
Grace: Language Models Meet Code Edits

Priyanshu Gupta∗

priyansgupta@microsoft.com
Microsoft
India

Avishree Khare∗†

akhare@seas.upenn.edu
University of Pennsylvania

USA

Yasharth Bajpai
ybajpai@microsoft.com

Microsoft
India

Saikat Chakraborty
saikatc@microsoft.com
Microsoft Research

USA

Sumit Gulwani
sumitg@microsoft.com

Microsoft
USA

Aditya Kanade
kanadeaditya@microsoft.com

Microsoft Research
India

Arjun Radhakrishna
arradha@microsoft.com

Microsoft
USA

Gustavo Soares
gsoares@microsoft.com

Microsoft
USA

Ashish Tiwari
astiwar@microsoft.com

Microsoft
USA

ABSTRACT

Developers spend a signi�cant amount of time in editing code for

a variety of reasons such as bug �xing or adding new features. De-

signing e�ective methods to predict code edits has been an active

yet challenging area of research due to the diversity of code edits

and the di�culty of capturing the developer intent. In this work, we

address these challenges by endowing pre-trained large language

models (LLMs) with the knowledge of relevant prior associated ed-

its, which we call theGrace (Generation conditioned on Associated

Code Edits) method. The generative capability of the LLMs helps

address the diversity in code changes and conditioning code gener-

ation on prior edits helps capture the latent developer intent. We

evaluate two well-known LLMs, codex and CodeT5, in zero-shot

and �ne-tuning settings respectively. In our experiments with two

datasets, Grace boosts the performance of the LLMs signi�cantly,

enabling them to generate 29% and 54% more correctly-edited code

in top-1 suggestions relative to the current state-of-the-art symbolic

and neural approaches, respectively.

CCS CONCEPTS

• Software and its engineering→ Software evolution; Auto-

matic programming; • Computing methodologies→ Arti�cial

intelligence.

KEYWORDS

Code editing, Associated edits, Large language models, Pre-trained

model, Programming language processing

∗Both authors contributed equally to this work.
†Work done while at Microsoft

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3616253

ACM Reference Format:

Priyanshu Gupta, Avishree Khare, Yasharth Bajpai, Saikat Chakraborty,

Sumit Gulwani, Aditya Kanade, Arjun Radhakrishna, Gustavo Soares,

and Ashish Tiwari. 2023. Grace: Language Models Meet Code Edits. In

Proceedings of the 31st ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’23),

December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3611643.3616253

1 INTRODUCTION

Maintaining and modifying existing code takes up a considerable

portion of a developer’s time compared to writing new code [9, 40].

Due to the high cost of software maintenance [32, 35], popular Inte-

grated Development Environments (IDEs) have tooling to support

developers as they refactor code [25, 26, 45], �x defects, adapt code

to changes in the environment, or add support for new or changed

requirements [34, 45]. One desirable feature is code edit suggestions

wherein the tools use the location where the developer is editing

code, and the surrounding code context, to generate candidate edits

to recommend [44, 68].

To automate code edit suggestions, researchers have proposed

several approaches to learn edit patterns from edits in source code

repositories [7, 19, 36, 56]. However, these approaches su�er from

two key limitations: (1) They focus on individual edits and learn

program transformation rules for them. We note that edits are not

performed in isolation. Developers make changes at one location,

then jump to another, and then maybe back to the �rst location to

make further changes [37]. The edits that developers make to the

code at di�erent locations may not be identical, but they are often

interrelated. In fact, the next edit often depends on the previously

performed edits [68]. Learning one-step edit patterns limits the

ability of these approaches to accurately predict the most likely

next edit. (2) The symbolic program transformation rules can only

slice and dice the existing code and compose its pieces to create

code – they cannot generate new code whose pieces do not already

occur in the existing version. This limits the expressiveness of these

approaches in terms of the types of edits that they can predict.

Unlike symbolic program transformation rules, neural language

models have the capability to generate new code that does not

1483

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3611643.3616253
https://doi.org/10.1145/3611643.3616253
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3616253&domain=pdf&date_stamp=2023-11-30

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA P. Gupta, A. Khare, Y. Bajpai, S. Chakraborty, S. Gulwani, A. Kanade, A. Radhakrishna, G. Soares, and A. Tiwari

necessarily occur in the surrounding code context. The pre-trained

large language models (LLMs) like codex [16] and CodeT5 [63]

have been shown to be highly pro�cient at generating code. In

fact, they are already impacting software engineering in signi�cant

ways, e.g., through popular code completion tools like GitHub

Copilot [28]. However, when it comes to editing code, without the

knowledge of previous edits, these models are unable to infer the

developers’ intent and fail to generate code that should be used to

replace existing code in the next edit. In this work, we explore ways

to predict code edits using LLMs by conditioning code generation

on prior, relevant edits. We call such prior edits associated edits

and this methodology as Generation conditioned on Associated Code

Edits (Grace).

In recent times, there have been a few attempts to leverage

past history of code evolution to learn to edit code [10, 55, 68].

overwatch [68] is a symbolic technique that mines "edit sequence

patterns". Such a pattern is essentially a program transformation

rule whose application is conditioned on the prior application of

some other program transformation rules. Being a pattern-based

technique, overwatch su�ers from the inability to generate new

code, and it also requires signi�cant engineering e�ort to build

the underlying symbolic pattern-learning engine. c3po [10] is a

neural model to predict the next edit at a location, given the edits

only in the spatial vicinity of that location. While reliance on such

spatially related edits shows initial promise towards automation in

code editing, the hypothesis may not always hold true—developers

may edit two locations simultaneously that are far away from each

other spatially [37]. In this work, we attempt to relax this reliance,

and do not restrict associated edits to be the ones that occur in

the spatial vicinity of the location under consideration. We show

that associated edits obtained from temporal history can also be

useful. Further, the c3po model is a custom model that generates

the edited code by copy-pasting existing code fragments and is

therefore unable to generate new code (similar to the symbolic

techniques including overwatch).

EditPro [55] is a recent neural model that aims to learn the edit

process for natural language documents and code �les. It proposes

a special multi-step procedure where the model �rst predicts token-

wise edit actions (insert, delete, etc.), which are then subsequently

applied to the code. The edit actions requiring code generation,

such as insert and replace, require a separate decoding step. Edit-

Pro experiments with single-line edits, whereas our datasets con-

tain multi-line edits. Instead of training a new type of model from

scratch, which can be expensive and requires a signi�cant amount

of data, Grace allows us to repurpose the already powerful LLMs

to generate edited code.

We demonstrate the bene�ts of our approach in two settings:

(1) zero-shot setting in which the LLM is used out-of-the-boxwithout

additional training but with an informative prompt about associated

edits and (2) �ne-tuning setting in which the LLM is �ne-tuned on

data annotated with associated edits. In both cases, our results show

signi�cant bene�ts of conditioning existing LLMs on associated

edits without having to pay the price of designing and training

specialized models from scratch.

In our experiments, we use the code-editing benchmarks from

overwatch and c3po. As the baseline LLMs, we use the codex-

davinci model in the zero-shot setting and the CodeT5 model

(220M params) in the �ne-tuning setting. We show that the use of

associated edits helps boost the ability of these models to predict

the next edit compared to the pre-trained models used without

associated edits. In the case of codex-davinci, we get improve-

ments of 17% and 30% (in absolute terms) for the Overwatch and

C3PO datasets, and improvement of 7.45% and 9.64% in the case

of CodeT5. We also compare codex-davinci with associated-edit

prompting and the �ne-tuned CodeT5 model with the overwatch

and c3po methods on the respective datasets. All our models sub-

stantially outperform these methods on their own datasets by a

signi�cant margin. Our best models outperform overwatch on its

dataset by 10.92% and c3po on its dataset by 28.63% (absolute): this

is 28.61% and 53.82% relative improvement respectively. EditPro

dataset and model have not been released by the authors yet, there-

fore, we were unable to compare against it. Both overwatch and

c3po construct edited code from existing or past code, whereas we

use LLMs that are capable of generating new code. We show that

this makes our approach more general, and we can predict code

edits that are often out-of-scope for these approaches.

In summary, we make the following contributions:

(1) We consider a practically important software-engineering

problem of predicting code edits and propose Grace, a novel

method of leveraging powerful LLMs to predict code edits

by conditioning them on prior edits.

(2) Through experimentation on two datasets, we show that

using Grace we can substantially improve performance of

LLMs in zero-shot or �ne-tuning settings.

(3) Grace is superior to the state-of-the-art symbolic or neural

methods designed speci�cally to handle code edits.

(4) We conduct experiments to thoroughly evaluate Grace and

report insights gleaned from them.

2 MOTIVATING EXAMPLE

In this section, we motivate Grace by using a concrete code

development scenario. We further discuss how this approach di�ers

from existing approaches.

Illustrative Example: Consider a developer refactoring code

shown in Figure 1a as Version E1. The goal of the developer is to use

SerializationException provided by the System.Runtime.Serialization

namespace to get to Version E3 shown in Figure 1c. Let us say that

the developer �rst replaces Exception on line 250 in Version E1 with

SerializationException to create Version E2 shown in Figure 1b. This

edit required to go from Version E1 to Version E2 is denoted as X1,2.

The developer’s cursor then moves to Line 3 of Version E2 and our

goal is to predict the next edit the developer will perform to reach

Version E3, namely the edit X2,3.

