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ABSTRACT
Hardware offloaded network stacks are widely adopted in modern

datacenters to meet the demand for high throughput, ultra-low

latency and low CPU overhead. To fully leverage their exceptional

performance, users need to have a deep understanding of their

behaviors. Despite many efforts on testing software network stacks,

hardware network stacks impose unique challenges to testing tools

due to their kernel bypass nature and high performance.

In this paper, we present Lumina, a tool to test the correctness

and performance of hardware network stacks. Lumina leverages

network programmability to emulate various network scenarios at

line rate. With user-friendly interfaces, Lumina enables developers

to inject deterministic events, thus facilitating the development of

precise and reproducible tests. Given the limited resource and flexi-

bility of programmable network devices, we mirror all the packets

to dedicated servers and dump them for offline analysis. We lever-

age Lumina to test four RDMA NICs from NVIDIA and Intel, and

identify bugs that can significantly degrade performance or mislead

network operations. Lumina also enables us to capture unexpected

micro-behaviorswhich aremissing or not clearly described in public

documents and specifications. Vendors have confirmed the critical

bugs we discovered and will include bug fixes in future releases.
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•Networks→ Programmable networks; In-network process-
ing; Network performance analysis; Network measurement.
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1 INTRODUCTION
Modern cloud applications have increasingly demanding require-

ments, seeking high throughput and ultra-low processing latency,

while minimizing CPU overhead. Unfortunately, the legacy TCP/IP

stack in operating system (OS) kernels are not optimized to meet

these specific demands. As a result, cloud providers tend to offload

network stacks into network interface cards (NICs) or data pro-

cessing units (DPUs) to enhance performance and free up valuable

CPU cycles. Hardware offloaded networking techniques, such as Re-

mote Direct Memory Access (RDMA), Scalable Reliable Datagram

(SRD) [46] and SOLAR [38], have been widely deployed to empower

various workloads, including cloud storage [14, 20, 38], high perfor-

mance computing (HPC) and machine learning (ML) [11, 12, 46, 50].

To fully harness the exceptional performance benefits of hard-

ware offloading, network operators must possess a deep under-

standing of hardware network stack behaviors. Presently, the com-

mon practice involves running synthetic and production workloads

on testbeds and test clusters to measure end-to-end performance.

While this approach can detect significant bugs that directly disrupt

end-to-end workflows, it may fall short in capturing functional bugs

related to congestion control, quality of service (QoS), and loss re-

covery. Additionally, this method is susceptible to the interference

of applications and varying network conditions, leading to chal-

lenges in reliably reproducing end-to-end performance anomalies.

As a result, network operators may face difficulties in effectively

localizing the root causes of these issues.

There are various testing tools [16, 18, 21, 41] designed specifi-

cally for software network stack implementations. These tools offer

the advantage of flexible interaction with software network stack

implementations, allowing accurate capture of micro-behaviors and

enabling users to conduct precise and reproducible tests. However,

when it comes to testing hardware network stacks, two significant

challenges arise. Firstly, hardware network stacks are directly im-

plemented in the hardware and bypass the OS kernel, making it

exceptionally difficult to directly inject events or measure behaviors

on the end hosts. Consequently, conventional solutions like pack-

etdrill [16], which rely on a shim layer for event injection, are not

suitable for testing hardware network stacks. Secondly, hardware

network stacks are capable of delivering much higher throughput

and lower latency. As a result, any testing tool used must be able

to interact with these stacks at line rate, with minimal additional

delay, to accurately evaluate their performance.

https://doi.org/10.1145/3603269.3604837
https://doi.org/10.1145/3603269.3604837
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In this paper, we introduce Lumina, a tool designed to thoroughly

test the correctness and performance of hardware network stacks,

with a primary focus on RDMA initially. Lumina employs an in-

network solution, directly interacting with hardware network stack

implementations. This is accomplished by connecting two hosts,

each equipped with the hardware network stack under test, to a

programmable switch, which plays a key role in event injection.

However, due to the inherent limitations of the programmable

switch, such as constrained on-chip memory and processing cycles,

performing complexmeasurement and analysis tasks entirely on the

data plane is challenging. To overcome this obstacle, we leverage

the packet mirroring feature to create duplicates of all packets

and forward them to dedicated servers. These servers serve as

repositories for all themirrored packets, allowing for offline analysis

of the network behavior.

Lumina aims at enabling users to write precise and reproducible

tests in a user-friendly manner. We co-design three main compo-

nents: event injector (on a programmable switch), traffic generator

(traffic servers equipped with the hardware network stack under

test), and packet dumper (onmirror servers). Before initiating traffic,

the event injector leverages metadata shared by the traffic generator,

e.g., queue pair number and packet sequence number, to translate

users’ intents, e.g., drop the second packet of the first queue pair,

into deterministic events to inject. During the mirroring, Lumina

embeds essential data plane metadata, such as mirror sequence

number, timestamp, and event type, into the mirrored packets. This

ensures the ability to reconstruct a correct and complete network

trace during offline analysis. To enable high-speed traffic dumping,

Lumina adopts several optimizations, including per-packet load

balancing across CPU cores and packet trimming. Additionally, a

test suite is built, featuring a set of built-in analyzers for common

features, alongwith a fuzzing-basedmodule [49]. The fuzzing-based

module automatically generates test cases to search for potential

bugs, enhancing the tool’s testing capabilities.

We build a prototype of Lumina using Intel Tofino switch and

test four widely deployed RDMA NICs (RNICs) from NVIDIA and

Intel: NVIDIA ConnectX-4 Lx, ConnectX-5, ConnectX-6 Dx Dx

and Intel E810. With Lumina, we gain invaluable visibility into the

micro-behaviors of packet retransmissions, a crucial aspect in lossy

RDMA deployments. Through extensive testing with Lumina, we

identify a few critical bugs that can lead to significant performance

degradation or provide misleading information to operations. For

example, we find that NVIDIA ConnectX-6 Dx’s Enhanced Trans-

mission Selection (ETS) packet scheduler fails to achieve work

conservation as required by the specification [30], which can cause

considerable throughput loss in production with multiple traffic

classes. Furthermore, Lumina enables us to capture a set of unex-

pected micro-behaviors which are missing or not clearly described

in vendors’ documents and specifications. We have reported all of

our findings to NVIDIA and Intel, and have been working closely

with them in the debugging process. The vendors have confirmed

the critical bugs and will include bug fixes in future releases.

With hardware network stacks becoming increasingly complex

and widely adopted, we believe our community needs a comprehen-

sive suite of testing tools and an ImageNet-like [19] benchmark to

systematically assess their performance and correctness. Through

the introduction of Lumina, we aim to shed light on this critical

area, complementing other research efforts [17, 28, 29, 53]. The code

of Lumina is publicly available at https://lumina-test.github.io/.

2 BACKGROUND AND MOTIVATION
Over the past few years, there has been a notable surge in the wide-

spread adoption of hardware offloaded network stacks, including

RDMA, SRD [46], and SOLAR [38], within cloud environments.

These technologies have been used to boost performance and cost-

effectiveness across various applications, such as storage [14, 20, 38],

HPC, and ML [12, 46, 50]. A recent study [14] indicates that approx-

imately 70% of the traffic in Azure is RDMA.

