success of SuperGlue, we combine the power
of attention mechanisms with insights about the matching
problem and with recent innovations in Transformer. We
give this model the ability to introspect the confidence of its
own predictions. This yields an elegant scheme that adapts
the amount of computation to the difficulty of each image
pair. Both its depth and width are adaptive: 1) the inference
can stop at an early layer if all predictions are ready, and
2) points that are deemed not matchable are discarded
early from further steps. The resulting model, LightGlue,
is finally faster, more accurate, and easier to train than the
long-unrivaled SuperGlue. In summary, LightGlue is a
drop-in replacement with only benefits. The code will be
released publicly for the benefit of the community.

Acknowledgments: We thank Mihai Dusmanu, Rémi Pau-
trat, and Shaohui Liu for their helpful feedback.
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Figure 8. Visualization of adaptive depth and width. From top to bottom, we show three easy, medium and difficult image pairs. The
left column shows how LightGlue reduces its width: it finds out early that some points (e) are unmatchable (mostly by visual overlap) and
discards non-repeatable points in later layers: « — - — o. This is very effective on difficult pairs. LightGlue looks for matches only in
the reduced search space (o). The matchability scores (middle column, from non-matchable e to likely matchable o), help find accurate
correspondences and are almost binary. On the right we visualize predicted matches as epipolar in- or outliers. We report the run time and
stopping layer for each pair. On easy samples, LightGlue stops after only 2-3 layers, running with close to 100 FPS.
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Figure 9. Comparison of features produced by LightGlue for different local features. We compare the outputs of SIFT+LightGlue (left),
SuperPoint+LightGlue (middle) and DISK+LightGlue (right).
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Appendix
A. Image Matching Challenge

In this section, we present results obtained on the Pho-
toTourism dataset of the Image Matching Challenge 2020
(IMC) [26] in both stereo and multi-view tracks. The data
is very similar to the MegaDepth [38] evaluation, exhibits
similar statistics but different scenes. We follow the stan-
dardized matching pipeline of IMC with the setup and hy-
perparameters of SuperGlue [56]. We run the evaluation on
the 3 validation scenes from the PhotoTourism dataset with
LightGlue trained with two kinds of local features.

SuperPoint:  For SuperPoint+SuperGlue and Super-
Point+LightGlue, we extract a maximum of 2048 keypoints
and use DEGENSAC [11, 12, 43] with a threshold on the
detection confidence of 1.1 in the stereo track (as suggested
by SuperGlue). We do not perform any parameter tuning and
reuse our model from the outdoor experiments with adaptive
depth- and width, and use efficient self-attention [14] and
mixed-precision during evaluation.

DISK: We also train LightGlue with DISK local fea-
tures [73], a previous winner of the Image Matching Chal-
lenge. We follow the same training setup as for SuperPoint.
For evaluation, we follow the guidelines from the authors
for the restricted keypoint scenario (max 2048 features per
image) and use mutual nearest neighbor matching with a
ratio test of 0.95 as a baseline. We again use DEGENSAC
for relative pose estimation with a threshold of 0.75.

Results: Table 6 reports the evaluation results. We also re-
port the average matching speed over all 3 validation scenes.
LightGlue is competitive with SuperGlue both in the stereo
and multi-view track, while running 2.5 faster. Most of
these run time improvements are due to the adaptive-depth,
which largely reduces the run time for easy image pairs.
LightGlue trained with DISK [73] largely outperforms
both the nearest-neighbor matching baseline with ratio test
but also SuperPoint+LightGlue. On the smaller thresholds,
DISK+LightGlue achieves +8%/+5% AUC in the stereo and
multi-view tasks compared to our SuperPoint equivalent.
With DISK, our model predicts 30% more matches than
SP+LightGlue with an even higher epipolar precision.

Image Matching Challenge 2021: We evaluate the photo-
tourism subset of the IMC 2021 [27] benchmark, both in the
stereo- and multiview track. We compare our baseline on Su-
perPoint [16] and DISK [73] with their respective baselines
in a clean setting and in a restricted keypoint setting (max
2048 detections). Furthermore, we compare our best scoring
method on IMC 2020, DISK+LightGlue, with tuned ver-
sions of DISK [73], SuperPoint+SuperGlue [16, 56] as well
as the StTM implementation of the dense matcher LoFTR [68].
Table 7 reports the experiment. LightGlue outperforms all

11

Task 1: Stereo  Task 2: Multiview

SfM features S S Pairs per
(2048 keypoints) ~ AUC@K AUC@S°@N (o ond
5° 10° 5 10 25
SP+SuperGlue 58.64 71.07 61.88 78.97 86.75 16.2
SP+LightGlue 59.03 71.13 62.87 79.36 86.98 43.4
DISK+NN+ratio  57.76  68.73 59.91 78.95 87.54 196.7
DISK+LightGlue 67.02 77.82 67.91 80.58 88.35 445

Table 6. Structure-from-Motion with the Image Matching Chal-
lenge 2020. We evaluate the stereo track, at multiple error thresh-
olds, and the multi-view track, for various numbers of images N.
LightGlue yields better poses than SuperGlue on the multi-view
track and significantly reduces the matching time. In combination
with DISK, LightGlue improves over SuperPoint+SuperGlue and
DISK+NN-+ratio in both tracks by a large margin.

features + Task 1: Stereo Task 2: Multiview  Average
matcher AUC 5°/10°  AUC5°/10°  AUC 5°/10°
SP+SGMNet 29.6/43.0 60.2/71.6 449/57.3
SP+SuperGlue 36.5/50.5 63.3/73.8 49.9/62.2
SP+LightGlue 36.7 /50.7 63.6/74.4 50.2/62.6
DISK+NN-+ratio 36.3/48.5 61.5/71.6 48.9/60.1
DISK+LightGlue 43.1/56.6 66.2/76.2 54.7/ 66.4
DISK (8K) +NN+ratio* 44.6/56.2 65.0/74.4 54.8/65.3
SP+SuperGlue* 44.6/58.6 66.8/71.1 5571679
LoFTR-SfM 48.4/60.9 66.4/76.1 57.4/68.5
DISK (8K)+LightGlue  48.7/61.8 68.9/78.2 58.8/70.0

Table 7. IMC 2021 - Phototourism. *DISK+NN and SP+SG use
test-time augmentation while LightGlue does not. To compete with
these tuned baselines, we just increase the number of keypoints, e.g.
DISK (8K). LoFTR-SfM clusters dense matches with SuperPoint
detections. LightGlue outperforms other sparse baselines both in
the stereo and multiview task, and even surpasses tuned baselines
from the public leaderboard by a large margin.

approaches with a fair margin.

Image Matching Challenge 2023: We compete in the
IMC 2023 [28], which evaluates end-to-end Structure-
from-Motion in terms of camera pose accuracy, averaged
over multiple thresholds, with a diverse set of scenes
beyond phototourism. We use the default recontruction
pipeline of hloc [55] and retrieve 50 pairs per image using
NetVLAD [1]. We average the results over 3 runs to reduce
the impact of randomness in the reconstruction pipeline.
On the public / private leaderboards, respectively, Super-
Point+SuperGlue achieves a score of 36.1 / 43.8 (%), while
SuperPoint+LightGlue reaches 38.4 / 46.1, which is a
+2.3% improvement.

B. Additional results

Relative pose estimation:
Results reported in Section 5.2 were computed with a sub-
set of the MegaDepth dataset [38] as introduced by previous



Day Night

pose estimation AUC ;o features + pairs per
features + matcher #matches P —— ——
@5° @10° @20° (ms) matcher (0.25m,2°) / (0.5m,5°) / (1.0m,10°) second
g LoFTR 2231 89.8 664 79.1 87.6 181 LoFTR 88.7/95.6/99.0 78.5/90.6/99.0 -
_q§ MatchFormer 2416 912 652 78.1 87.4 388 ASpanFormer  89.4/95.6/99.0 77.5/91.6/99.5 -
ASPanFormer 4299 947 680 804 887 239 SP+SuperGlue  89.8/96.1/99.4  77.0/90.6/100 6.4

E NN-+ratio 160 823 483 622 732 57 SP+LightGlue 90.2/96.0/99.4 77.0/91.1/100 17.3

= SGMNet 405 825 50.7 66.6 765 71.7 N .. -

“ LightGlue 383 841 570 713 818 443 Tab.Ie 9. O.utfloor visual loc?llza}tlon on Aachen v1.1. LightGlue

= achieves similar accuracy with higher throughput.

£ NN+mutual 697 494 377 509 62.3 5.6

og SuperGlue 712 93.0 648 775 86.6 70.0

2 SGMNet 725 898 617 743 834 740 features + DUCI DUC2

7 LightGlue 709 945 655 778 869 442

» 8 - : - . : matcher (0.25m,10°) / (0.5m,10°) / (1.0m,10°)
Tl“ab%e 8. Relative pose estimation on Megadepth-lSOO. This §pht LoFTR 4757722/ 84.8 542/74.8/85.5
is different from Table 2. In contrast to the split used by previous MatchFormer ~ 46.5/73.2/ 85.9 55.7/71.8/81.7
works [38, 68], this set of test images avoids training overlap with ASpanFormer  51.5/73.7/86.4 55.0/74.0/81.7
SuperGlue [Sf)]. L¥ghtGlue p.re.dlcts a similar amount of correspon- SP+SuperGlue  47.0/69.2/79.8 53.4/77.1/80.9
dences but with higher precision (P), pose accuracy (AUC), and SP+LightGlue 49.0/68.2/79.3 55.0/74.8/79.4

speed than existing sparse matchers. It is competitive with dense
matchers for a fraction of the inference time.

works [9, 68, 78]. However, the images therein overlap with
the training set of SuperGlue [56], the state-of-the-art sparse
feature matcher and thus our main competitor.

For a more fair evaluation, we perform an extensive out-
door experiment on the test scenes of our MegaDepth [38]
split, which covers 4 unique phototourism landmarks that
SuperGlue was not trained with: Sagrada Familia, Lincoln
Memorial Statue, London Castle, and the British Museum.
To balance the difficulty of image pairs, we bin pairs into
three categories based on their visual overlap score [19, 56],
with intervals [10, 30]%, [30, 50]%, and [50, 70]%. We sam-
ple 150 image pairs per bin per scene, totaling 1800 image
pairs. We carefully rerun the experiment with the same setup
that was used in Table 2. We report the precision as the
ratio of matches with an epipolar error below 3px. With
SIFT [41], we evaluate the ratio test and SGMNet [8] only,
as the original SuperGlue model is not publicly available.

Table 8 confirms that LightGlue predicts more accurate
correspondences than existing sparse matchers, at a fraction
of the time. Detector-free feature matchers like LoFTR re-
main state-of-the-art on this task, although by a mere 2%
AUC@5° with LO-RANSAC.

Outdoor visual localization: For completeness, we also
report results on the Aachen v1.1 dataset [59] and compare
our method to recent sparse and dense baselines. Table 9
shows that all methods perform similarly on this dataset,
which is largely saturated, with insignificant variations in the
results. LightGlue is however far faster than all approaches.

Indoor visual localization: We report results for InLoc in
Table 10. We use hloc and run SuperGlue again for fairness.
For LoFTR and ASpanFormer, report existing results as no
code is available. LightGlue is competitive with SuperGlue
and more accurate at (0.25m,10°). Differences of <2% are
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Table 10. Indoor visual localization on InLoc. LightGlue performs
similarly to SuperGlue (within the variability of the dataset).

. . . . \ W |
Figure 10. Failure cases on InLoc [70]. LightGlue sometimes
matches repeated objects in the scene with strong texture, instead
of the geometric structure.

insignificant because each split only has 205/151 queries
(1.5% of difference = 3 queries). Failures of LightGlue over
SuperGlue (6/356 images @ 1m) are due to more matches on
repeated objects (like trash cans), i.e. to better matching and
weak retrieval — we show an example in Figure 10.

