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ABSTRACT

Enterprises increasingly use public cloud services for critical busi-
ness needs. However, Internet protocols force clouds to contend
with a lack of control, reducing the speed at which clouds can re-
spond to network problems, the range of solutions they can provide,
and deployment resilience. To overcome this limitation, we present
PAINTER, a system that takes control over which ingress routes
are available and which are chosen to the cloud by leveraging edge
proxies. PAINTER efficiently advertises BGP prefixes, exposing
more concurrent routes than existing solutions to improve latency
and resilience. Compared to existing solutions, PAINTER reduces
path inflation by 75% while using a third of the prefixes of other so-
lutions, avoids 20% more path failures, and chooses ingresses from
the edge at finer time (RTT) and traffic (per-flow) granularities,
enhancing our agility.
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1 INTRODUCTION

Everyday business needs that used to run on corporate LANs now
rely on the public Internet, as more businesses depend on the cloud
for services. However, these businesses continue to be plagued by
routing problems and performance bottlenecks anywhere between
clouds, enterprise users, and intermediate ASes. Most of us can
recall the annoyance we feel when a tele-meeting is disrupted by
poor network performance, but now imagine how that occurrence
impacts an entire business that is paying to run many or all its
services on the cloud. The impact of such problems will grow,
as the Networking-as-a-Service market is projected to be a $60B
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Figure 1: A difficult customer problem to avoid.

industry by 2027 [50]. These are urgent problems clouds must solve
for current services, and more critical problems clouds will face as
they offer applications with stricter performance requirements—
augmented reality requires 10 ms latency at 20 Mbps with a 107°
packet-loss rate [1]. Delivering 5G’s promise of ultra-reliable-low-
latency communication and the Gbps data rates that 5G supports
will similarly place more pressure on clouds [78].

For example, investigation of a recent cloud customer perfor-
mance issue uncovered that traffic from one of their branch offices
in City A took an unusually circuitous anycast path to land at a
distant Azure PoP in City B because one of City A’s regional ISP’s
peering routers failed. Despite the possibility of a policy-compliant
path to City A’s PoP through another ISP (Transit ISP), there was
no mechanism for detecting such paths and re-directing customer
traffic (see Figure 1). Hence Figure 1 labels this path as ‘Unusable’.
Fiddling with route policies and weights to resolve this problem
remained a risky and slow process. This dynamic failure can be
difficult to mitigate and could lead to severe performance problems
for vital customer services.

These problems are hard to avoid because current solutions force
clouds to choose between availability and performance. Clouds
use anycast for availability, but may sometimes use unicast for
performance since anycast can inflate paths [21, 54]. Unicast routing
is enabled by DNS which directs users to different PoPs, but at
coarse granularities (per-recursive resolver), cannot select among
different paths to a single PoP, and cannot react quickly during
failure due to clients/recursives not respecting DNS TTLs [16, 35,
60, 73]. All these limitations of DNS hurt availability. BGP limits
clouds further since it may similarly pick poorly performing paths,
it only exposes one path, and failover between paths is slow [57].

To better equip clouds with tools for offering performant services,
we designed a system—PAINTER (Precise, Agile INgress Traffic En-
gineering & Routing)—that provides a framework for routing user
ingress traffic with precision. PAINTER mitigates network problems
such as path inflation and congestion by intelligently and efficiently
exposing and precisely selecting paths to the cloud.
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PAINTER exposes paths to select from by advertising multiple
prefixes via different subsets of cloud peerings, but it cannot expose
all possible paths since prefix advertisements are expensive and may
pollute BGP routing tables. Instead, PAINTER computes efficient
prefix to peering allocation strategies that enhance performance
(e.g., by eliminating path inflation) and enhance resilience (e.g., by
providing backup paths). PAINTER limits its impact on BGP routing
tables through prefix reuse—advertising the same prefix via multiple
peerings if PAINTER predicts it will not inflate paths—and learns
better strategies over time.

PAINTER selective advertisements expose the potential for better
performance and reliability, but that potential alone is not enough.
Customer traffic needs to be steered onto these better paths, at a
fine enough granularity to allow each flow to utilize the best path
for it, but current solutions do not suffice to take advantage of these
new opportunities.

Our insight to solve this problem is to leverage clouds increas-
ing access to powerful networking capabilities at the edge of the
Internet. These powerful capabilities include MPTCP proxies [98],
cloud-edge network stacks [5, 41, 44, 68], mobile apps with full
stack control [8, 104], and integrated VPNs such as Apple Private
Relay [48, 84]. Since clouds have invested in extending their reach
into edge networks, there is an opportunity for clouds to enact
fine-grained control over traffic at or close to the client, including
steering traffic onto paths exposed by PAINTER. PAINTER is there-
fore the combination of path exposure with the use of edge presence
to select among paths at fine granularities.

In this paper we focus on one particular type of edge presence
to exert fine-grained control, cloud-edge network stacks, which are
software stacks in enterprise networks that enable cloud-based net-
working solutions. For example, major clouds offer direct integra-
tion with on-premise network management devices [5, 41, 44, 68].
We found this type of edge presence to be the most deployable,
most powerful solution for clouds like Azure (more details in Sec-
tion 5.2.1). However, PAINTER could use other edge presences such
as MPTCP-enabled clients [45] (§3.2).

In summary, PAINTER’s design provides two key contributions.
First, it provides a path exposure framework which (when paired
with traffic steering) mitigates network problems such as path infla-
tion and congestion; and second, it provides a practical deployment
strategy—situating it in cloud-edge network stacks—which lets
clouds precisely steer traffic over paths on a per-flow basis. These
contributions independently provide improvements over current
best practices and together provide more benefit than either of
them alone.

We demonstrate the utility of PAINTER using both prototypes and
measurement-driven evaluations that quantify PAINTER’s benefits
compared to other solutions. Measurements are from hundreds of
thousands of user networks to two global cloud deployments, each
of which has thousands of peerings. We measure from Azure and
RIPE Atlas [93], and build a prototype using the PEERING testbed
[85], which is now deployed at 25 Vultr cloud locations [103]. Vultr
is a global public cloud that allows us to issue BGP advertisements
to its peers/providers.

We show that PAINTER’s advertisement strategies offer persistent
latency improvements to users and use fewer prefixes (less routing
table impact) than other solutions (§5.1), which stem from its intelli-
gent decisions about which peers/providers to advertise prefixes to

and when to reuse prefixes. We demonstrate that PAINTER’s adver-
tisement strategies can reduce path inflation by 60 ms on average
for thousands of networks, and that these strategies maintain these
benefits for at least a month. PAINTER intelligently improves its
strategies over time, by observing how clients route to deployments.
PAINTER’s advertisement strategies expose more paths to the cloud
than alternate solutions such as SD-WAN with multihoming (at least
23 for most networks), and so offer more resilience to 20% more
path failures (§5.2.4).

We show PAINTER’s steering mechanism is far more deploy-
able than other solutions (§5.2) and that this mechanism steers
traffic at finer (per-flow) granularities than other steering mecha-
nisms (DNS/BGP updates) [23, 82]. Even using the finest control
knobs available, these other steering solutions shift traffic at coarse
granularities that negate half the benefits of PAINTER’s selective
advertisements (§5.2.2). Our prototype on the PEERING testbed
[85] demonstrates a helpful use case of PAINTER that these other
approaches fail to address—failover at RTT-timescales (§5.2.3).

PAINTER couples cloud-side intelligent advertisements to expose
diverse, high-performance paths with client-side fine-grained se-
lection from these paths to practically achieve more control over
routing than has traditionally been possible in the interdomain
setting. Whereas optimal routes can2 be computed, installed, and
selected directly in single-domain settings, the interdomain setting
traditionally divided decisions among distinct entities, each lacking
global visibility and together lacking coordination, limiting solu-
tions. Having this enhanced control over more legs of the routing
decision is imperative to offering richer networked applications
[72, 78]. We see PAINTER as the first in an approaching wave of sys-
tems that uses enhanced traffic control in the interdomain setting to
provide the high-performance, Internet-scale systems of tomorrow.

Ethics. We use anonymized traces from residential buildings
managed by Columbia University to motivate our system. Before
data collection, our data collection protocol underwent formal In-
stitutional Review Board (IRB) review and was declared exempt
as non-human-subjects research. It was reviewed and approved
by the university IT department’s security and privacy team and
networking team. We follow established practices to anonymize
all PIT and securely store data [53]. More information about this
process is in Appendix A. This work raises no other ethical issues.

2 MOTIVATION AND CHALLENGES

2.1 Modern Enterprises, Old Protocols

Even though paths to the cloud are often low latency [29, 72] and
near-optimal [21, 54, 56], occasional networking problems still af-
fect critical enterprise operations (e.g., Fig. 1). Such problems are
not new, but two trends make them increasingly salient for clouds
offering enterprise products (i.e., enterprise clouds).

First, critical business needs that would traditionally be on-
premises such as network management and file storage are increas-
ingly outsourced to enterprise clouds. The virtual WAN in Figure 2
demonstrates the degree to which the modern enterprise can be inte-
grated with the cloud. This enterprise has a virtual corporate WAN,
which uses the cloud’s connectivity, physical infrastructure, and
security to connect regional branch offices, HQ, and remote employ-
ees to each other. On top of this networked structure, the enterprise
can use cloud services such as teleconferencing to have meetings
or distributed databases to track sales. Management points such as
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Figure 2: Modern enterprise integration with the cloud.

VPN middleboxes and SD-WANs running cloud network stacks act
as traffic choke points where operators can enact policy on traffic.
Second, trends in application usage suggest ingress (i.e., towards
the cloud) traffic may impact user experience more than before. The
rise in video conferencing traffic during the pandemic observed
both in the literature [33, 63] and in Azure’s traffic logs has already
made this trend clear. Moreover, new 5G applications have the
potential to drive massive amounts of traffic to the cloud with
tighter performance requirements [72, 78]. For example, US mobile
providers actively collaborate with clouds to provide 5G network
functions [12, 42, 69, 77, 91]. These application workloads differ
greatly from traditional web traffic which was cacheable and heavily
biased towards egress. Collectively, these trends mean that paths to
the cloud must meet increasingly strict performance requirements.
Faced with needing to meet tighter performance guarantees,
clouds find themselves severely limited by how traffic is mapped
onto Internet paths. First, cloud services are mapped to hostnames,
effectively outsourcing traffic management to client DNS resolvers
and caches. Resolvers and caches map to IP addresses via the DNS
protocol, limiting cloud traffic management to the granularity of
hostname, client recursive resolver, and DNS record TTL (or even
worse—see Section 2.2). Finally, IP addresses are mapped to Internet
paths via BGP which is not performance-aware and is slow to recon-
verge after failure [116]. These factors combine to form a mapping
process that is coarse, slow to react, and often not performant.

2.2 Insufficiencies of Existing Techniques

IP Anycast and/or DNS. IP anycast is an approach to routing
where distinct PoPs all advertise the same IP prefixes. This strategy
is used by clouds and CDNs for its simplicity and resilience [21, 25,
40, 74, 79, 101]. Anycast offers limited control over paths, leading
to path inflation or unpredictable mappings from clients to PoPs (as
evidenced in our aforementioned customer issues) [21, 54, 59, 64],
so some deployments use tailored DNS records to expose more
paths and return a specific DNS record to recursive resolvers to
send users to an optimal PoP [23, 76, 87].

However, using this DNS deployment either separate from or on
top of an anycast deployment [21, 66, 111] to expose more paths
leads to reliability problems. Recursive resolvers serve large popu-
lations of users who may benefit from finer redirection [23], and
DNS records are hard to update quickly since records live in caches
for a long time. Prior work demonstrates that many flows start after
the corresponding DNS record has expired [16, 35, 60, 73], leaving
these flows outside the control of the cloud to steer based on per-
formance, availability, or load-balancing. However, the situation is
even bleaker than this work suggests. Even flows that start while
a DNS record is valid may be extant after DNS expiration, further
restricting cloud control over traffic.
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Figure 3: Of all traffic sent to Cloud A, 80% is sent at least 5 minutes
after TTL expiration.

After Record Expiration

Our analysis captures the impact of flows that send traffic after
the DNS record has expired. We find that most traffic to some
clouds is sent to addresses from expired DNS records. Our analysis
used anonymized residential traffic and matched observed DNS
queries to observed flows as in prior work [4]. More about our DNS
measurement and analysis pipeline are in Appendix A.

Figure 3 shows that, out of all the traffic sent to one of the three
largest clouds, 80% still uses the old DNS record five minutes after
TTL expiration, whereas routes change and failures occur at second
timescales. Although less extreme, 20% of traffic is sent to the other
two clouds at least a minute after the DNS record directing it expires.
Traffic continues to use IP addresses from expired DNS records both
because flows live past record expiration, and because clients cache
the IP addresses and start new flows after the TTLs expire (we
observed roughly a 2:1 ratio, respectively).

Hence, clouds have limited ability to quickly update paths that
traffic takes to their networks in the face of sudden performance
changes or failures.

Existing Commercial Products. Several companies have products
targeted at enterprise networks that offer improved network per-
formance [2, 27, 49, 96], which may use a combination of overlay
routing (with PoPs/datacenters as overlay nodes) and multihoming
(if enterprises have multiple ISPs). In particular, SD-WAN devices
can select among a multihomed enterprises’ different ISPs to op-
timize latency [90] which, by itself, does not solve our problem
and has been around for decades [3]. We compare our proposal
to an SD-WAN multihoming solution in Section 5.2.4. Products that
use overlay routing cannot use different paths between users and
the cloud since, in those products, variation comes from choosing
existing paths through cloud WANSs. Those products can therefore
solve a different set of problems such as optimizing existing routes
between branch offices. Other companies such as Megaport [67]
claim to offer better routes between enterprises and the cloud, but
enterprises still use DNS/BGP to reach these third parties and thus
this solution suffers from the limitations of those protocols.

2.3 Opportunity: Cloud Control at the Edge

Current solutions to directing traffic suffer from a lack of control
(§2.2), but new deployment trends could expose solutions that offer
clouds precise traffic control.

Internet practitioners have recognized that fine-grained traffic
control capabilities help offer richer network support and features.
Traditionally, these capabilities have been implemented through
traffic control points in or near the source. For example, operators
can use SD-WAN to enact policy on corporate traffic and ensure the
network security of corporate WANSs.

The difference today is that clouds have extended their presence
into the edge, offering them more access to these and other new
control points—networking-as-a-service devices such as SD-WAN



[14, 102], cloud-edge network stacks [5, 41, 44, 68], recent OS ver-
sions that give application developers more control over the net-
work stack (e.g., MPTCP/MPQUIC, the Skype app) [7, 8, 11, 31, 47,
51, 98, 104, 114], and integrated VPNs such as Apple Private Relay
[48, 84]. We refer to all these technologies as edge proxies, as they
all allow clouds to exert more direct control over traffic.

For our setting (enterprise cloud) in particular, cloud-edge net-
work stacks offer a uniquely powerful traffic control point. These
control points may exist on customer-owned SD-WAN devices or
devices provided by the cloud, are physically inside enterprise
premises, are managed by enterprises, and enact networking poli-
cies on user traffic. Our insight is that clouds should extend their
reach via cloud-edge network stacks since they are designed to
enact policy on traffic, since these stacks already use software
frameworks integrated with the cloud [5, 41, 44, 68], and since both
parties (enterprise and cloud) would benefit from this synergy.

2.4 Key Challenges

Realizing a solution that overcomes the limitations of current pro-
tocols (§2.1) comes with three key challenges.

It is hard to deploy solutions. To overcome the limitations
of BGP and DNS, we require fine-grained traffic control. The Path-
Aware Networking research group (PAN-RG) [46] has characterized
sets of networking solutions that offer fine-grained traffic control.
The working group identified the key requirements to deploying suc-
cessful intelligent routing solutions as requiring no major changes
to ISP operations, working with all network hardware, being im-
mediately partially deployable, and providing incentives for both
operator and innovator.

That these are formidable challenges to overcome is evidenced
by a lack of widely deployed solutions to the problem. Others have
recognized the limitations of BGP and DNS and proposed various
solutions [7, 55, 59, 80, 104, 108, 109, 114], but these solutions are
not widely deployed.

We cannot make every route available. Making every route
available to clients would let them choose the best routes, improving
performance. However, BGP exports best paths per IP prefix and
so some options are lost as advertisements travel from the cloud to
edge networks. Clouds could bypass this limitation if they advertise
more prefixes, one per path, except that each advertisement comes
with a cost. Advertisement cost comes from the cost of IPv4 prefixes
(often much more than $20k per /24 [75]) and their impact on global
BGP routing tables.

BGP routing tables are growing for both v4 and v6 address spaces
[43], for which the only solutions are to reject advertisements (bad)
or to buy expensive routers (also bad) [15]. The importance of this
problem is evidenced by the large body of research on compressing
routing tables [10, 24, 95, 99]. Moreover, other work proposes adver-
tising multiple prefixes to enhance performance [17, 97, 100, 111]
so in the future it may be imperative for all networks to balance
their individual goals (e.g., enhancing performance) with the good
of the Internet (minimizing BGP table impact).

Using IPv6 does not work for two reasons: first, IPv6 peering
is less common than IPv4 according to Azure’s BGP data, so we
cannot expose all the paths, and, second, routers can store 8x fewer
IPv6 addresses than IPv4 addresses [30].

We do not know which routes to make available. Advertis-
ing multiple prefixes to expose multiple routes is promising, but
we just argued that we cannot make all routes available. Since we

can only make a limited set of routes available, and since the same
routes may not be equally beneficial for all clients, we have to find
the optimal subset of routes to make available that balance our
goals of minimizing cost and improving performance. Finding this
subset is a challenging combinatorial optimization problem whose
complexity grows exponentially with the number of peerings, and
whose objective function can only be measured infrequently (see
Section 3.1 for more details).

3 SYSTEM DESCRIPTION

PAINTER (Precise, Agile INgress Traffic Engineering & Rout-
ing), summarized in Figure 4, consists of the Advertisement
Orchestrator (§3.1) and the Traffic Manager (§3.2). The
Advertisement Orchestrator exposes performant paths to users
by advertising multiple prefixes via different peerings (2.2.2.0/24
and 3.3.3.0/24 in Figure 4, see Section 3.1 for more details) and
the Traffic Manager tunnels traffic along best paths at fine
traffic granularities (§3.2). Azure still advertises the anycast prefix
(1.1.1.0/24 in Figure 4) since anycast offers low latency for most
users [21, 54].

We designed PAINTER to be a service run by Azure, with nodes
in edge proxies that we call TM-Edges and nodes in Azure PoPs
that we call TM-PoPs. We collectively refer to all TM-Edges and
TM-PoPs as the Traffic Manager. The edge proxy can be any
technology that enables Azure to select from multiple tunnels at
fine granularity (§2.3), but we believe cloud-edge network stacks are
the most sensible proxy technology for our setting (§3.2). TM-PoP
can be integrated with Azure front-ends in PoPs. Front-ends are
entry-points into Azure’s network, perform some caching, and
terminate TCP connections.

Cloud tenants are oblivious to Advertisement Orchestrator
advertisements since traffic is tunneled between TM-Edges and
TM-PoPs—tenants always direct traffic towards the anycast prefix.

3.1 Advertisement Orchestrator

Overview of Mechanism. Since BGP decides paths on a per-prefix
basis, and since different ISPs may select paths in different ways,
advertising multiple prefixes to different peers/providers can expose
more paths, some of which can be more performant. We use this
mechanism to mitigate path inflation and congestion.

However, as discussed in Section 2.4, we have to find a good
subset of paths to expose. To maximize the benefit from a limited set
of prefixes, the Advertisement Orchestrator advertises prefixes
via multiple peerings (which we call prefix reuse) when it predicts
that reuse will not hurt performance of other traffic. We define
benefit as latency improvement over anycast, although computed
strategies also implicitly offer added resilience (§5.2.4). One could
use PAINTER to optimize any function of latency; here, we choose
minimum latency over several measurements to approximate path
propagation delay.

Since finding the optimal subset of paths to expose is a challeng-
ing optimization problem, our algorithm greedily computes which
prefixes to advertise via which peerings in a way that minimizes
average latency over Azure traffic. However, there is a chance that,
after computing strategies and conducting BGP advertisements,
users ingress at peerings that offer sub-optimal performance (akin to
path inflation [92]). Over time the Advertisement Orchestrator
learns from these instances of poor routing, computing strategies
that get more benefit with fewer prefixes with each iteration.
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Unicast vs Anycast. Anycast commonly refers to announcing the
same prefix via all PoPs and all peerings while unicast often refers to
announcing the same prefix via one PoP via all peerings at that PoP
[21, 116]. The Advertisement Orchestrator, however, may ad-
vertise a single prefix from multiple PoPs via a small subset of peer-
ings at each PoP. Therefore the Advertisement Orchestrator’s
announcements do not fit nicely into either of these classifications,
but we sometimes refer to them as unicast announcements to distin-
guish them from anycast and since unicast is commonly understood
terminology. Prior work referred to advertisements to a subset of
peerings as anycast [111].

Maximizing Benefit. We model an advertisement configuration
Aasaset of (peering, prefix) pairs where (peering, prefix)
€ A means we advertise that prefix via that peering. More complex
advertisement configurations (e.g., BGP community tagging) are
out of the scope of this paper. To simplify calculation, we logically
group users in the same AS and large metropolitan area, referring
to each group as a UG (user group), which is how Azure sometimes
groups users for use cases such as monitoring performance.

Given a budget of prefixes, we seek an advertisement configura-
tion A that maximizes benefit relative to a default anycast configu-
ration, D, which is given by

B(A;D) = Z w(UG) - I(A, UG; D) (1)
uG
where w(UG) is the weight (e.g., traffic volume) of UG and
I(A, UG; D) is the improvement users in UG see under advertisement
configuration A compared to configuration D. Improvement
is latency from the advertisement compared to anycast. Since
PAINTER can steer UGs with fine-grained control and includes
anycast as an option, all UGs will have non-negative benefit over
anycast.
Given the problem setup, we next describe how PAINTER solves
this problem—i.e., (1) how it models improvement, and (2) how it
finds a maximizer of Equation (1).

Modeling Advertisement Improvement. PAINTER models (rather
than directly measures) improvement associated with advertise-
ment configurations since testing every configuration takes too
long. Since we cannot measure all configurations, we use heuristics

to predict the latency from UGs to Azure ingresses, and correct incor-
rect heuristics over time. TM-Edges (§3.2) conduct measurements.
An ingress for a BGP peering is where traffic enters if Azure were
to advertise a prefix solely via that peering.

We first compute possible ingresses for UGs. To determine
whether an ingress is (very likely) a policy-compliant ingress
for a UG—that is, which peerings each UG can reach according to
routing policy—we inspect BGP routes, since BGP routes by nature
encode policy-compliant routes, and derive policy-compliant
ingresses in two ways. We first check Azure BGP feeds and say an
ingress for a UG is policy-compliant if UG prefixes are announced
over that peering (assuming the common case that a path that is
policy-compliant in one direction also is in the opposite direction).
To check for more policy-compliant ingresses, we then derive
customer cones of each peer using ProbLink AS relationships [52]
and Azure BGP feeds. An AS is in the customer cone of an Azure
peer if the AS can reach the peer by following a series of customer
to provider links [61]. By definition ASes will carry traffic from
their customer cones to any destination, so if a UG’s AS is in the
customer cone of a peer, we call that ingress policy-compliant
for that UG. Finally, we add all UGs to customer cones of Azure
transit providers. To validate inferences about which ingresses are
policy-compliant, we inspect millions of traceroutes from Azure
clients and find that only 4% violate our assumptions.

We assume we have access to a system that measures latencies
from UGs to each policy-compliant ingress individually (there are
many examples in the literature [22, 32, 56, 111]). Hence, to pre-
dict UG latency we predict the ingress. We detail our measurement
methodology in Section 5.1.

Since it is difficult to predict ingresses [64, 111], we make as-
sumptions (detailed below) about UG ingresses and, in cases with
uncertainty, assume all policy-compliant ingresses are equally likely.
We then learn from incorrect assumptions over time. For each cloud
prefix we calculate the average latency across all policy-compliant
ingresses, and, since PAINTER can choose the best prefixes, we model
improvement as the highest average improvement over the current
configuration (Eq. (2)).



In cases where, to reach a prefix, a UG has two or more policy-
compliant ingresses, we exclude ingresses that fall into two cate-
gories: first, we exclude ingresses for a UG that have a lower prefer-
ence than other ingresses, where preferences are learned from past
advertisements. For example, given that a previous advertisement
advertised the same prefix to ISP A at a Tokyo PoP and ISP B at a
Miami PoP and a UG in Miami routed to the prefix through Tokyo,
we would exclude the ISP B at Atlanta from UG latency predictions
in future calculations for that UG involving both ISPs. This infor-
mation is valuable since the UG in Atlanta ostensibly has very poor
performance to Tokyo. As we incorporate more observations over
time, the Advertisement Orchestrator learns better advertise-
ment strategies (§5.1). Preference models of routing are used in
prior work [111].

Second, we exclude ingresses that would result in a UG reaching
an Azure PoP more than Dyeyse km (reuse distance) from the closest
PoP advertising that prefix, as prior work found large path inflation
is rare [21, 54]. Dyeyse is a configurable parameter. For example,
given that we advertise a prefix at a Central US PoP and a Tokyo
PoP, we assume a UG near Eastern US (1,500 km to Central US,
11,200 km to Tokyo) would reach the Central US PoP so long as
Dreuse < 11,200 - 1,500 = 9,700 km.

Increasing Dyeyse leads to fewer incorrect assumptions, but limits
how much we can reuse a prefix since greater Dyeyse tends to require
more physical distance between ingresses. Hence, Dyeyse represents
a tradeoff between greater prefix reusability (saving cost) and more
learning iterations (saving time). We explicitly quantify this tradeoff
in Appendix E.2.

To summarize, predicted improvement relative to the current
configuration D can be written as

. ) ,
I(A,UG; D) = }r)neag)g(ﬁlég Ep(I(UG,P"))) —E4(I(UG P)) (2)
where 2 is the set of prefixes being advertised, and E4 (I(UG, P) is
the expected latency from UG to P over policy-compliant ingresses
under advertisement configuration A. For a given UG and configura-
tion, PAINTER can select the prefix P that yields the lowest latency,
and so the improvement compares the lowest latency prefix P’ in
the current configuration to the prefix P in the candidate configu-
ration A that yields the biggest improvement.

As described above, our expectation assumes all policy-
compliant ingresses are equally likely unless they are a lower
preference than other active ingresses or they result in more than
Dyeyse inflation for UGs in which case they have zero likelihood;
hence, the expectation operator varies with UG and as we learn
more about UG preferences. We do not consider that prefix for a
UG if a UG does not have a policy-compliant ingress for that prefix.
The tilde above I emphasizes that Equation (2) approximates true
improvement in Equation (1) due to this expectation.

Solving For Optimal Advertisement Configurations. Summarizing,
we wish to maximize Equation (1), which we model using Equa-
tion (2). Maximizing Equation (1) by exhaustive enumeration is
infeasible since the number of advertisement configurations grows
exponentially with prefix budget, and since it takes time to test
each configuration to avoid route flap damping, so PAINTER greed-
ily allocates prefixes to peerings to maximize benefit. Algorithm 1
summarizes how we choose advertisements. The Advertisement
Orchestrator would install computed configurations at Azure

PoPs, and notify the Traffic Manager about available prefixes via
a control channel.

Algorithm 1 Algorithm for selecting advertisements.

Input Prefix Budget PB, minimum reuse distance Dyeyse

RM « [] > Routing model—how users route to deployment
while learning do > Terminate learning when little marginal benefit increase
CC ] > Stores current configuration

for p in range(PB) do > Fach prefix in the budget
while True do > Advertise this prefix across many peerings
peering_improvements « calc_improvements(CC,RM) > Equation 2
ranked_peerings « sort(peering_improvements) > Rank
found_peering < False > Can we find a peering?

for next_best_peering in ranked_peerings do > Greedy search

NP « (p,next_best_peering) > Proposed new prefix,peering

if B(NP;CC) > 0 then > Require positive benefit.
found_peering «— True > Choose this one

break
end if
end for
if found_peering then > Found peering to advertise prefix to
CC.append(NP) > Advertise prefix to new peering
else > No beneficial peerings
break > Move to the next prefix
end if
end while
end for
RM « execute_advertisement (CC) > Advertise CC and update routing model
end while
return CC

Algorithm 1 takes two hyperparameters: the minimum reuse
distance, Dreyse, which implicitly affects improvement calculations
(Eq. (2)), and a prefix budget PB.

At each iteration of the outermost loop in Algorithm 1, PAINTER
computes and conducts an advertisement strategy. PAINTER mea-
sures which of its assumptions about how UGs are routed to in-
gresses were incorrect, and incorporates this information into fu-
ture loop iterations. We abstract this information as a “routing
model” object in Algorithm 1. We manually terminate this learn-
ing process after seeing the marginal benefit from more learning
iterations fall below a threshold.

At each iteration of the second loop in Algorithm 1, PAINTER
tries to advertise a prefix via as many peerings as possible. PAINTER
considers adding peerings in ranked order of estimated improve-
ments relative to the current configuration (Eq. (2)). We add a
(peering, prefix) pair to the current configuration if the adver-
tisement provides positive benefit (Eq. (1)). Advertising the same
prefix via multiple peerings (prefix reuse) allows us to accumulate
benefit without quickly exhausting our prefix budget. However,
prefix reuse can lower expected improvement for certain UGs if the
reuse introduces worse paths for some UGs. When the expected
marginal improvement for a prefix is non-positive, we continue to
the next prefix, and so on, until our prefix budget is exhausted.

After computing the configuration, PAINTER advertises the con-
figuration to peers and measures new ingresses/latencies to update
its routing model. Over learning iterations, the Advertisement
Orchestrator learns which assumptions about UG ingresses were
incorrect and incorporates these into benefit estimates via the rout-
ing model (Eq. (1)). Hence, each successive advertisement configu-
ration tends to yield greater benefits with fewer prefixes.

Algorithm 1’s complexity grows quadratically with the number
of ingresses, linearly with the number of UGs, and linearly with
the number of learning iterations. In practice, computation and
convergence are fast (§4).
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3.2 Traffic Manager

For our setting, cloud-edge network stacks are the most sensible
form of edge proxy in which to situate PAINTER since they provide
compute, already perform networking decisions/operations, and
reside close to/inside of edge networks. Cloud-edge network stacks
can enact routing policy solely using existing hardware, facilitating
deployment. Situating TM-Edge here allows clouds to iterate on
system versions with existing software frameworks.

Resolving Available Prefixes. Each TM-Edge may send traffic to
many TM-PoPs. TM-Edge resolves the set of available TM-PoPs via
communication with an Azure service. TM-Edge queries TM-PoP
for the available set of ingress IP addresses (i.e., destinations) for
each service (corresponding to possibly different paths). Available
destinations are computed by the Advertisement Orchestrator
in Algorithm 1. Upon establishing tunnels with each available des-
tination, each TM-Edge identifies the TM-PoP it communicates with
along that tunnel. Hence, each TM-Edge maintains a mapping of
destination prefixes to PoPs (which is difficult to compute apriori, as
prefixes may be advertised via multiple peerings at multiple PoPs).
Although a TM-Edge may have paths to every TM-PoP, available
PoPs may vary depending on the service since each service may
only be served from certain PoPs or regions.

Selecting Destinations and Mapping Flows. Given a set of available
destinations (prefixes), the Traffic Manager can use different
destination selection policies according to enterprise network or
service goals. (We do not innovate in this space.) We follow high-
level lessons from prior work about how to select destinations to
avoid oscillations [38].

As the Traffic Manager continuously measures and selects the
best destination, it directs new flows toward this destination. Once
the Traffic Manager maps a flow (5-tuple) to a TM-PoP (i.e., PoP),
the mapping is immutable for the lifetime of that flow. This design
decision limits flexibility, but also prevents loss of connection state
and subsequent performance problems for the user without needing
to design a connection-handover system [13, 106].

3.3 PAINTER Limitations

PAINTER does not solve all performance and reliability problems
faced by Azure. PAINTER cannot avoid performance problems or
failure shared by all paths to Azure (e.g., if the problem is due to an
enterprise’s single ISP), problems in the egress direction (although
those are addressed by prior work [58, 87, 110]), and only works
for traffic controllable by a TM-Edge. Moreover, PAINTER cannot
mitigate problems at the application layer (other existing systems
are designed to detect application layer failure [18]).

4 PAINTER IMPLEMENTATION

Advertisement Orchestrator. The Advertisement
Orchestrator takes measurements from TM-Edges and hyperpa-
rameters as inputs (see algorithm 1) and installs advertisement
configurations. The Advertisement Orchestrator computes
configurations at a rate of approximately 30 seconds per prefix
where calculations include thousands of ingresses and tens of
thousands of UGs. Configurations need not change often (§5.1).

Despite the algorithm having a running time that is quadratic
in the number of ingresses, in practice the implementation runs
quickly (30 seconds), especially relative to how often it has to run
(Section 5.1.3 shows that it need only be run monthly). Quick run-
times are due to the nature of UG connectivity, and implementation
optimizations. For example, UGs tend to have paths via a relatively
small fraction of ingresses, speeding up computation.

We prototype the Advertisement Orchestrator on the PEER-
ING testbed [85], which is now deployed at Vultr cloud locations
[103]. Vultr is a global cloud that allows tenants to announce their
own IP prefixes from Vultr, letting us emulate the control we would
have if we were the cloud offering PAINTER. Our prototype uses 25
Vultr PoPs on 6 continents with 5,000 neighbor ASes and 9,000 in-
gresses (Fig. 5), offering us a rich platform for testing advertisement
strategies.

We also implement a partial Advertisement Orchestrator
prototype on Azure. We could not change BGP announcements
from Azure for operational reasons, nor could we conduct measure-
ments to all UGs. Instead, we use a combination of real and simulated
measurements to evaluate the Advertisement Orchestrator on
Azure— we detail this methodology in Section 5.1. Azure is a global
cloud with 200 data centers interconnected by 175,000 miles of lit
fiber whose traffic is managed by a software-defined WAN [70].
Traffic enters and leaves Azure’s WAN through roughly 200 PoPs
which are often in major metropolitan areas [70]. Azure’s WAN
connects PoPs to data centers. PoPs also have peering routers which
connect Azure to more than 4,000 networks [71] Some networks
connect at multiple PoPs, most only at one [9].

Traffic Manager. The Traffic Manager steers traffic between
TM-Edges in edge proxies and TM-PoPs at Azure PoPs. We proto-
typed the Traffic Manager on cloud VMs using a lightly modified
version of FlexiWAN [36] since it is open source and works on com-
mon cloud VMs. A key difference between our solution and typical
SD-WAN use is how tunnels are configured. We configure multiple
tunnels between the same two physical endpoints using addresses
from different IP prefixes, which is not a common configuration
for SD-WAN as SD-WAN would not benefit from such a configuration
without an Advertisement Orchestrator. We more thoroughly
describe how tunneling works in Appendix D.

5 PAINTER EVALUATION

We thoroughly evaluate PAINTER on many dimensions. Perhaps
most importantly, we deploy a functional prototype on a public
cloud and achieve an average latency improvement of 60 ms across
thousands of UGs (§5.1, Fig. 6b). We also show that the Traffic
Manager fails over from a unicast path to a backup at RTT timescales
using our prototype (§5.2.3, Fig. 10).
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Figure 6: PAINTER achieves more benefit with less budget compared to other advertisement strategies shown using simulated measurements
from Azure (6a) and from an actual global cloud (6b). PAINTER learns from incorrect assumptions over iterations (6¢). Shaded regions show

PAINTER’s uncertainty prior to testing a strategy.

5.1 Advertisement Orchestrator
5.1.1 Measurements

We evaluated the Advertisement Orchestrator in two settings:
first, in a simulation using Azure measurements to assess how the
Advertisement Orchestrator scales, and second in a prototype
on PEERING (§4) to assess how the Advertisement Orchestrator
performs in the wild. We measure all targets using ping 7 times and
compute minimum latencies to approximate propagation delay.

Azure Measurements. We could not test our advertisements
on Azure due to operational reasons, so we estimated the latency
UGs would experience to Azure ingresses and computed a range of
latencies UGs could experience to each prefix. To estimate the latency
UGs would experience through an ingress to a prefix, we measure
latency from UGs to either (a) the corresponding peering subnet or,
when that is not possible, (b) an IP address in the peer/provider’s
IP space geolocated to within GP km (geo-precision, configurable)
of the associated PoP. We verify IP address locations using speed of
light constraints from RIPE Atlas probes [93] with known locations.

We use RIPE Atlas probes to measure latencies to Azure
peerings. Considering paths from all UGs to Azure through all
policy-compliant peerings, we were able to obtain measurement
targets corresponding to 80.6% of Azure user traffic when GP = 450
km. Specifically, we counted all policy-compliant (UG, ingress)s,
weighted by UG traffic volume (counting all geographically
proximal, policy-compliant ingresses for a UG as equally likely).
(We more thoroughly discuss and validate our heuristic for
estimating latency in Appendix B and verify that this measurement
heuristic for predicting latency through ingresses agrees with
the actual latency to within 2 ms for most cases where we were
able to measure both, suggesting that our measurement heuristic
estimates latency with sufficient accuracy.) We found 450 km to be
a good tradeoff between coverage and accuracy.

We measure latency from probes to all their policy-compliant
ingresses (§3.1). We group measurements from RIPE Atlas probes in
the same UG, yielding measurements from 4k UGs. Since RIPE Atlas
covers a relatively small number of UGs (only 47% of Azure traffic
volume), we then simulate measurements using a methodology
that extrapolates RIPE Atlas ingress latencies to nearby UGs that do
not house RIPE Atlas probes. Our simulated measurements assume
users in the same location have the same mean latency to Azure
and the same distribution of relative latencies along alternate paths
to Azure. (Not the same latencies, just the same distribution of
latencies.) Extending our measurements helps us observe conver-
gence/scaling properties that are only visible using measurements

from all UGs. We describe our simulation methodology in Appen-
dix C. Simulated measurements are from hundreds of thousands of
UGs to thousands of ingresses.

PEERING Measurements. For our PEERING prototype (§4), we
measured client latencies by pinging clients from the deployment
as in prior work [32, 111]. We do not need to estimate latency here
since we can conduct actual advertisements with our prototype.
We measure from PEERING to 40k UGs. From our measurements,
latency gains are heavily concentrated among its ingresses—we
only saw latency improvement for approximately 8k UGs through
250 out of 9,000 ingresses which were mostly transit providers. We
show the global scale of both our deployment and UGs with which
we evaluated PAINTER in Figure 5.

5.1.2 Efficiently Maximizing Benefit

Methodology. We first compare our ability to efficiently improve
latency to other advertisement strategies used by clouds. We con-
sider (a) announcing regional prefixes to transit providers since
Azure makes regional advertisements for services in some regions
to transit providers to enable multiple route offerings for customers,
and (b) assigning each PoP its own prefix that it announces to all
peerings (One per PoP) since prior work explored using per-PoP
announcements to lower latency [21, 111]. In practice, regional
offered little to no latency benefit over anycast so we do not include
it in figures. To the best of our knowledge, these strategies comprise
the state-of-practice.

In addition to these practical/studied configurations, we also
compare PAINTER to two hypothetical ones: one that advertises a
single prefix at each PoP, but allows prefix reuse when PoPs are
more than Dyeys km apart (One per PoP w/ Reuse), and one that
advertises a unique prefix across each peering (One per Peering).
We set Dyeyse = 3,000 km. The One per Peering strategy uses many
prefixes to realize benefit, but is guaranteed provides all the benefit
since all UGs have a route to their best ingress.

For each strategy, we compute a range of possible latency ben-
efits since UGs may have several possible ingresses for a prefix.
Using this range of improvements, we compute an estimated im-
provement, which uses the fact that inflated paths to far-away PoPs
are less likely. We compute a weighted average of benefit over
possible ingresses, where the weights correspond to approximate
probabilities that paths are inflated by corresponding amounts. (We
calculate probabilities from Azure’s inflation data.) Prefix budgets
are reported as a percent of the number of ingresses, since adver-
tising a unique prefix via each ingress would trivially give UGs all
the latency benefit since it would expose all the paths.

Results. Figure 6a shows the estimated benefit each strategy
attains as a percent of the total possible benefit (Eq. (1)) as the



prefix budget varies on Azure’s deployment, demonstrating that
PAINTER finds advertisement strategies for Azure that give far more
benefit than other advertisement strategies at each prefix budget.
We show the entire range of possible benefits for PAINTER since
the range is small, and for One per Peering since that strategy has
no uncertainty. Including ranges of possible benefit for solutions
with high uncertainty renders the graph difficult to read and so
those ranges are shown in Appendix E.1. We show benefit as a
percent of the total possible for anonymity. For example, 50% benefit
corresponds to UGs achieving half the total possible latency decrease
over anycast, on average.

The One per PoP w/Reuse and One per PoP strategies do not
consider advertising different prefixes to different peerings at a
single PoP, so both strategies fail to uncover the routes necessary
to offer as good estimated benefits as PAINTER. In practice, this
means UGs have several policy-compliant ingress options at each
PoP which leads to low expected benefit, even though all peerings
are covered with very few prefixes. PAINTER saves 3X the number
of prefixes as One per Peering at 75% benefit due to prefix reuse.

Figure 6b plots average latency improvement over clients that
have non-zero improvement for our prototype on PEERING (§4),
demonstrating that the Advertisement Orchestrator also per-
forms well on real Internet paths. To attain 90% of the benefit (54
ms average), PAINTER uses roughly 10% as many prefixes as the
next-best strategy (One per Peering). After convergence, 25 pre-
fixes was enough to achieve more than 99% of the benefit. Figure 6¢
demonstrates that it took a few iterations for PAINTER to realize
these benefits—as PAINTER learned from incorrect assumptions
about client ingresses, it was able to find drastically better adver-
tisement strategies. Shaded regions show uncertainty before testing
strategies, where the narrowing darker region demonstrates that
we gain confidence that our strategies perform well over time, go-
ing from 44 ms uncertainty to 8 ms. For example, PAINTER quickly
learned that many New York users preferred an ingress in Ams-
terdam to one in New York, and learned not to advertise the same
prefix to those two ingresses.

PAINTER’s initial assumptions led to poorly performing strategies
for two reasons: (a) a large percentage of the benefit was concen-
trated in a relatively few number of ingresses so a few incorrect
assumptions had outsized effects and (b) most benefit was through
transit providers but those transit providers tended to inflate routes
even over very large distances (10k+ km).

Our prototype outperforms all other strategies, even using only
one prefix since, with other strategies, too many UGs get a bad route
to some sub-optimal ingress, with little or no benefit over anycast.
PAINTER identifies which subsets of routes offer improvement and
only advertises those, refining its routing model and hence its set
of advertisements over time to replace poorly performing routes.

PAINTER saves prefixes compared to other strategies which is im-
portant to Azure since prefixes are expensive and since advertising
too many prefixes can bloat BGP routing tables [30]. In practice, we
would want to limit PAINTER’s BGP footprint to be similar to other
large cloud/content providers, which still leaves a lot of room to
optimize. For example, 8 out of 22 of the hypergiants [39] advertise
at least 500 /24 prefixes according to Routeviews [19] and Figure 6a
suggests that even 200 prefixes could get Azure roughly 90% of the
possible benefit (we cannot share the precise number). Realizing
this benefit requires at least 3X as many prefixes when advertising
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Figure 7: PAINTER advertisement benefits remain for at least a month
whether users change their prefix choice over time (Dynamic Prefix
Choices) or they do not (Static Prefix Choices).

One per Peering and is impossible with the existing strategies of
advertising One per PoP (with or without reuse).

5.1.3 Reconfiguration, Who Needs That?

Frequent announcement reconfiguration could inundate routers
and hinder the ability to predict traffic dynamics so we next assess
how frequently PAINTER’s announcements need to be updated.

Methodology. To analyze advertisement optimality over time,
we first solve for a configuration using a week of RIPE Atlas mea-
surements to ingresses before an arbitrary start date. We only use
RIPE Atlas measurements, not simulated measurements, since we
want to evaluate reactions to real network dynamics. We then evalu-
ate how optimal the fixed configuration is over time (i.e., recalculate
the fraction of benefit we achieve) with respect to updated latencies
from continuous RIPE Atlas measurements to ingresses conducted
over the following month.

Results. The solid lines in Figure 7 show the drop in benefit
over time for a few representative prefix budgets. There is minor,
random benefit degradation over time (at most 3%) which could
suggest that (a) most latency benefits are from steady state routing
inefficiency, (b) most problems that arise tend to degrade all good
route options similarly [86], and/or (c) PAINTER configurations are
resilient to new problems that arise through routing changes. To
assess how often the last case occurs, the dashed lines show the
drop in benefit over time assuming each UG continues to use its
original prefix choice at t = 0 whereas the solid lines use the original
configuration of announcements but use the routes made available
by those announcements to allow PAINTER to switch UGs to different
prefixes dynamically. Benefit loss when UGs do not switch prefixes
over time (shown by the dashed lines) is approximately 10% worse
(i.e., UGs attain about 85% of the benefit rather than about 95%),
suggesting that a major reason PAINTER needs infrequent changes is
that it offers good backup paths to UGs, so that at each time step a low
latency path is available. Hence, PAINTER’s advertisement strategy
is naturally resilient to routing changes and so likely requires little
reconfiguration in practice.

5.2 Traffic Manager
5.2.1 Highly Deployable, Very Precise

Situating the Traffic Manager on cloud-edge network stacks
jointly optimizes PAINTER in two dimensions: deployability and
precision, which we capture in Figure 8. A solution is more de-
ployable if it can direct more traffic with less deployment effort. A
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gives clouds precise, deployable traffic control.

solution is more precise if it can control finer traffic quantities at
finer time granularities and direct them over more paths to clouds.
Figure 8 qualitatively buckets these metrics to provide a simple
comparison among solutions; we quantitatively compare subsets
of these solutions on specific dimensions in subsequent sections.

Popular approaches such as anycast and DNS are highly deploy-
able (thus their popularity) but fail to give the same precise control
over traffic as PAINTER. Variants of PAINTER that use different edge
proxies—i.e., where TM-Edge is built into user applications or OSes
and/or using MPTCP/MPQUIC to steer traffic could achieve the
same precision but face deployability obstacles [11, 104]. Deploying
the Traffic Manager (specifically TM-Edge) into applications could
similarly face deployability obstacles since the framework may have
to be deployed and maintained independently for each application.
Enterprise networks that use SD-WAN devices with multihoming to
optimize routing have fewer path options than PAINTER (§5.2.4),
making them less precise. Section 6 discusses related systems that
involve ISP Collaboration [80, 108], future Internets [55, 109], and
steering solely from the client network [6], but they generally offer
precise traffic control at the cost of unrealistic/unscalable assump-
tions (sacrificing deployability).

5.2.2 Fine-Grained Traffic Control

Figure 9 quantifies the benefit of PAINTER’s fine-grained traffic
control compared to other approaches, showing the network gran-
ularity at which other traffic engineering strategies steer traffic and
a possible implication of controlling traffic at coarse granularities.
Both modifying prefix announcements (BGP) and updating DNS
records (DNS) steer traffic at far coarser granularities than PAINTER,
which has latency implications for users.

Methodology. Because users relay DNS requests via recursive
resolvers, serving an updated DNS record can generally impact
all users of that resolver, which corresponds to a certain volume
of Azure traffic. BGP-based steering can modify prefix announce-
ments to peers/providers at PoPs. To obtain an optimistic bound on
the granularity at which BGP can control traffic (without PAINTER),
we assume that traffic is affected at the (peering, user AS) gran-
ularity (all traffic entering Azure via peering from users from a
particular AS). We choose this granularity to model a case where,
for example, Azure only updates an announcement via a specific
peering targeting a specific user AS using BGP communities. As in
DNS, affecting traffic at this granularity corresponds to a certain
volume of Azure traffic which we measure as the amount of traffic
traversing that connection from that user AS. In practice, BGP ad-
vertisement updates could shift greater or lesser amounts of traffic
than the (peering, user AS) level, but in any case the shifts will
be unpredictable and coarse.

To quantify the benefit of precise control, we compute benefit
over budget (as in Fig. 6a) (a) for PAINTER and (b) for PAINTER but
assuming PAINTER uses DNS to assign clients to prefixes. Using
DNS, PAINTER maps each recursive resolver to the prefix with the
best overall benefit for traffic directed by that resolver. The prefix
may be optimal for some of the resolver’s clients but not others.

Recursive resolvers could serve users at finer network granu-
larities if they support EDNS@ Client Subnet [ECS]. However,
recent work found only 72 networks worldwide use ECS [20]. Most
significantly, Google Public DNS supports it. Hence, we compute
the benefit over budget assuming traffic mapped by Google Public
DNS can be mapped per /24 using ECS.

Results. In Figure 9a we show the granularity at which each
solution affects different volumes of traffic overall (column ‘All’)
and for the top 10 PoPs (PoP-X) by volume. Each PoP is associated
with three bars for BGP, DNS, and PAINTER from left to right. The
hatching and coloring of the bars (denoted with P for Precision in
the legend) corresponds to the granularity at which each solution
controls traffic. For the example of PoP A, 64% of ingress traffic
comes from ({peering, user AS)) pairs responsible for between
10% and 100% of all traffic arriving at PoP A, meaning that, if Azure
tried to shift traffic from one of these ASes to a different peering or
path, the shift would entail at least 10% of traffic moving en masse.
For the remaining 36% of traffic, 23% comes from pairs responsible
for between 1% and 10%, 9% comes from pairs responsible for be-
tween 0.1% and 1%, and the other 4% comes from pairs responsible
for less than 0.1%. In contrast, 70% of traffic is directed by recursive
DNS resolvers that each steer between .1% and 1% of traffic arriv-
ing at PoP A, and so Azure would shift less than 1% of traffic by
changing its DNS response to any one of these resolvers allowing
more fine-grained redirection. The granularities at which each of
BGP and DNS controls traffic vary significantly across PoPs—for
example, DNS controls 100% traffic arriving at PoP A at granulari-
ties finer than 1%, whereas DNS only controls 43% of traffic at this
granularity at PoP B. PAINTER could control all traffic at the finest
granularity, since PAINTER controls individual flows.

Figure 9b quantifies one drawback of coarse control—inability to
fully benefit from the Advertisement Orchestrator’s advertise-
ment strategies. Using DNS sacrifices roughly half the benefit as is
possible with fine-grained redirection, since some DNS resolvers
serve diverse UGs for which no single path is optimal. We found that
regions with poor routing (i.e., those responsible for most of the
benefit the Advertisement Orchestrator provides) correlated
with regions that hosted LDNS serving geographically disparate
users. This correlation leads to a drastic benefit difference between
PAINTER with and without its Traffic Manager.

5.2.3 Quick, Agile Reactions

Methodology. Prior work proposed announcing unicast prefixes
and directing users to them via DNS to improve latency [21, 34].
Using DNS to improve latency raises availability concerns since
DNS reaction times are slow (§2.2). We show PAINTER realizes the
latency improvements of unicast while retaining availability.

We advertise an anycast prefix (1.1.1.0/24) at two PoPs and one
prefix to each ISP at those two PoPs. Figure 10a depicts the physical
scenario our system models (not showing all the advertisements
to remove clutter). During normal operation, PAINTER chooses a
prefix to a provider at PoP-A (2.2.2.0/24) since the path to it is lower
latency than the default anycast path. At 60 seconds, we withdraw
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Figure 10: PAINTER switches betvg::)en two paths during PoP failure
much faster than other solutions. First (0 s) PAINTER chooses the
prefix 2.2.2.0/24. Second (60 s) PoP-A fails, so prefix 2.2.2.0/24 is with-
drawn and 1.1.1.0/24 reconverges. Third (60.03 s) PAINTER switches
over to prefix 3.3.3.0/24 at PoP-B in approximately 1 RTT.

all prefixes at PoP-A, which is meant to model a failure in the PoP
advertising PAINTER’s chosen prefix.

Results. The time series graph in Figure 10b illustrates typical
system operation during such a failure. The left axis measures la-
tency to each prefix, and the right axis measures the number of BGP
updates for the anycast prefix as seen by RIPE RIS BGP collectors
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Figure 11: PAINTER exposes moﬁ'e) paths/PoPs than multihoming
(Fig. 11a) enhancing resilience to intermediate AS failure (Fig. 11b).

[94] which estimates BGP churn. BGP churn can cause performance
problems for the underlying paths so even after a route is avail-
able, performance problems can continue until convergence [105].
PAINTER’s selected paths are shown with highlighted lines. Prior
to failure, PAINTER measures five possible prefixes (the anycast and
four single-transit prefixes) and selects the prefix with lowest la-
tency (2.2.2.0/24 at PoP-A). PAINTER detects the loss of reachability
(labeled vertical line) and switches to an alternate single-transit
prefix (3.3.3.0/24) at the PoP-B within roughly an RTT, since that
destination has the next-lowest latency. Over many experiments
we found the Traffic Manager typically detected failure within
1.3 RTTs (the theoretical minimum is % RTT).

PAINTER’s reaction times represent an order of magnitude of
improvement over existing techniques—typical BGP convergence
times are on the order of minutes [116] and DNS TTLs are usually
between 1 and 10 minutes [4, 73]. It took one second for the anycast
address to become reachable after withdrawal (red region), and
roughly 15 seconds to converge to the final path as shown by the
spike in RIPE RIS updates and the change in latency for the anycast
path at around 80 seconds. The figure assumes DNS takes 60s to
respond to failure (yellow region), but actual failover time would
depend on many factors (e.g., client OS, last-mile caches, TTL at the
time of failure [4]). Although anycast availability is good compared
to DNS (1 second loss), PAINTER’s is near optimal (30 ms).

5.2.4 Exposing More Paths

We now compare PAINTER to SD-WAN which has been around for
decades and has path-switching capabilities for performance and
resilience. SD-WAN devices typically select between paths via a mul-
tihomed enterprises’ ISPs, or a direct path to Azure if the network
has a direct peering. We use the term SD-WAN below to refer to this
capability to select among ISPs, and evaluate PAINTER against this
scenario. Figure 11a shows that PAINTER exposes more paths and
PoPs than selecting among ISPs, enhancing resilience.
Methodology. We compute paths that SD-WAN and PAINTER
would have to Azure for all UGs. We first compute the number of
paths for SD-WAN by counting the number of ISPs for each UG for
which we see traffic to Azure, adding one additional path if the
UG’s AS connects directly to Azure. An SD-WAN device could use
these different paths if it tunneled traffic through each of these



ISPs, or the direct connection. We also note the ingress PoP for
each of these paths through ISPs, assuming that, were traffic from
an SD-WAN device to be routed through a provider to Azure, the
traffic would be routed similarly to Azure clients in that ISP. This
assumption is reasonable since routing is destination-based.

To calculate the number of paths for PAINTER, we tabulate pos-
sible PoPs that Azure clients may ingress in by looking at the PoPs
at which 90% of user traffic in that UG’s geographic region ingress
according to Azure logs. We do not consider all PoPs to remove
high-latency routes. This restriction likely does not overestimate
low-latency PoP choices, given that prior work found 90% of traffic
in a large CDN reaches a PoP within 1,000 km of the closest possible
[54]. We then count the number of policy-compliant paths from
that AS through peerings at each of these PoPs to Azure according
to the common definition of policy-compliant [37] using BGP data.

After calculating policy-compliant routes, we form two esti-
mates of the number of paths PAINTER could expose. As a lower
bound, we consider one path per peering, while as an upper bound
we consider all policy-compliant paths. The lower bound corre-
sponds to counting Azure ingresses for UGs (which is what our
Advertisement Orchestrator exposes), whereas the upper bound
models a hypothetical Advertisement Orchestrator that an-
nounces prefixes with different advertisement attributes to expose
even more paths (e.g., prepending) as in prior work [100].

Finally, to quantify PAINTER’s added resilience, for each UG we
compute the fraction of ASes in the default path to Azure that we
could avoid with PAINTER and with SD-WAN. We tabulate ASes on
paths using traceroutes from clients [22].

Results. Most networks have only 2 or three ISPs and so only
have 2 or 3 paths to choose from with SD-WAN. Figure 11 shows
PAINTER offers 23 more paths than SD-WAN for most UGs, and it offers
at least 40 more paths for 25% of UGs (Best Policy-Compliant
Paths) as shown by Figure 11a. A11 Policy-Compliant Paths
indicates that PAINTER could expose far more by manipulating
advertisements. PAINTER offers policy-compliant routes to 4 more
nearby PoPs than SD-WAN for 10% of UGs (PoPs).

Having more paths could help route around congestion or fail-
ures in intermediate ASes. Figure 11b shows that, for 90.7% of UGs,
PAINTER can redirect traffic through a policy-compliant path that
avoids all ASes on the default path, but the same is only true for
69.5% of UGs for SD-WAN. Hence, it is more likely that PAINTER could
avoid routing problems introduced by intermediate ASes.

6 RELATED WORK

Egress Traffic Engineering. There are large scale systems that
steer egress traffic, selecting one of multiple paths to client prefixes
to either improve performance [58, 87, 110] or optimize peering
costs [88, 113]. PAINTER coexists with and acts independently of
these systems, improving end-to-end path latency.

Ingress Traffic Engineering. PECAN issues multiple adver-
tisements to a single ISP to expose routes and uses DNS to steer
traffic [100]. PAINTER is more agile than DNS and works at scale
in a global cloud—it is unclear how PECAN’s design (tested with a
single ISP) translates to this setting. Another study used a combi-
nation of MPTCP and SD-WAN to steer traffic across tunnels to the
cloud [112]; PAINTER differs in that it investigates which computes
which tunnels to set up. Other work steers traffic by advertising
prefixes to different ISPs [97], but does not scale to networks like
Azure with thousands of peerings.

Research investigated the efficacy of using DNS [23, 56, 76],
anycast [21, 111], or a combination [22, 34] to steer traffic. Concur-
rent work looks at regional anycast announcements where DNS
maps clients to regions [115]. PAINTER can work on top of such
deployments to add agility and precision. One company uses tight
coordination to map hypergiant traffic to ISP ingresses [80]. Our
current implementation only requires the enterprise to deploy a
cloud-edge stack that Azure can control, but PAINTER’s architec-
ture could use edge proxies that do not require coordination with
the enterprise (§2.3). PAINTER never requires coordination with
networks in between the proxy and the cloud. TIPSY infers where
traffic will end up if announcements are withdrawn [64], an or-
thogonal problem. Anyopt exposes paths using advertisements, but
does not scale to deployments with thousands of ingresses [111].

Contemporaneous work called Tango exposed multiple paths by
advertising multiple prefixes and tunneled traffic in real-time over
the best one [17]. Despite the similar mechanisms, differences in
the settings lead to Tango addressing different challenges than the
ones needed in our setting. Tango exposed performant paths on the
public Internet between distributed edge networks that lacked a
private WAN between them, where the path choices were between
a few transit providers each for a few tens of data centers. PAINTER
instead optimizes paths between the cloud and edge networks such
as enterprises and 5G edges. Azure has thousands of paths to choose
from and hundreds of thousands of user groups to simultaneously
optimize for [71]. This difference in focus and scale introduces
different challenges that Tango does not address (§2.4).

The IETF’s Path Aware Networking research group proposed
several ingress traffic engineering solutions [46] —PAINTER incor-
porates those lessons (e.g., immediate deployability) into its design.
Masque is an IETF effort which could enable performance/security-
enhancing QUIC proxies [48]; PAINTER uses “proxies” but to en-
hance route diversity. Emerging/futuristic routing technologies
[6, 109] or architectures [55] could facilitate ingress traffic engi-
neering. Miro also exposes more paths and tunnels traffic over these
paths [108], but relies on a proposed extension to BGP that requires
adoption from every ISP in the path, making deployment more
challenging. PAINTER is designed to exist in today’s Internet with
no cooperation from intermediate ISPs.

Client-Side Reliability. Systems exist for measuring client
performance at scale [18, 22]. PAINTER both measures and solves
networking-related performance problems but, unlike prior work,
cannot measure application-layer issues.

7 CONCLUSIONS

PAINTER lowers latency and enhances resilience for cloud services.
It is widely deployable due to the growing prevalence of edge prox-
ies. By enbracing new network management trends PAINTER simul-
taneously enhances control and solves problems that clouds face
today. We see PAINTER as the first of many such systems that will
define tomorrow’s Internet.

Acknowledgements. This paper has been partially funded by
NSF CNS-1835253. We would like to thank the anonymous review-
ers for their insightful comments. We would also like to thank Arpit
Gupta, Sanjay Chandrasekaran, Mahshid Ghasemi, Gil Zussman,
and the Columbia University networking IT staff for their help in
gathering residential campus data used in Section 2.2. Finally, we
thank Abhishek Udupa for ideas and feedback on an early version
of the project and Italo Cunha for his support with PEERING.



REFERENCES

[1] 3GPP. 2020. System Architecture for the 5G System (5GS). https://3gpp.org/

ftp//Specs/archive/23_series/23.501/23501-g60.zip
Akamai. 2022. Akamai Secure Access Service Edge.
resources/akamai-secure-access-service-edge-sase
Aditya Akella, Srinivasan Seshan, and Anees Shaikh. Multihoming Performance
Benefits: An Experimental Evaluation of Practical Enterprise Strategies. In NSDI
2004.

Mark Allman. Putting DNS in Context. In IMC 2020.

Amazon. 2022. Simplify SD-WAN Connectivity With AWS Transit Gateway
Connect. https://aws.amazon.com/blogs/networking-and-content-delivery/
simplify-sd-wan- connectivity- with-aws- transit- gateway- connect/

Maria Apostolaki, Ankit Singla, and Laurent Vanbever. Performance-Driven
Internet Path Selection. In SOSR 2021.

Apple. 2020. Improving Network Reliability Using Multipath
TCP. https://developer.apple.com/documentation/foundation/
urlsessionconfiguration/improving_network_reliability_using multipath_tcp
Apple. 2021. Configuring Network Extensions. https://developer.apple.com/
documentation/xcode/configuring-network-extensions

Todd Arnold, Jia He, Weifan Jiang, Matt Calder, Italo Cunha, Vasileios Giotsas,
and Ethan Katz-Bassett. Cloud Provider Connectivity in the Flat Internet. In
IMC 2020.

Hirochika Asai and Yasuhiro Ohara. Poptrie: A Compressed Trie with Population
Count for Fast and Scalable Software IP Routing Table Lookup. In SIGCOMM
2015.

Florian Aschenbrenner, Tanya Shreedhar, Oliver Gasser, Nitinder Mohan, and
Jorg Ott. From Single Lane to Highways: Analyzing the Adoption of Multipath
TCP in the Internet. In IFIP Networking Conference 2021.

ATT. 2021. ATT Moves 5G Mobile Network to Microsoft Cloud. https://about.
att.com/story/2021/att_microsoft_azure.html

Arati Baliga, Xu Chen, Baris Coskun, Gustavo de los Reyes, Seungjoon Lee,
Suhas Mathur, and Jacobus E Van der Merwe. VPMN: Virtual Private Mobile
Network Towards Mobility-as-a-Service. In MCS 2011.

Barracuda. 2023. Accelerate Your Business With Secure SD-WAN. https://
barracuda.com/products/network-security/sd-wan

BGP.us. 2016. Full View or Not Full View: The Benefits and Dangers of the Full
BGP Table. https://bgp.us/routing-table/full-bgp-table-benefits-and-dangers
Protick Bhowmick, Mohammad Ishtiaq Ashiq Khan, Casey Deccio, and Taejoong
Chung. TTL Violation of DNS Resolvers in the Wild. In PAM 2023.

Henry Birge-Lee, Maria Apostolaki, and Jennifer Rexford. It Takes Two to
Tango: Cooperative Edge-to-Edge Routing. In HotNets 2022.

Sam Burnett, Lily Chen, Douglas A. Creager, Misha Efimov, Ilya Grigorik, Ben
Jones, Harsha V. Madhyastha, Pavlos Papageorge, Brian Rogan, Charles Stahl,
et al. Network Error Logging: Client-Side Measurement of End-to-End Web
Service Reliability. In NSDI 2020.

CAIDA. 2023. BGP Stream. https://bgpstream.caida.org/data

Matt Calder, Xun Fan, and Liang Zhu. A Cloud Provider’s View of EDNS
Client-Subnet Adoption. In TMA 2019.

Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and Jitendra
Padhye. Analyzing the Performance of an Anycast CDN. In IMC 2015.

Matt Calder, Ryan Gao, Manuel Schréder, Ryan Stewart, Jitendra Padhye, Ratul
Mahajan, Ganesh Ananthanarayanan, and Ethan Katz-Bassett. Odin: Microsoft’s
Scalable Fault-Tolerant CDN Measurement System. In NSDI 2018.

Fangfei Chen, Ramesh K. Sitaraman, and Marcelo Torres. End-User Mapping:
Next Generation Request Routing for Content Delivery. In SIGCOMM 2015.
Hao Chen, Yuan Yang, Mingwei Xu, Yuxuan Zhang, and Chenyi Liu. Neurotrie:
Deep Reinforcement Learning-Based Fast Software IPv6 Lookup. In ICDCS 2022.
Danilo Cicalese, Jordan Augé, Diana Joumblatt, Timur Friedman, and Dario
Rossi. Characterizing IPv4 Anycast Adoption and Deployment. In CoONEXT
2015.

Cisco. 2023. Cisco SD-WAN. https://cisco.com/c/en/us/solutions/enterprise-
networks/sd-wan/index.html

Cloudflare. 2022. Argo Smart Routing. https://cloudflare.com/products/argo-
smart-routing/

Gerald Combs. 2020. TShark. https://wireshark.org/docs/man-pages/tshark.
html

The Khang Dang, Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski, Jorg
Ott, and Jussi Kangasharju. Cloudy With a Chance of Short RTTs: Analyzing
Cloud Connectivity in the Internet. In IMC 2021.

Danny Pinto. 2021. What Will Happen When the Routing Table Hits
1024K? https://blog.apnic.net/2021/03/03/what-will-happen-when-the-
routing-table- hits-1024k/

Quentin De Coninck and Olivier Bonaventure. Multipath QUIC: Design and
Evaluation. In CoNEXT 2017.

Wouter B. De Vries, Ricardo de O. Schmidt, Wes Hardaker, John Heidemann,
Pieter-Tjerk de Boer, and Aiko Pras. Broad and Load-Aware Anycast Mapping
with Verfploeter. In IMC 2017.

Anja Feldmann, Oliver Gasser, Franziska Lichtblau, Eric Pujol, Igmar Poese,
Christoph Dietzel, Daniel Wagner, Matthias Wichtlhuber, Juan Tapiador, Narseo
Vallina-Rodriguez, et al. Implications of the COVID-19 Pandemic on the Internet
Traffic. In IMC 2020.

https://akamai.com/

[34]

[35]

[36
[37

[38]

[39]

[40]

[41

[42

[43]
[44]

[45

[46]
[47]

[48

[49
[50

[51

[52

[53

[54

[55

[56

[57

[58

[59

[60

[61

[62

[63

[64

[65
[66

[67

[68

Ashley Flavel, Pradeepkumar Mani, David Maltz, Nick Holt, Jie Liu, Yingying
Chen, and Oleg Surmachev. FastRoute: A Scalable Load-Aware Anycast Routing
Architecture for Modern CDNs. In NSDI 2015.

Ashley Flavel, Pradeepkumar Mani, and David A Maltz. Re-Evaluating the
Responsiveness of DNS-Based Network Control. In LANMAN 2014.

flexiWAN. 2022. flexiWAN Documentation. https://docs.flexiwan.com/

Lixin Gao and Jennifer Rexford. 2001. Stable Internet Routing Without Global
Coordination. ToN (2001).

Ruomei Gao, Constantinos Dovrolis, and Ellen W Zegura. Avoiding Oscillations
Due to Intelligent Route Control Systems. In INFOCOM 2006.

Petros Gigis, Matt Calder, Lefteris Manassakis, George Nomikos, Vasileios Kotro-
nis, Xenofontas Dimitropoulos, Ethan Katz-Bassett, and Georgios Smaragdakis.
Seven Years in the Life of Hypergiants’ Off-Nets. In SIGCOMM 2021.

Danilo Giordano, Danilo Cicalese, Alessandro Finamore, Marco Mellia, Maurizio
Munafo, Diana Zeaiter Joumblatt, and Dario Rossi. A First Characterization of
Anycast Traffic from Passive Traces. In TMA 2016.

Google. 2021. Network Connectivity Center. https://cloud.google.com/network-
connectivity-center

HashiCorp. 2022. Architecting Geo-Distributed Mobile Edge Application With
Consul. https://www.youtube.com/watch?v=At6cHrL6sOQ

Geoff Huston. 2023. BGP Routing Table Analysis Reports. https://bgp.potaroo.
net

IBM. 2022. IBM SevOne Network Performance Management. https://ibm.com/
products/sevone-network-performance-management

IETF. 2011. Architectural Guidelines for Multipath TCP Development. https://
datatracker.ietf.org/doc/rfc6182/

IETF. 2017. Path Aware Network RG. https://datatracker.ietf.org/rg/panrg/
about/

IETF. 2020. Multipath Extension for QUIC. https://datatracker.ietf.org/doc/
html/draft-liu-multipath-quic-02

IETF. 2022. IP Proxying Support for HTTP. https://datatracker.ietf.org/doc/
draft-ietf-masque-connect-ip/

INAP. 2022. INAP Network Connectivity. https://inap.com/network/
Mordor Intelligence. 2022. Network as a Service Market - Growth, Trends,
COVID-19 Impact, and Forecasts. https://mordorintelligence.com/industry-
reports/network-as-a-service-market- growth-trends-and-forecasts

Junchen Jiang, Rajdeep Das, Ganesh Ananthanarayanan, Philip A Chou, Venkata
Padmanabhan, Vyas Sekar, Esbjorn Dominique, Marcin Goliszewski, Dalibor
Kukoleca, Renat Vafin, et al. