
Switchboard: Efficient Resource Management
for Conferencing Services

Rahul Bothra, Rohan Gandhi, Ranjita Bhagwan, Venkata N. Padmanabhan,
Rui Liang, Steve Carlson, Vinayaka Kamath, Sreangsu Acharya,

Ken Sueda, Somesh Chaturmohta, Harsha Sharma
Microsoft

ABSTRACT

Resource management is important for conferencing services
(such as Microsoft Teams, Zoom) to ensure good user experience
while keeping the costs low. Key to this is the efficient provisioning
and assignment of media processing (MP) servers, which do the
heavy lifting of mixing and redistributing the media streams from
and to the call participants.

We introduce Switchboard – a controller for efficient resource
management for conferencing services. Switchboard is peak-
aware, recognizing that cost depends on the peak resource usage
and that there is a temporal shift in peak demand across time zones.
This allows a server in a region to serve calls at peak time, and
double up as backup for other regions during non-peak times. Fur-
thermore, it improves efficiency by performing joint network and
compute provisioning and application aware provisioning. We eval-
uate Switchboard using 1+ year of records from Microsoft Teams.
Switchboard achieves upto 51% lower provisioning cost while
achieving similar or better latency over state-of-the-art baselines.

CCS CONCEPTS

• Networks → Application layer protocols; Cloud comput-

ing;

KEYWORDS

Application Layer Networking, Video Conferencing, Network
Provisioning, Resource Optimization
ACM Reference Format:

Rahul Bothra, Rohan Gandhi, Ranjita Bhagwan, Venkata N. Padmanabhan,
Rui Liang, Steve Carlson, Vinayaka Kamath, Sreangsu Acharya, Ken Sueda,
Somesh Chaturmohta, Harsha Sharma . 2023. Switchboard: Efficient Re-
source Management for Conferencing Services. In ACM SIGCOMM 2023
Conference (ACM SIGCOMM ’23), September 10–14, 2023, New York, NY, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3603269.3604879

1 INTRODUCTION

Conferencing services such as Microsoft Teams [9], Zoom [12]
and Google Meet [4] have become critical business services, espe-
cially since the COVID-19 pandemic. As the size of these services

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 979-8-4007-0236-5/23/09. . . $15.00
https://doi.org/10.1145/3603269.3604879

has grown sharply [10, 14], service providers have grown concerned
about their running costs, specifically the need to efficiently provi-
sion compute and network resources while ensuring excellent user
experience. Such cost efficiency is particularly relevant because of
the all-you-can-eat subscription-based nature of such conferencing
services (as opposed to pay-as-you-go), which makes it attractive
for the service provider to serve its users well while keeping its
cost minimal.

One of the most resource-hungry operations in such conferenc-
ing services is media processing and delivery. All participants on
a call send their audio, and/or video and/or screen-share data to
a Media Processing (MP) server running in a datacenter (DC). The
server combines, resizes and processes all streams and sends an
aggregated feed back to the participants. Processing the media for
each call is not only compute-intensive in view of the multimedia
processing that is required, it is also network bandwidth-intensive
as large amounts of multimedia content need to be delivered to and
from the MP server.

To effectively support media processing and delivery at such
large scale, the service has to perform two key functions. First,
for each call, the service has to determine which datacenter (DC)
should host the call. We call this MP server allocation. Second, to
enable the allocation of an MP server in a suitable DC for each
call that ensures a good latency for each call leg (i.e., the segment
between the server and each participant), the service has to provi-
sion enough serving compute and network capacity at all DCs up
front. Such provisioning of dedicated resources is essential given
the real-time nature and the large size of the service, which makes
on-demand resource rental unviable[1–3]. Additionally, the service
has to provision backup compute and network capacity to survive
failures, even drastic ones (e.g., an entire DC going down). We call
all of this MP capacity provisioning.

The need for dedicated resource provisioning means that the
service’s peak usage at each location (e.g., compute in each DC,
bandwidth on each WAN link) determines how much compute and
network capacity is provisioned overall, which, in turn, determines
the cost incurred. To reduce overall cost, it therefore helps to reduce
peak capacity provisioned, which the service can achieve by con-
solidating resource usage, for example, “packing” more calls onto
MP servers with unused capacity, or routing traffic via network
links that have free capacity, i.e., are carrying less traffic than their
provisioned capacity. As we will later see in §3, the compute and
network requirements are intertwined and contingent on the “pack-
ing” scheme. The challenge lies in coming up with a cost-efficient
scheme without compromising latency for participants.

https://doi.org/10.1145/3603269.3604879
https://doi.org/10.1145/3603269.3604879

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Bothra.et al.

The real-time nature of conferencing means that the user work-
load cannot be reshaped over time. The lever that is available is the
choice of MP server placement, which in-turn affects both the com-
pute and network capacity required, as we will see in 3. Keeping
this in mind, we make three novel observations:

(1) since work hours vary naturally across time zones, confer-
encing usage peaks at different times across different regions. We
leverage this difference in peak times to lower the peak usage at a
particular DC by serving some calls from a different DCwith accept-
able latency and spare capacity. Furthermore, when the primary
serving capacity at a certain location is unused during non-peak
hours, we repurpose it as backup capacity for calls served from
other primary locations, (2) we observe that compute and network
capacity should be provisioned jointly to further decrease the over-
all cost of provisioning. For instance, if compute is expensive at a
certain DC but network capacity to the DC is relatively inexpen-
sive, we may still choose to provision the expensive compute to
lower the overall cost, (3) unlike previous work [34], which uses
system-level resource usage history (compute and network usage
logs) to provision resources, we observe that using application-level
logs, with information such as the geographic distribution of call
participants, and the type of media they share, allows us to make
more optimal provisioning decisions.

We used these observations to build Switchboard, a controller
for conferencing services that performs cost-efficient capacity pro-
visioning and server allocation while ensuring low latency for
participants. To the best of our knowledge, Switchboard is the
first system to combine peak-aware, joint compute-network, and
application-specific provisioning together, to make provisioning
more efficient. Switchboard implements MP capacity provision-
ing using an LP (Linear Program) optimization framework that
runs periodically (every few months). Switchboard partitions
server allocation into a compute-intensive LP optimization that
runs periodically in the background (once every day), and a real-
time lightweight MP server selection implementation that runs in
the critical-path of the service (each time a call starts).

We evaluate Switchboard using data from running Microsoft
Teams over Azure compute and network services, and compare it
with state-of-the-art baselines that use round robin and locality-first
heuristics. We show that Switchboard reduces the costs by up to
51% by reducing the number of cores and WAN bandwidth required
while improving or closely matching the user perceived latency.
Additionally, we also show that Switchboard is scalable; it can
handle 1.4× the load currently experienced by Microsoft Teams.

This work does not raise any ethical issues.

2 OVERVIEW

2.1 Problem

Every conference call gets hosted on a media processing (MP)
server that runs in one of many datacenters (DCs) that host the
service. In the case of Microsoft Teams, the service divides the world
into regions such as Asia-Pacific, Europe, etc., and each region has
one or more Datacenter. Therefore, when a call is to be hosted on
an MP server in the Asia-Pacific region (say because that is where
most or all of the participants are located), the MP server should
be located in one of the Asia-Pacific DCs (Hong Kong, India, Japan
and Singapore).

MP server

MP server

A

V

A A

S

Figure 1: MP server allocation for two calls marked in blue

and red. Participants could share audio (A), video (V), and/or

screen-share (S) streams.

The problem of mapping calls to MP servers across these regions
and DCs can be broadly split into two: MP server allocation and MP
capacity provisioning.
MP server allocation: When the first participant of a call joins in,
the service selects a suitable MP server in one of the DCs within
the region from where the call originates. This is called MP server
allocation. It then connects all participants who join the same call
subsequently to this MP server. Participants send their respective
audio, video, and/or screen-share streams to the MP server, which
then processes the streams and sends them back to all participants.