Given this trend, it is important for network operators to have a

deep understanding of hardware network stacks’ behaviors. How-

ever, the current practice of running synthetic tests (e.g., using

tools like perftest [10]) and production workloads on testbeds

and test clusters may not be sufficient to uncover all potential is-

sues. While this approach can detect significant bugs that directly

disrupt end-to-end workloads, such as failures in recovering lost

packets, long-time hardware pipeline stalls, or kernel panics due

to hardware bugs, it may not effectively capture functional bugs

related to congestion control, Quality of Service (QoS), and loss

recovery. Additionally, the presence of various applications and

network conditions in the test environment can introduce noise

and make it challenging to reproduce issues reliably, hindering

the collection of detailed information and micro-behaviors needed

to identify root causes. As a result, bugs in critical areas may go

unnoticed during testing and only surface in production networks.

The magnitude of these problems is likely to escalate as link speeds

continue to increase and hardware network stacks become even

more complex

To illustrate the problem further, we consider the performance

of NVIDIA ConnectX-4 RDMA NIC over lossy networks as an ex-

ample. Shpiner et al. evaluated its performance over a lossy testbed

network, and found it could preserve high goodput under synthetic

incast workloads (Figure 4 and 5 in [47]). Hence, the authors con-

cluded that the ConnectX-4 could provide solid performance even

in the presence of packet drops. However, our investigation with

Lumina reveals a different perspective. We find that the retransmis-

sion delay of this NIC is actually around 200 microseconds (Figure 8

and 9), which translates to approximately 100 base round-trip times

(RTTs). This retransmission delay can significantly impact the over-

all performance and latency in lossy networks. Moreover, we find

that this NIC has a “noisy neighbor” problem. When multiple con-

nections experience packet drops simultaneously, the entire NIC

pipeline can stall, leading to the discarding of packets from other

connections that are not involved in the packet drops (Figure 11).

Considering these limitations, it is essential to develop a tool

that empowers developers to effortlessly create accurate and repro-

ducible tests for hardware network stacks. To achieve this objective,

the tool must effectively interface with hardware network stacks,

allowing for versatile and predictable interactions, such as loss injec-

tion. Additionally, it should precisely capture micro-behaviors, such

as packet transmission time, and crucial information like counters.

We have observed several testing tools [16, 18, 21, 41] with simi-

lar objectives, but they primarily focus on testing software network

stacks. However, when it comes to hardware network stacks, testing

https://lumina-test.github.io/
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Figure 1: Lumina Overview.

tools face distinctive challenges. Firstly, hardware network stacks

are predominantly implemented in hardware and bypass the ker-

nel, making direct interaction and behavior measurement through

software shim layers at the host (e.g., libpcap and TUN device used

by packetdrill [16]) nearly impossible. Secondly, hardware network

stacks operate at significantly higher throughputs (e.g., 400Gbps

for a single flow on NVIDIA ConnectX-7 [13]) and lower latencies

(a few microseconds). As a result, testing tools must meet strict

performance requirements for injecting test events and conducting

measurements.

3 LUMINA DESIGN
Motivated by above observations, we develop Lumina, a tool that

enables testing the correctness and performance of hardware net-

work stacks. In this paper, our primary focus lies on RDMA over

Converged Ethernet (RoCE) v2
1
, given its availability in commercial

products from various vendors [5, 6, 9], as well as its widespread

adoption among numerous cloud providers [11, 14, 20]. This section

begins with an overview of the design rationale behind Lumina and

then proceeds to provide a detailed introduction to its design.

3.1 Design Rationale
The inherent kernel bypass nature of hardware network stacks

poses a challenge in directly injecting events and measuring be-

haviors at the end host. To overcome this limitation, we adopt an

in-network approach. We connect two hosts with the hardware net-

work stack under test to a programmable switch. By programming

the switch, we can inject diverse events to emulate various network

scenarios. However, the switch’s constrained on-chip memory and

processing capabilities make it impractical to entirely perform mea-

surement and analysis tasks on the data plane. To address this, we

employ packet mirroring to create duplicates of all packets, which

are then forwarded to dedicated servers for offline analysis.

Figure 1 illustrates the four key components of Lumina: Orches-
trator, Traffic Generator, Event Injector, and Traffic Dumper . To run a

1
Throughout this paper, we will use the terms RDMA, RoCE, and RoCEv2

interchangeably.

requester:
workspace: /home/foo/bar/
control-ip: cx4-testing-traffic-requester
nic:
type: cx4
if-name: enp4s0
switch-port: 144
ip-list: [10.0.0.2/24,10.0.0.12/24]

roce-parameters:
dcqcn-rp-enable: False
dcqcn-np-enable: True
min-time-between-cnps: 0
adaptive-retrans: False
slow-restart: True

Listing 1: Host (requester) Configuration Snippet

traffic:
num-connections: 2
rdma-verb: write
num-msgs-per-qp: 10
mtu: 1024
message-size: 10240
multi-gid: true
barrier-sync: true
tx-depth: 1
min-retransmit-timeout: 14
max-retransmit-retry: 7
data-pkt-events:
# Mark ECN on the 4th pkt of the 1st QP conn
- {qpn: 1, psn: 4, type: ecn, iter: 1}
# Drop the 5th pkt of the 2nd QP conn
- {qpn: 2, psn: 5, type: drop, iter: 1}
# Drop the retransmitted 5th pkt of the 2nd QP conn
- {qpn: 2, psn: 5, type: drop, iter: 2}

Listing 2: Traffic and Event Configuration Snippet

test, the orchestrator takes a configuration as input, sets up the en-

vironment, and sends Remote Procedure Calls (RPCs) to coordinate

different components.

Lumina employs two hosts with the same bandwidth capacity to

generate traffic. Both hosts are equippedwith the hardware network

stack under test and are running separate instances of a traffic gen-

erator. One host serves as the requester, while the other functions as

the responder. These hosts collaboratively generate network traffic

based on the configurations provided by the orchestrator (§3.2).

The event injector serves the purpose of forwarding traffic while

also injecting pre-configured events like ECN marks, packet losses,

and corruptions (§3.3). Additionally, it mirrors all RDMA packets

to the traffic dumper pool, consisting of multiple servers, allowing

for offline analysis at a later stage (§3.4).

After the traffic finishes, the orchestrator gathers results from

various components, such as dumped packets, NIC counters, and

log files. It meticulously reconstructs the entire packet trace by

assembling the dumped packets collected by the traffic dumper

servers. Once this trace is complete, users have the ability to parse

both the packet trace and other collected results, enabling in-depth

analysis of the hardware network stack’s behaviors (§3.5).

3.2 Traffic Generation
Prior to starting traffic generators, the orchestrator first configures

IP addresses and apply network stack settings, e.g., congestion
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control and loss recovery parameters, of traffic generation hosts.

Listing 1 gives an example.

After the configuration process, the orchestrator initiates traffic

generator instances on both hosts. Our traffic generator utilizes the

Reliable Connected (RC) transport, and supports RDMA send/re-

ceive, write, and read verbs. In this paper, we use Send/Recv, Write
and Read to denote them, respectively. Moreover, apart from us-

ing individual verbs, the requester has the flexibility to post verb

combinations, such as Send and Read, facilitating the generation

of bi-directional data traffic.

RDMA traffic generators communicate over one or multiple

queue pairs (QPs). As illustrated in Listing 2, users have the flexi-

bility to configure many parameters of traffic generators, e.g., the

number of QPs, retransmission timeout, and MTU.