Conditioning on Prior Edits: The task of predicting the edit

X2,3 is non-trivial. The code in Version E2 has some useful informa-

tion; for example, the code indicates that SerializationException is

de�ned on Line 250 of Version E2 but the required System.Runtime

.Serialization namespace hasn’t been imported anywhere. This

signal, however, is faintly present within 250 lines of additional

spatial context and the relationship between the added Exception

and the required import is lost. This relationship is an important

piece of information that is required to insert the using statement

1484

Grace: Language Models Meet Code Edits ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

1 using System;

2 using System.Linq;

3 using System.Text; ...

250 catch (Exception)

251 ...

(a) Version E1

1 using System;

2 using System.Linq;

3 using System.Text; ...

250 - catch (Exception)

250 + catch (SerializationException)

(b) Version E2 with associated edit X1,2

1 using System;

2 using System.Linq;

3 + using System.Runtime.Serialization;

4 using System.Text; ...

251 catch (SerializationException)

(c) Version E3 with target edit X2,3

Figure 1: The developer performs edit X1,2 to go from Version E1 of their code to Version E2. This edit serves as an associated edit

that helps with predicting the edit X2,3 needed to go from Version E2 to E3.

Table 1: Comparison of di�erent approaches on the example from Figure 1

Technique Prediction Correct?

c3po No Response (alien insertion) ✗

overwatch No Response (no matching pattern) ✗

code-davinci-edit-1 Empty Response ✗

codex-davinci without associated edits using System.Net.Http; ✗

CodeT5 without associated edits using System.Threading; ✗

codex-davinci with associated edits (Our approach) using System.Runtime.Serialization; ✓

CodeT5 with associated edits (Our approach) using System.Runtime.Serialization; ✓

on Line 3 of Version E3. Our �rst key observation for improving pre-

diction of code updates is that it should be conditioned on related edits

from the past. In the above scenario, we want to predict the update

to Version E2 by also looking at the how Version E2 was created

from Version E1. The edit X1,2 is an associated edit. In this example,

there is just one associated edit, but in general there can be multiple

previous edits picked as associated edits.

There has been some recent work on predicting code changes

conditioned on previous changes [10, 68]. We now discuss how

these approaches work on the illustrative example. Table 1 shows

the predictions of various techniques on the target.

c3po: c3po is a path-based edit prediction method that generates

an edit script to predict subsequent edits. It uses a pointer network

to pick valid target edits at E2 by attending to X1,2, represented

as an edit path in the AST. As these target edits can only refer to

nodes in the ASTs at E2 and X1,2, the pointer network does not have

access to the Serialization token needed to be inserted on Line 3.

Therefore, c3po would �lter out above-mentioned example in its

training and testing pipelines categorizing it as an ‘alien insertion’.

When c3po �netuned on the overwatch train set is used to predict

X2,3, it incorrectly suggests picking an existing using statement.

overwatch: overwatch is a symbolic procedure that learns

(abstract syntax) tree transformation rules from example edit se-

quences in the training data, and then makes predictions by apply-

ing those rewrite rules. The above-mentioned example does not

match any of the ∼ 50 patterns that the authors released in [68].

Thus, out of the box, overwatch would not be able to provide any

suggestion because of unavailability of a matching pattern for the

target edit in the example. If we provide enough edit sequences

similar to “X1,2 followed by X2,3” as training data to overwatch,

then it might learn a few edit patterns depending on the examples

it gets and the order in which they are generalized. The only two

useful patterns that could be learned would be either (1) “the substi-

tution of Exception by SerializedException is followed by importing

the System.Runtime.Serialization namespace”, or (2) “the substitution

of Exception by a placeholder Type is followed by importing a place-

holder namespace.” While pattern (1) would return the correct re-

sponse, it is an “over�t pattern” that does not generalize to other

changes in the substituted type. Pattern (2) is too general and cannot

generate a concrete suggestion due to the unbound placeholder.

Using LLMs: The approaches discussed above cannot gener-

ate the right predictions either when the target requires a new

token (c3po) or when it cannot match an existing learned pattern

(overwatch). LLMs of Code have emerged as competitive code

completion tools that o�er generative capabilities. This leads to

our second key observation: LLMs can handle diverse editing sce-

narios including those that involve generation of new tokens.We now

discuss how these models work on the illustrative example.

LLMs without Associated Edits: First, let us consider how

a modern code completion tool (based on powerful LLMs) will

attempt to predict the new code at Line 3 of Version E3. Code

completion tools, like codex-davinci, look at the current snapshot

of the code to make predictions. In other words, the tool will look

at Version E2 to predict Version E3. When we provide code from

version E2 to codex-davinci, it correctly predicts that something

should be imported, but it predicts an incorrect namespace. If we

use code-davinci-edit-1, the editing variant of codex-davinci

that allows you to provide instructions for editing, the prediction

continues to remain incorrect.

LLMs with Grace: Following our two key observations, we

present the edit X1,2 to codex-davinci, along with Line 3 of Version

E2 that needs to be updated. Now, the model successfully predicts

that the updated code would be Line 3 of Version E3. We discuss

the prompt design in detail in Section 4.2.

We found that this utility of associated edits for edit prediction

also extends to other models: a base CodeT5 model �ne-tuned

to predict X2,3 using E2 incorrectly predicts System.Threading while

the same model �ne-tuned to additionally use X1,2 to make the

prediction gets the import right.

By building a code change prediction model over a code gener-

ation model, we are able to extend the scope of edit predictions.

Moreover, we are able to also perform better than the existing works

1485

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA P. Gupta, A. Khare, Y. Bajpai, S. Chakraborty, S. Gulwani, A. Kanade, A. Radhakrishna, G. Soares, and A. Tiwari

on the subset of the benchmarks that are in their scope. We dis-

cuss our quantitative performance on these benchmarks compared

to c3po and overwatch in Sections 5.4 and 5.5 respectively. We

further present a qualitative analysis of the results in Section 5.6.

3 ASSOCIATED CODE UPDATES

We de�ne the associated code update task in this section. The

associated code update task is inspired from the EditCompletion

task [10] and the edit likelihood prediction task [55].

Let E0, . . . , E= be a sequence of versions of a source code �le. An

edit X8, 9 is the di�erence between two versions, E8 and E 9 . We view

X8, 9 as a function that returns E 9 on the input E8 , i.e., X8, 9 (E8) = E 9 .

Furthermore, an associated edit Δ8 is X 9,: , for some 0 ≤ 9 < : < =.

Given the< associated edits Δ1,Δ2, . . . ,Δ< and the version E=−1
along with locations ! in E=−1, the associated code update task is

to predict version E= assuming only the locations ! in E=−1 are

updated. We thus want to model the probability

% (E= | !, E=−1,Δ
1,Δ2, . . . ,Δ<)

We next make a few remarks about the problem formulation above.

First, the = − 1 versions E0, E1, . . . , E=−2 need not necessarily match

the history of the underlying source code �le. The actual historical

versions can be di�erent, and in fact, in the formulation above, it is

not the complete versions themselves, but the edits Δ8 that are used

in the prediction task. The only version that is important here is

the current version E=−1. Furthermore, the set of< past edits need

not even be the exhaustive set of all temporally consecutive edits;

they could be a subset of the edits that have been performed so far.

Hence, Δ8 doesn’t necessarily have to be X8−1,8 .

Second, the edits are allowed to be spatially far away from each

other and from the target locations ! in Version E=−1. While an edit

Δ
8 that modi�es locations close to the target locations ! is likely to

be useful to include in the set< of edits, edits farther away from !

may also be relevant. We makes no assumption on spatial locality

of edits in contrast to the EditCompletion task in [10].

3.1 Assumptions about Sub-Problems

Our problem formulation above abstracts away three important

and challenging related sub-problems that are crucial to build an

end-to-end tool. These three sub-problems are: (1) edit localization,

(2) edit granularity, and (3) associated edits identi�cation. The as-

sociated code update problem formulation assumes that we have

some solution for these three related problems.

Edit Localization: The edit localization problem seeks to �nd

the locations ! where the developer should make edits. How we

get these locations is dependent on the application. For example,

in an IDE, cursor location is a good indicator of where the devel-

oper wants to make changes. Another option is to build a model

that predicts the next edit location given prior associated edits. In

overwatch [68], locations were picked based on whether certain

learned patterns matched the code at those locations. The patterns

that were matched against were selected conditioned on the past

applications of associated edit patterns.

Edit Granularity: The edit granularity problem refers to the

issue of de�ning what constitutes an “edit”. We assume that we have

heuristics to de�ne when a local code change quali�es as a single

edit. All changes between two versions that successfully parse can

be used as a de�nition of a single edit, as in the work [46]. Another

heuristic could be to combine all changes that occur within a small

spatial vicinity of each other (in a commit) as a single edit [10].

Associated Edits: The associated edits problem seeks to �nd

edits from the past history that would be most useful in predicting

changes at the given locations ! in the current version E= of the

source code �le. Edits that are spatially close to the target loca-

tions ! are likely relevant [10]. Similarly, edits that are temporally

close – that is, edits that happened in the recent past – are also

likely candidates for being relevant. We can use some combina-

tion of temporal and spatial proximity to obtain a candidate set

of relevant edits [68]. For predicting updates on a target location,

the temporally-proximal edits can indicate the developer’s editing

intent and the spatially-proximal edits can assist in providing mean-

ing to the target snippet. We can even further selectively choose

from the edits in the spatio-temporal vicinity of the target locations

using the approach in a recent work that mines relevant edits based

on their syntactic structure and their likelihood of occurring to-

gether [68]. We can use any or all of these approaches to construct

the set of relevant edits. Our goal is to show that even when the

relevant edits are heuristically generated, using them for associated

code update predictions can be very bene�cial.

3.2 Related Problem Formulations

Existing auto-regressive LLMs, such as, gpt3 and codex, predict

completions for a given prompt. If the prompt contains the current

version E=−1 of the artifact, then these LLMs predict text that is

meant to be appended to E=−1 to generate the new version E= .