In this paper, we focus on selecting the DC location for the MP server
of a call (more details in §2.2). Fig. 1 shows two examples. When all
participants in a call are from the USA, a natural choice is to select
an MP server in a North American DC so that latencies are low, and
the call uses less wide-area network (WAN) bandwidth. When a call
has participants across geographically disparate locations such as
the India and Japan, it may help to select an MP server in DC such
as India or Japan to ensure a lower average latency experienced
by participants. We should keep in mind that the service needs
to select MP servers based on network latency, and availability of
compute capacity at the DCs and network capacity of the inter-DC
WAN links.
MP capacity provisioning: The MP server allocation problem is
preceded by MP capacity provisioning. MP capacity provisioning
determines how much compute to provision at each DC and how
much WAN capacity to provision between DCs, to support the
anticipated call workload, even in the face of failures that might
render some of the compute and/or network capacity unavailable.
The capacity provisioned, both compute and network, is the sum
of both serving capacity, i.e., capacity required to serve calls in the
absence of failures, and the backup capacity, which is the capacity
required to fail-over calls in case there are compute or network
failures. MP capacity provisioning is an offline process as it runs
periodically in the background, say every few months. Thus, based
on the output of MP capacity provisioning using a forecast of the
service usage, the cloud provider may need to change the amount
of compute and network provisioned at each DC and network path
from time to time.

Both capacity provisioning and server allocation need to be
cognizant of the following requirements:

(1) Good user experience: Conferencing experience is very
sensitive to network latency, jitter, and packet loss. Of these, la-
tency is fundamental, and is our focus here, since it is a significant
function of distance and cannot be mitigated by provisioning suffi-
cient capacity to avoid congestion. To reduce latency, the service
should select MP servers that are “close" to all call participants. In

Switchboard ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Figure 2: Depiction of Round-Robin (left) and Locality-

First (right) baseline strategies. Blue circles are DCs and

squares are source countries of call participants. Bigger cir-

cles/squares denote DCs with more capacity and countries

with more call participants respectively.

our work, we seek to keep the Average Call Latency (ACL), defined
as the average one-way latency of all call legs in a call, under 120ms
and where this is infeasible, say because the participants are widely
dispersed, we seek to minimize the ACL of the call.

(2) Failure resilience: The service infrastructure should be
resilient to failures that result in the loss of compute and/or net-
work capacity. Therefore, redundant compute and network capacity
should be provisioned so that, for instance, the service can fail over
to alternate DCs in the event that an entire DC becomes unavail-
able. Of course, the failure modes need to be circumscribed, to keep
the provisioning requirement bounded. For our experiments, we
assume that an entire DC or any one WAN link can fail at a time.
However, we note that our framework can easily incorporate more
sophisticated failure scenarios.

Our goal is to meet the above latency and failure resilience
requirements while minimizing the overall cost incurred on the
compute and network resources. As discussed in §1, given the
growing and large-scale nature of conferencing services, it calls for
dedicated resources to be provisioned. So, the cost is a function of
the peak resource usage of all DCs and WAN links.

2.2 Scope

In this paper, we focus on a first-party conferencing service, i.e.
Microsoft Teams. First-party implies that the service has visibil-
ity into the compute and network resources of the cloud provider
where the service is hosted, Azure in our case. We focus on pro-
visioning and allocation of compute resources per DC, and net-
work bandwidth for inter-DC links. The problem of intra-DC MP
selection, i.e. selecting a specific server within a chosen DC, is
well-studied [20, 33] and beyond the scope of this work.

We also do not consider the cost of Internet connectivity between
the edge of Azure’s network and the call participants, as it is beyond
the control, as well as inescapable, for the conferencing service.

3 BASELINE STRATEGIES

We present two well-established [39] and state-of-the-art heuris-
tic baselines for server allocation and capacity provisioning. For
simplicity of exposition, we assume that all call participants belong
to the same region (such as Asia-Pacific).

3.1 Round-Robin

Server allocation: Amongst the DCs available within the same
region as participants, we then use round-robin (RR) across calls to
select the datacenter within the region. Fig.2(a) depicts this policy.

While, in general, a weighted RR scheme could be used, we focus
here on RR with equal weights since it helps equalize load across
the sites, thereby minimizing the need for backup compute capacity,
as discussed next.

Capacity provisioning:With RR, the total compute provisioned
across all DCs is the compute required to serve the total peak, or
the maximum number of calls arising at any time across the region,
which is the minimum total compute required to serve all calls.

Additionally, RR’s load equalization minimizes backup compute
capacity needed in the event of a single DC failure. For instance, if
there are four DCs in a region over which RR spreads all calls, each
DC would have 25% of the total peak serving capacity of compute.
To handle a single DC failure, 8.33% (25/3) of total peak serving
capacity needs to be provisioned at each DC as backup to provide
enough capacity for single DC failure.

While RR minimizes the amount of compute capacity required,
both serving and backup, it is inefficient in its use of WAN band-
width, because it sprays all calls around the available DCs. This
results in some calls getting hosted in far-off DCs – inflating their
WAN capacity requirement as well as the call latency.

3.2 Locality-First

Server allocation:At the other end of the spectrum, we consider
a policy to minimize the call latency [21, 23, 24, 39]. Locality-first
(LF) assigns the MP server to the DC location which will have the
lowest Average Call Latency while serving the participants. It also
ends up reducing the WAN capacity requirement as traffic needs to
traverse shorter paths. Fig.2(b) captures the LF policy.

Capacity provisioning: LF helps reduce the amount of net-
work capacity provisioned. However, both compute requirements –
serving capacity and backup capacity – increase significantly. Each
DC’s compute serving capacity needs to accommodate the local
peak demand from the sub-region for which the DC in question is
the nearest one. Hence, the total compute serving capacity needed
is the sum of peaks of demands coming to individual DCs, with
the peaks likely being shifted relative to each other because of the
spread of time zones. Therefore, the total serving capacity needed
would, in general, be greater than RR’s, as the sum of time-shifted
local peaks is greater than the global peak.

The backup compute capacity needed also increases when com-
pared to RR because of the greater skew in the serving capacity
across the sites. Consider the example where four DCs are used to
host all calls in the Asia-Pacific region, but where 75% of all calls
involve participants only from India. Then the India DC contains
75% of all serving compute capacity. To handle failure of this DC,
the other three DCs need to provision a cumulative backup capacity
that is 75% of total serving capacity, as opposed to only 33% in the
case of RR.

We formulate the backup compute capacity calculation as fol-
lows, which minimizes the total backup capacity needed while
handling one DC failure at a time,

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝐷𝐶∑︁
𝑥

𝐵𝑎𝑐𝑘𝑢𝑝𝑥 (1)

𝑆𝑒𝑟𝑣𝑖𝑛𝑔𝑥 <=

𝐷𝐶∑︁
𝑦,𝑦!=𝑥

𝐵𝑎𝑐𝑘𝑢𝑝𝑦, ∀𝑥 ∈ 𝑀𝑃 (2)

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Bothra.et al.

Figure 3: Demand (number of cores) required from 3 different

countries normalized to max. peak observed. It shows the

time-varying peaks – peaks in Japan, Hong-Kong and India

form at 0:00, 2:00 and 5:30 hours.

where 𝑆𝑒𝑟𝑣𝑖𝑛𝑔𝑥 is the serving capacity of DC x, and 𝐵𝑎𝑐𝑘𝑢𝑝𝑥
is the backup capacity required in DC x, and the objective is to
minimize the total backup capacities across all DCs.

4 KEY IDEAS

4.1 Peak-aware provisioning

We observe that the number of participants from different time
zones peak at different times, and therefore the compute and net-
work capacity required to support these participants peak at differ-
ent times. Fig.3 demonstrates this by plotting the amount of com-
pute required to serve callers from Hong Kong, India and Japan in
a one-day period. Switchboard’s optimization formulation lever-
ages this in the following way. First, the compute usage due to call
participants from Japan peaks at around 00:00 hours UTC, when
usage from India and Hong Kong is very low. Rather than serve all
calls during this peak from the Japan DC, which would drive up the
compute capacity to be provisioned in Japan, Switchboard allo-
cates servers for some of the calls in the India and Hong Kong DCs,
but only if the latency between Japan and these two DCs are below
an acceptable threshold. On the other hand, at non-peak hours for
Japan such as at 09:00 hours UTC, Switchboard accommodates all
calls from Japan in the Japan DC itself, thereby minimizing latency
at that time.