After two traffic generators initialize objects such as QPs and

memory regions (MRs), they proceed to exchange essential meta-

data over a TCP connection. This metadata includes crucial infor-

mation such as QP number (QPN), packet sequence number (PSN),

global identifier (GID), memory address, and key. As QPNs and

PSNs are generated randomly during runtime and play a critical

role in allowing the event injector to identify the correct pack-

ets, the traffic generator also shares this metadata with the event

injector (more details in §3.3).

Once metadata is exchanged and QP connections are established,

the requester initiates the generation of RDMA traffic by posting

work requests. The requester controls the total number of request-

s/messages and the maximum number of outstanding requests on

eachQP. In the case of Send/Recv, the responder continuously posts
corresponding Recv requests to handle incoming data. Furthermore,

the requester offers support for barrier synchronization among QPs.

This synchronization mechanism ensures that the requester only

posts the next round of requests after it receives completions of

the current round of requests across all the QPs, promoting orderly

and synchronized traffic generation.

Finally, once the requester receives completions of all the re-

quests, it proceeds to calculate variousmetrics, including request/mes-

sage completion times and goodput. Subsequently, the requester

sends a completion notification to the responder through the estab-

lished TCP connection, indicating the successful completion of the

RDMA traffic generation process.

3.3 Event Injection
Lumina utilizes a programmable switch as the event injector to

emulate real-world network scenarios, including congestion and

failures. This injector can be programmed to introduce various

events, such as packet corruptions, packet drops, and ECN marks,

specifically targeting RDMA data packets
2
. Notably, in the context

of Read requests, the responder generates data packets, while for
other verbs, data packets are generated by the requester.

Although implementing the above events on programmable

switches [7, 8] is not inherently challenging, the main difficulty lies

in offering user-friendly interfaces that allow developers to express

a sequence of deterministic event injections. This challenge gives
rise to two specific requirements:

2
It is important to mention that Lumina currently does not support injecting events to

control packets, such as ACK and NACK.
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Figure 2: Lumina combines the runtime traffic metadata
and intent-based traffic configuration to populate thematch-
action table for event injection.

Deterministic: Since Lumina aims at precise and reproducible

tests to understand micro-behaviors, it exclusively accepts descrip-

tions of deterministic injection events from users. Descriptions like

“randomly drop 10% packets” are not deterministic since different

rounds of testing may lead to dropping different sequences of pack-

ets. In contrast, descriptions like “drop the first packet of the first

QP” generate deterministic injection behaviors.

User-friendly: Users should be able to express their high-level

testing intents without delving into low-level Lumina details. For

instance, users can instruct Lumina to drop the first packet of the

second QP and subsequently drop its retransmission without the

need to specify QPN and PSN for each QP or understand the inner

workings of the event injector used for identifying retransmitted

packets. The system abstracts these complexities, streamlining the

testing process for users.

Listing 2 illustrates an example configuration of event injections.

The setup involves three events spread across two connections. For

the first connection, the fourth packet is marked with ECN. On the

second connection, the fifth packet is intentionally dropped. Upon

retransmission of this lost packet, we drop it again. To simplify the

process for users, Lumina allows specifying relative QPNs and PSNs.
Additionally, the iter field is available to identify retransmitted

packets that share the same QPN and PSN as the original packets.

Next, we will describe how Lumina translates high-level test

intents (e.g., relative QPN and PSN) to the low-level configuration

for event injector, and uses an iteration number (ITER) to express

per-connection retransmission behaviors.

Translate user intents to configurations: Since users only pro-

vide high-level intent information such as relative PSN and QPN,

Lumina needs to translate this to the low-level configuration for

the event injector. One straightforward solution is using the event

injector to detect new QPs and parse their QPNs and PSNs in the

data plane. While promising, this approach significantly compli-

cates the data plane: In this case, the event injector needs to check

if a packet belongs to a new QP and create states for the new QP.

Instead of the above stateful approach, we take a stateless ap-

proach by letting traffic generators provide runtime traffic metadata

through the control plane. As mentioned above (§3.2), traffic meta-

data like QPN and initial PSN (IPSN) is randomly generated at
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runtime. Once traffic generators finish exchanging metadata, the

traffic requester sends the complete traffic metadata to the event

injector through the control plane. The metadata is organized as a

list of tuples. Each tuple contains the information for a certain QP

connection: requester IP/QPN/IPSN and responder IP/QPN/IPSN.

After that, the event injector combines the runtime traffic metadata

from traffic generators and traffic configuration intents from the

orchestrator to populate the match-action table for event injections.

Only after the event injector populates the table, traffic generators

can start RDMA traffic.

Figure 2 presents an illustrative example. In this scenario, the

requester’s QP has the IP address 10.0.0.1, QPN 0xfe, and IPSN 1001.

On the other hand, the responder’s QP has the IP address 10.0.0.2,

QPN 0xea, and IPSN 3002. Data packets are transmitted from the

requester to the responder, representing traffic like Write or Send
operations. The user’s intention is to drop the fourth packet of the

first QP connection. To achieve this, the event injector combines

the provided information and computes the appropriate entry to

insert: ⌜srcIP=10.0.0.1, dstIP=10.0.0.2, dstQPN=0xea, PSN=1004⌟→
action=“mark ECN”.

Express retransmission behaviors: In certain tests, users may

need to inject events specifically targeting retransmitted packets to

gain insights into behaviors such as retransmission timeout backoff.

However, distinguishing retransmitted packets from the original

packets solely by examining packet headers becomes challenging

since both packets share the same IP addresses, UDP ports, QPN,

and PSN.

To address this issue, we introduce an iteration number ITER,
which denotes the rounds of (re)transmissions for a connection.

ITER starts from 1 and is maintained by the event injector. For every

arriving RDMA packet, the event injector compares its PSN with

Last_PSN (PSN of the last packet of the connection). If its PSN is

not larger than Last_PSN , the event injector identifies this as a new

round of transmissions and increases ITER by 1 for this connection.

Regardless of the comparison result, the event injector always up-

dates Last_PSN to the PSN of the current packet. Lumina can use

(PSN, ITER) to uniquely identify every packet of a connection and

inject events based on these fields.

Figure 3 provides an illustrative example of how Lumina tracks

ITER. In this scenario, there is a single connection and the user in-

tends to drop the second packet in the first round (PSN=2, ITER=1),

and the third packet in the second round (PSN=3, ITER=2). The

sender transmits four packets. ITER is initialized as 1 and the last

PSN is set to IPSN-1, which is 0 in this case. In the first iteration,

we drop packet 2. When packet 2 is retransmitted, the current PSN

(2) is smaller than the last PSN (4), thus we proceed to a new round

(ITER=2). Likewise, after we drop packet 3 in the second round, the

retransmission of packet 3 triggers a new round (ITER=3).

3.4 Traffic Dumping
Lumina aims to dump all the RDMA packets between traffic gen-

erators for subsequent offline analysis. A straightforward solution

is using tools like ibdump to dump packets at the end host. How-

ever, it is unclear if traffic dumping at the end host will impact the

behaviors of network stacks. In addition, when we construct the

Last PSN

1 2 3 4 2 3 4 3 4

ITER
0 1 2 3 4 2 3 4 3
1 1 1 1 2 2 2 3 3

drop dropretransmit retransmit

Figure 3: Luminamaintains ITER to differentiate packets in
fine-grained. ITER denotes the rounds of (re)transmissions
for a connection. If PSN of the current packet is no larger
than that of the previous packet, ITER is increased by 1.

complete packet trace from packets dumped at both traffic genera-

tion hosts, we may need nanosecond-level clock synchronization

which is non-trivial [33].

Realizing these challenges, Lumina utilizes the event injector

to mirror all the RDMA packets to a dedicated group of servers,

forming what is referred to as the "traffic dumper pool." Packet

mirroring essentially clones packets of specified interfaces and

forwards them to other interfaces. It has been widely used for

measurement and diagnosis purposes [43, 56]. We mirror all RDMA

packets at the ingress pipeline before any actual packet drops occur

in the Memory Management Unit (MMU) (more details in §5).

To ensure integrity checks and facilitate traffic analysis, we lever-

age the event injector to embed essential metadata in the mirrored

packets. To prevent losses during the packet dumping process, we

develop a per-packet load balancing mechanism to evenly distribute

mirrored packets across CPU cores of traffic dumpers. We will now

provide detailed descriptions of these techniques.

Embedding metadata in mirrored packets: The event injector
embeds three types of metadata, namely mirror sequence number,
event type and mirror timestamp, into the mirrored packets for the

following purposes:

(1) Integrity check. To guarantee the mirroring and dumping of

all packets, the event injector maintains a global variable known

as the mirror sequence number. This variable is incremented for

each mirrored packet and is embedded into every mirrored

packet. In conjunction with switch port counters, we can ver-

ify whether any packet losses occur during the mirroring and

dumping process.

(2) Indicating events. For the ease of analyzing mirrored packets,

we embed an event type in each packet to indicate the specific

injected event, currently including ECN marking, drop, cor-

ruption, and none. It is important to note that all packets are

mirrored at the ingress pipeline, before the Memory Manage-

ment Unit (MMU) enforces any dropping actions.

(3) Fine-grainedmeasurement. To precisely measure the behav-

iors, we embed amirror timestamp in each mirrored packet. This

timestamp carries a nanosecond-level hardware timestamp, in-

dicating the exact moment when the original packet enters the

ingress pipeline. The event injector uniformly adds timestamps

to all packets, eliminating the need for clock synchronization.

Directly expanding packet headers to store these metadata might

overload the bandwidth capacity of mirroring ports. To avoid this,
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Figure 4: Per-packet load balancing to distribute mirrored
packets across CPU cores of traffic dumpers.

we rewrite existing header fields that are not involved in traffic

analysis to store above metadata. We use the Time to Live (TTL)

field, the source MAC address field, and the destination MAC ad-

dress field, to store event type, mirror sequence number, and mirror
timestamp, respectively.

Per-packet load balancing. In our initial design, we used two

hosts to dump mirrored packets generated by the requester and the

responder, respectively. Traffic dumping hosts had the same band-

width capacity as traffic generation hosts. Despite our optimization

efforts on the traffic dumping program, we still encountered occa-

sional packet discards (reflected in the rx_discards_phy counter)

on the NIC when receiving line-rate mirrored data packets. Al-

though we can identify such invalid tests through integrity checks

(§3.5), this situation adversely affects the efficiency of Lumina. Fur-

thermore, this design necessitates powerful traffic dumpers that

can match the performance of the hardware network stack under

test. This degrades the flexibility of hardware choices of Lumina.

Realizing the above limitations, we develop a per-packet load

balancing mechanism to evenly distribute mirrored packets across

the CPU cores of all the traffic dumpers. Instead of relying on two

powerful hosts, we organize a pool of several hosts to serve as

traffic dumpers. This design provides users with greater flexibility,

as they can set up hosts for this purpose as long as the total capacity

of the traffic dumper pool is sufficient to handle the traffic load. As

illustrated in Figure 4, the event injector implements a weighted

round-robin scheduler to forward mirrored packets to different

traffic dumpers based on their individual processing capacities. At

each traffic dumping host, we leverage Receive Side Scaling (RSS)

to distribute packets across multiple CPU cores. However, RSS

maintains flow-to-CPU affinity by hashing specific packet fields

to select a CPU core, leading to a dependence on the number of

flows for CPU processing capacity. To fully harness CPU cores, we

employ the event injector to rewrite the UDP destination port (4791,

reserved for RoCEv2) to a random number. This action effectively

creates an illusion of many concurrent flows for RSS, maximizing

CPU usage and avoiding underutilization of specific cores. The load

balancing design results in a significant improvement in the success

ratio of capturing complete traffic from 30% to nearly 100%.

After the traffic generation process is completed, the orchestra-

tor sends a TERM message to stop all the traffic dumpers. Upon

receiving this message, the traffic dumper reverts the previously

Name Content Description
Dumped packets Packets collected by all the hosts of

the traffic dumper pool

Network stack counters Link/Network/Transport layer coun-

ters

Traffic generator log Applicationmetrics, e.g., goodput and

message completion time (MCT)

Switch counters TX/RX/mirrored packet counters for

each switch port

Table 1: Results collected by the orchestrator

rewritten UDP destination port for all the mirrored packets back to

its original value (4791) and then writes all the mirrored packets to

a disk file.

3.5 Result Collection and Integrity Check
Once traffic generators stop, the orchestrator terminates other com-

ponents and collects various result files as listed in Table 1. The

orchestrator collects dumped packets from all the traffic dumpers,

network stack counters and log files from the traffic generator, and

switch counters from the event injector.

Upon gathering all the result files, the orchestrator reconstructs

the packet trace from packets collected by the traffic dumpers.

Since the event injector maintains the sequence number for every

mirrored packet (§3.4), the orchestrator simply sorts all the packets

based on their mirror sequence numbers. After the packet trace

reconstruction, the orchestrator initiates an integrity check to check
the following conditions:

(1) Consecutive mirror sequence numbers are present in the trace.

(2) The total number of packets mirrored by the event injector

matches the number of packets in the trace.

(3) The total number of RDMA packets received by the event in-

jector is equal to the number of packets in the trace.

Only when all the conditions are met, we can ensure that the packet

trace is complete and ready for analysis.

4 TEST SUITE
After passing integrity checks, users can initiate the analysis pro-

cess. Lumina includes a test suite comprising various built-in an-

alyzers for commonly used features, such as Go-back-N retrans-

mission [22] and DCQCN congestion control [55]. Additionally, it

incorporates a fuzzing-based module for generating test cases.

Retransmission logic. Retransmission performance is crucial for

lossy RDMA deployments. Even in lossless networks, RDMA NICs

(RNICs) still need effective retransmission mechanisms to handle

non-congestion losses [22].

To this end, we develop a retransmission logic analyzer to check

if the RNIC’s behaviors under packet losses comply with the speci-

fications, e.g., if the Go-back-N receiver generates a NACK packet

correctly when it observes out of order arriving packets. To real-

ize this, we represent the specification of Go-back-N, the de facto

retransmission algorithm of RNICs [22], as a finite-state machine

(FSM). We then utilize this FSM to process the reconstructed packet

trace. If the resulting trace leads to an incorrect state, it allows us
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Figure 5: Retransmission latency breakdown.

to conclude that the RNIC’s retransmission implementation does

not fully comply with the specification.

Retransmission performance. Many efforts have been made to

enable RDMA over lossy networks [3, 36, 39, 47]. Lossy RDMA

technologies heavily rely on efficient retransmission implementa-
tions. For example, when the RNIC receives a NACK/SACK packet,

it should promptly initiate the retransmission process rather than

wait for an extended period. The responsiveness of retransmis-

sion significantly impacts the overall performance and reliability

of RDMA in lossy network environments.

To help users understand the retransmission performance of

RNICs, we develop a retransmission performance analyzer. The re-

transmission performance analyzer can deal with both fast retrans-

missions (triggered by NACK/SACK) and timeout retransmissions

(due to tail losses), and provides a detailed performance breakdown

to assist users in identifying potential bottlenecks.

In Figure 5, we illustrate how a NACK-triggered retransmission

is divided into two distinct phases: the NACK generation phase

(receiver side) and the NACK reaction phase (sender side). The

NACK generation phase encompasses the time between the receiver

detecting an out-of-order packet and transmitting a NACK packet.

On the other hand, the NACK reaction phase refers to the time

between the sender receiving the NACK packet and commencing

the retransmission process. It is worth noting that there might be a

half-RTT deviation due to the timestamp being added by the switch

rather than the end host. To minimize this deviation, pre-measuring

the round trip time (RTT) of the testbed can be employed.

Congestion notification. DCQCN [55] is the de facto congestion

control protocol in RNICs. When the DCQCN notification point

(NP) receives ECN-marked packets, it notifies the reaction point (RP)

to reduce the rate using Congestion Notification Packets (CNPs).

Recent NVIDIA RNICs extend DCQCN to lossy networks. In such

scenarios, when the NP receives out-of-order packets, it generates

both NACKs and CNPs to inform the RP to initiate retransmission

and lower the sending rate. Additionally, NVIDIA RNICs include a

CNP rate limiter at the NP side, which regulates the minimum inter-

val between two consecutive CNPs, aiming to conserve bandwidth

and NIC processing capacity [55].

To ensure that CNPs are generated as intended under diverse net-

work conditions and CNP rate limiting configurations, we develop

a CNP analyzer. This analyzer validates and verifies the correct gen-

eration of CNPs, which is crucial for efficient congestion control

and performance optimization in lossy network environments.

Hardware network stack counter. We also develop a counter

analyzer to verify the correct updating of hardware network stack

Algorithm 1 Genetic-based Fuzzing

1: function Lumina-Fuzz(target)

2: Γ← initialize a pool of configs

3: repeat
4: γ ← randomly pick a config from Γ
5: γ ∗← mutate(γ )
6: run Lumina with configuration γ ∗

7: ϕ ← collect results (counters, timestamps, etc.)

8: ∆← score(γ ∗, ϕ)
9: if ∆ ≥ median_score(Γ) then
10: Γ.add(γ ∗)
11: else
12: Γ.add(γ ∗) with a probability p.

13: until anomaly found or timeout

Bugs/Hidden behaviors Affected NICs

Non-work conserving ETS (§6.2.1) CX6 Dx

Noisy neighbor (§6.2.2) CX4 Lx

Interoperability problem (§6.2.3) CX5+E810

Counter inconsistency (§6.2.4) CX4 Lx, E810

CNP rate limiting (§6.3) All NICs tested

Adaptive retransmission (§6.3) All CX NICs

Table 2: Bugs and hidden behaviors

counters. Our counter analyzer supports a wide range of counters,

including those related to retransmission, timeout, congestion, and

packet corruption. These counters encompass sent/received packets,

sequence errors, out-of-sequences, timeouts (and retries), packets

with iCRC errors, discarded packets, and CNPs sent/handled.

Test case generation. Network researchers have been utilizing

fuzzing approaches in various scenarios, such as testing TCP imple-

mentations [57] and stress testing congestion control algorithms [44].

To aid users in identifying bugs, we develop an automatic test case

generation module. This module employs a genetic algorithm-based

fuzzing approach to discover settings and events that trigger abnor-

mal behaviors, including bugs or performance issues. The proce-

dure, as outlined in Algorithm 1, starts by defining a target, which

can be either a general target (e.g., "finding bugs in a network set-

ting with 0.1% loss rate") or a more specific target (e.g., "finding

potential bugs where packet loss in one connection affects other

co-existing connections"). The search space is smaller for more

specific targets. The fuzzing approach follows four main steps:

(1) Initialization: given a target, it will generate a candidate pool

of valid configurations.

(2) Mutation: During each iteration, a configuration file is randomly

selected from the pool, and a new configuration file is created by

applying mutations. These mutations involve modifying basic

traffic settings (e.g., adjusting the number of QPs) and event

settings (e.g., injecting ECN/drop to specific packets).

(3) Scoring: the scoring function assesses the “quality” of the con-

figuration files concerning their ability to trigger anomalies.

The scoring function is a multi-objective function formulated

as Score =
∑
i wi · s(i), where wi is the weight for objective
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i , and s(i) implicitly models the anomaly of objective i (e.g.,
inconsistent counter values, large latencies, etc.).

(4) Selection: “high-quality” configuration files will be selected and

put into the pool, while “low-quality” configuration files are

sampled into the pool with a given probability.

Our fuzzing approach has helped us find several anomalies and

the triggering conditions of the anomalies. We summarize some in-

teresting bugs and hidden behaviors (that are not clearly described

in the specification) in Table 2. In §6, we will introduce these find-

ings in detail.

5 IMPLEMENTATION
We have built a prototype of Lumina using an Intel Tofino switch

and commodity servers equipped with various RNICs. Currently

Lumina can support four widely adopted RNICs from NVIDIA and

Intel: NVIDIA ConnectX-4 Lx, ConnectX-5, ConnectX-6 Dx, and

Intel E810. In the rest of this paper, we refer to them as CX4 Lx,

CX5, CX6 Dx, and E810 respectively.

The data plane of the event injector is implemented with 708

lines of code (LoC) in P4-16 [4] and is compiled to Intel Tofino

ASIC [7] using BF SDE 9.4.0. Figure 6 shows the data plane pipeline

layout of the event injector. The event injection module operates at

the ingress pipeline (§3.3). The egress pipeline includes a module to

rewrite packet fields of mirrored packets (§3.4). Both incoming and

outgoing RoCE packets, including mirrored packets, are counted

on each port for integrity checks (§3.5). The switch control plane is

implemented with 922 LoC in Python. It handles the translation of

Remote Procedure Calls (RPCs) to configure the data plane mod-

ules and performs port counters’ dumping once the experiment is

completed.

The traffic generator is implemented with 5301 LoC in C. It uses

Libibverbs to generate RDMA traffic over Reliable Connection

(RC) transport. The traffic generator has the capability to control the

GID (IPv4 address) associated with each QP to emulate traffic from

multiple hosts. It reports total goodput and average request/message

completion times for each QP.

The packet dumper is implemented with 628 LoC in C. It uses

DPDK [1] with Receive Side Scaling (RSS) to process arriving pack-

ets acrossmultiple queues and CPU cores. Instead of directlywriting

every arriving packet to the disk, the packet dumper leverages mem-

ory buffering and packet trimming to improve the performance.

Upon receiving a packet, the packet dumper copies only the first

128 bytes of the packet into pre-allocated memory. This decision

is based on the fact that Lumina does not require the IB payload

content for analysis, and the first 128 bytes contain all the necessary

protocol headers. Subsequently, when the packet dumper receives
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Figure 7: Lumina’s impact on message completion time.

the TERM message from the orchestrator, it proceeds to write the

buffered trimmed packets into the disk.

The orchestrator is implemented with 1933 LoC in Python. On

top of the orchestrator, the built-in analyzers and the test case

generation module are developed with a total of 3529 LoC in Python.

The current prototype occupies four stages of the switch’s pro-

cessing pipeline. It only requires approximately 1MB of on-chip

memory to inject up to 100K events for 10K connections. We have

pressure-tested the event injector by keeping sending traffic at full

line rate. The switch is able to deliver and mirror all the packets

without loss. Furthermore, measurements have demonstrated that

the switch pipeline introduces less than 0.4µs of additional latency.
We have measured the overhead of event injector on the data

path. We first pressure test the event injector by keeping sending

traffic at full line rate. The switch is able to deliver and mirror

all the packets without any losses. Subsequently, we evaluate the

impact of the event injector on the under-test traffic. To achieve

this, we employ a traffic generator to send 1000 messages of fixed

sizes over a single connection and then measure the average mes-

sage completion time (MCT). The messages are sent back-to-back

with varying sizes of 1KB, 10KB, and 100KB. We use a simple L2-

Forwarding program as a baseline. For Lumina, we keep all the

match-action tables but disable the exact “drop” behavior to pre-

vent retransmissions. We also implement two variants of Lumina:

Lumina without event injection (Lumina-ne) and Lumina without

mirroring (Lumina-nm) for comparison. Figure 7 demonstrates that

event injection introduces minimal overhead. The average message

completion time (MCT) of Lumina is only 4.1–7.2% higher compared

to Lumina-ne and the basic L2-Forwarding. Notably, the inclusion

of mirroring has negligible impact on the under-test traffic. Lumina

achieves nearly the same message completion time with or without

mirroring, indicating its efficiency in mirroring traffic.
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Figure 8: NACK generation latency v.s. sequence number of
the dropped packet.

6 EXPERIMENTS AND FINDINGS
In this section, we present our analysis of retransmission perfor-

mance, and share our experience of finding bugs and hidden behav-

iors using Lumina. We test four commodity RNICs: NVIDIA CX4

Lx 40GbE, CX5 100GbE, CX6 Dx 100GbE and Intel E810 100GbE.

All the RNICs support Go-back-N retransmission and DCQCN.

In our testbed, the servers installed with NVIDIA NICs run

Ubuntu 20.04.3 LTS and MLNX_OFED_LINUX-5.8-1.1.2.1-LTS. The

servers with Intel NICs run Ubuntu 20.04.5 LTS with drivers ice

1.9.11 and irdma 1.9.30. PFC is disabled on both the switch and NICs.

The RDMA MTU is set to 1024B for all the experiments. By default,

each QP sends multiple messages back-to-back, thus keeping a

single in-flight message.

6.1 Understanding retransmission
micro-behaviors

RNICs commonly employ Go-back-N as the default fast retrans-

mission algorithm. For Write and Send, the responder generates a
NACK to trigger fast retransmission when it detects out-of-order

arriving packets. However, for Read, the requester issues another
read request to read from memory offset ’N’, which serves as the

equivalent of a NACK.

We use Lumina to analyze RNICs’ fast retransmission behav-

iors by deliberately dropping packets in middle positions. First, we

would like to note that all the RNICs pass our FSM-based retrans-

mission logic check (§4) in a set of cunning and aggressive test cases.

This indicates that their retransmission implementations strictly

follow the specification. Then we present our findings about their

fast retransmission performance, which is key for lossy RoCE [39].

In this experiment, we transfer a series of 100KB messages using

a single connection. For each message, we intentionally drop a

packet with a specific relative packet sequence number (PSN) and

then measure the retransmission latency. To simplify expression,

we refer to the Read request that triggers fast retransmission as

NACK as well. As shown in Figure 5, we divide the Go-back-N

retransmission latency into two parts: the NACK generation latency,

and the NACK reaction latency. We show NACK generation latency

results in Figure 8 and NACK reaction latency results in Figure 9.

According to our experiment results, Send traffic delivers similar

results as Write traffic, so we only present the results for Write
and Read traffic here. We have the following observations:

• CX5 and CX6 Dx achieve the best retransmisison perfor-
mance. Figure 8 and Figure 9 reveal that CX5 and CX6 Dx exhibit
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Figure 9: NACK reaction latency v.s. sequence number of the
dropped packet.

significantly lower retransmission latencies compared to CX4 Lx

and E810. The NACK generation latency of CX5 and CX6 Dx is

around 2µs, and the NACK reaction latency ranges from 2µs to
6µs. As a result, the retransmission delay of CX5 and CX6 Dx is

approximately 4–8µs. Conversely, CX4 Lx experiences retrans-
mission latencies in the hundreds of µs range, primarily due to

slow NACK reactions. Regarding E810, the NACK generation

latency for Write is around 10µs, while for Read, it remarkably

increases to around 83ms.

• Different behaviors of Read and Write/Send. Figure 8 and

Figure 9 demonstrate distinct results for Read and Write cases.
The NACK generation latency for Write traffic is consistently

low across all four NICs. However, for Read traffic, the NACK

generation latency is significantly higher, especially on CX4 Lx

(approximately 150µs) and E810 (around 83ms). This discrepancy

suggests that RNICs may utilize a different and potentially slower

processing pipeline to handle out-of-order Read packets, a factor

that requires careful testing and investigation.

6.2 Experience with Lumina to find bugs
Here we share our experience using Lumina to find bugs and hidden

behaviors. We have reported all the bugs to NVIDIA and Intel, and

most of the bugs have been acknowledged. We are working closely

with vendors on the rest of them. Lumina also enables us to find

some hidden behaviors that are missing or not clearly described

in specifications and vendors’ documents. While we cannot reveal

all the details due to our nondisclosure agreement (NDA) with

vendors, we believe our experience can help readers have basic

ideas of typical RNIC bugs and how to find them using Lumina.

6.2.1 Non-work conserving ETS on CX6 Dx
Enhanced Transmission Selection (ETS) [30] is a packet sched-

uling algorithm specified by IEEE 802.1Q and widely supported

by commodity RNICs. It is a hierarchical scheduler that combines

strict priority scheduling and a weighted fair queueing-based algo-

rithm [27, 48]. ETS is work conserving. If higher-priority queues

do not have packets ready for transmission, then packets from

weighted fair queues can be transmitted. If a weighted fair queue

cannot use its guaranteed bandwidth, then other queues will use

its leftover bandwidth. ETS is widely used in production to allo-

cate bandwidth between different types of traffic, e.g., TCP, storage

frontend RDMA, and storage backend RDMA [14].

We design the following three experiments to test if ETS imple-

mentation can achieve work conserving in basic scenarios. In all

the experiments, we create two QPs, named QP0 and QP1, and post
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(1) Multi-queue vanilla: We map two QPs to two ETS queues

with identical weights. Hence, each ETS queue has a guaranteed

bandwidth of 50Gbps.

(2) Multi-queue with ECN marking: We map two QPs to two

ETS queues with identical weights. For QP0, we mark ECN for

one out of every 50 packets.

