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Abstract—Over the past few years, deep learning has been
rapidly adopted in many fields. Among the various hardware
accelerators specifically for deep learning computation, graphics
processing units (GPUs) are mainly used. GPU occupancy—the
average ratio of active warps to maximum supported warps
on all streaming multiprocessors—is an essential indicator of
how well GPUs are utilized. Predicting the GPU occupancy of
deep learning models is critical for boosting both job runtime
performance and platform resource efficiency. However, GPU
occupancy prediction is challenging due to the complex factors
hidden in framework runtimes and diverse architectures and
hyperparameters of models. In this paper, we propose DNN-occu
to predict the GPU occupancy of deep learning models. Our key
observation is that models can be represented as directed acyclic
computation graphs. DNN-occu extracts a set of occupancy-
related features from the computational semantics of the graph
nodes and edges. It also employs a novel graph neural net-
work for better feature encoding and prediction generalization.
The experiments on various configurations of real-world deep
learning models show that DNN-occu achieves high accuracy for
occupancy prediction (with an overall error of 9.271%) and has
a strong generalization ability for unseen models. In addition, we
apply DNN-occu in a trace-driven simulation of deep learning
workload scheduling and achieve up to a 31.45% increase in
overall GPU utilization and a 19.71% reduction in makespan.

Index Terms—deep learning, GPU occupancy, graph neural
network, performance prediction

I. INTRODUCTION

Over the past few years, deep learning (DL) has been rapidly
adopted in various fields, including computer vision, natural
language processing, recommender systems, gaming, etc. The
growth of data volume and model complexity has led to
increasing demands for deep learning accelerators. Graphics
processing units (GPUs) have emerged as the most prevalent
accelerators for deep learning computation. Prominent cloud
platforms, such as Microsoft Azure Machine Learning [1] and
Amazon SageMaker [2], provide GPU resources for deploying
and executing DL workloads as a part of their Infrastructure
as a Service (IaaS) [3]–[5].

To understand resource efficiency, it is crucial to moni-
tor and forecast the hardware utilization of GPUs [6]–[9].
For resource providers, understanding the variation trend in
GPU utilization allows them to make appropriate scheduling
strategies to deploy co-located workloads efficiently on proper
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hardware instances [7], [10]. For users, since GPU rental can
be costly, estimating the GPU utilization of their DL models
can aid in selecting a cost-efficient GPU resource. When users
employ automated machine learning (AutoML) tools, it is
also beneficial to take GPU utilization into account for better
hyperparameter tuning and neural architecture search [11]–
[14]. For developers, extracting the GPU utilization patterns
of different DL models can help design resource-efficient DL
systems [15], [16].

In order to portray the patterns of GPU utilization of
DL models, employing a quantitative utilization model for
predictions proves to be a more time-efficient and resource-
saving approach compared to actual execution and profiling
[6], [7], especially when a variety of DL model architectures
and GPU types need to be evaluated [17]. However, GPU
utilization modeling faces two primary challenges. The first
challenge involves the readily available GPU utilization metric,
NVIDIA Management Library (NVML) utilization, typically
acquired through the nvidia-smi command. This metric tends
to overestimate actual GPU utilization and lacks generaliz-
ability to unseen DL model architectures. NVML utilization
is defined as the “percent of time over the past sample
period during which one or more kernels was executing on
the GPU” [18] and does not accurately represent the finer-
grained runtime status within GPUs. For instance, a GPU
kernel (i.e., a compiled routine designed to execute on GPUs)
with a continuous single-thread run will result in 100% NVML
utilization, although a large portion of hardware resources
are actually idle. The second challenge is caused by the
vast architecture and hyperparameter configuration space of
DL models, complicating the design of an accurate ML-
based prediction model from limited samples. It is difficult
to generalize to unseen DL models, even if they use the same
operators as seen models [13], [19], [20]. For example, despite
both BERT [21] and GPT [22] being transformer-based, using
the training data from a BERT model to accurately predict the
performance of a GPT model is still challenging.

In this paper, we propose DNN-occu, a tool that predicts
the GPU occupancy of DL models before job execution using
Graph Neural Network (GNN). This tool provides insight-
ful guidance for subsequent scheduling or decision-making.
DNN-occu addresses the above-mentioned two challenges
as follows. Firstly, instead of NVML utilization, DNN-occu
predicts the GPU occupancy of DL models, which is a fine-



grained GPU utilization metric. The definition of streaming
multiprocessor occupancy is “the ratio of active warps on a
streaming multiprocessor (SM) to the maximum number of
active warps supported by the SM.” [23] The average occu-
pancy across all SMs represents the overall occupancy of the
entire GPU. Such a metric is much more precise in portraying
the portion of occupied GPU computation units than NVML
utilization. Because obtaining exact occupancy needs costly
runtime profiling, a quick prediction of GPU occupancy is
necessary for guiding better scheduling. Secondly, since the
architectures of DL models evolve quickly, it is impractical
to collect all DL models’ runtime profiling data exhaustively.
Therefore, DNN-occu leverages a representative set of DL
models to build a prediction model and extrapolates the GPU
occupancy of unseen DL model architectures. To achieve this
goal, DNN-occu adopts a unified representation for all DL
models, regarding each of them as a directed acyclic graph.
Each node in the graph represents a computational operator
(e.g., 2D convolution), and an edge denotes the data flow
between two nodes. Building upon this data representation and
feature engineering, we design a novel attention-based GNN
architecture with a transformer encoder to fit the mapping
between DL model architectures, the order of kernel execution,
runtime factors, and the associated GPU occupancy.