4.2 Joint serving + backup provisioning

Switchboard takes advantage of the difference in the peak
usage across time zones to multiplex serving capacity and backup
capacity. Consider the trends shown in Fig.3 again. The compute
requirement for calls from India peaks at around 05:30 hours UTC,
and hence for good latency, Switchboard provisions a significant
amount of capacity at the India DC. However, at 00:00 hours UTC,
calls from India need very little of this already-provisioned capacity.
Switchboard earmarks some of this capacity as backup capacity
for Japan, so that it is available to pick up the slack if the Japan DC
were to fail at 00:00 hours. In other words, Switchboard repurposes
some of the capacity used to serve India calls at 05:30 hours UTC
as backup capacity for Japan calls at 00:00 hours UTC.

Fig.4’s example contrasts this approach with a baseline that
uses locality-first (LF) to first provision serving capacity and then
provisions additional backup capacity over and above this. Say the
compute cores required for Japan, Hong Kong, and India calls are as
shown in Fig.4(a), where the peak serving capacity required is 100

in Japan, 110 in Hong Kong, and 110 in India. Then the LF policy
provisions 100 cores in Japan, 110 in Hong Kong, and 110 in India
DCs, since these are the maximum requirements across time.

Fig.4(b) shows the total serving and backup capacity needed in
each DC per time-slot for the LF baseline calculated using the LP
in §3.2. For instance, to support a failure of the Japan DC, since its
serving capacity is 100 cores, the India DC and the Hong Kong DC
each need to provision backup capacity of an additional 50 cores.

Fig.4(c) shows how Switchboard reduces the total compute
capacity across all DCs. Consider a Japan DC failure at time T1.
Since India uses only 20 of its cores for serving calls at time T1,
Switchboard repurposes 60 of its remaining 90 serving cores
as backup capacity for Japan at time T1. It repurposes 40 of Hong
Kong’s 50 unused serving cores as backup capacity at time T1. Thus,
a total of 100 serving cores across India and Hong Kong DCs get
repurposed as backup capacity to cater to the possibility of Japan’s
100 serving cores failing at time T1. By doing so, Switchboard
reduces the compute capacity required in Japan from 160 to 100, in
Hong Kong from 160 to 110, and in India from 160 to 110.

The same idea applies to network provisioning as well. Consider
the scenario described in Fig. 5. To accommodate the Japan DC
failing at time T1, Switchboard provisions both backup compute
capacity at the India DC and backup network capacity from par-
ticipants A and B to the India DC. Consequently, under a WAN
link failure (say the link connecting participant A to the Japan DC
fails), we do not need to plan backup network capacity since we
can instead host such calls in India, in view of the backup compute
available in India, and the backup network capacity provisioned
for the link connecting participant A to the India DC. This results
in a reduced overall WAN backup capacity required compared to
network redundancy for links on both paths, i.e., those connecting
participant A to India and to Japan.

4.3 Joint compute + network provisioning

Switchboard reasons about both compute and network jointly
in its optimization framework. To illustrate the benefits with a toy
example, Switchboard can provision compute and network for
calls from Indonesia either at the Japan DC or the Singapore DC
since either would satisfy the latency constraint. Despite compute
costs in Singapore being higher than that in Japan, Switchboard
provisions capacity for Indonesia in Singapore since the network
links in the path between Indonesia and Singapore are significantly
less expensive than the links between Indonesia and Japan.

4.4 Application-specific provisioning

Switchboard’s capacity provisioning uses forecasts based on
historical data from Microsoft Teams’s call logs, their placement,
and the latency recorded thereof. The primary input to MP capacity
provisioning is the number of calls of different “types" or what
we call call configurations (described in §5.1) that we forecast will
need to be supported in the future. This is unlike state-of-the-art
provisioning techniques [34] which forecast compute and network
requirements based on system logs that record compute and net-
work usage. For instance, let’s say calls with all their users in India
are increasing. On one hand, if Switchboard were making provi-
sioning decisions simply based on compute and network-specific
resource usage, it would end up adding more capacity in India, and

Switchboard ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

#cores

TimeT1 T2 T3

#cores

TimeT1 T2 T3

#cores

TimeT1 T2 T3

#cores

TimeT1 T2 T3

#cores

TimeT1 T2 T3

#cores

TimeT1 T2 T3

(a) Locality-first (b) Locality-first + default backup plan (c) Peak-aware backup plan

110

60

40

110

40
20

70
90

160

110

160

90
100 110

95

80
110110

Hong Kong

India

#cores

TimeT1 T2 T3

#cores

TimeT1 T2 T3

#cores

TimeT1 T2 T3

100

60
40

160

120
100 100 95

100

Japan

Figure 4: Peak-aware capacity planning. (a) shows the demand from 3 countries in terms of number of cores shown in different

colors. Using locality-first policy, demand from each country is handled by DC in the same country. Note that the DCs are to be

provisioned for the peak, (b) shows the backup capacity (dotted boxes) needed using default backup plan using an LP described

in §3.2. Note that, the backup capacity calculated by LP is added across all timeslots, (c) shows the backup capacity needed

using peak-aware backup plan by re-purposing the serving cores for backup when demand for such cores is not at peak. Note

that the change in peak capacity is highlighted.

Figure 5: Joint compute and network provisioning can

result in less network redundancy requirement.

Call Forecast MP Capacity Provisioning

Real-time DC Selection

2 3

4
1

Call events

MP datacenter

MP Server Allocation

Offline MP Allocation

Call History DB

DB Call ID Participant MP Location Latency

1564 8e45 Japan 95ms

Figure 6: Building blocks in Switchboard. The blue arrows

show the real-time operations.

potentially increasing the peak. However, application-specific pro-
visioning, we could absorb this surge in demand by shifting calls
to another DC, and thereby not increase the peak (and therefore,
cost).

5 DESIGN

Switchboard’s design, as shown in Fig.6, has four modules,
(1) Call Records Database: Recall that the connection between

each call participant in a call and its MP server is called a call leg. For
each call leg, Microsoft Teams records and stores some metadata,
which includes the MP server’s location, start time, and the latency
experienced by the user. Switchboard uses these call records to
forecast demands as well as to predict latencies of call legs. The
data is anonymized to adhere to global privacy standards.

(2) Call Forecasting: Since provisioning capacity would, in
general, require a significant lead time (months or more), there
is a need for workload forecasting. Ideally, Switchboard should
forecast the resource requirements for each scheduled call and
provision accordingly. However this approach would not scale
well, given the sheer number of calls the service handles. Instead,
Switchboard groups calls by call configuration, i.e., calls that have
similar resource requirements, and generates forecasts per call
configuration. §5.1 explains call configurations further. For each
call configuration, Switchboard uses Holt-Winters exponential
smoothing[5] and forecasts the number of calls months into the
future. In our work, we perform forecasting 3months into the future

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Bothra.et al.

and at the granularity of 30 minute time buckets. §5.2 provides
details of the forecast module.

(3)MP capacity provisioning: Using the forecasts, this mod-
ule computes the amount of compute and network capacity to be
provisioned at each DC and WAN link. It minimizes the total cost
of provisioning while constraining the average call latency (ACL)
within a threshold. In case a call has widely spread participants, and
no DCs can host the call while satisfying the latency threshold, then
we host such a call in the DC whereby the ACL would be minimum.
We run this module once every few months. §5.3 describes this
further.

(4) MP server allocation module: Given the compute and
network capacities from (3) above, this module assigns the DC
locations to each incoming call, with the objective of minimizing
the mean ACL. Switchboard splits this into a compute-intensive
offline optimizer that runs at the start of the day, and a lightweight,
real-time server selector. §5.3 and §5.4 provide details.

5.1 Call configuration

The total number of calls managed by the service could be very
large. As such, working with individual calls as the unit of optimiza-
tion would place a heavy strain on Switchboard’s LP framework.
To avoid this problem, we define the notion of a call configuration
(call config, for short), which captures the size, spread, and media
type of a call. The call config effectively captures the resource needs
of the call, with the significant computational advantage that there
are order of magnitude fewer call configs than there are calls.