These models rely on the text in the spatial vicinity of the change-

locations ! to make predictions. In our terminology, these models

are modeling the probability % (E= | E=−1). This is clearly di�erent

from the problem we are considering. We demonstrate that the

associated code update formulation yields a simple yet e�ective

way of improving LLM performance on software development tasks.

The EditCompletion task in [10] is formalized as a study of

% (X2,3 | !, E2, X0,1, X1,2) where the two given edits are edits per-

formed in the spatial vicinity of the current location, one before

and one after the current location. The EditCompletion task does

not consider relevant edits that may be spatially distant. Our prob-

lem formulation is a generalization of EditCompletion problem,

and in fact, we use the benchmarks from [10] for evaluation. As

discussed in the introduction, our approaches are di�erent too.

The edit likelihood prediction problem [55] explicitly consid-

ers the study of % (E= | E0, E1, . . . , E=−1), but it uses % (X=−1,= |

E0, E1, . . . , E=−1) as a way to estimate the former. This problem dif-

fers from the associated code update problem in two ways: �rst, it

includes the sub-problem of �nding the locations ! that need to be

edited as part of the larger problem, and second, it considers the

entire edit history as an ordered sequence (in an auto-regressive

way) whereas we focus on a small set of associated edits.

4 EXPLOITING ASSOCIATED EDITS

We propose Grace, a technique to use pre-trained language models

for solving the associated code update problem. There are two

possible ways of using these models to perform the associated

1486

Grace: Language Models Meet Code Edits ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

code update task. One approach is based on using the models as a

black-box, but with carefully designed prompts (Section 4.2). This

prompting strategy works for big LLMs, such as gpt3 and codex.

The second approach is based on �ne-tuning a pretrained language

model, CodeT5 in our case, for our speci�c associated code update

task (Section 4.3).

4.1 Pre-trained Language Models

There is now a large collection of pre-trained language models.

These models are pre-trained on data collected from millions of

webpages, and treat all data as a sequence of tokens, which is

the natural choice for representing natural language text [50, 52,

53]. The reason for the popularity of this class of models is that

they exhibit ability to perform multiple di�erent tasks with just

some instructions and zero examples (zero-shot task transfer) even

though they are not explicitly trained for these tasks.

It was observed that pre-trained LLMs are not as e�ective when

working with code because code has strict syntactic and semantic

correctness requirements. Di�erent representations for code and

code edits have been developed and models have been trained to

work with those representations [5, 10]. However, as the size of

pretrained languagemodels has grown, their zero-shot performance

across tasks has improved. Moreover, these models have also shown

the ability to perform a new task given just a few demonstrations

in the prompt (few-shot learning) [11]. Using their zero-shot and

few-shot learning capabilities, these models are now being used

successfully on tasks that involve understanding, manipulating, or

generating code [16, 28, 63] while still viewing code just as text

(and not as an abstract syntax tree, for example).

4.2 Prompting LLMs

We experimented with a few di�erent prompt designs and then

�xed one for our experiments. (The results were not signi�cantly

di�erent for other reasonable prompt designs.) Before we describe

the Grace prompt, we �rst describe the completion, insertion, and

editing variants of the codex family of models [8, 16].

The codex family of models is available in the “completion”,

“insertion” and “editing” variants. The completion model takes a

prompt, which usually contains code before a cursor location, and

predicts the code that will follow that prompt. Apart from the

prompt, the insertion model also takes a su�x prompt, which usu-

ally contains the part of code that should come after the code the

model predicts. Thus, the insertion models perform the in�lling

task - predict the code that should come after the prompt but before

the su�x. Finally, the editing variant of the codex models has two

di�erent input prompts: an input that is the string that needs to be

edited, and an instruction that tells the model how to edit the input.

We treat the associated code update task as an in�lling prob-

lem and hence use the codex insert family of models for our

experiments. The reasons for this choice are as follows:

(1) The insertion model allows us to include code that is spatially

after the target location in the su�x.

(2) The editing variant (code-davinci-edit-1) requires instruction

on how to edit the given piece of code. Our experiments with

providing the associated edits in this instruction prompt failed

to generate good results. This is possible because the editing

1 <CurrentEdit >

2 <Prefix > . . . </Prefix >

3 <Before > . . . </Before >

4 <After > . . . </After >

5 <Suffix > . . . </Suffix >

6 </CurrentEdit >

7 <CtxEdits >

8 <Edit >

9 <Prefix > . . . </Prefix >

10 <Before > . . . </Before >

11 <After > . . . </After >

12 <Suffix > . . . </Suffix >

13 </Edit >

14 <Edit >... </Edit >

15 . . .

16 </CtxEdits >

Figure 2: Grace Prompt for the associated code update task.

model is better suited only for instructions given in natural

language1.

Figure 2 shows the Grace prompt we provided codex models

for the associated code update task. Let E=−1 be the current version

of the �le, ! be the locations where code needs to be updated, and

X0,1, X1,2, . . . , X=−2,=−1 be the = − 1 associated edits. We assume that

each edit X8−1,8 can be partitioned in four parts: (1) <Prefix> , which

contains the fragment of code in version E8−1 that is untouched

by the edit, but occurs before the edited code, (2) <Before> , which

contains the fragment of code in version E8−1 at locations ! that

is replaced by the edit, (3) <After> , which contains the fragment

of code in version E8 at locations ! in place of before in E8−1, (4)

<Suffix> , which contains the fragment of code in version E81 that is

untouched by the edit, but occurs after the edited code. These four

parts are included in the prompt for each edit as shown in Figure 2.

The associated edits are all included within the <CtxEdits> tag. The

edit to be predicted is included inside the <CurrentEdit> tag.

In this prompt format, the current edit is written out �rst fol-

lowed by the associated edits. This style ensures that if the prompt

gets bigger than what can �t in the input to the model, the to-

kens from the associated edits are pruned. We also experimented

with variants where certain associated edits were placed before

the current edit and some after depending on where they occurred

spatially. Most such changes did not cause any signi�cant change

in our experimental observations.

The insertion model is expected to predict the string that should

occur between <After> and </After> that occurs under <CurrentEdit> .

The pre�x of the prompt string up until <After> goes in the prompt,

and the su�x of the prompt string starting from </After> is included

in the su�x prompt of the insertion model.

The prompt design above is reminiscent of few-shot learning

prompts where the prompt contains a few examples of the task to

be performed. Technically speaking, the above prompt is not a few-

shot prompt since we are not providing one or more examples of the

“associated code update task”. However, if we view the associated

code update problem as a means of providing few-shot examples for

the “code update task”, then a natural question is whether associated

edit update task can just be viewed as a few-shot prompting for

code update task. We answer this question in Section 5.

One of the central goals of the paper is to �nd how using associ-

ated edits compares with not using it when predicting code updates.

To enable this comparison, we need a prompt for the case when

1We do not include code-davinci-edit-1 in our experiments

1487

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA P. Gupta, A. Khare, Y. Bajpai, S. Chakraborty, S. Gulwani, A. Kanade, A. Radhakrishna, G. Soares, and A. Tiwari

1 <CurrentEdit >

2 <Prefix > . . . </Prefix >

3 <Before > . . . </Before >

4 <After > . . . </After >

5 <Suffix > . . . </Suffix >

6 </CurrentEdit >

Figure 3: Prompt when associated edits are not used.

Table 2: The models used in our experiments.

Name Base Model Fine-tuned on

codex-davinci code-davinci-002 -

codeT5-u CodeT5-base un�ltered c3po train

codeT5-uf codeT5-u �ltered c3po train

codeT5-uo codeT5-u overwatch train

associated edits are unavailable. Here, we use the prompt shown in

Figure 3. Speci�cally, we remove the <CtxEdits> section in Figure 2.

Note that the current code context is still available to the model in

the <Prefix> and <Suffix> tags within <CurrentEdit> .

4.3 Fine-tuning LLMs

We now describe how we create �ne-tuned models for predicting

code updates with and without associated edits. We started with the

CodeT5-base model [39, 63], a pre-trained encoder-decoder Trans-

former model. This base model was trained on CodeSearchNet [33]

that contains source code in 6 common programming languages,

extended with two additional C/C# datasets from BigQuery [29].

We further �ne-tuned several variants of this model on the task of

predicting code edits (see Table 2). There are two versions of each

variant – one that is �ne-tuned using the given associated edits and

one that only uses the current version of the code. The two types

of �ne-tuning use the same dataset and base model weights, the

only di�erence being how the data was prepared. The variants are

discussed in detail in Section 5.1.

We prepare data for �ne-tuning by turning each train-

ing example into the Grace prompt, as shown in Fig-

ure 2. We adapt the CodeT5 tokenizer by adding spe-

cial tokens: <Prefix>, </Prefix>, <Suffix>, </Suffix>, <CurrentEdit>,

</CurrentEdit>, <CtxEdit>, </CtxEdit>, <Edit>

</Edit>, <After>, </After>, <Before>, </Before> . We formulate the

training as a masked span prediction task where we replace the

contents between <After> and </After> under <CurrentEdit> with a

sentinel token and ask the model to predict the masked span.

When �ne-tuning CodeT5 to predict code update without using

associated edits , we use the prompt shown in Figure 3. Again, we

formulate the training as a masked span prediction task replacing

the contents between <After> and </After> under <CurrentEdit> with

a sentinel token and asking the model to predict the masked span.

4.4 Deployment

We now discuss how the sub-problems discussed in Section 3.1 can

potentially be solved and integrated with our approach to create

an IDE-based edit prediction tool:

Setup: As discussed in Section 3.1, the editing target could be

the line corresponding to the user’s cursor location. overwatch

can be used to extract temporal edits from patterns that match the

target location and these edits can serve as our associated edits.

Table 3: The datasets used for �ne-tuning and testing.

Dataset #training #eval #test

c3po �ltered 39.5K 4.4K 5.9K

c3po un�ltered 1.67M 180K 210K

overwatch 9K 1k 1K

Worklow: Consider a user editing code in an IDE. The tool will

get triggered on the line where the user’s cursor resides and the

associated edits would be retrieved using overwatch. Our edit

prediction prompt will be generated as discussed in Section 4.2. The

prompt will then be sent as an input to an LLM (say, codex-davinci)

and the predicted edit (or top-k predicted edits) will be suggested to

the user. We have designed an interactive tutorial to walk readers

through this work�ow using the various examples discussed in

Section 2 and Section 5.6 (see Section 9 for instructions).

5 EXPERIMENTS & RESULTS

5.1 Experimental Setup

We use two datasets from prior work for our experiments, the c3po

dataset [10] and the overwatch dataset [68]; see Table 3.

c3po Dataset: The c3po dataset [10] was created by scraping

all commits in 53 most popular C# GitHub repositories. Each edit

in a commit would create a single example, and the edits, if any,

on the 10 lines above and 10 lines below the edit would make up

the associated edits. The task is to predict the code after an edit is

performed, given the code before the edit and the associated edits.

Thus, the c3po dataset is an instance of the associated code update

task, where spatial locality is used to de�ne associations between

edits. Note that the c3po paper refers to these edits as contextual

edits which translate to edits with spatial associations in our work.

The c3po dataset was further �ltered by its creators into a �l-

tered c3po dataset by removing “simple” benchmarks (e.g. those

containing only deletion or renaming). Further, they removed all

benchmarks where the target edit involved insertion of new code

as their approach cannot handle those. The �ltered set was further

partitioned into train, validation, and test benchmarks, containing

respectively 39.5K, 4.4K, and 5.9K benchmarks; see Table 3. We used

the same partitions in our evaluation.

overwatch Dataset: The dataset described in [68] was gath-

ered from versions of source code �les taken as they were being

edited in an IDE session over two separate periods. In the �rst

period, 134.5K versions were collected over 682 sessions. In the

second period, 201.1K versions were collected over 399 sessions.

The versions in the �rst period were mined in [68] to get a set of

9.9K edit sequences which are further used to learn a collection of

symbolic rules representing commonly occurring Edit Sequence

Patterns. These learned rules are used to generate code suggestions

in the second period, and they are found to be capable of producing

suggestions at 1048 �le versions. For the purpose of this work, we

are considering 90% of the 9.9K edit sequences from the �rst period

as the overwatch training set, keeping other 10% as the overwatch

evaluation set; and the points of applications as the overwatch test

set. We discuss these datasets further in Section 5.5.

Models: We used two models as starting points. The �rst is

code-davinci-002 (referred to as codex-davinci in this text), a

1488

Grace: Language Models Meet Code Edits ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

decoder-only transformer model which is a part of the OpenAI gpt-

3.5 series [8, 16]. This model is presented with the prompts based

on either Figure 2 or Figure 3 depending if we want to use use

associated edits for edit prediction. The second model is CodeT5

[39, 63], an encoder-decoder model introduced by Salesforce in the

base and large Variants. We use the CodeT5-base variant which

has 220M parameters with 12 transformer blocks in the encoder and

decoder each. This model is �ne-tuned on the un�ltered c3po train-

ing dataset to create the model codeT5-u. The model codeT5-u is

further �ne-tuned on the c3po �ltered train set and overwatch

train set to create codeT5-uf and codeT5-uo, respectively; see

Table 2. We used this two step �ne-tuning process since the over-

watch training data was limited. The �ne-tuning and inference

setups for these models are described below.

Setup for codex-davinci Experiments: We used the OpenAI

public API to perform the inference experiments with the codex-

davinci model. The insert mode of the model was used and the

input was divided into prompt and su�x following our prompting

strategy discussed in Section 4.2. Temperature sampling was used

to generate n=5 predictions, and the temperature was set to 0.1

after evaluating multiple candidate values. The maximum length

(maximum number of tokens to generate) was set to 256, stop token

to </After> and default values were used for all other parameters.

Setup for CodeT5 Experiments: For our �ne-tuning experi-

ments, we use a virtual machine with 16 AMD MI200 GPUs (each

with 64GiB of vRAM), 92 CPU cores and 1594 GB of RAM.We set the

input token length to 1024 tokens and truncate any longer inputs

from the end. There are two steps in our �ne-tuning process: �ne-

tuning on the un�ltered c3po dataset followed by dataset-speci�c

�ne-tuning on the overwatch training and c3po �ltered datasets.

For the initial �ne-tuning with the un�ltered c3po dataset, we ini-

tialize the model with the publicly released CodeT5-base weights

and train it for 8 epochs with a batch size of 8 per device. The

optimization is done using the Adafactor[59] optimizer with learn-

ing rate initially set to 34−4 and gradually updated using a linear

scheduler after a warmup of 500 steps. The best model weights are

determined using the perplexity score by evaluating on the c3po

validation dataset at every 1000 steps. For further �ne-tuning on the

overwatch training and c3po �ltered datasets, we set the initial

learning rate to 14−4, the number of warmup steps to 50 and train

the model for 10 epochs while evaluating it every 50 steps. During

inference, we use beam search with a beam width of 5.

Metric: In order to stay consistent with the metrics used by

papers that curated the target datasets (namely the c3po and over-

watch datasets), we de�ne a metric called the exact match. In the

experiments with the c3po dataset, a prediction is said to be an

exact match if it syntactically matches the ground truth modulo

whitespaces. We use Exact Match to also denote the percentage of

cases where a prediction was an exact match. More details on the

overwatch dataset evaluation can be found in Section 5.5. In all

our results, we report Exact Match for Top-1 predictions.

5.2 Grace Improves Prediction

A key question we set out to answer was whether associated edits

help predict future code changes. In other words:

RQ1. Does availability of associated edits improve code update

predictions? Does the answer depend on the prediction approach?

Table 4: Associated edits improve code prediction.

c3po test set overwatch test set

Model

Without

assoc. edits

With

assoc. edits

(Grace)

Without

assoc. edits

With

assoc. edits

(Grace)

codex-davinci 37.09 67.92 31.81 49.09

codeT5-u 64.52 74.16 22.25 34.00

codeT5-uf 73.46 81.83 40.78 48.23

To answer this question, we tested both codex-davinci andCodeT5

on both the c3po and overwatch test sets, once with associated

edits in the prompt and once without them.

Results: Table 4 shows the Exact Match obtained when we use

the di�erent models on the di�erent datasets with and without

associated edits. We see that codex-davinci shows a 30% absolute

increase in Exact Match when provided associated edits than when

not on the c3po dataset, and about 17% absolute increase on the

overwatch dataset. The �ne-tuned CodeT5 models showed about

a 10% absolute increase in Exact Match on both datasets. Finally,

although Table 4 reports the trend for 2 models and one prompting

style, we tried other models (including other OpenAI models from

gpt3 and gpt-3.5 series) and di�erent styling of the prompts (for

example, using C# comments, rather than tags, to delineate the

“before” and “after” versions), and in every case, there was at least

a 10% absolute increase in Exact Match – often it was much higher.

Result 1: Conditioning code prediction on associated edits helps,

across models and test datasets.

5.3 Relevance of Edits Matters

The associated code update problem conditions code prediction

on some associated edits. We have informally mentioned that the

associated edits should be picked based on their relevance to the

code that is being updated. Our next research question is concerned

with how relevance impacts prediction.

To motivate this research question, we �rst make the connection

to “few-shot prompting”. Consider just the code update task – predict

the new version of the code given its old version. The di�erence

between the “code update task” and “associated code update task”

are the associated edits. Now, a prompt containing an instance of

the “associated code update” task begins to look a lot similar to a

few-shot prompt for a code update task where the associated edits

serve the purpose of few-shot examples of code update.

It may be tempting to say that the “associated code update” task

just combines some few-shot examples with a code update task.

However, this view is not bene�cial since associated edits are more

than just any examples of code updates. As discussed in Section 2,

the associated edits contain crucial information for performing the

given code update. To validate that associated edits are more than

just code update examples, we turn to our next research question:

RQ2. Are associated edits important for code update prediction,

or simply serve as few-shot examples for the code update task?

In other words, is there something to be gained by using asso-

ciated edits beyond what we gain by just adding some few-shot

examples of code updates (that are not necessarily associated)?

Results: Table 5 shows the Exact Match we get using the codex-

davinci model using di�erent sets of edits as the “associated edits”.

1489

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA P. Gupta, A. Khare, Y. Bajpai, S. Chakraborty, S. Gulwani, A. Kanade, A. Radhakrishna, G. Soares, and A. Tiwari

Table 5: Less relevant edits degrade prediction: codex-

davinci on �ltered c3po test set for di�erent associated edits.

Choice of Associated Edits Exact Match

Association Dataset Repository

Spatial Filtered Same 67.92

Random Filtered Same 64.90

Random Filtered Other 55.82

Random Un�ltered Same 43.23

Random Un�ltered Other 43.64

No Associated Edits 37.09

We use the c3po �ltered test set again for evaluation. We saw before

that we get a 67.92% Exact Match on this test set (Table 4). This case

corresponds to when the prompt includes spatially close �ltered

edits from the same �le (this is a property of the c3po benchmarks).

Let us now randomly sample edits to include in the prompt. There

are two dimensions and two buckets in each dimension to use for

sampling: the �ltered dataset versus the un�ltered dataset, and edits

from the same repository versus edits from di�erent repositories.