C. Implementation details
C.1. Architecture

Positional Encoding. 2D image coordinates are normalized
to arange [-1, 1] while retaining the image aspect ratio. We
then project 2D coordinates into frequencies with a linear
projection W, € R24/2% where h is the number of attention



heads. We cache the result for all layers. We follow the
efficient scheme of Roformer [67] to apply the rotations to
query and key embeddings during self-attention, avoiding
quadratic complexity to compute relative positional bias. We
do not apply any positional encoding during cross-attention,
but let the network learn spatial patterns by aggregating
context within each image.

Graph Neural Network: The graph neural network consists
of 9 transformer layers with both a self- and cross-attention
unit. The update MLP (Eq. 1) has a single hidden layer of di-
mension d;, = 2d followed by LayerNorm, GeLU activation
and a linear projection (2d, d) with bias.

Each attention unit has three projection matrices for
query, key and value, plus an additional linear projection that
merges the multi-head output. In bidirectional cross atten-
tion, the projections for query and key are shared. In practice
we use an efficient self-attention [14] which optimizes 10
complexity of the attention aggregation. This could also be
extended for bidirectional cross attention. While training
we use gradient checkpointing to significantly reduce the
required VRAM.

Correspondences: The linear layers (Eq. 6) map from d to
d and are not shared across layers. For all experiments we
use the mutual check and a filter threshold 7 = 0.1.

Confidence classifier: The classifier predicts the confidence
with a linear layer followed by a sigmoid activation. Con-
fidences are predicted for each keypoint and only at layers
1,.., L — 1, since, by definition, the confidences of the final
layer L are 1. Each prediction is supervised with a binary
cross-entropy loss and its gradients are not propagated into
the states to avoid impacting the matching accuracy. The
state already encodes sufficient information since it is also
supervised for matchability prediction.

Exit criterion and point pruning: During training we ob-
served that the confidence predictions are less accurate in
earlier layers. We therefore exponentially decay the confi-
dence threshold:
N =0.8+0.1e /L . (12)
A state is deemed confident if cf > MA¢. During inference, we
halt the network if «=95% of states are deemed confident.
For point pruning, a point is deemed unmatchable when
its predicted confidence is high and its matchability is low:

unmatchable(i) = cﬁ >N & Uf <p (13)

We report an ablation on the exit confidence « in Table 11
for relative pose estimation on MegaDepth. Lowering « to
80% reduces the inference time by almost 50% compared
to our full model, while maintaining competitive accuracy
compared to SuperGlue on this task. Reducing the confi-
dence threshold is far more effective in terms of run time -
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pose estimation AUC ;.

Method #matches P
@5° @10° @20° (%)

SP+LightGlue 613 962 667 793 879 100.0
Ls layer 7/9 705 96.0 662 79.1 88.0 824
Ls layer 5/9 702 945 650 778 870 60.0
Ls layer 3/9 687 90.0 640 767 858 419
Ls confidence 98% 610 96.2 66.6 793 880 80.5
Ls confidence 95% 608 954 663 790 879 70.6
Ls confidence 90% 607 945 659 785 872 615
Ls confidence 80% 605 926 652 778 867 484

Table 11. Evaluation of early-stopping on MegaDepth. Matches
predicted by deeper layers are more accurate but require more
computations with a higher inference time. Modeling confidences
adaptively selects the model depth that yields a sufficient accuracy.
A more conservative stopping, with a higher threshold «, yields a
higher accuracy at the cost of higher inference time. a=95% yields
the best trade-off.

Detected negatives (%) after n layers
50

40
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layer

Figure 11. Continuous detection of unmatchable points. After
just a few layers the network detects many points which are un-
matchable, and we exclude them from context aggregation.

accuracy tradeoff than trimming the model to fewer layers.
Stopping the network early mainly sacrifices precision. For
our experiments we chose 95% confidence, which yields
on average 25% run time reduction with hardly any loss of
accuracy on downstream tasks.

Here, 8 = 0.01 is a threshold on how matchable a point
is. If Eq. 13 holds, we exclude the point from context ag-
gregation in the following layers. This adds an overhead of
gather and scatter per layer, but pruning becomes increas-
ingly effective with more keypoints.

In Figure 11 we report the fraction of keypoints excluded
in each layer. After just a few layers of context aggrega-
tion, LightGlue is confident to exclude > 30% of keypoints
early on. Since the number of keypoints have a quadratic
impact on run time, as shown in Fig. 7, this can largely re-
duce the number of computations in a forward pass and thus
significantly reduce inference time.

C.2. Local features

We train LightGlue with three popular local feature de-
tectors and descriptors: SuperPoint [16], SIFT [41] and
DISK [73]. During training and evaluation, we discard the
detection threshold for all methods and use the top-k key-
points according to the detection score. During training, if



there are less than k detections available, we append random
detections and descriptors. For SIFT [41] and DISK [73],
we add a linear layer to project descriptors to d=256 before
feeding them to the Transformer backbone.

SuperPoint: SuperPoint is a popular feature detector which
produces highly repeatable points located at distinctive re-
gions. We use the official, open-sourced version of Su-
perPoint from MagicLeap [16]. The detections are pixel-
accurate, i.e. the keypoint localization accuracy depends on
the image resolution.

SIFT: We use the excellent implementation of SIFT from
vifeat [75] when training on MegaDepth, and SIFTGPU
from COLMAP [60] for fast feature extraction when pre-
training on homographies. We observed that these imple-
mentations are largely equivalent during training and can be
exchanged freely. Also, SIFT features from OpenCV can be
used without retraining. Orientation and scale are not used
in positional encoding.

DISK: DISK learns detection and description with a rein-
forcement learning objective. Its descriptors are more pow-
erful than SIFT and SuperPoint and its detections are more
repeatable, especially under large viewpoint and illumination
changes.

C.3. Homography pre-training

Following Sarlin et al. [56], we first pre-train LightGlue
on synthetic homographies of real-images.

Dataset: We use 170k images from the Oxford-Paris 1M
distractors dataset [50], and split them into 150k/10k/10k
images for training/validation/test.

Homography sampling: We generate homographies by
randomly sampling four image corners. We split the image
into four quarters, and sample a random point in each quarter.
To avoid degenerates, we enforce that the enclosed area is
convex. After, we apply random rotations and translations
to the corners s.t. the corners remain inside the image. With
this process, we can generate extreme perspective changes
while avoiding border artifacts. This process is repeated
twice, resulting in two largely skewed homographies. In
interpolation, we then enforce the extracted images to be of
size 640x480.

Photometric augmentation: The color images are then
forwarded through a sequence of strong photometric aug-
mentations, including blur, hue, saturation, sharpness, illu-
mination, gamma and noise. Furthermore, we add random
additive shades into the image to simulate occlusions and
non-uniform illumination changes.

Supervision: Correspondences with 3px symmetric repro-
jection error are deemed inliers, and points without any cor-
respondence under this threshold are outliers.
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Figure 12. Examples of synthetic homographies. We show the
original images (left) and two augmented examples (center and
right) resulting from strong perspective transformations and ex-
treme photometric augmentations.

Training details: We extract 512/1024/1024 keypoints for
SuperPoint/SIFT/DISK, and a batch size of 64. The initial
learning rate is 0.0001, and we multiply the learning rate by
0.8 each epoch after 20 epochs. We stop the training after
40 epochs (6M image pairs), or 2 days with 2 Nvidia RTX
3090 (for SuperPoint). Our network achieves > 99% recall
and > 90% precision on the validation and test set. We also
observed that, for fine-tuning, one can stop the pre-training
after just one day with only minor losses.

We also experimented with sampling images from
MegaDepth [38] for homography pre-training, and could
not observe major differences. Strong photometric augmen-
tations and perspective changes are crucial for training a
robust model.

C.4. Finetuning on MegaDepth

We fine-tune our model on phototourism images with
pseudo ground-truth camera poses and depth images.

Dataset: We use the MegaDepth dataset [38], which
contains dense reconstructions of a large variety of pop-
ular landmarks all around the globe, obtained through
COLMAP+MVS [60, 61]. Following Sun et al. [68], we bin
each pair by its covisibility score [19], into ranges [0.1, 0.3],
[0.3,0.5] and [0.5, 0.7]. Scenes which are part of the valida-
tion and test set in the image matching challenge [26] are
also excluded from training, resulting in 368/5/24 scenes for
training/validation/test. At the beginning of each epoch, we
sample 100 image pairs per scene.

Images are resized s.t. their larger edge is of size 1024,
and zero-pad images to 1024 x 1024 resolution.

Supervision: Following SuperGlue [56], we reproject points
using camera poses and depth to the other image. Correspon-
dences with a maximum reprojection error of 3 pixels and
which are mutually closest are labelled as inliers. A point
where the closest correspondence has a reprojection error
larger than 5px are is labelled as outlier. Furthermore, we
also declare points without depth and no correspondence
with a Sampson Error smaller than 3 px outliers.

Training details: Weights are initialized from the pre-
trained model on homographies, Training starts with a learn-



ing rate of le-5 and we exponentially decay it by 0.95 in each
epoch after 10 epochs, and stop training after 50 epochs (2
days on 2 RTX 3090). The top 2048 keypoints are extracted
per image, and we use a batch size of 32. To speed-up train-
ing, we cache detections and descriptors per image, requiring
around 200 GB of disk space.

C.5. Homography estimation

We validate the models capabilities on real homographies
on the Hpatches dataset [2]. We follow the setup introduced
in LoFTR [68] and resize images to a maximum edge length
of 480.

For SuperPoint we extract the top 1024 keypoints with
the highest detection score, and report precision (fraction
of matches within 3px homography error) and recall (frac-
tion of recovered mutual nearest-neighbour matches within
3px homography error). For LoFTR we only report epipolar
precision. Furthermore, we evaluate the models in the down-
stream task of homography matrix estimation. Following
SuperGlue [56], we report pose estimation results from ro-
bust estimation using RANSAC/MAGSAC [3] and the least
squares solution with the weighted DLT algorithm. We eval-
uate the accuracy of estimated homography by their mean
absolute corner distance towards the ground-truth homogra-
phy.

We use OpenCV with USAC_MAGSAC for robust ho-
mography estimation, and tune the threshold for each method
separately. Our reasoning behind this decision, which is
in contrast to previous works in feature matching [56, 68]
which fix the RANSAC parameters, is that we mainly use
RANSAC as a tool to evaluate the low-level matches on
a downstream task, and we want to minimize the varia-
tions introduced by its hyperparameters in order to obtain
fair and representative evaluations. Different matches typi-
cally require different RANSAC thresholds, and thus a fixed
threshold is suboptimal for comparison. For example on out-
door relative pose estimation, tuning the RANSAC threshold
yields +7% AUC@5°on SuperGlue, skewing the reported
numbers.

D. Timings

All experiments were conducted on a single RTX 3080
with 10GB VRAM. We report the timings of the matching
process only, excluding sparse feature extraction (which is
linear in the number of images) and robust pose estimation.
We report the average over the respective datasets.

In Figure 13 we benchmark self-/cross-attention and solv-
ing the partial assignment problem against the respective
counterparts in SuperGlue [56]. Bidirectional cross-attention
reduces the run-time by 33% by only computing the simi-
larity matrix once. However, the main bottleneck remains
computing the softmax over both directions.
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Figure 13. Run time breakdown. We evluate the runtime of self-,
cross- and partial assignment layers on 1024 keypoints for Super-
Glue and LightGlue. Most of LightGlue’s default inference time
improvements stem from a significantly faster partial assignment
layer and reuse of computations in bidirectional cross-attention.

Our cheap double-softmax and the unary matchability
predictions are significantly faster than solving it using op-
timal transport [66, 48], where 100 iterations are required
during training to maintain stability.

In practice, we also use efficient self-attention [14] and
mixed-precision to significantly reduce run time and memory
requirements. However, for a fair comparison, we exclude
these performance improvements from all experiments ex-
cept where explicitly stated otherwise.

E. Qualitative Results

Figure 8 shows how LightGlue discards unmatched points
and its early stopping mechanism on easy/medium/hard pairs.
Figure 9 illustrates the matching output for LightGlue with
SIFT [41], SuperPoint [16] and DISK [73] on some qualita-
tive examples.
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