A call config comprises: (1) the location (at the granularity of
countries) of the participants, (2) participant count from each loca-
tion, (3) media-type, which could be audio, video, or screen-share.
By default, all calls have an audio. Both video and screen-share are
more resource-intensive than audio. If no participant shares their
screen but at least one participant turns their video on, then the
media-type is video. If at least one person has shared their screen
in the call, we say that the media-type of the call is “screen-share".
This classification is based on the relative resource requirements
of different media types. An example call config is ((India-2,Japan-
1), audio) which groups together all audio-only calls that have 2
participants from India and 1 from Japan.

All calls with the same call config are fungible in the sense
that they have largely the same resource requirement. Therefore,
Switchboard provisions and allocates resources at the granularity
of the call config, since call configs are significantly fewer in number
than calls, and hence more scalable. In our analyses, we found that
the number of call configs are almost 30× fewer than the number
of calls in a given time window.

5.2 Forecasting call count

For each call config, Switchboard forecasts the number of calls
to expect for the call config at the granularity of 30 minute time-
windows. From the call records database, Switchboard groups
calls happening every 30-minute by their call config, which pro-
vides a timeseries as shown in Fig.7(a). It then applies Holt-Winters
exponential smoothing[5] for timeseries forecasting.

We forecast the number of calls for individual call configs sep-
arately because the trend (i.e., growth rate in terms of number of
calls) across call configs could be quite different. Fig.7(b) shows the
growth rate for 15 call configs over a 4-month duration. Since the

actual growth rate is business-sensitive information, we normalize
the growth rate for each call config using the maximum growth
rate observed across the chosen 15 call configs. Instead of using
overall growth across total number of calls (aggregated across all
call configs), such fine grained forecasting per call config provides
greater accuracy for the purposes of provisioning (§5.3).

We found 10+ million unique call configs in Microsoft Teams’s
call records. However, we also observed that a very small fraction
of the most populous call configs can account for a large fraction of
the calls. For example, the top 0.1% and 1% call configs account for
86% and 93%, respectively, of all calls, as shown in Fig.7(c). Based on
this observation, we forecast call counts for the top 1% call configs,
which allows us to be scalable, while covering over 90% of the calls.

To account for the call configs not considered while forecasting,
and the newer call configs which might come up in the future,
we inflate the projected amount of resources to be provisioned
with an adequate cushion, which is estimated by comparing our
forecast-based projections with the ground truth in a validation
dataset.

5.3 Capacity provisioning

Given the forecast for every time-slot for a certain time duration,
Switchboard uses a linear program formulation to determine
compute and network capacities needed at various DCs and WAN
links to support the calls within that duration. The objective is to
minimize cost while keeping average call latency under a threshold
despite compute and network failures. We first define cost and the
average call latency and then describe the failure model used in the
formulation.
Cost: The total cost incurred by Microsoft Teams is the sum of
the cost of provisioning, both serving and backup, compute cores
across Azure DCs and network capacity on the various links in
AzureWAN topology. In the context of this work, we limit ourselves
to Azure WAN links and do not include costs of egressing to the
Internet till the last-mile.
Average Call Latency (ACL): The average call latency for a call
config is the average of the latencies of all call legs that a call of
this call config would have. We constrain this one-way latency
to 120 ms in our experiments, which is a reasonable bound based
on our experience of running the service, and is consistent with
the industry norm of a 250 ms target for an acceptable round-trip
latency[6].
Failure model: Switchboard provisions capacity assuming that
at any time, at most one entire DC or one WAN link can fail or
get disconnected. Note that the failure of an entire DC would also
render all network capacity connecting that DC unusable. Switch-
board provisions sufficient backup compute and network capacity
to enable other DCs to host calls that would normally have been
hosted at the failed DC, or have redundant WAN capacity to be able
to support the desired network traffic even when a WAN link fails.

We now explain the LP formulation. Table 2 states the defini-
tions of all variables used for the reader’s reference. The following
equation captures the objective.

Minimize
𝐿∑︁
𝑙

𝑊𝐴𝑁_𝐶𝑜𝑠𝑡 (𝑙) ∗ NPl +
𝐷𝐶∑︁
𝑥

𝐷𝐶_𝐶𝑜𝑠𝑡 (𝑥) ∗ CPx (3)

Switchboard ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

(a) Forecasting number of calls (ground-truth and fore-
cast lines overlap for most points)

(b) Growth in terms of number of calls for 15 randomly
selected call configs.

(c) Fraction of calls and call participants covered by the
top-N call configs

Figure 7: Forecasting number of calls for individual call configs.

CL NL (NL / CL)
Audio 1x 1x 1x

Screen-share 1-2x 10-20x 10-15x
Video 2-4x 30-40x 15-20x

Table 1: Relative compute load (CL) and network loads (NL),

and the ratio of network to compute load for different media

types
1
.

where 𝑊𝐴𝑁_𝐶𝑜𝑠𝑡 (𝑙) is the per-unit cost of WAN link 𝑙 ,
𝐷𝐶_𝐶𝑜𝑠𝑡 (𝑥) is the per-unit cost of an MP server in DC 𝑥 , NPl
is the peak usage of link 𝑙 , and CPx is the peak compute usage in
DC 𝑥 .

The following equations capture the constraints.
Latency constraint: We can allocate MP servers to call con-

figs only in DCs where the average call latency is lower than the
threshold.

𝐴𝐶𝐿(𝑥, 𝑐) > 𝐿𝐴𝑇𝑡ℎ =⇒ Stcx == 0,∀𝑡 ∈ 𝑇 (4)

where𝐴𝐶𝐿(𝑥, 𝑐) is the average call latency for hosting a call con-
fig 𝑐 in DC 𝑥 , 𝐿𝐴𝑇𝑡ℎ is the maximum average call latency allowed,
and 𝑆𝑡𝑐𝑥 is the fraction of calls with call config 𝑐 in time slot 𝑡 and
hosted in DC x.

Serving capacity constraints: For each resource, the serving
capacity should be greater than or equal to the demand for that
resource at all times.

CPx >=

𝐶∑︁
𝑐

Stcx ∗𝐶𝐿𝑀𝑇 (𝑐) ∗ |𝑃 (𝑐) | ,∀𝑡 ∈ 𝑇 (5)

NPl >=
𝐶∑︁
𝑐

𝑃 (𝑐)∑︁
𝑝

𝐷𝐶∑︁
𝑥

Stcx ∗𝑁𝐿𝑀𝑇 (𝑐) ∗ 𝐼𝑛𝑃𝑎𝑡ℎ(𝑙, 𝑥, 𝑝) ,∀𝑡 ∈ 𝑇 (6)

where 𝐶𝐿𝑀𝑇 (𝑐) is the compute load generated by a single par-
ticipant in a call with a call config c (media type MT(c)), |𝑃 (𝑐) | is
the number of participants in a call with call config c, 𝑁𝐿𝑀𝑇 (𝑐) is
the network load generated by a single participant in a call with
call config c (media type MT(c)), 𝐼𝑛𝑃𝑎𝑡ℎ(𝑙, 𝑥, 𝑝) is 1 if link l is in the
WAN path from DC x to location p.

Backup capacity constraints: Failure scenarios are expressed
as 𝐹0, 𝐹𝐷𝐶1, ... 𝐹𝐷𝐶𝑛 , 𝐹𝐿1, ... 𝐹𝐿𝑚 where 𝐹0 has no failures and 𝐹𝐷𝐶𝑥
captures the failure of DC 𝑥 for 𝑥 = 1, . . . , 𝑛, and 𝐹𝐿𝑦 captures
the failure of WAN link 𝑦 for 𝑦 = 1, . . . ,𝑚 We run the LP with all
the above constraints for every failure scenario. When running
1Exact values are not provided because of Microsoft Teams’s business sensitivity.

for scenario 𝐹𝐷𝐶𝑥 , the LP sets DC 𝑥 ’s peak compute usage to 0,
i.e., CPxf == 0 and computes the required backup capacity (both
compute and network) for the scenario. Similarly, when running
for scenario 𝐹𝐿𝑦 , the LP sets link 𝑦’s peak usage to 0, i.e., NPlf
== 0. Finally, it computes the compute capacity for every DC and
network capacity for every link as the maximum required capacity
across all failure scenarios as shown below:

NPl >= NPlf ,∀𝑓 ∈ 𝐹 (7)

CPx >= CPxf ,∀𝑓 ∈ 𝐹 (8)

Completeness constraint: All calls across all call configs
should be allocated to MPs in different DCs in some share.

𝐷𝑡𝑐 ==

𝐷𝐶∑︁
𝑥

Stcx ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶 (9)

where 𝐷𝑡𝑐 is the number of meetings expected to occur in time
t, and call config c.

Note: If there is no MP where a call config will not exceed the
latency threshold, then we place all calls of the call config on the
MP with the lowest average call latency.

Allocation plan: Switchboard divides the MP allocation into
an offline, compute-heavy stage that uses an LP formulation and a
real-time fast server selector. Switchboard runs the offline stage
of MP allocation once every day. This stage determines, for every
time-slot in the subsequent day, and for every call config, what
fraction of calls in the call config should be placed on each DC so
as to minimize mean ACL across all calls. To do this, Switchboard
adds the following secondary objective to the LP above.

Minimize
𝑇∑︁
𝑡

𝐶∑︁
𝑐

𝐷𝐶∑︁
𝑥

Stcx ∗𝐴𝐶𝐿(𝑐, 𝑥) (10)

This objective generates an allocation plan for all call configs for
all time-slots that minimizes the latency. For example, if there are
going to be 100 calls for a call config ((JP-4, ID-2), video) in a given
time-slot, the allocation plan may place 80 of them in an MP in
Japan, 10 of them in Singapore, and 10 in India. Thus, it attempts to
allocate more MP servers in the DC which would offer the lowest
ACL. This is especially true in the case of non-peak hours when
the resources are not constrained.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Bothra.et al.

Notation Definition Notation Definition

𝑇 Set of time slots 𝐷𝐶 Set of data centers
𝐶 Set of call configs 𝑀 Set of media types
𝑁𝐿𝑚 Per-user network load by media type m 𝐶𝐿𝑚 Per-user compute load by media type m
𝐷𝑡𝑐 Total calls in time slot t, and call config c Stcx Share of 𝐷𝑡𝑐 hosted in DC x
𝑃 (𝑐) List of locations of participants in call config

c
𝐿𝐴𝑇𝑡ℎ Latency threshold

𝐿𝑎𝑡 (𝑥,𝑢) Latency b/w DC x and location u 𝐴𝐶𝐿(𝑥, 𝑐) ∑𝑃𝑐
𝑝 𝐿𝑎𝑡 (𝑥, 𝑝)/|𝑃𝑐 |

𝑊𝐴𝑁_𝐶𝑜𝑠𝑡 (𝑙) Per-unit bandwidth cost of link l 𝐷𝐶_𝐶𝑜𝑠𝑡 (𝑥) Per-unit compute cost for DC x
𝑃𝑎𝑡ℎ(𝑥,𝑢) List of links b/w DC x and location u 𝐼𝑛𝑃𝑎𝑡ℎ(𝑙, 𝑥,𝑢) 1, if link l ∈ 𝑃𝑎𝑡ℎ(𝑥,𝑢), else 0
CPx Peak compute usage of DC x NPl Peak bandwidth usage of link l
𝑀𝑇 (𝑐) Media type of call config c

Table 2: Notations used in the LP (variables are marked in bold).

5.4 Real-time MP assignment

The key goal of the real-time MP selector is to assign the MP
datacenter to a new call when the first participant of the call joins.
As mentioned in §5.3, it uses the pre-computed allocation to assign
a DC to the call. Recall that this precomputed allocation is at the
granularity of the call configs, i.e., for each call config, how many
calls should be hosted in each DC. The challenge, however, is that
when the first participant joins a call, the service does not know the
entire call config, i.e., the number of participants, their locations,
and call media type is not known. This makes it challenging to
assign the DC based on the pre-computed allocation plan, which is
also the basis on which capacity was provisioned.

There are multiple decisions to make. (a) First, we need to deter-
mine in which DC to host a new call even when we do not know its
call config. Second, we may need to make adjustments once we do
know the call config. Such adjustment could entail either (b) merely
accounting for the resource usage of the call correctly (easy) or (c)
migrating the call to a new DC because the initial location chosen
was incorrect, i.e., not in accordance with the precomputed plan
(more difficult).

(a) Assigning new call to a DC: It turns out that the location
(country) of the first joiner in a call is a pretty good predictor of
where the majority of participants will join from. For instance, in
our analysis, 95.2% calls have majority participants are from the
same country as the first joiner. Furthermore, the precomputed
allocation plan typically calls for placing a call where the majority
of participants are, since it is beneficial from the viewpoint of
minimizing latency.

Therefore, we use a simple heuristic: we first assign a call to
the DC closest to the first joiner on the call. This often enables us
to assign the new call to an MP in the correct DC (i.e., where the
MP would have been placed if we had prescience and knew the
call config), obviating the need for the call to be migrated (case (c)
above).

(b) Tallying up resource usage once call config is known:As
noted in previous section, the precomputed allocation plan specifies
where to host calls of each call config with a view to minimizing
latency while remaining confined to the resources already provi-
sioned across the DCs. For instance, when the “slots” set aside
for calls of a certain configuration have been exhausted at a DC,
we would know to host further calls with the same configuration

elsewhere. Therefore, as new calls arrive and old calls end at run-
time, it is important that the resource usage be tallied up accurately
against the plan that was precomputed, so that we can proceed in
keeping with the plan and derive the associated benefits such as a
latency-optimized allocation.

Between when a new call begins and its configuration is known
(𝐴 minutes into the call, as discussed in §6.4), we leave the call
unassigned with respect to the precomputed plan. Of course, in
the unlikely event of any resource exhaustion during this transient
period, we look to migrate the call, as discussed in (c) below. Oth-
erwise, once the call config is known, we simply debit 1 from the
number of slots set aside for the configuration in question at the
chosen DC.

Lastly, when a call has an unanticipated call config for which we
have not allocated any slots, we map such call config to its closest
DC. Such occurrences are rare, and we did not find any capacity
crunch due to such calls.

(c) Migrating to an MP server in a new DC: Once the call
config is known 𝐴 minutes into the call, we might realize that the
initial choice of MP location was not correct, i.e., not in keeping
with the precomputed allocation plan. For instance, consider an
example where the first participant to join call might be from Japan
(and so the call gets assigned to an MP server in Japan), but the con-
figuration eventually turns out to be ((JP-3,ID-5), video), i.e., with a
majority of participants being in Indonesia. Per the precomputed
plan, if all such calls were to be hosted say, in the Singapore DC,
then this call will have to be migrated.

6 EVALUATION

In this section, we evaluate Switchboard (SB) against the
round-robin (RR) and locality-first (LF) baselines. Our experiments
show: (a) Switchboard can substantially reduce provisioning costs
(51% compared to RR and 23% compared to LF). (b) Switchboard
achieves average call latencies comparable to LF which is a sig-
nificant improvement over RR (2.2×). (c) Switchboard needs to
migrate only a small fraction of calls (1.53%), which is the same as
LF. (d) The controller is performant and scalable - a single instance
of a controller can handle 1.4× the current demand as observed by
Microsoft Teams.

6.1 Evaluation metrics

We evaluate Switchboard using the following metrics.

Switchboard ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

(1) Mean average call latency (Mean ACL:) For each call, we
compute the average latency across all its call legs (ACL). Then, we
compute the mean ACL across all calls and report this value for
each experiment.

(2) Total WAN capacity:We concern ourselves only with the
capacity on the inter-country WAN links, since these tend to have
a disproportionately high cost relative to intra-country links. We
consider the peak rate (Gbps) of Microsoft Teams traffic on each
link, and not the traffic volume (GB), since the peak rate is what
determines the provisioning cost. We report the sum of the peaks
across all WAN links, even if the individual peaks occur at different
times. We note that WAN bandwidth costs are based on overall
traffic peak, including the non-"Microsoft Teams" traffic that may
be flowing on the same links. While we report only the capacity
required to support Microsoft Teams’s peak traffic, our formula-
tion can be extended to include the non-Microsoft Teams traffic to
minimize the overall peak.

(3) Compute cores: We consider the number of compute cores
needed for MP servers across all DCs. As with WAN capacity, we
calculate the sum of the peak compute core usage at each DC.

(4) Cost:While we look at the peak usage of WAN bandwidth
and compute cores since they determine the network and compute
cost respectively, their combined cost is what determines the total
cost of provisioning resources for Microsoft Teams, which is what
Switchboard intends to minimize.

6.2 Data sources

We run our experiments using 15 months of Microsoft Teams’s
call records from September 2021 to November 2022.

Latency: Microsoft Teams’s call records database stores the
latency for each participant in a call, i.e., for each call leg. Each
record contains the DC where the MP server was located as well as
the participant location (country). Note that the logs only contain
the latency corresponding to the actual MP server location for a
call. To estimate the counterfactual, i.e., the latency with a different
choice of MP server location, we pool together latency information
across all calls and then estimate the latency between each MP
location (DC) and participant location (country) as the median of
all the recorded latencies for this pair.

Costs: To determine cost of each provisioning approach, we use
the internal per-DC compute costs provided by Azure (per core,
per unit-time). This amount varies significantly based on region
and DC location. To characterize network cost, we obtain the cost
per unit bandwidth usage cost in a given region, and divide it by
the average number of links used by traffic in that region.

Forecasting call count:We used the call records of Microsoft
Teams from September 2021 to May 2022 (9 months) to forecast
call count for each call config for the months of September 2022 to
November 2022. The 3-month look-ahead in forecasting reflects the
lead time required to provision resources, especially WAN capacity.
Since Switchboard’s core contribution is to optimize resource
management, and not forecasting, we first evaluate Switchboard
(SB) versus RR and LF with the ground truth call counts (Table 3),
and then evaluate the difference between the ground truth and fore-
casted call counts (Table 4). We also present a separate evaluation
of the accuracy of forecasting in §6.5.

6.3 MP capacity provisioning

In this section, we evaluate and compare the three provision-
ing techniques: RR, LF, and Switchboard (SB). Our experiments
run using data from the month of September 2022 to November
2022 consisting of 180+ million calls. To provide greater insights,
we report the results separately for cases with and without the
provisioning of backup capacity (Equations 7 and 8 for SB).

Table 3 reports the total compute cores and WAN capacity pro-
visioned, the corresponding cost, and the mean ACL for RR, LF,
and SB. We normalize all values with respect to the values for the
RR baseline for reasons of confidentiality. As described in §3, RR
achieves the lowest compute cores provisioned, but at the cost
of provisioning large amounts of WAN capacity. LF, on the other
hand, achieves the best mean ACL (45% of RR) and provisions much
less WAN capacity in comparison to RR (55% of RR), but with the
tradeoff of provisioning 10% more compute cores than RR.

SB achieves the best of both worlds by minimizing cost subject
to an ACL constraint of 120ms. Table 3 shows that with backup
capacity, SB uses the same number of compute cores as RR, but
uses 22% less WAN capacity than LF (0.43× vs 0.55×) and 57% less
WAN capacity than RR, while achieving the same mean ACL as
LF. By doing so, SB saves 51% cost compared to RR and 23% cost
compared to LF without compromising latency.

SB’s lower WAN capacity requirements than RR arises in large
part because unlike RR which hosts calls to remote DCs, SB tends
to host a large fraction of the calls on DCs which would result in
the least impact on the WAN peak, typically the closest DC.

SB provisions less compute and WAN capacity than LF primarily
because LF optimizes for call latency, whereas SB optimizes for cost
while keeping latency constrained. To reduce cost while satisfying
the constraint, SB is able to reuse, "for free", some of the already
existing WAN capacity which had to be provisioned for serving
calls at a different (peak) time. SB takes advantage of the shift in
peak load across locations by having some calls hosted in a DC that
is remote with respect to the location of the majority of participants.
This results in an even lower WAN capacity requirement than LF.

Note that SB trades off some latency compared to LF (0.51× vs
0.45× in the case without backup capacity) while still meeting the
specified latency constraint in return for the WAN bandwidth and
cost gains.

Furthermore, when the need to offload calls to a remote DC
arises, SB preferentially offloads audio calls, followed by screen-
share calls, before lastly offloading video calls. The reason is that the
network load imposed by audio calls is much smaller as compared
to the compute load shed via offloading, e.g., as discussed in Table 1,
video calls would incur about 30-40× higher network load while
offloading 2-4× compute as compared to audio calls.

As expected, SB results in a sharply reduced latency compared
to RR, owing to two reasons, a) SB tries to minimize WAN peaks
while provisioning by travelling shorter paths – which is positively
correlated with lower latency, and b) SB attempts to minimize
latency during allocation with the provisioned resources. It turns
out in our experiments that after provisioning for failure scenarios,
i.e. with backup capacity constraints, SB does not need to rely on
offloading calls to remote DCs to smoothen out peaks because of
the additional backup capacity provisioned provides sufficient local

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Bothra.et al.

Without backup With backup

Scheme Cores WAN Cost Mean ACL Cores WAN Cost Mean ACL
RR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LF 1.08 0.18 0.35 0.45 1.10 0.55 0.64 0.45
SB 1.00 0.14 0.29 0.51 1.00 0.43 0.49 0.45

Table 3: Resources provisioned (compute cores and total WAN capacity in Gbps), cost incurred ($), and mean ACL (ms) for RR,

LF and Switchboard (SB) with and without backup capacity, i.e., with and without considering failure scenarios. The original

units have been removed since all numbers are normalized to the values of RR.

Without backup With backup

Scheme Cores WAN Cores WAN
RR -5% -13% -5% -13%
LF -6% -8% -7% -11%
SB -5% +10% -5% -11%

Table 4: Difference between resources provisioned using

ground-truth records and using forecasts for call counts.

compute for the no-failure scenario, which is typically the case. So,
in effect, the call placement with SB ends up being identical to LF
in the absence of failures by using the backup capacity. Hence, the
ACL values are identical for LF and SB.

Table 4 reports the difference between the amount of resources
provisioned using forecasts of call counts and ground truth records.
A -ve value implies that the forecast over-provisioned resources as
compared to what the ground truth required. Note that provisioning
based on forecasts is reasonably accurate - within +/-13% of provi-
sioning done with ground truth, across all schemes. We noticed that
our forecast module under-estimated the inter-country calls, and
over-estimated the intra-country calls, owing to the difference in
the nature of the trend and number of calls in them. The total calls
(both inter- and intra-country) were still over estimated, which
explains the -ve values in the number of cores required across all
schemes. As discussed in §3.1, RR sprays calls all around which re-
sults in it’s WAN bandwidth requirement being proportional to the
number of total calls – explaining the -ve value for RR’s WAN ca-
pacity. LF’s WAN capacity is a function of both inter-country calls,
as well as the intra-country calls whose closest DC is far off. Given
the over-estimation of intra-country calls, the WAN requirement
for the forecast call counts is still more than the ground truth, albeit
the difference is lesser than RR. Switchboard on the other hand,
is able to effectively reuse the WAN links to pack the intra-country
calls in a way that the WAN requirement for the forecast depends
largely on the inter-country calls, which is under-estimated, result-
ing in a +ve value. However, after considering failure scenarios,
where both LF and SB resort to hosting calls to far-off DCs, the SB
prediction for WAN capacity is again impacted by the intra-country
calls and hence becomes negative.

6.4 Frequency of call migration

As discussed in §5.4, when a new call arrives, the choice of initial
MP location might turn out to be incorrect and we might have to
migrate the call once the call config is known, say a few minutes
into the call. From Fig.8, we see that 300 seconds (5 minutes) into
the call, a significant majority (about 80%) of participants have
joined. Therefore, we freeze the call config at 𝐴 = 300 seconds into
the call.