Randomly picking �ltered edits from the same repo drops perfor-

mance only slightly. However, randomly picking �ltered edits from

other repos drops performance more signi�cantly to 55.82%. When

sampling from un�ltered edits - irrespective of whether edits are

from the same or di�erent repos - the Exact Match remains consis-

tently around 43%. We recall that when we provide no associated

edits in the prompt, we had 37.09% Exact Match (Table 4).

The results show that going from �ltered to un�ltered edits

reduces relevance of edits to the target �ltered edit. This is because

the �ltering step in [10] actually removes certain kinds of edits; for

example, edits that are pure insertions or deletions, or edits that

result in unparseable code. Hence, a randomly picked un�ltered

edit is more likely to be structurally di�erent from our target edit

(which was picked from the �ltered test set.)

The results also show that picking edits from repositories other

than the repository of the target edit reduces relevance of the edit

to the target edit. This is because edits from the same repository

could potentially be using common concepts, classes, methods,

programming practices, and even contain similar changes.

Finally, we note that using un�ltered edits from other reposi-

tories (43.64%) is still better than not using them (37.09%). This is

possibly due to the LLM leveraging its few-shot learning capabilities

in that case. The gain from around 43% to around 68% can thus be

attributed to the associated edits. We can, therefore, conclude that:

Result 2: Associated edits play a crucial role in predicting a target

edit, and the Exact Match metric drops as the relevance of the edits

to the target edit drops.

5.4 Pre-trained Outperforms Custom

When working with code and code edits, LLMs (such as codex

and gpt3) and other pre-trained models (such as CodeT5) use byte-

pair encodings (BPE) to tokenize code and then represent code as

a sequence of tokens – in the same way as Natural Language is

represented. In contrast, some works have argued for the use of

custom representations for code and code edits that partly capture

the parse structure and/or the programming language semantics.

The paper that introduced the c3po dataset [10] also used the spatial

Table 6: Comparison with c3po.

Exact Match on

Model c3po overwatch

c3po 53.20 10.50

codex-davinci 67.92 49.09

codeT5-u 74.16 34.00

codeT5-uf/ codeT5-uo 81.83 48.23

edits used by our pre-trained LLMs but they learned a custommodel

employing code-centric representations for code edits. Our next

research question concerns comparing our approach based on pre-

trainedmodels with prior work on customneural approaches.While

both the approaches have access to the associated spatial edits, we

want to understand how pre-trained models with their text-based

prompts compare against models with custom code representations.

RQ3. How does our LLM-based approach compare with the c3po

approach based on a custom neural model on the associated code

update task?

Let us compare how the c3po custom neural model performs

in comparison to codex-davinci and �ne-tuned CodeT5. We �rst

compare these models on the �ltered c3po test set and the over-

watch test set. Table 6 shows that both codex-davinci and �ne-

tuned CodeT5 signi�cantly outperform the custom c3po model on

both test datasets. The c3po model was reported to give a 53.2%

accuracy [10] on the c3po test set, whereas both codex-davinci

and �ne-tuned CodeT5 give better results. The codeT5-uf model

gives 81.83% Exact Match, which is signi�cantly higher than 53.2%

achieved by the c3po model. Similarly, on the overwatch dataset,

the best possible con�guration of c3po was reported to give 10.5%

ExactMatch [68], whereas all of codex-davinci (49.09%), codeT5-u

(34%), and codeT5-uo (48.23%) perform signi�cantly better.

Comparison on Un�ltered c3po Test Set: The c3po model

does not report results on the un�ltered c3po dataset. This is partly

because it contains benchmarks that are out of scope for their

technique. Two such notable benchmarks are: (a) benchmarks that

contain alien insertionswhere the inserted code contains tokens that

do not occur in either the associated edits or the current version

of the target code snippet, and (b) benchmarks that contain code

snippets that cannot be parsed by an underlying parser (this step

is important for c3po to generate the Abstract Syntax Tree (AST)).

Grace can handle both these classes of benchmarks. We evaluated

codex-davinci on a 5.9K random sample from this test set and

obtained a 43.47% Exact Match. These 5.9K samples did not contain

any benchmarks from the �ltered set. (We used a sample because

of the cost of doing inferences using an LLM.) On the full un�ltered

c3po test set, codeT5-u has 57.3% Exact Match using Grace and

45.30%without. These numbers are lower than those for the �ltered

c3po test set. This indicates that the un�ltered benchmarks are

more challenging than the �ltered benchmarks, which is at odds

with the informal assertions to the contrary in [10].

Alien Insertion Benchmarks: We extracted the samples from

un�ltered c3po test set that involved alien insertions. On that set,

codeT5-u with Grace achieved 17.6% exact match, but only 10.28%

without it. The codex-davinci model achieved 17.37% exact match

with Grace and 10.67% without it. This indicates that conditioning

on associated edits can help with hard benchmarks.

1490

Grace: Language Models Meet Code Edits ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 7: Comparison with overwatch.

Technique overwatch
Codex-

Davinci
codeT5-u codeT5-uo

Exact Match 38.17 49.09 34.00 48.23

Admittedly, the c3po model is much smaller (750K parameters)

compared to both codex-davinci (175B) and CodeT5 (220M). How-

ever, these large models are pre-trained and hence they can be

quickly �ne-tuned or prompt engineered for downstream tasks

without need for excessive training data. Furthermore, the pre-

trained models are not limited in scope, as we have discussed above.

Result 3: Pre-trained language models can be tuned to yield higher

Exact Match compared to the custom c3po model for associated

code update prediction.

5.5 Temporal Edit Prediction

The temporal edit prediction problem is an application that is well-

suited for using Grace. The state of the art in this application

domain is overwatch [68]. Fundamentally, overwatch is solving

a di�erent problem from the associated edits prediction problem:

the input to overwatch are �ne-grained IDE version histories of

the form E0, . . . , E= where each E8 is a version of the source code

�le. The edit histories are extremely �ne-grained, at the keystroke

unlike source control histories. For example, if a developer types a

variable name predicate, each intermediate �le version containing

the pre�xes p, pr, . . . is present in the edit history.

The overwatch technique takes the set of such IDE version

histories as a training set, and produces a ranked sequence of edit

sequence patterns (ESPs). At inference or run-time in an IDE, each

ESP examines the current version history E0, . . . , E= and (a) identi�es

a sequence of transitive coarse-grained edits X80,81 , X81,82 , . . . , X8:−1,8:
(i.e., each X80,8: is the edit between the potentially non-consecutive

versions E8 9 and E8 9+1), and (b) uses these edits to predict the next

edit to E8: . In short, the ESPs are doing two tasks: (a) identifying

“associated edits” from �ne-grained version histories, and (b) using

these associated edits to predict the next edit.

RQ4. Can our LLM based approach be used in conjunction with

overwatch’s temporal associated edit identi�cation? How does it

compare with overwatch’s symbolic edit prediction component?

The second task above is exactly the prediction from associated

edits problem we are tackling in this paper. Hence, we run over-

watch on its test data of 399 version histories with over 200, 000

versions, and gather the associated edits wherever the ESPs are able

to identify them. This results in a dataset of 1048 cases as mentioned

in Section 5.1. At training time, overwatch identi�es a set of 9.9K

edit sequences from the older data of 682 version histories, however

using di�erent techniques. The edit sequences are such that each

of them belong to some commonly occurring edit sequence pattern

across version histories – they are the supports for ESPs – and thus

each of them can be treated as a set of associated edits (all edits in

the sequence but the last), and expected edit prediction (last edit in

the sequence). We use this set of 9.9K instances to further �ne-tune

codeT5-u to obtain codeT5-uo; see Table 2.

Table 7 summarizes the di�erent models’ performance on the

1048 test cases, along with overwatch’s predictions as a baseline.

1 catch (Exception ex)

2 {

3 - info.ReportClientError('Scheme is missing ');

4 + info.ReportClientError('Scheme is missing ',System.Net.

HttpStatusCode.BadRequest);

5 }

6 default:

7 - info.ReportClientError('No such action ');

8 + info.ReportClientError('No such action ',System.Net.

HttpStatusCode.NotFound);

Figure 4: User adds BadRequest error code on Line 3 and moves

to Line 5 where we should predict inserting NotFound .

Except codeT5-u, all of our models beat the prediction component

of overwatch by a considerable margin of roughly 10%.

Result 4: Our LLM-based techniques, in conjunction with systems

like overwatch creates neuro-symbolic solutions that are better

at predicting next edit compared to purely symbolic techniques.

5.6 Qualitative Analysis

Our experiments support two major observations: (a) LLMs can

predict edits that existing techniques fundamentally cannot support,

and (b) the addition of associated edits improves the performance of

LLMs on the task of predicting code edits. Next, we provide insights

into why these observations hold true.

5.6.1 Comparison with existing techniques. In the following

few paragraphs, we discuss the salient features of LLMs and the

Grace prompt design that help our approach outperform existing

techniques, i.e., c3po and overwatch on certain kinds of edits.

Generative Capabilities of LLMs are Useful in Predicting

Alien Insertions: As discussed in Section 2, the LLMs we discuss

in this paper can support most forms of insertions as they have

access to a wide number of tokens through their pre-training and

our prompting setup doesn’t restrict the tokens that the models can

generate. Existing techniques are restricted in this aspect by design:

c3po cannot insert tokens other than those found in the contextual

edits and Overwatch may learn patterns where the prediction template

is incomplete due to unavailable mappings for holes in the Temporal

Edit Pattern. For instance, consider the scenario in Figure 4 where a

developer is trying to add HTTP error codes to error reporting calls.

Here, the developer �rst edits Line 3 by adding a BadRequest error

code to the reporting call. They then move to Line 5 to make a

similar edit. Note that the expected error code on Line 5 is di�erent

from the one on Line 3 as it corresponds to a “No such action” error

message. Moreover, the expected error code has a token ‘NotFound’

which is not present anywhere in the existing context. As C3PO’s

pointer network can only pick paths to/from existing nodes, it

cannot generate this new token. codex-davinci with Grace can

correctly predict this edit.

Access to Local Spatial Context in the Prompt is Useful:

overwatch learns patterns and templates from observed edit se-

quences and strictly relies on these patterns to make predictions.

There are cases, however, where the pattern learnt by overwatch

is too general and is applicable irrespective of what is in the spatial

vicinity of the target edit. To better understand this limitation, con-

sider the scenario in Figure 5 from an active IDE editing session.

The user �rst replaces ex on Line 5 with ex.Output and then moves

to Line 3 to make the next edit. Overwatch gets triggered on Line 3

1491

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA P. Gupta, A. Khare, Y. Bajpai, S. Chakraborty, S. Gulwani, A. Kanade, A. Radhakrishna, G. Soares, and A. Tiwari

1 foreach (var ex in currentExamples)

2 {

3 - Console.WriteLine(GetText(ex , diff.BeforeFile));

4 + Console.WriteLine(GetText(ex.Input , diff.BeforeFile));

5 - Console.WriteLine(GetText(ex , diff.AfterFile));

6 + Console.WriteLine(GetText(ex.Output , diff.AfterFile));

7 }

8 var output = Run(currentExamples.First ().Input);

9 AssertEqual(currentExamples.First ().Output , output);

Figure 5: User replaces ex on Line 5 by ex.Output , moves to Line 3

where we should predict replacing ex by ex.Input .

and predicts that ex should be replaced by ex.Output since it learns

the pattern “repeat the same replacement”, which is an instance of

a common pattern. However, this is incorrect since ex should be

replaced by ex.Input here. codex-davinci, with Grace, correctly

predicts this edit because ex on Line 3 is followed by diff.BeforeFile

and Line 8 has additional information about the property Input that

is associated with each entry in ‘currentExamples’. Our prompt

design allows �exible addition of this additional spatial context

through the <Prefix> and <Suffix> tags. overwatch, on the other

hand, cannot access spatial context that is not already present in

the learned template.

Language Based Pre-training is Useful in Identifying Se-

mantic Editing Pa�erns: Scenarios in Figures 4 and 5 also high-

light the ability of LLMs to predict patterns based on semantics

of identi�ers in the context. In Figure 5, codex-davinci seems to

understand that the relationship between diff.AfterFile and diff.

BeforeFile would also re�ect in the preceding argument (ex.Output

and ex.Input , respectively). In Figure 4, codex-davinci uses the

signal from the 'No such action' error message to correctly predict

that the error code should be System.Net.HttpStatusCode.NotFound . Ex-

isting techniques such as c3po and overwatch rely on edit path

analogies and symbolic editing patterns respectively to understand

the editing intent. Without the use of a language-based pre-training

component, it may be di�cult to obtain the semantic understanding

needed to perform the edits in Figures 4 and 5.

5.6.2 Benefits of using associated edits. We observed three key

bene�ts of providing associated edits to LLMs:

Associated Edits Help in Clarifying the Editing Intent of the

Developer: The illustrative example in Section 2 (Figure 1) showed

that associated edits provide strong signals about the next edit

that the developer intends to perform. In fact, without associated

edits, codex-davinci doesn’t predict the right edit even in the top-5

results. With associated edits, the correct prediction is ranked at

the top suggesting that associated edits help improve the top-1

performance of the model.

Associated Edits Emphasize Relevant Code Context: While

LLMs like codex-davinci can support a large number of tokens in

their prompts (4K in codex-davinci’s case), it has been observed

that irrelevant information in the prompt a�ects the model’s ability

to attend to the right set of tokens [60]. In the illustrative example

in Figure 1, the target edit is 247 lines away from the required

spatial context. codex-davinci can predict the right import with

only 4-5 lines in the spatial context and access to the associated edit.

The scenario without associated edits, on the other hand, requires

providing 250 lines of mostly irrelevant code to the model to include

the Exception that the required import provides. codex-davinci

fails to generate the right prediction in the top-5 results even with

all of this spatial context. On a simpler version of this example

where the relevant code context is moved closer to the target edit

(from Line 250 to Line 15), codex-davinci without associated edits

predicts the right import in top-10, but it is not the top-1 prediction.

Associated Edits Contain Information about Edited Code

Elements: There may be key variables that are deleted or replaced

by previous edits but referenced by the target code location. With-

out access to these associated edits, the model has no context about

these variables, methods or other code elements. For example, if a

variable var1 is replaced by var2 in a previous edit and the developer

now moves to line var1 = var1 / 2 , the model is expected to replace

this line with var2 = var2 / 2 . Without access to the previous edit,

the model doesn’t know the relationship between var1 and var2 and

may consider them to be two distinct variables.

5.7 Additional Results & Discussion

We conducted additional experiments to understand how Grace

a�ects robustness and entropy during prediction. We also evaluated

other prompting styles and model con�gurations. See the technical

report for details and further discussion.

6 RELATED WORK

6.1 Automatic Code Editing

In recent years, there has been a signi�cant boom in academic and

industrial research for automating developers’ code editing activi-

ties. Most modern IDEs [25, 45] support automated code changes

like the addition of boilerplate code, developer-assisted refactoring,

etc. While these developer-assisted approaches tremendously help

boost productivity [47], a signi�cant amount of further research ex-

ists in automated code editing aimed at learning code edit patterns

from developer’s previous edits [6, 10, 13, 17, 27, 48, 49, 54, 55, 61,

67, 68]. We divide these approaches into two orthogonal directions:

Symbolic Approaches: Symbolic approaches learn the code

transformation patterns by representing the example edits with

symbolic abstractions. Given a set of such symbolically represented

abstract edits, these approaches generalize the edit patterns as a

sequence of edit operations. For instance, Refazer [56] represents

syntactic changes with Domain Speci�c language and uses a de-

ductive inference algorithm to generalize and synthesize common

edit patterns. More recently, Overwatch [68] learns to generalize

developer code editing behavior from a sequence of code versions.

Each edit is represented as pre and post program states, and general-

ized edit sequences are derived from an edit graph from these state

pairs. While the earlier works in symbolic editing [24, 34, 42, 43, 56]

primarily focused on syntactic editing, i.e., refactoring, similar to

overwatch [68], we also focus on semantic changes in code. Simi-

lar to overwatch, we emphasize on conditioning future edit w.r.t.

associated edits. However, unlike overwatch, Grace does not nec-

essarily need demonstrations of the speci�c edit sequence pattern

to learn to apply that pattern.

Neural Network Based Approaches: Recent advancements

in machine learning and neural networks have catapulted the

�eld of code editing with Neural Networks relying on their noise

tolerance and generalization capabilities. As such, several ap-

proaches [10, 13, 17, 21, 62, 67] have been proposed over the years

using di�erent types of Neural Networks for automatically gener-

ating edits. Notable among these are Sequence to Sequence Neural

1492

Grace: Language Models Meet Code Edits ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Machine Translation based approaches [15, 17, 62], Tree to Tree

translations approach [13], and Graph Neural Network based ap-

proach [21, 65]. While most of these approaches learn to generalize

code edit patterns from seemingly unrelated example edits, this

work shows the importance of related associated edits. Neverthe-

less, the most notable feature of Neural Code Editing approaches

is how the approach generates the edited code. While some ap-

proaches [10, 21, 67] generate a script of edit operations (i.e., insert,

delete, update), others [13, 17, 62] generate the edited code applying

the edit pattern in the process of translation. Similar to the latter

approach, we generate the edited code given the code before the

edit.

6.2 Deep Learning for Source Code

Recent advancement in Deep Neural Networks (DNN) has drawn

focus on the application of such in di�erent source code understand-

ing and generation tasks, including bug detection [14, 22], code

comprehension [1], code search [12], code generation [63], code

translation [3, 38], program repair [17, 62], etc. The vast plethora of

DNN models in SE tasks ranges from general-purpose models [2]

inspired by Natural Language Processing to custom-built models for

source code modeling [21, 30, 65]. These models, however, require

a large quantity of labeled data to optimize millions of parameters.

To overcome this problem, researchers have proposed to pre-train

models with a large quantity of unlabelled data and subsequently

re-use such a pre-trainedmodel across di�erent tasks [20, 51]. There

are a wide variety of pre-trained models for source code proposed

over the years [2, 16, 23, 63], some containing hundreds of billions

of parameters [16], colloquially known as large language models

or LLMs. LLMs show excellent promise in autonomously learning

programming language properties and additionally, have shown the

ability to learn deductive reasoning inherent in programming and

natural languages [41, 57, 64, 66]. As such, these LLMs are leveraged

in many industrial developer assistance tools such as GitHub Copi-

lot [28], Amazon CodeWhisperer [58], Intellicode Compose [18, 44],

etc. In this work, we show an in-depth investigation of harnessing

the power of these LLMs for automated code editing.

7 LIMITATIONS & THREATS TO VALIDITY

Limitations: There are certain limitations of our approach that

we would like to address in future work. Firstly, as our approach

depends on other edit mining techniques, it is restricted by the

quality of the collected edits. On rare occasions, associated edits in

the prompt can also mislead the model with some irrelevant infor-

mation which in turn leads to incorrect predictions. Moreover, our

approach can also fail when the ground truth requires knowledge

of certain context (method signatures, for example) that does not

appear in the associated edits. Secondly, the LLMs used are prone

to known issues such as hallucinations, generation of uncompilable

code, etc. Despite being generative, these models can still fail to

predict edits that involve generating entirely new code.

Threats to Validity: When using a pre-trained model, there is

always a threat of test data leaking to the train set [4]. It is possible

that the data used for pre-training codex-davinci contained some

or all of the data in the c3po test set since the c3po dataset was

created from GitHub repositories. One way to mitigate this threat

is to perform evaluation on multiple test sets. Therefore, we also

performed our evaluation on the overwatch dataset. The over-

watch test set was not publicly available and we obtained it directly

from the authors. Hence, we believe our results are not in�ated

because of the possibility of codex-davinci having seen the c3po

test set. We mitigated the threat further by performing the same

experiments on �ne-tuned CodeT5. All conclusions wemake in this

work are informed by results from both models on both datasets.

Finally, this potential data leak would a�ect all our experiment

settings with the codex-davinci model equally and any bene�t

would also have been available to the model without associated

edits. Our results suggest that the model clearly bene�ts from the

addition of associated edits thus entailing a fair comparison.

The test sets are another source of possible gap between what we

observe in our experiments and what we may see if the approach

were deployed in real world. The c3po dataset was created from

commits. It de�ned an edit at a certain level of granularity. This

de�nition may not match the notion of edits used in some target

application (of our code prediction models). Again, we mitigate this

threat by also testing on overwatch dataset that uses a di�erent

level of granularity for de�ning an edit. Our results appear to hold

across the di�erent possible notions of an “edit”. In fact, by present-

ing the associated edits to the model (in the prompt and during

�ne-tuning), we are able to teach the notion of an edit to it. Even

with the notion of edit conveyed, the distribution of associated edits

in our test sets may not re�ect what we observe in practice. The

approach based on codex-davinci is not immune to this threat,

but the �ne-tuning approach can adapt if we have �ne-tuning data.

8 CONCLUSIONS & FUTUREWORK

Predicting code edits is an important software-engineering problem.

In this paper, we leverage the generative capability of LLMs to ad-

dress this problem. Without the knowledge of prior edits, the LLMs

fail to predict the required edits, but when we combine them with

associated edits, their performance improves greatly. This simple

strategy is quite e�ective, and as shown in the experiments, Grace

outperforms the current state-of-the-art specialized symbolic and

neural methods on their respective datasets.

The generative capability of LLMs has opened up many oppor-

tunities for addressing software-engineering problems that have

been hard to deal with. We believe that combining the LLMs with

domain-speci�c insights, such as our use of associated edits, holds

promise for hitherto challenging problems. In the future, we shall

seek to exploit this strategy for other software engineering prob-

lems. On the problem of predicting code edits, we plan to explore

the problem of discovering associated edits, and the application to

large-scale migrations, refactorings, and maintenance activities.

9 DATA-AVAILABILITY STATEMENT

The c3po dataset is made publicly available by the authors of [10].

We share the scripts, prompts, and instructions to access the �ne-

tuned models on c3po at https://aka.ms/GrACE-Code[31]. Since the

overwatch dataset is private, we do not hold the authority to redis-

tribute the dataset or any models learned from that dataset. Readers

with access to overwatch data can reproduce the experiments us-

ing the shared scripts. An interactive tutorial notebook discussing

deployment of our approach in an IDE-based edit suggestions tool

is also available at the same webpage.

1493

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA P. Gupta, A. Khare, Y. Bajpai, S. Chakraborty, S. Gulwani, A. Kanade, A. Radhakrishna, G. Soares, and A. Tiwari

REFERENCES
[1] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020. A

Transformer-based Approach for Source Code Summarization. Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics (2020),
4998–5007.

[2] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Uni-
�ed Pre-training for Program Understanding and Generation. Proceedings of the
2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies (2021), 2655–2668.

[3] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
2023. Summarize and Generate to Back-translate: Unsupervised Translation of
Programming Languages. The 17th Conference of the European Chapter of the
Association for Computational Linguistics (EACL 2023) (2023).

[4] Miltiadis Allamanis. 2019. The Adverse E�ects of Code Duplication in Machine
Learning Models of Code. In Proceedings of the 2019 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Re�ections on Programming and
Software (Athens, Greece) (Onward! 2019). Association for Computing Machinery,
New York, NY, USA, 143–153. https://doi.org/10.1145/3359591.3359735

[5] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: learning
distributed representations of code. Proc. ACM Program. Lang. 3, POPL (2019),
40:1–40:29. https://doi.org/10.1145/3290353

[6] Jesper Andersen, Anh Cuong Nguyen, David Lo, Julia L Lawall, and Siau-Cheng
Khoo. 2012. Semantic patch inference. In Automated Software Engineering (ASE),
2012 Proceedings of the 27th IEEE/ACM International Conference on. IEEE, 382–385.

[7] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Geta�x:
Learning to Fix Bugs Automatically. Proc. ACM Program. Lang. 3, OOPSLA, Article
159 (Oct. 2019), 27 pages. https://doi.org/10.1145/3360585

[8] Mohammad Bavarian, Angela Jiang, Heewoo Jun, and Henrique Pondé. 2022.
New GPT-3 Capabilities: Edit & Insert. (2022). At https://openai.com/blog/gpt-3-
edit-insert.

[9] B.W. Boehm. 1976. Software Engineering. IEEE Trans. Computers 25, 12 (1976).
[10] Shaked Brody, Uri Alon, and Eran Yahav. 2020. A structural model for contextual

code changes. 4, OOPSLA (Nov. 2020). https://doi.org/10.1145/3428283 Publisher
Copyright: © 2020 Owner/Author..

[11] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Je�rey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
CoRR abs/2005.14165 (2020). arXiv:2005.14165 https://arxiv.org/abs/2005.14165

[12] Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra.
2019. When deep learning met code search. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 964–974.

[13] Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi Ray.
2020. Codit: Code editing with tree-based neural models. IEEE Transactions on
Software Engineering 48, 4 (2020), 1385–1399.

[14] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2021.
Deep learning based vulnerability detection: Are we there yet. IEEE Transactions
on Software Engineering (2021).

[15] Saikat Chakraborty and Baishakhi Ray. 2021. On multi-modal learning of edit-
ing source code. In 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 443–455.

[16] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish
Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe
Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage,
Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam
McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. https://doi.org/10.48550/ARXIV.2107.03374

[17] Z. Chen, S. Kommrusch,M. Tufano, L. Pouchet, D. Poshyvanyk, andM.Monperrus.
2021. SequenceR: Sequence-to-Sequence Learning for End-to-End Program
Repair. IEEE Transactions on Software Engineering 47, 09 (sep 2021), 1943–1959.
https://doi.org/10.1109/TSE.2019.2940179

[18] Microsoft Corp. 2022. Overview of IntelliCode. https://learn.microsoft.com/en-
us/visualstudio/intellicode/overview

[19] Reudismam Rolim de Sousa, Gustavo Soares, Rohit Gheyi, Titus Barik, and Loris
D’Antoni. 2021. Learning Quick Fixes from Code Repositories. In SBES ’21: 35th
Brazilian Symposium on Software Engineering, Joinville, Santa Catarina, Brazil,
27 September 2021 - 1 October 2021, Cristiano D. Vasconcellos, Karina Girardi

Roggia, Vanessa Collere, and Paulo Bous�eld (Eds.). ACM, 74–83. https://doi.
org/10.1145/3474624.3474650

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[21] Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang.
2020. Hoppity: Learning graph transformations to detect and �x bugs in programs.
In International Conference on Learning Representations (ICLR).

[22] Yangruibo Ding, Luca Buratti, Saurabh Pujar, Alessandro Morari, Baishakhi Ray,
and Saikat Chakraborty. 2022. Towards Learning (Dis)-Similarity of Source Code
from Program Contrasts. In Annual Meeting of the Association for Computational
Linguistics.

[23] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[24] Stephen R. Foster, William G. Griswold, and Sorin Lerner. 2012. WitchDoctor: IDE
support for real-time auto-completion of refactorings. In 2012 34th International
Conference on Software Engineering (ICSE). 222–232. https://doi.org/10.1109/
ICSE.2012.6227191

[25] Eclipse Foundation. 2018. Eclipse IDE (https://www.eclipse.org). https://www.
eclipse.org

[26] Martin Fowler. 2018. Refactoring. Addison-Wesley Professional.
[27] Xi Ge, Quinton L DuBose, and Emerson Murphy-Hill. 2012. Reconciling manual

and automatic refactoring. In Proceedings of the 34th International Conference on
Software Engineering. IEEE Press, 211–221.

[28] github.com. 2022. GitHub Copilot: Your AI pair programmer. github.com. https:
//github.com/features/copilot

[29] google.com. 2022. GitHub Acitvity Data. google.com. https://console.cloud.
google.com/marketplace/details/github/github-repos

[30] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcodebert:
Pre-training code representations with data �ow. arXiv preprint arXiv:2009.08366
(2020).

[31] Priyanshu Gupta, Avishree Khare, Yasharth Bajpai, Saikat Chakraborty, Sumit
Gulwani, Aditya Kanade, Arjun Radhakrishna, Gustavo Soares, andAshish Tiwari.
2023. Reproduction Package for Grace: Language Models Meet Code Edits.
https://doi.org/10.1145/3580411

[32] Anandi Hira and Barry Boehm. 2016. Function Point Analysis for Software
Maintenance. In Proceedings of the 10th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (Ciudad Real, Spain) (ESEM ’16).
Association for Computing Machinery, New York, NY, USA, Article 48, 6 pages.
https://doi.org/10.1145/2961111.2962613

[33] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. https://doi.org/10.48550/ARXIV.1909.09436

[34] JetBrains. 2021. ReSharper. (2021). At https://www.jetbrains.com/resharper/.
[35] Capers Jones. 1998. Estimating Software Costs. McGraw-Hill.
[36] M. Kim, D. Notkin, D. Grossman, and G. Wilson. 2013. Identifying and Summariz-

ing Systematic Code Changes via Rule Inference. IEEE Transactions on Software
Engineering 39, 1 (2013), 45–62. https://doi.org/10.1109/TSE.2012.16

[37] Amy J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An
Exploratory Study of How Developers Seek, Relate, and Collect Relevant In-
formation during Software Maintenance Tasks. IEEE Transactions on Software
Engineering 32, 12 (2006), 971–987. https://doi.org/10.1109/TSE.2006.116

[38] Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanussot, and Guillaume Lample.
2020. Unsupervised translation of programming languages. arXiv preprint
arXiv:2006.03511 (2020).

[39] Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven C. H.
Hoi. 2022. CodeRL: Mastering Code Generation through Pretrained Models and
Deep Reinforcement Learning. arXiv preprint arXiv:2207.01780 (2022).

[40] M. M. Lehman and L. Belady. 1985. Software Evolution–Processes of Software
Change. Academic.

[41] Christopher D Manning. 2022. Human language understanding & reasoning.
Daedalus 151, 2 (2022), 127–138.

[42] Na Meng, Miryung Kim, and Kathryn S McKinley. 2011. Sydit: Creating and
applying a program transformation from an example. In Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference on Foundations of
software engineering. 440–443.

[43] Na Meng, Miryung Kim, and Kathryn S McKinley. 2013. LASE: locating and
applying systematic edits by learning from examples. In 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 502–511.

[44] Microsoft. 2021. IntelliCode suggestions. (2021). At https://devblogs.microsoft.
com/visualstudio/intellicode-suggestion-apply-all/.

[45] Microsoft. 2021. Visual Studio. (2021). At https://www.visualstudio.com.
[46] Anders Miltner, Sumit Gulwani, Vu Le, Alan Leung, Arjun Radhakrishna, Gustavo

Soares, Ashish Tiwari, and Abhishek Udupa. 2019. On the Fly Synthesis of Edit
Suggestions. 3, OOPSLA, Article 143 (oct 2019), 29 pages. https://doi.org/10.

1494

https://doi.org/10.1145/3359591.3359735
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3360585
https://openai.com/blog/gpt-3-edit-insert
https://openai.com/blog/gpt-3-edit-insert
https://doi.org/10.1145/3428283
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.1109/TSE.2019.2940179
https://learn.microsoft.com/en-us/visualstudio/intellicode/overview
https://learn.microsoft.com/en-us/visualstudio/intellicode/overview
https://doi.org/10.1145/3474624.3474650
https://doi.org/10.1145/3474624.3474650
https://doi.org/10.1109/ICSE.2012.6227191
https://doi.org/10.1109/ICSE.2012.6227191
https://www.eclipse.org
https://www.eclipse.org
https://www.eclipse.org
https://github.com/features/copilot
https://github.com/features/copilot
https://console.cloud.google.com/marketplace/details/github/github-repos
https://console.cloud.google.com/marketplace/details/github/github-repos
https://doi.org/10.1145/3580411
https://doi.org/10.1145/2961111.2962613
https://doi.org/10.48550/ARXIV.1909.09436
https://www.jetbrains.com/resharper/
https://doi.org/10.1109/TSE.2012.16
https://doi.org/10.1109/TSE.2006.116
https://devblogs.microsoft.com/visualstudio/intellicode-suggestion-apply-all/
https://devblogs.microsoft.com/visualstudio/intellicode-suggestion-apply-all/
https://www.visualstudio.com
https://doi.org/10.1145/3360569
https://doi.org/10.1145/3360569

Grace: Language Models Meet Code Edits ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

1145/3360569
[47] Raimund Moser, Pekka Abrahamsson, Witold Pedrycz, Alberto Sillitti, and Gi-

ancarlo Succi. 2008. A case study on the impact of refactoring on quality and
productivity in an agile team. In Balancing Agility and Formalism in Software
Engineering: Second IFIP TC 2 Central and East European Conference on Software
Engineering Techniques, CEE-SET 2007, Poznan, Poland, October 10-12, 2007, Revised
Selected Papers. Springer, 252–266.

[48] Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily Mast,
Eli Rademacher, Tien N Nguyen, and Danny Dig. 2016. API code recommendation
using statistical learning from �ne-grained changes. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
ACM, 511–522.

[49] Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N Nguyen.
2014. Statistical learning approach for mining API usagemappings for codemigra-
tion. In Proceedings of the 29th ACM/IEEE international conference on Automated
software engineering. ACM, 457–468.

[50] Alec Radford and Karthik Narasimhan. 2018. Improving Language Understanding
by Generative Pre-Training.

[51] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

[52] Alec Radford, Je� Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners.

[53] Colin Ra�el, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Uni�ed Text-to-Text Transformer. J. Mach.
Learn. Res. 21 (2020), 140:1–140:67. http://jmlr.org/papers/v21/20-074.html

[54] Veselin Raychev, Max Schäfer, Manu Sridharan, and Martin Vechev. 2013. Refac-
toring with synthesis. In ACM SIGPLAN Notices, Vol. 48. ACM, 339–354.

[55] Machel Reid and Graham Neubig. 2022. Learning to Model Editing Processes.
https://doi.org/10.48550/ARXIV.2205.12374

[56] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit
Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. 2017. Learning syntactic
program transformations from examples. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). IEEE, 404–415.

[57] Christopher Rytting and David Wingate. 2021. Leveraging the inductive bias
of large language models for abstract textual reasoning. Advances in Neural
Information Processing Systems 34 (2021), 17111–17122.

[58] Amazon Web Services. 2022. ML-powered coding companion - Amazon CodeWhis-
perer. Amazon Web Services. https://aws.amazon.com/codewhisperer/

[59] Noam Shazeer and Mitchell Stern. 2018. Adafactor: Adaptive learning rates with
sublinear memory cost. In International Conference on Machine Learning. PMLR,

4596–4604.
[60] Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed Huai

hsin Chi, Nathanael Scharli, and Denny Zhou. 2023. Large Language Models Can
Be Easily Distracted by Irrelevant Context. ArXiv abs/2302.00093 (2023).

[61] Wesley Tansey and Eli Tilevich. 2008. Annotation refactoring: inferring upgrade
transformations for legacy applications. In ACM Sigplan Notices, Vol. 43. ACM,
295–312.

[62] Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and
Denys Poshyvanyk. 2019. On learning meaningful code changes via neural
machine translation. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 25–36.

[63] Yue Wang, Weishi Wang, Sha�q R. Joty, and Steven C. H. Hoi. 2021. CodeT5:
Identi�er-aware Uni�ed Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 7-11 November, 2021. Association for Computational Lin-
guistics, 8696–8708. https://doi.org/10.18653/v1/2021.emnlp-main.685 See also
https://arxiv.org/abs/2109.00859.

[64] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le,
and Denny Zhou. 2022. Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903 (2022).

[65] Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt,
and Alexander Gaunt. 2019. Learning to Represent Edits. In ICLR
2019. https://www.microsoft.com/en-us/research/publication/learning-to-
represent-edits/ arXiv:1810.13337 [cs.LG].

[66] Eric Zelikman, Yuhuai Wu, and Noah D Goodman. 2022. Star: Bootstrapping
reasoning with reasoning. arXiv preprint arXiv:2203.14465 (2022).

[67] Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Mi-
los Gligoric. 2023. CoditT5: Pretraining for Source Code and Natural Lan-
guage Editing. In Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering (Rochester, MI, USA) (ASE ’22). Associ-
ation for Computing Machinery, New York, NY, USA, Article 22, 12 pages.
https://doi.org/10.1145/3551349.3556955

[68] Yuhao Zhang, Yasharth Bajpai, Priyanshu Gupta, Ameya Ketkar, Miltiadis Al-
lamanis, Titus Barik, Sumit Gulwani, Arjun Radhakrishna, Mohammad Raza,
Gustavo Soares, and Ashish Tiwari. 2022. Overwatch: Learning patterns in
code edit sequences. Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 395–423.
https://doi.org/10.1145/3563302

Received 2023-02-02; accepted 2023-07-27

1495

https://doi.org/10.1145/3360569
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.48550/ARXIV.2205.12374
https://aws.amazon.com/codewhisperer/
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://arxiv.org/abs/2109.00859
https://www.microsoft.com/en-us/research/publication/learning-to-represent-edits/
https://www.microsoft.com/en-us/research/publication/learning-to-represent-edits/
https://doi.org/10.1145/3551349.3556955
https://doi.org/10.1145/3563302

	Abstract
	1 Introduction
	2 Motivating Example
	3 Associated Code Updates
	3.1 Assumptions about Sub-Problems
	3.2 Related Problem Formulations

	4 Exploiting Associated Edits
	4.1 Pre-trained Language Models
	4.2 Prompting LLMs
	4.3 Fine-tuning LLMs
	4.4 Deployment

	5 Experiments & Results
	5.1 Experimental Setup
	5.2 Grace Improves Prediction
	5.3 Relevance of Edits Matters
	5.4 Pre-trained Outperforms Custom
	5.5 Temporal Edit Prediction
	5.6 Qualitative Analysis
	5.7 Additional Results & Discussion

	6 Related Work
	6.1 Automatic Code Editing
	6.2 Deep Learning for Source Code

	7 Limitations & Threats to Validity
	8 Conclusions & Future Work
	9 Data-Availability Statement
	References