(3) Single queue with ECN marking: We map two QPs to a sin-

gle ETS queue. For QP0, we mark ECN on one out of every 50

packets.

In the first experiment, we anticipate both QPs achieving similar

throughput results, approximately 50% of the line rate, due to the

equal allocation of bandwidth in the two ETS queues. In the second

and third experiments, we expect QP0 to have lower throughput

due to DCQCN rate limiting, and QP1 to have larger goodput by

utilizing the spare bandwidth left by QP0. However, as shown in

Figure 10, we get unexpected results for the second experiment on

NVIDIA CX6 Dx. While QP0’s goodput is significantly reduced,

QP1’s goodput is still close to that of the first experiment. It seems

that QP1 can not use the spare bandwidth left by QP0 when it is

mapped to a different ETS queue. We further conduct a series of tar-

geted tests and conclude that, in many scenarios, ETS queues of CX6
Dx are strictly limited by their minimum guaranteed bandwidth re-
gardless of bandwidth usage of other queues.This can significantly
reduce CX6 Dx’s throughput in production.

We have reported this bug to NVIDIA. NVIDIA has confirmed

our observation and closely collaborated with us in the debugging

process. NVIDIA will include a bug fix for the issue in the future

general available (GA) firmware version.

6.2.2 “Noisy neighbor” on CX4 Lx
Our experiment results in Figure 8 and 9 indicate that packet

drops may trigger some slow paths of RNICs, thus causing large

performance degradation, e.g., hundreds of µs NACK reaction la-

tency on CX4 Lx. Given many types of shared micro-architecture

resources in RNICs [25, 28, 29], we are wondering if slow paths of

some connections can stall the whole RNIC pipeline, thus affect-

ing other seemingly unrelated connections. This phenomenon is

referred to as the “noisy neighbor” problem.
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We use the fuzzing method (Algorithm 1) to search for “noisy

neighbor” on all the RNICs. We split the connections into two sets:

one set with injected drops, and the other without any events (in-

nocent connections). The fuzzing module initializes a set of valid

inputs (configurations) by randomly picking the number of connec-

tions for each set, choosing the traffic type (Read, Send or Write),
setting the message size, and generating a list of packet drop events,

etc. The mutation step modifies some fields of existing configura-

tions to create new inputs. The scoring function accesses counter

values and the performance of each connection (especially the mes-

sage completion time of innocent connections).

We observe “noisy neighbor” problem on NVIDIA CX4 Lx. When

more than a certain number of Read connections experience packet
drops simultaneously, the other innocent connections also suffer

from packet drops and even timeouts. Note that such concurrent

packet drops are common in incast congestion. For example, we es-

tablish 36 connections and use Read to transfer ten 20KB messages

per connection. On the first i (i=0,8,12,16) connections, Lumina

drops the fifth data packet for each connection. The rest of 36-

i connections are innocent. As Figure 11 shows, when there are

only 8 connections with injected drops, the innocent connections

perform normally and their message completion times are around

160µs. However, when there are more flows (i=12,16) suffering
from injected drops, innocent flows start to suffer from perfor-

mance degradation. The average message completion time of in-

nocent connections reaches 430ms. To understand the causes of

performance penalty, we look into NIC counters dumped by Lu-

mina and find that the requestor discards many arriving packets

(rx_discards_phy counter is increased by 107 when there are 12

connections with injected drops). When some “tail” packets are

dropped by the NIC, timeouts will happen, thus leading to extremely

high message completion times.

We have reported this bug to NVIDIA. NVIDIA has confirmed

that this was a limitation of CX4 Lx.

6.2.3 Interoperability problem between CX5 and E810
As the cloud infrastructure keeps evolving incrementally, dif-

ferent servers may have different types of RNICs. Hence, commu-

nication between different types of RNICs, especially those from

different vendors, becomes a new challenge. To this end, we run
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basic tests by sending traffic from Intel E810 to NVIDIA CX5 with-

out injecting any events. We vary the number of QPs and send

five 100KB Send messages on each QP. We find that CX5 discards

∼500 RX packets (by checking rx_discards_phy counter) when

the number of QPs reaches 16. By analyzing the dumped packet

trace, we find that most packet drops happen on the first mes-

sage of each QP. Packet drops trigger timeouts and significantly

affect message completion times. The average completion time of

messages with and without packet drops are 20460µs and 156µs,
respectively. This problem gets worse when we increase the num-

ber of QPs. However, if we send traffic from CX5 to CX5 under the

same settings, this problem disappears. This bug can degrade the
performance of communication between CX5 and E810, es-
peciallywhen twonodes establishmanynewQPs to transfer
data simultaneously.

We dump complete packet traces of the above experiments us-

ing Lumina. We find a key difference between packets from E810

and CX5: packets sent by E810 set MigReq field of InfiniBand (IB)

header to 0 while CX5’s packets set MigReq to 1. According to IB
specification [42], MigReq field is used for automatic path migra-

tion (APM) in IB networks and should be set to 1 at the initial state.

However, since RoCE relies on IP and Ethernet routing, it is unclear

how APM should work in IP/Ethernet networks. It seems that E810

and CX5 have different APM behaviors on RoCE mode and their

communication might trigger some slow paths in APM processing

logic of CX5. To confirm our hypothesis, we extend Lumina by

adding a new action to modify MigReq to 1. We find that once we

set MigReq of all the packets from E810 to 1, CX5 does not discard

packets.

We have reported this bug to NVIDIA and Intel. They have

confirmed our observation and closely collaborated with us in the

debugging process.

6.2.4 Incorrect RNIC counters.
We also find several bugs about NIC counters. While these bugs

do not directly cause performance impairments, they can signifi-

cantly mislead operators, thus affecting debugging and diagnosis.

We are working closely with NVIDIA and Intel to debug these

counter bugs now.

• Intel E810’s cnpSent: In DCQCN, the receiver generates conges-
tion notification packets (CNPs) to notify the sender of conges-

tion. All the RNICs have a counter to track the number of CNPs

sent, e.g., cnpSent for Intel E810 and np_cnp_sent for NVIDIA
RNICs. When we use Lumina to inject ECNs, we find that E810’s

cnpSent counter remains unchanged while the receiver does

generate CNPs as shown in the dumped packet trace. This bug
can mislead operators’ estimation of network congestion.
• NVIDIA CX4 Lx’s implied_nak_seq_err: NVIDIA NICs use

this counter to indicate the number of times the requester detects

out-of-order arriving packets for RDMA Read responses. When

we use Lumina to inject packet drops on Read response traffic, we

find that CX4 Lx’s implied_nak_seq_err remains unchanged

while drops and retransmissions do happen as shown in the

packet trace. In contrast, implied_nak_seq_err keep increasing
on CX5 and CX6 Dx as expected under the same settings. This
bug can mislead operators’ estimation of network conges-
tion and failures.

6.3 Hidden behaviors
Lumina also enables us to capture unexpected micro-behaviors

which are missing or not clearly described in specifications and

vendors’ documents. While these hidden behaviors are not neces-

sarily bugs, understanding them can help operators better operate

networks.

CNP generation interval. Instead of necessarily generating a

CNP for every ECN-marked packet, NVIDIA NICs use a parame-

termin_time_between_cnps (4µs by default) to control the interval
between two consecutive CNPs generated. CNP coalescing can

effectively reduce the network bandwidth and NIC processing ca-

pacity consumed by CNPs. In contrast, Intel E810 does not have

such a parameter. However, when we use Lumina to inject ECN

marks and measure CNP intervals for all the NICs, we find that E810

does not generate a CNP for every arriving ECN-marked packet as

expected. To further understand E810’s CNP generation behaviors,

we use Lumina to mark every packet and discover that there is a

∼50µs interval between CNPs generated by E810. We reported our

observation to Intel. Intel confirmed that E810 does have a hidden

50µs CNP minimum generation interval.

Different CNP rate limiting modes. Public documents of ven-

dors do not clearly describe how RNICs enforce CNP rate limiting,

e.g., per NIC port, per IP, or per QP. RNICs do not expose corre-

sponding parameters either. By deliberately injecting ECN marks

in different scenarios, we find that our RNICs use three CNP rate

limiting modes: CX4 Lx limits CNP generations on a per destination

IP basis; E810 on a per QP basis; and CX5 and CX6 Dx on a per NIC

port basis. While per NIC port CNP rate limiting can effectively

reduce resources consumed by excessive CNPs, it will increase the

lag in DCQCN’s control loop when many flows experience conges-

tion simultaneously, such as in an incast scenario. We hope RNIC

vendors expose configuration parameters to allow users to choose

the desired CNP rate limiting mode.

Unexpected retransmission timeouts and times to retry in
adaptive retransmission mode of NVIDIA NICs. According to
IB specification [2], users can configure timeout and retry_cnt pa-
rameters to specify the minimum retransmission timeout (4.096µs ∗
2
t imeout

) and the maximum number of times that the QP tries to

resend packets. We note that NVIDIA NICs have a new feature

called adaptive retransmission to improve RDMA’s resiliency over

lossy networks. However, we do not find any public documents

and references describing its mechanisms in detail. Through a se-

ries of targeted experiments, we find that actual retransmission

timeouts and maximum times to retry in adaptive retransmission

mode do not follow the IB specification. For example, when we

set retry_cnt to 7, we observe that CX4 Lx, CX5 and CX6 Dx

retry 8–13 times. When we set timeout to 14 (which means the

minimum retransmission timeout is 4.096µs ∗ 2t imeout = 0.0671s),
we find that the actual retransmission timeouts are smaller than

0.0671s for the first message. Taking CX6 Dx as an example, if

we keep dropping the last packet of the first message for 7 times,

their actual retransmission timeouts are 0.0056s, 0.0041s, 0.0084s,

0.0167s, 0.0251s, 0.0671s and 0.1342s. In contrast, if we disable adap-

tive retransmission, all the retransmission behaviors follow the IB
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specification. We hope NVIDIA can reveal more details about this

adaptive retransmission.

7 DISCUSSION

Lossy RoCE. The original implementation of RoCE depended on

PFC to achieve a lossless fabric. However, ongoing debates [39, 47]

regarding the feasibility of lossy RoCE networks have highlighted

the need for a thorough understanding of the retransmission be-

havior and performance of RDMA NICs. Through a comprehensive

analysis of the retransmission process, Lumina offers valuable in-

sights into the underlying micro-behaviors, making a significant

contribution to advancing our overall understanding of this subject.

Extensibility towards other traffic patterns.As of now, Lumina

primarily focuses on studying RDMA transport behaviors. Conse-

quently, it generates simple yet representative RDMA traffic, while

avoiding complex operations that could strain RNIC microarchi-

tecture resources. By combining straightforward traffic generation

with the injection of various network events, Lumina aims to pro-

vide a clear and focused analysis of RDMA transport behaviors.

This distinctive approach sets Lumina apart from other RDMA test-

ing efforts [28, 29], that use more complex operations to explore

challenging RDMA workloads can trigger performance anomalies

of RNICs. Yet, one of the key advantages of Lumina is its extensi-

bility, allowing for the integration of RDMA workloads from other

research endeavors [28, 29]. This capability enables researchers

to augment Lumina’s capabilities and explore a broader range of

RDMA scenarios and behaviors, contributing to a more compre-

hensive understanding of RDMA performance.

Extensibility towards other protocols. While Lumina initially

targets RDMA, it can be extended with reasonable efforts to support

other transport protocols and network stacks. By expanding the

set of supported events, it will facilitate analysis of various settings

like delay-based congestion control and multi-path load balancing.

Although currently lacking support for events such as quantita-

tively adding delay and packet reordering, we plan to include these

features as part of our future work.

Depolyment flexibility. We choose programmable switches as

our event injector solution due to their user-friendly functionali-

ties and accessibility. However, our design is not restricted solely

to programmable switches; any programmable high-performance

hardware can be employed as an event injector for Lumina. In

the future, we aim to deploy Lumina on an FPGA board, creat-

ing a more lightweight solution that allows users to plug-and-test

directly, simplifying the testing process further.

8 RELATEDWORK

Network protocol testing. Several tools and research works are

dedicated to testing network protocol implementations [16, 18, 21,

34, 41, 44]. Among them, packetdrill [16] is most closely related to

Lumina. Packetdrill is a scripting tool that facilitates tests for the

entire TCP/IP network stack. It interacts with the local and remote

network stack using libpcap and TUN device as a "shim layer" to

inject or consume packets. Additionally, packetdrill has been ap-

plied for testing QUIC [21] and utilized in educational contexts [15].

While all of these works concentrate on testing software network

stacks, Lumina diverges by focusing on hardware offloaded network

stacks, addressing a distinct aspect of network testing.

Understanding the performance of RDMA. Recent years have
witnessed numerous efforts focused on understanding and optimiz-

ing the performance of RDMA in various scenarios [24–26, 28, 29].

Among these endeavors, Collie [29] and Husky [28] stand out as the

most related works. Collie employs simulated annealing to explore

a comprehensive search space, identifying workloads that trigger

performance anomalies. Husky aims to systematically understand

the impact of RNIC microarchitecture resources on performance

isolation. Both works aim to stress commodity RNICs or perfor-

mance isolation solutions by identifying challenging workloads.

In contrast, Lumina currently focuses primarily on RDMA trans-

port behaviors. It employs simple RDMA workloads while injecting

various network events to uncover bugs and hidden behaviors.

Network testingwith programmable networks. Programmable

networks are gaining increasing relevance [23, 32, 35, 37, 40, 45,

51, 54]. Researchers have been exploring the use of programmable

switches to enhance networking testing [17, 31, 52]. These efforts

mainly focus on achieving high-throughput traffic generation and

precise rate control using programmable switches. In contrast,

Lumina takes a different approach by leveraging programmable

switches to inject various network events, enabling a deeper under-

standing of the transport behaviors of hardware network stacks.

9 CONCLUSION
We present Lumina, a tool designed for testing the correctness and

performance of hardware network stack implementations. By offer-

ing developers a user-friendly environment to write reproducible

tests and inject deterministic events, Lumina simplifies the testing

process. Additionally, we include a test suite with analyzers for

common features and a fuzzing-based test case generation mod-

ule. With Lumina, we have discovered multiple critical bugs in

commodity RDMA NICs and confirmed the bugs with the vendors.

We firmly believe that Lumina holds the potential to significantly

assist network developers in comprehending the micro-behaviors

of intricate hardware network stacks.
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