Call migrations are undesirable since these could lead to a user-
perceived glitch. However, migration across DCs is unavoidable
since the initial choice of hosting location could be wrong and
continuing to host a call in the wrong DC (e.g., one that is far from
where the majority of call participants are located) would have
a negative bearing on not just latency but also WAN bandwidth
usage.

Therefore, in our evaluation here, we focus on the frequency of
the inter-DC migrations. Our experiments show that both SB needs
to migrate only 1.53% of calls need to stick to the pre-computed
allocation plan. This is the same as the fraction of call migrations
required by LF, which requires to know the exact spread of all
participants to minimize the ACL. To further cut down such call
migration, we could use history to predict the call configuration,
or atleast the location of the majority of participants. We touch on
this briefly in §8.

6.5 Provisioning forecasting

As mentioned in §5.2, we forecast the expected number of calls
for call configs in future using Holt-Winters timeseries forecasting.
We built the timeseries for individual call configs using 9 months
of data and use it to predict the call config 3 months into the future.
For each call config we calculate RMSE (Root Mean Square Error)
and MAE (Mean Absulate Error) based on the forecasted count and
ground truth. We normalize it using the peak number of calls in
ground truth. This way, elephant and mice call configs are treated
in the same way. Fig.9 shows the CDF for RMSE and MAE for top
1000 call configs. We observed reasonably small median RMSE and
MAE values – 13% and 8%, respectively.

6.6 Controller benchmark

We evaluate the controller throughput to check whether we can
support the peak rate of arrival of new calls and call participants.
We run our controller on a 4-core D-series VM on Azure with 16GB
RAM. We replay the trace for 24 hours on a typical weekday. The
trace contains millions of calls and events (participants joining and
media changes). We use Azure’s Redis[11] offering in the same DC
as the controller.

We evaluate the throughput supported by the controller as we
increase the number of threads. Recall that these threads write back
to Redis, the changes to the call config as additional participants
join a new call. We found the latency for each write operation is in
a reasonable range of 0.3ms to 4.2ms. Fig.10 shows the throughput
as we vary number of threads (normalized to the peak traffic seen
in the trace). We found that we can support 1.4× peak load using 10
threads. Importantly, the throughput supported scales with number
of threads. These results demonstrate that our the controller is
performant enough.

Switchboard ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Figure 8: Ave. fraction of participants

joining since meeting starts.

Figure 9: CDF for normalized RMSE

and MAE for call configs.

1X

Figure 10: Throughput using different

Redis writing threads.

7 RELATEDWORK

Media-stack optimizations: Conferencing applications such
as Microsoft Teams[9], Zoom[12], Skype[8] and Google Meet[4]
have received widespread attention[17, 25, 29, 32]. Recent work
has focused on adapting video quality based on the network
conditions[29], codec and transport collaboration[16, 22, 42], or
low latency video transport network[28]. Our work complements
these studies by focusing on resource provisioning for conferencing
systems.

Server selection: There has been extensive prior work to study
server selection[27, 31, 37–39, 41], and DC/replica selection[19, 21].
Taiji[19] assigns weights at edge sites for splitting traffic across
individual DCs. [35, 36] focuses on replica selection to improve
the tail latency. However, these systems do not take advantage of
jointly provisioning compute and network, while also leveraging
backup capacity to optimize for performance.

Provisioning: Recent works[7, 15, 18, 34] have been seminal
systems focusing on provisioning network capacity for online ser-
vices. However, they do not consider cross-resource provisioning
even though they are inter-dependent and the cost depends on
both. Similarly, other systems[26, 30] have focused on proactive
provisioning for network faults. Switchboard focuses on proactive
provisioning for compute (MP servers) as well as network.

Leveraging time varying demands: Like Switchboard, prior
work has also leveraged time varying demands but in different con-
texts. TIVC[40] improves cluster utilization based on time varying
demands. Approv[34] leverages it to schedule network traffic.

Capacity limits in cloud: It has been reported that customers
sometime cannot get resources because the cloud runs out of re-
sources in certain regions/availability-zones[1–3]. Additionally, it
is also reported that Zoom runs its own hardware for enterprise
customers[13]. These point to the importance of planned provision-
ing of adequate resources, especially for large scale services.

8 DISCUSSION

Predicting call configuration for incoming calls: If Switch-
board could accurately predict the config for each new incoming
call, it could potentially eliminate inter-DC migrations. Predicting
call configs is particularly feasible for recurring calls. We train a
two-part model on a small set of 24,000 call records which con-
sisted of calls with at least 3 past occurrences as part of the same
meeting series. We use a variable length multi-order Markov chains

(MOMC) setup to capture temporal predispositions in terms of at-
tendance that a participant exhibits over the past few instances. We
feed the output of the MOMC apparatus into a logistic regression
that predicts the desired binary — the attendance of that particular
participant in the upcoming instance, which gets aggregated across
participants to get the call-config. We compute Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE) with the predicted
and ground truth participant count of each country in the call con-
fig. While predicting results for 3,600 unseen meeting instances, we
observed an average RMSE value of 0.97 and an average MAE of
0.90 against a baseline that predicted the call config simply based
on the previous call instance which had RMSE and MAE of 24.90
and 23.60 respectively. Note that for calls with a large number of
participants (dozens or even hundreds), the baseline prediction is
particularly inaccurate, and our history-based MOMC approach
does much better. Making this prediction model more scalable can
significantly reduce inter-DC migrations.

Using Switchboard for other applications: Switchboard
can be adapted to other online applications with identical work-
load characteristics, for instance, multiplayer cloud gaming. Other
user-facing applications can take still take advantage of the key
ideas behind resources provisioning and allocation, though the
formulation would be different.

9 ACKNOWLEDGEMENTS

We thank our shepherd, Maria Gorlatova, and the anonymous
SIGCOMM reviewers, for their feedback. We thank Bhaskar Kataria
for their feedback on the paper. Rahul Bothra thanks his parents –
Anju and Ratan Bothra for their sacrifices and support in helping
him pursue a career in research.

REFERENCES

[1] https://www.reddit.com/r/googlecloud/comments/ggyipd/asiasouth1a_does_
not_have_enough_resources/.

[2] https://stackoverflow.com/questions/52684656/the-zone-does-not-have-enoug
h-resources-available-to-fulfill-the-request-the-re.

[3] https://stackoverflow.com/questions/52113153/ec2-error-starting-instances-i
nsufficient-capacity.

[4] Google Meet. https://apps.google.com/meet.
[5] Holt-Winters exponential smoothing. https://www.statsmodels.org/dev/genera

ted/statsmodels.tsa.holtwinters.ExponentialSmoothing.html.
[6] Latency Test for VoIP: How it Impacts Call Quality and Ways to Fix It. https:

//getvoip.com/blog/2021/06/21/voip-latency-test.
[7] Long-Term Capacity Planning in Facebook Network. https://www.researchgate

.net/publication/323564414_Long-Term_Capacity_Planning_in_Facebook_Ne
twork.

[8] Microsoft Skype. https://www.skype.com/en/get-skype/.

https://www.reddit.com/r/googlecloud/comments/ggyipd/asiasouth1a_does_not_have_enough_resources/
https://www.reddit.com/r/googlecloud/comments/ggyipd/asiasouth1a_does_not_have_enough_resources/
https://stackoverflow.com/questions/52684656/the-zone-does-not-have-enough-resources-available-to-fulfill-the-request-the-re
https://stackoverflow.com/questions/52684656/the-zone-does-not-have-enough-resources-available-to-fulfill-the-request-the-re
https://stackoverflow.com/questions/52113153/ec2-error-starting-instances-insufficient-capacity
https://stackoverflow.com/questions/52113153/ec2-error-starting-instances-insufficient-capacity
https://apps.google.com/meet
https://www.statsmodels.org/dev/generated/statsmodels.tsa.holtwinters.ExponentialSmoothing.html
https://www.statsmodels.org/dev/generated/statsmodels.tsa.holtwinters.ExponentialSmoothing.html
https://getvoip.com/blog/2021/06/21/voip-latency-test
https://getvoip.com/blog/2021/06/21/voip-latency-test
https://www.researchgate.net/publication/323564414_Long-Term_Capacity_Planning_in_Facebook_Network
https://www.researchgate.net/publication/323564414_Long-Term_Capacity_Planning_in_Facebook_Network
https://www.researchgate.net/publication/323564414_Long-Term_Capacity_Planning_in_Facebook_Network
https://www.skype.com/en/get-skype/

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Bothra.et al.

[9] Microsoft Teams. https://www.microsoft.com/en-us/microsoft-teams/group-c
hat-software.

[10] Microsoft Teams user growth. https://www.businessofapps.com/data/microsof
t-teams-statistics/.

[11] Redis in-memory data store. https://redis.io.
[12] Zoom. https://zoom.us/.
[13] Zoom on AWS. https://www.datacenterdynamics.com/en/news/most-zoom-run

s-aws-not-oracle-says-aws/.
[14] Zoom user growth. https://backlinko.com/zoom-users.
[15] S. S. Ahuja, V. Gupta, V. Dangui, S. Bali, A. Gopalan, H. Zhong, P. Lapukhov, Y. Xia,

and Y. Zhang. Capacity-efficient and uncertainty-resilient backbone network
planning with hose. In ACM SIGCOMM 2021, pages 547–559, 2021.

[16] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo. Analysis and design of the
google congestion control for web real-time communication (WebRTC). In ACM
MMSys, 2016.

[17] H. Chang, M. Varvello, F. Hao, and S. Mukherjee. Can you see me now? A
measurement study of Zoom, Webex, and Meet. In ACM IMC, 2021.

[18] Y. Chang, S. Rao, and M. Tawarmalani. Robust validation of network designs
under uncertain demands and failures. In USENIX NSDI, 2017.

[19] D. Chou, T. Xu, K. Veeraraghavan, A. Newell, S. Margulis, L. Xiao, P. M. Ruiz,
J. Meza, K. Ha, S. Padmanabha, et al. Taiji: managing global user traffic for
large-scale internet services at the edge. In ACM SOSP, 2019.

[20] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-Hielscher,
A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein. Maglev: A fast and
reliable software network load balancer. In USENIX NSDI, 2016.

[21] A. Flavel, P. Mani, D. Maltz, N. Holt, J. Liu, Y. Chen, and O. Surmachev. FastRoute:
A Scalable Load-Aware Anycast Routing Architecture for Modern CDNs. In
USENIX NSDI, 2015.

[22] S. Fouladi, J. Emmons, E. Orbay, C. Wu, R. S. Wahby, and K. Winstein. Salsify:
Low-Latency Network Video through Tighter Integration between a Video Codec
and a Transport Protocol. In USENIX NSDI, 2018.

[23] R. Gandhi, Y. C. Hu, C.-k. Koh, H. H. Liu, and M. Zhang. Rubik: Unlocking
the power of locality and end-point flexibility in cloud scale load balancing. In
USENIX ATC, 2015.

[24] M. Guo, M. H. Ammar, and E. F. Zegura. Selecting among replicated batching
video-on-demand servers. In ACM NOSSDAV, 2002.

[25] J. Jiang, R. Das, G. Ananthanarayanan, P. A. Chou, V. Padmanabhan, V. Sekar,
E. Dominique, M. Goliszewski, D. Kukoleca, R. Vafin, and H. Zhang. Via: Improv-
ing Internet Telephony Call Quality Using Predictive Relay Selection. In ACM
SIGCOMM, 2016.

[26] P. Kumar, Y. Yuan, C. Yu, N. Foster, R. Kleinberg, P. Lapukhov, C. L. Lim, and
R. Soulé. Semi-oblivious traffic engineering: The road not taken. In USENIX NSDI,
2018.

[27] M. Kwon, Z. Dou, W. Heinzelman, T. Soyata, H. Ba, and J. Shi. Use of Network La-
tency Profiling and Redundancy for Cloud Server Selection. In IEEE International
Conference on Cloud Computing, 2014.

[28] J. Li, Z. Li, R. Lu, K. Xiao, S. Li, J. Chen, J. Yang, C. Zong, A. Chen, Q. Wu, C. Sun,
G. Tyson, and H. H. Liu. LiveNet: A Low-Latency Video Transport Network for
Large-Scale Live Streaming. In ACM SIGCOMM, 2022.

[29] X. Lin, Y.Ma, J. Zhang, Y. Cui, J. Li, S. Bai, Z. Zhang, D. Cai, H. H. Liu, andM. Zhang.
GSO-simulcast: global stream orchestration in simulcast video conferencing
systems. In ACM SIGCOMM, 2022.

[30] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter. Traffic engineering
with forward fault correction. In ACM SIGCOMM, 2014.

[31] Z. Liu, M. Lin, A. Wierman, S. Low, and L. L. H. Andrew. Greening Geographical
Load Balancing. IEEE/ACM Transactions on Networking, 2015.

[32] K. MacMillan, T. Mangla, J. Saxon, and N. Feamster. Measuring the performance
and network utilization of popular video conferencing applications. In ACM IMC,
2021.

[33] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz, R. Kern,
H. Kumar, M. Zikos, H. Wu, et al. Ananta: Cloud scale load balancing. In ACM
SIGCOMM, 2013.

[34] H. Sharma, P. Thakkar, S. Bharadwaj, R. Bhagwan, V. N. Padmanabhan, Y. Bansal,
V. Kumar, and K. Voelbel. Optimizing network provisioning through cooperation.
In USENIX NSDI, 2022.

[35] S. M. Shithil and M. A. Adnan. A prediction based replica selection strategy for
reducing tail latency in distributed systems. In 2020 IEEE CLOUD, 2020.

[36] L. Suresh, M. Canini, S. Schmid, and A. Feldmann. C3: Cutting tail latency in
cloud data stores via adaptive replica selection. In USENIX NSDI, 2015.

[37] R. Torres, A. Finamore, J. R. Kim, M. Mellia, M. M. Munafo, and S. Rao. Dissecting
Video Server Selection Strategies in the YouTube CDN. In IEEE ICDCS, 2011.

[38] W. Wang and G. Casale. Evaluating weighted round robin load balancing for
cloud web services. In IEEE International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, 2014.

[39] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford. DONAR: Decentralized
Server Selection for Cloud Services. In ACM SIGCOMM, 2010.

[40] D. Xie, N. Ding, Y. C. Hu, and R. Kompella. The only constant is change: Incorpo-
rating time-varying network reservations in data centers. In ACM SIGCOMM,
2012.

[41] Q. Zhang, Q. Zhu, M. F. Zhani, R. Boutaba, and J. L. Hellerstein. Dynamic Service
Placement in Geographically Distributed Clouds. IEEE Journal on Selected Areas
in Communications, 2013.

[42] A. Zhou, H. Zhang, G. Su, L. Wu, R. Ma, Z. Meng, X. Zhang, X. Xie, H. Ma, and
X. Chen. Learning to coordinate video codec with transport protocol for mobile
video telephony. In ACM International Conference on Mobile Computing and
Networking, 2019.

https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://www.businessofapps.com/data/microsoft-teams-statistics/
https://www.businessofapps.com/data/microsoft-teams-statistics/
https://redis.io
https://zoom.us/
https://www.datacenterdynamics.com/en/news/most-zoom-runs-aws-not-oracle-says-aws/
https://www.datacenterdynamics.com/en/news/most-zoom-runs-aws-not-oracle-says-aws/
https://backlinko.com/zoom-users

	Abstract
	1 Introduction
	2 Overview
	2.1 Problem
	2.2 Scope

	3 Baseline Strategies
	3.1 Round-Robin
	3.2 Locality-First

	4 Key Ideas
	4.1 Peak-aware provisioning
	4.2 Joint serving + backup provisioning
	4.3 Joint compute + network provisioning
	4.4 Application-specific provisioning

	5 Design
	5.1 Call configuration
	5.2 Forecasting call count
	5.3 Capacity provisioning
	5.4 Real-time MP assignment

	6 Evaluation
	6.1 Evaluation metrics
	6.2 Data sources
	6.3 MP capacity provisioning
	6.4 Frequency of call migration
	6.5 Provisioning forecasting
	6.6 Controller benchmark

	7 Related work
	8 Discussion
	9 Acknowledgements
	References