In addition, we conduct a trace-driven simulation of co-
location DL workload scheduling to demonstrate the appli-
cation of the predicted GPU occupancy from DNN-occu.
Although co-location could improve GPU utilization, it also
introduces performance interference. Based on the predicted
GPU occupancy of unseen DL models from DNN-occu,
our scheduler determines an appropriate combination of co-
location jobs to reduce interference. Our approach avoids
profiling kernel patterns, modifying the underlying DL frame-
work, and tracing job execution online (which requires GPU
isolation at the scheduler runtime). All of these tasks are
expensive and time-consuming. Experimental findings demon-
strate that GPU occupancy outperforms NVML utilization as
a more effective guiding metric for downstream co-location
tasks [6], [7]. Furthermore, our approach facilitates hyperpa-
rameter selection and improves the performance of DL models.

We list the main contributions of this paper as follows:
• We propose DNN-occu, a tool designed to predict the

GPU occupancy of DL models accurately during in-
ference. DNN-occu effectively learns the representation
of different DL model architectures and demonstrates a
promising generalization ability to unseen models.

• We design a set of node and edge features to represent
GPU runtime factors. We also propose an effective GNN-
based model to map these factors to the corresponding
GPU occupancy. The prediction targets cover a broad
range of DL models, including CNN-based, RNN-based,
and Transformer-based models. DNN-occu provides fine-
grained forecasts of hardware resource usage by DL
models.

• We experimentally demonstrate that, when integrated into
a simulated DL job co-location scheduler, the prediction
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Fig. 1. Computation graph of an example DL model.

engine DNN-occu reduces the performance interference
caused by GPU over-allocation. This leads to up to a
31.45% increase in overall GPU utilization and a 19.71%
reduction in makespan compared to existing approaches.

II. BACKGROUND

A. DL Models and Computation Graphs

Fig. 1 shows the computation graph of an example DL
model in popular deep learning frameworks, such as PyTorch
[24] and TensorFlow [25]. A DL model is represented by a
directed acyclic graph, also known as a computation graph.
A node in the graph represents a tensor computation operator
(e.g., Conv2d), and an edge denotes the data flow between
two nodes. Each operator invokes specific APIs from GPU-
accelerated libraries (e.g., NVIDIA cuDNN [26]), and the
library executes a sequence of kernels on GPUs to perform
the computation.

B. GPU Occupancy

The occupancy of a streaming multiprocessor is “the ratio
of active warps on a streaming multiprocessor (SM) to the
maximum number of active warps supported by the SM.”
[23] GPU occupancy is the average occupancy across all
SMs. It gives a fine-grained and low-level measurement of
GPU utilization. In practice, GPU occupancy is sampled by
hardware performance counters on each warp scheduler of
SMs. GPU occupancy is available in Nsight Compute [27]
by the ncu command. However, collecting such a metric is
both time-consuming and resource-consuming. Therefore, it
motivates us to design a model for efficiently predicting the
GPU occupancy of DL models rather than relying on costly
profiling.

NVIDIA Management Library (NVML) utilization is an-
other metric for GPU utilization, which is often easily ob-
tained. It is defined as the “percent of time over the past sample
period during which one or more kernels was executing on
the GPU.” [18] Users acquire this metric from the nvidia-smi
(NVIDIA System Management Interface) command, which
invokes the backend NVML API. Such a high-level utilization
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Fig. 2. Comparison of GPU occupancy and NVML utilization.

metric is pretty coarse and cannot measure how many SMs are
actually in use.

Fig. 2 shows the difference between the two metrics of
GPU occupancy and NVML utilization when training ResNet-
50 [28] on the CIFAR10 dataset [29] and an NVIDIA A100.
The y-axis value of each point in Fig. 2 is the average metric
value weighted by the kernels’ duration. With the increase in
the batch size, NVML utilization reaches around 90%, while
GPU occupancy is about 45%. In general, NVML utilization
provides a relaxed upper bound of GPU utilization; therefore,
GPU occupancy is much more precise in measuring the actual
usage of hardware resources, revealing more potential for
performance improvement.

C. Graph Neural Networks

The graph is a commonly used data structure for rep-
resenting elements and their dependencies. The family of
graph neural networks (GNNs) has demonstrated effectiveness
in various applications and domains [30]–[32], prompting
the emergence of numerous methods aimed at accelerating
GNN training [33]. The main objective of GNNs is to learn
to structure the information representation as a graph. The
learning process of GNNs consists of propagating information
between the nodes and edges of the graph through multiple
message-passing mechanisms, followed by aggregation. In
each message-passing iteration, the representation of the nodes
and edges are updated. The final learned embeddings are used
for downstream tasks such as regression, classification, and
link prediction.

III. DNN-OCCU DESIGN

A. Problem Formulation of GPU Occupancy Prediction

Given a DL model, including model architecture M, model
configuration Cm (e.g., the batch size, input channel size,
hidden size, etc.), and runtime configuration Cr (e.g., GPU
floating-point operations per second (FLOPS), memory band-
width of the device, etc.), DNN-occu is to find a function

f∗ : (M, (M|Cm)× Cr) |w∗ → occu
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Fig. 3. Workflow of DNN-occu.

that predicts the GPU occupancy occu for M during inference
iterations of the input DL model, achieving a minimum
empirical loss L between the predicted occu and the measured
occupancy ˆoccu. The parameters of f∗ are solved by:

w∗ = argmin
w

L( ˆoccu, f((M, (M|Cm)× Cr) |w)).

For a model M consisting of n kernels at runtime, DNN-
occu provides a general form of occupancy predictions:

occupancy = aggr {occu1, occu2, ..., occun} ,

where occui denotes the GPU occupancy of the i-th kernel.
The aggregation function aggr(·) can be max, min, mean, etc.

In this paper, we choose mean as a representative aggre-
gation function for studying. Average GPU occupancy usually
reveals the resource usage of DL workloads throughout the life
cycle and is an essential indicator to provide more insights for
co-location DL workload scheduling [7], [34].

B. DNN-occu Overview

The overall workflow of DNN-occu is shown in Fig. 3. As
introduced in Section II-A, a DL model is represented by a
computation graph and is later transformed into a sequence
of kernels executed on GPUs. Based on this fact, we con-
sider the prediction of GPU occupancy as a mapping from
a computation graph to an occupancy value. The workflow
of DNN-occu mainly consists of four stages: (1) DNN-occu
takes the DL model architecture, runtime configuration, and
model configuration as input. We use Nsight Compute [27]
to analyze the kernel and corresponding GPU occupancy, and
we use ONNX [35] to obtain an intermediate representation
of the input model. (2) We calculate the arithmetic average
occupancy of the DL model according to the kernel. The



TABLE I
NODE AND EDGE FEATURES.

Name Description

Node
Features

Operator
Type

Type of the operator
(e.g., Conv2d, MaxPool2d)

Hyper-
parameter

Type and value of each hyper-
parameter of the operator

(e.g., kernel size and channel size)
Temporary
Tensor Size

Sizes of temporary variables
used by the operator

Input/Output
Tensor Size

Sizes of inputs, outputs tensor
shape of the operator

Operator
FLOPs

Number of floating-point
operations of the operator

GPU FLOPS GPU peak floating-point
operations per second

GPU Memory
Capacity Memory capacity of GPU

SMs Number of streaming
multiprocessors

Edge
Features

Edge
Type

Type of the edge
(e.g., Forward or Backward)

Edge Tensor
Size Size of the delivered tensor

Edge
Bandwidth

Bandwidth for processing
the delivered tensor

fused data contains complete dependency relations among oc-
cupancy data and the computation graph so that the subsequent
supervised learning can be smoothly conducted. (3) DNN-
occu adopts an effective GNN-based encoder to aggregate and
update the features of the graph nodes over several rounds.
Then the aggregated results are fed to an MLP [36]. (4) DNN-
occu outputs the final prediction of GPU occupancy based on
the MLP predictor.

C. Feature Engineering

For designing features, we carefully consider the underlying
implementation of DL frameworks and ensure the features
have precise computational semantics and a high correlation
to GPU occupancy. Table I lists the adopted features for
graph nodes and edges. These features are concatenated into a
numerical feature vector for each node and edge. Categorical
features, such as the operator type, are converted into numer-
ical features by one-hot encoding.

The tensor size and number of floating-point operations
(FLOPs) are calculated from the hyperparameter values of the
DL model. We take the 2D convolution operator (denoted by
Conv2d) as an example to illustrate how to compute them
under forward propagation for inference. Conv2d receives an
input feature mapping N × C × H × W (i.e., a batch of N
input feature maps with the height and width H ×W and C
channels) and a set of convolutional filters K×C×R×S (K
filters with the kernel size R × S and C channels). Conv2d
generates an output feature map of size N ×K×P ×Q (with
a batch of N output feature maps with the height and width
P × Q and K channels). P and Q can be inferred from the
input feature maps and filter shapes as well as from the addi-
tional stride and padding parameters [26]. Thus, the FLOPs of
the Conv2d is calculated by 2×K×C×R×S×N×P ×Q.

Similarly, for operators in RNN-based models, we calculate
the FLOPs based on their input and output tensor sizes. For
Transformer-based models such as BERT, since they contain a
large number of attention modules that are essentially gener-
alized matrix multiplication (GEMM) operations, we calculate
the FLOPs of GEMM as their features.

D. GNN-based Encoder

Transformer-based models have demonstrated excellent
learning capabilities so far and are now widely adopted in
computer vision and natural language processing. Models
with transformer architecture [31], [37], [38] have further
exhibited exceptional performance in a wide range of tasks
on the graph. Motivated by these advances, our study aims
to leverage the strong learning abilities to develop a model
with solid generalization capabilities, allowing it to perform
well on unseen input models. Consequently, we propose our
model design, consisting of the ANEE (attention-based node-
edge encoder) layer [13], Graphormer layer [31], and Set
Transformer Decoder layer [32], which is shown in the middle
part of Fig. 3.

The ANEE layer utilizes attention to encode the feature of
input graphs efficiently. Suppose g is a computation graph, we
denote a node as u and an edge as l = (us, ud). We further
use hi

u and eil to represent the computed feature vectors of
node u and edge l in the i-th round. First, the ANEE layer
comprising parameter matrices Wu, We, and Wm computes
the intermediate result of hi

u (denoted by h̄i
u) as follows [13]:

h̄i
u = LeakyReLU

(
Wu × hi−1

u

)
.

Next, the ANEE layer updates eil of edge l = (s, d) as follows:

eil = σ
(
aT ×

(
h̄i
s ∥ h̄i

d

)
×We × ei−1

l

)
,

where a ∈ R2×N1 is a weight vector and aT is its transpose,
and ∥ is the vector concatenation operation. Then, the layer
gathers the information of node u from its neighboring nodes
and associated edges as follows:

f (u′, l′) = Softmax
(
Wm × eil′

)
× h̄i

u′ ,

hi
u = LeakyReLU

 ∑
l′=(u′,u)

f (u′, l′)

 ,

where u′ is a neighbor node of u.
The encoded features are then fed forward to Graphormer

layers. The Graphormer layer can be characterized by the
layer normalization (LN), multi-head self-attention (MHA),
and feedforward network (FFN) as follows:

h̄i
u = MHA

(
LN

(
hi−1
u

))
+ hi−1

u ,

hi
u = FFN

(
LN

(
h̄i
u

))
+ h̄i

u.

To introduce Set Transformer Decoder, we first define
Multihead Attention Block (MAB) on the input X,Y ∈ Rn×d

with respect to the previous denotation as follows:

MAB(X,Y ) = LN(H̄i + FFN(H̄i)),



TABLE II
STATISTICS OF THE DATASETS AND MODELS.

◦ CNN-based, △ RNN-based, □ Transformer-based
Model Name Variants

◦ ConvNext ConvNext-B1

◦ ResNet ResNet-18, ResNet-34, ResNet-50
◦ VGG VGG-11, VGG-13, VGG-16
◦ AlexNet Vanilla model
◦ LeNet Vanilla model
△ LSTM Vanilla model
△ RNN Vanilla model
□ ViT ViT-S, ViT-T
□ Swin Transformer Swin-S
□ MaxViT MaxViT-T
□ BERT DistilBERT
□ GPT-2 Vanilla model
□ CLIP RN-50, ViT-B/32, ViT-B/16
Values of typical hyperparameters for the above models.
CNN-based: batch size ∈ {4x | 4 ≤ x ≤ 32, x ∈ N},
input channel ∈ [1, 10].
RNN-based: batch size ∈ {8x | 16 ≤ x ≤ 64, x ∈ N},
sequence length ∈ {8x | 2 ≤ x ≤ 16, x ∈ N}.
Transformer-based: batch size ∈ {4x | 4 ≤ x ≤ 32, x ∈ N},
input channel ∈ [1, 10], sequence length ∈ {20, 512}.
1 B: base, S: small, T: tiny, RN50: ResNet-50

where
H̄i = LN(X +MHA(X,Y, Y )).

Using MAB, we define Set Attention Block as

SAB(X) = MAB(X,X).

Then, we define Pooling by Multihead Attention (PMA) with
k learnable seed vectors S ∈ Rk×d on a set of feature vectors
Hi ∈ Rn×d as

PMAk(H
i) = MAB(S,FFN(Hi)).

Finally, we define Set Transformer Decoder operating on
features Hi ∈ Rn×d as

Decoder(Hi) = FFN
(
SAB

(
PMAk(H

i)
))

∈ Rk×d.

E. Loss Function

The GNN-based prediction of GPU occupancy can be
formulated as a graph regression problem. We use the mean
square error (MSE) as the loss function for this task:

L =
1

N

N∑
i=1

(ŷi − yi)
2,

where N is the number of models in the training dataset, ŷi
and yi are the predicted and real GPU occupancy values of
the i-th model configuration, respectively.

IV. EXPERIMENTAL SETUP

A. Datasets and Models

As shown in Table II, we select various representative DL
models and use a stochastic strategy to generate model config-
urations based on the provided API. We create numerous data
and models by refining each model architecture into several
configurations by changing the values of hyperparameters such

TABLE III
SYSTEM SETUP.

Specification System-1 System-2 System-3
GPU Model A100 RTX 2080Ti P40
GPU Number 2 8 4
GPU Arch Ampere Turing Tesla
GPU Memory 80 GB 11 GB 22.5 GB
CPU Core 12 28 24

CPU Model
Intel Xeon
w5-2455X

Intel Xeon
E5-2680 v4

Intel Xeon
E5-2690 v4

CUDA 11.7 10.2 11.0
PyTorch 1.13.1 1.12.0 1.12.0
TensorFlow 1.15.0 1.15.0 1.15.0
Nsight Compute 2023.1.1 2019.5 2020.1

as the number of layers, batch size, and hidden size. For CNN-
based models, we choose ConvNext [39], ResNet [28], VGG
[40], AlexNet [41], and LeNet [42]. We consider the batch
size (from 16 to 128 with step 4), input channel size (from 1
to 10 with step 1), input height (224), and input width (224) as
the hyperparameters. For RNN-based models, we use LSTM
[43] and RNN [36]. We use different domains of the batch size
(from 128 to 512 with step 8) and sequence length (from 16
to 128 with step 8) as the hyperparameters. For Transformer-
based models, we select ViT [44], Swin Transformer [45],
MaxViT [46], BERT (distilbert-base-uncased-finetuned-sst-2-
english) [47], GPT-2 [22], and multimodal model CLIP [48].
The hyperparameters include the batch size (from 16 to 128
with step 4), input channel size (from 1 to 10 with step 1), and
sequence length (from 20 to 512). Other model configuration
parameters are default. We run these models at maximum
capacity on the machine until they encounter out-of-memory
(OOM) errors. These models basically include typical model
configurations in various real-world domains.

In total, our dataset contains 20 models with various op-
erators (>30 types), from 13 to 2,664 nodes, and from 12
to 2,722 edges per computation graph. We employ ONNX
[35] to generate DL model intermediate representation, so
theoretically, DNN-occu can support more than 140 operators
included in ONNX. Currently, the model configuration is
deterministic, and there are no control flow operators (e.g.,
loops and conditional branches), so we assume the same exe-
cution flow and runtime performance across different inference
iterations.

B. Hardware and Runtime Environment

Our experiments are conducted on three systems, and their
setups are listed in Table III. Any other parameters keep the
default settings.

C. Metrics

For evaluating GPU occupancy, we evaluate the prediction
performance by Mean Square Error (MSE) and Mean Relative
Error (MRE):

MRE =
1

N

N∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ , MSE =
1

N

N∑
i=1

(ŷi − yi)
2,



where N is the number of models in the test dataset, and ŷi,
yi are the predicted and real peak GPU occupancy of the i-
th model, respectively. We chose these two metrics because
they are widely used as standard measures of the accuracy of
predictive models in classification.

D. Comparison Baselines

To compare with the GNN-based model of DNN-occu, we
consider the following models as the baselines:

(1) MLP (multilayer perceptron) [36] is a foundational
model in machine learning and serves as the basis for many
complex neural network designs. It was employed to predict
the execution time of operators [49]. Here, we adopt the same
node features utilized by DNN-occu to calculate the MLP
predictions.

(2) LSTM (long short-term memory) [50] is widely used
in various applications, including natural language processing,
time series analysis, and other applications where the input has
a sequential structure.

(3) Transformer [51] is a well-known time series predic-
tion model whose attention module can efficiently utilize the
information on different time steps between series data.

(4) DNNPerf [13] is a runtime performance prediction tool
for deep learning models. It adopts a GNN-based ANEE
layer and systematically explores performance-related features
derived from the semantics of the computation graph and
hidden factors within the framework.

(5) BRP-NAS [20] adopts a graph convolutional network for
predicting model latency in neural architecture search tasks. It
focuses on modeling the impact from the computation graph
structure while overlooking runtime factors associated with
nodes and edges.

We have implemented MLP, LSTM, Transformer, DNNPerf,
and BRP-NAS with PyTorch 1.12.0 [24] and DGL 1.0.1
[52]. After tuning these models, we choose the following
hyperparameter values. For MLP, we use four layers whose
widths are set to 80, 512, 512, and 256, respectively. For
LSTM, we use two layers, each having 256 channels. For
Transformer, we only use the encoder part. We use three
encoder layers, and each layer consists of four attention heads
and a 512-channel FFN. For DNNPerf and BRP-NAS, the
learning rate and weight decay are 0.0001, the same as other
baselines.

V. EVALUTION

To assess the prediction accuracy of DNN-occu, we employ
it to predict GPU occupancy during inference for the DL
models listed in Table II. We divide 80% of the total dataset
(ViT-T, LSTM, RNN, ResNet-34, ResNet-18, VGG-16, VGG-
13, VGG-11, AlexNet, and LeNet) to the training dataset and
allocate the remainder to the test dataset. These models are re-
ferred to as seen test models. Furthermore, we create a separate
test dataset for ViT-S, BERT, ConvNext-B, and ResNet-50,
whose models are unseen by DNN-occu. That is, the training
dataset does not include any of their configurations.

DNN-occu uses one ANEE layer, two Graphormer layers,
and two Set Transformer Decoder layers. We set the hidden
dimension of all the layers to 256; the learning rate and weight
decay are both set to 0.0001. We use the Adam [53] optimizer
with default hyperparameters to train DNN-occu.

A. How Effective is DNN-occu?

1) Results of predicting GPU occupancy for a single model:
In this section, we compare DNN-occu with five baselines on
the same test dataset to evaluate the effectiveness of predicting
GPU occupancy for a single DL model that runs exclusively on
a GPU. Fig. 4 shows the results of our experiments involving
all the compared baselines for predicting GPU occupancy.

Fig. 4 (a) shows the prediction results of DNN-occu on
NVIDIA A100 for various models. While MLP performs well
on seen test models, its predictions on unseen test models
are poor, with an MRE/MSE of 90.435%/0.721. Such poor
performance is attributed to the overfitting of MLP and its
lack of strong generalization ability. On the seen test models,
the difference between the predictions of DNN-occu and
all the baselines is insignificant. In contrast, on unseen test
models, DNN-occu achieves the best MRE/MSE values of
5.496%/0.003, demonstrating a notable generalization ability.

Fig. 4 (b) and Fig. 4 (c) show the prediction results of
DNN-occu on different devices for the tested models. Once
again, DNN-occu achieves the optimal predictions on the
unseen test models, surpassing all the baselines on NVIDIA
RTX 2080Ti and P40. The experimental results confirm the
effectiveness of DNN-occu across various models and devices,
demonstrating superior extensible-model and extensible-device
generalization. The advantage of DNN-occu is its ability to
learn the characteristics, trends, and development patterns of
GPU occupancy changes from the DL model computation
graph, model configuration, and runtime configuration. This
ability enables flexible prediction of future changes in GPU
occupancy.

2) Results of predicting GPU occupancy for multimodal
models: Multimodal models usually consist of multiple input
modalities (e.g., images, text, and speech), so their analysis
and prediction are much more complex than unimodal mod-
els. The GNN, a deep learning model for graph-structured
data, can process multimodal data and discover underlying
relationships and patterns. We model multimodal data sepa-
rately as independent graph structures and utilize DNN-occu
for learning, fusion, and prediction. DNN-occu employs the
neural architecture to model the consistency and correlation
between these modalities and obtain better multimodal data
representation and feature extraction.

We take the multimodal model CLIP as an example and run
both language and image encoders simultaneously. DNN-occu
constructs multimodal graphs for learning the relationships
between nodes and edges. This method can efficiently process
multimodal data and effectively discover relationships between
different modalities. Predicting the multimodal models GPU
occupancy helps select optimal hyperparameters and their
values (such as the batch size). As demonstrated in Table
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(a) Evaluation results on NVIDIA A100.
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(b) Evaluation results on NVIDIA RTX 2080Ti.
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Fig. 4. Evaluation results of GPU occupancy prediction.

IV, when compared to other baseline methods, DNN-occu
can effectively learn performance patterns, fuse computation
graphs, and make predictions on multimodal models. The
experimental results illustrate the advantages of GNN-based
DNN-occu prediction and the key importance of GNNs in
predicting the runtime performance of DL models.

B. How Robust is DNN-occu?

Our dataset contains a variety of neural architectures whose
numbers of the nodes and edges are widely distributed. We
split the dataset into several subsets based on the value ranges

of the numbers, perform experiments on each subset, and
present the prediction results in Fig. 5. Moving from left to
right in the figure, the experimental devices are NVIDIA A100,
RTX 2080Ti, and P40, respectively. DNN-occu achieves a
satisfactory level of accuracy and outperforms all the baseline
methods. The MRE values of DNN-occu for different numbers
of nodes range from 2.940% to 5.014% for A100 predictions,
from 0.233% to 2.095% for RTX 2080Ti predictions, and
from 1.046% to 21.382% for P40 predictions, respectively.
The MRE values of DNN-occu for different numbers of
edges range from 2.197% to 41.298% for A100 predictions,



TABLE IV
PREDICTION OF GPU OCCUPANCY ON THE MULTIMODAL MODEL CLIP.

Model
Name

Prediction of GPU occupancy
on multimodal model on NVIDIA A100

Metric DNN-occu DNNPerf BRP-NAS
RN50 (seen) MRE (%) 3.686 637.369 108.611

ViT-B/16 (seen) MRE (%) 1.829 924.529 144.702
ViT-B/32 (unseen) MRE (%) 3.614 937.356 134.573

Model
Name

Prediction of GPU occupancy
on multimodal model on NVIDIA P40

Metric DNN-occu DNNPerf BRP-NAS
RN50 (seen) MRE (%) 11.724 112.863 173.318

ViT-B/16 (seen) MRE (%) 3.395 115.226 175.242
ViT-B/32 (unseen) MRE (%) 2.73 115.108 175.333
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Fig. 5. Robustness evaluation across various numbers of nodes and edges.
Moving from left to right, the experimental devices are NVIDIA A100, RTX
2080Ti, and P40, respectively.

from 9.090% to 58.080% for RTX 2080Ti predictions, and
from 0.567% to 26.652% for P40 predictions, respectively.
The experimental results demonstrate that DNN-occu exhibits
satisfactory robustness across various neural architectures.

C. How Generalizable is DNN-occu?

Generalization is a significant concern in the field of deep
learning. For a DL model, we expect it to perform well not
only on known (seen) datasets but also on unknown (unseen)
datasets, i.e., with remarkable generalization ability. Therefore,
we evaluate the generalization ability of DNN-occu through
extensive experiments.

We utilize ViT-T with the attention operator as a training
dataset to assess the generalization of DNN-occu for Swin
Transformer, MaxViT, ViT-S, BERT, and GPT-2. As shown
in Table V, DNN-occu achieves an MRE of 9.829% for
Swin Transformer, 8.075% for MaxViT, 5.239% for ViT-S,
8.470% for BERT, and 185.817% for GPT-2 on NVIDIA
A100, surpassing the optimal MRE values of the baselines.
Furthermore, on NVIDIA RTX 2080Ti and P40, the predic-
tions of DNN-occu also outperform all the baselines. The
experimental results demonstrate that DNN-occu exhibits a
strong generalization ability to unseen models.

TABLE V
GENERALIZATION ON TRANSFORMER-BASED MODELS.

Model
Name

Generalization on NVIDIA A100
Metric DNN-occu DNNPerf BRP-NAS

Swin Transformer MRE (%) 9.829 735.787 235.174
MaxViT MRE (%) 8.075 175636.913 68579.639

ViT-S MRE (%) 5.239 163.795 118.171
BERT MRE (%) 8.470 1025.604 581.469
GPT-2 MRE (%) 185.817 901.541 421.053
Model
Name

Generalization on NVIDIA RTX 2080Ti
Metric DNN-occu DNNPerf BRP-NAS

Swin Transformer MRE (%) 8.032 115.171 129.084
MaxViT MRE (%) 10.445 742606.716 19475.475

ViT-S MRE (%) 7.459 104.621 107.621
BERT MRE (%) 9.071 760.725 470.512
GPT-2 MRE (%) 36.220 103.071 216.373
Model
Name

Generalization on NVIDIA P40
Metric DNN-occu DNNPerf BRP-NAS

Swin Transformer MRE (%) 8.883 363.801 142.618
MaxViT MRE (%) 9.750 49309.784 37711.313

ViT-S MRE (%) 0.624 126.345 108.217
BERT MRE (%) 7.126 764.709 531.211
GPT-2 MRE (%) 69.318 473.288 246.846

VI. APPLICATION CASES OF DNN-OCCU

In this section, we investigate the benefits of DNN-occu
in supporting downstream DL workload scheduling. As case
studies, we use two representative tasks: hyperparameter op-
timization and schedule guidance. In addition, DNN-occu can
be adopted in other applications, such as power management
and GPU kernel scheduling, which are of interest to our future
work.

A. Hyperparameter Optimization

The general utilization of GPUs in deep learning systems
tends to be relatively modest. According to a recent production
study [54], the target system’s average GPU utilization was
about 52%, implying that nearly half of the GPUs remained
idle. By analyzing and forecasting the GPU occupancy in
deep learning models, DNN-occu helps tune critical param-
eters capable of affecting GPU occupancy and enhancing the
program’s overall GPU utilization.

Fig. 6 illustrates the GPU occupancy and NVML utilization
under different batch sizes on NVIDIA A100. By utilizing
DNN-occu, GPU occupancy can be accurately predicted across
various hyperparameters and their values before job execution.
Therefore, DNN-occu helps identify the values of hyperparam-
eters that achieve maximum GPU occupancy without time-
consuming runtime profiling, thereby accelerating hyperpa-
rameter optimization and boosting developer productivity. We
notice that GPU occupancy is always lower than NVML
utilization, confirming that GPU occupancy serves as a tighter
upper bound for GPU utilization. This also indicates that, as
the batch size increases, other bottlenecks emerge that hinder
further improvement of GPU occupancy.

B. Schedule Guidance

Co-location execution means that applications with com-
plementary resource requirements can be placed on the same
GPUs, resulting in improved aggregated throughput. Due to
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Fig. 7. Correlation of JCT slowdown and GPU occupancy

the contention of shared resources (e.g., cache capacity and
global memory bandwidth), co-location may impact the job
completion time (JCT) of applications when compared to ap-
plications running separately [7], [34]. To improve the results
of these interference studies, we conducted a preliminary JCT
interference analysis. This analysis involved 200 randomly
selected combinations of co-location DL model executions
from Table II, each of which was run 100 times. Fig. 7
illustrates that the rise in JCT is positively correlated with
cumulative GPU occupancy, leading to a JCT rise ranging from
10% to 60% for each DL model.

Therefore, a safe co-location policy is necessary to achieve
better SM allocation and avoid overprovision while still en-
suring QoS and fair sharing. GPU occupancy reflects the

TABLE VI
ANALYSIS OF THE PACKAGING STRATEGY OF DL SCHEDULER

Pack
Strategy

Makespan(s) NVML utilization (%)
Avg Gain Avg Gain

occu-packing 106.87 19.71% 61.23 31.45%
nvml-util-packing 126.58 4.90% 46.48 -0.21%

slot-packing
(disabling co-location) 133.10 N/A1 46.58 N/A

1 As the baseline, it has no gain and is represented as N/A.

actual SM usage at a fine-grained level and is an essential
performance indicator for a secure co-location policy. Fig. 7
indicates that the JCT slowdown starts to rise dramatically,
especially when the cumulative occupancy exceeds 100%.
Therefore, an appropriate packing policy for multiple jobs
should ensure the cumulative occupancy is at most 100% [7].

We integrate DNN-occu into a DL scheduler deployed on
a machine with four NVIDIA P40 GPUs and one Intel Xeon
E5-2690 v4 processor. The scheduler uses a GPU-occupancy-
based bin-packing algorithm (with co-location ensuring GPU
occupancy does not exceed 100%; denoted by occu-packing)
to maximize GPU utilization, while minimizing GPU over-
allocation and the need for job resubmission caused by out-
of-memory failures. First, before submitting DL workloads,
the resource manager derives the corresponding computational
graph from the DL model and adapts the input of DNN-occu.
DNN-occu predicts the GPU occupancy of the unexecuted
DL workloads. Then, the system uses the predicted value as
a metric for co-location scheduling. The system combines
the resource requirements of the DL workload (i.e., GPU
occupancy) and the current GPU usage on the nodes, and
schedules DL models to the appropriate node based on the
cumulative GPU occupancy of the DL load not exceeding
100%. We compare our approach with slot-packing (disabling
co-location) and NVML-utilization-based bin-packing [6], [7]
(denoted by nvml-util-packing). The experiments are con-
ducted on a mix of DL workload samples from Table II. Each
experiment simulates the scheduling of different DL workloads
into GPUs using the three scheduling approach above, and
each approach is run 100 times with workload combinations
scaled from prior work [11], [12].

Table VI summarizes that our occu-packing approach
achieves an average NVML utilization of 61.23% compared
to slot-packing (46.58%) and nvml-util-packing (46.48%).
This is because GPU occupancy is a much more precise
measurement of actual GPU usage compared to the coarse-
grained NVML utilization. It provides a tighter resource upper
bound for packing jobs, therefore the occu-packing strategy
can make more aggressive packing with little interference.
In all experimental runs, our approach achieves the lowest
makespan, with a 19.71% improvement over the slot-packing
approach. It also shows that the overhead of DNN-occu is
tiny, and the inference time does not affect the model’s ready
scheduling wait at all.



VII. RELATED WORK

GPU profiling. Regarding GPU utilization analysis, Gan-
diva [11] focuses on time-sharing and utilizes online profiling
on isolated machines to determine proper co-location and
migration strategies. Antman [15] leverages GPU SM utiliza-
tion to identify jobs that might be suitable for co-location.
The work of Yeung et al. [6] predicts coarse-grained GPU
utilization based on FLOPs, input data size, and the number
of convolutional layers. Moneo [8] intelligently collects SM
utilization in real time at a finer granularity without detecting
or tracking workloads. Prior work deals with coarse-grained
GPU utilization, while we concentrate on GPU occupancy,
which better reflects the actual usage of GPU resources.

Performance prediction for DL models. Performance
modeling and prediction for DL models have recently attracted
researchers’ interest. Paleo [19] predicts the execution time of
DL models based on FLOPs. Habitat [55] uses wave scaling
(a technique for executing models on GPUs) and pre-trained
multilayer perceptrons to make predictions by scaling the ex-
ecution time of each operation during training iterations from
one GPU to another. However, these analytical techniques
require extensive handcrafted efforts and are specific to certain
tasks. Some research work [13], [20], [56] proposes GNN-
based timing predictors, which mainly focus on the perfor-
mance impacts from operator type and computation graph
structure. Compared with prior works, DNN-occu captures
not only features at the operator level but also computation
graph information and hidden factors within the framework.
Our prediction-based learning method reduces handcrafted
operations and achieves better prediction on unseen models.
We apply DNN-occu to downstream scheduling tasks, demon-
strating a practical application of performance prediction.

Workload scheduling. There are some work considering
DL workload scheduling on GPU clusters. Horus [7] proposes
a prediction-based interference-aware mechanism to determine
good decisions for DL job placement. Instead of predicting
GPU utilization directly, Themis [34] predicts the slowdown
of each job, given k jobs sharing the GPU execution. The
prediction model is a simple MLP, but the experiments are
all based on GPGPU-Sim [57], which also requires a minor
modification of the GPU structure to obtain feature counts.
This means that the work cannot be implemented on a real
GPU. Abacus [58] considers a more fine-grained scheduling
approach, treating DL jobs as a series of operators and
predicting the latency of a group of operators while running
DL jobs simultaneously. The prediction model is also a simple
MLP. This approach lacks extrapolation capability for unseen
models and handles only a limited number of models.

VIII. CONCLUSION

In this paper, we propose DNN-occu, a tool for predicting
runtime GPU occupancy of deep learning models. We design
a GNN-based prediction model that utilizes elaborate features
derived from the computation graph semantics within profiling
statistics and runtime libraries. Our extensive experiments

demonstrate that DNN-occu accurately predicts the GPU occu-
pancy of deep learning models during inference. DNN-occu
is practical, robust, and generalized across various hyperpa-
rameter values and neural architectures. We apply DNN-occu
to hyperparameter optimization and employ it to guide co-
location packing, effectively reducing the makespan of deep
learning workloads and improving the overall GPU utilization
of systems.
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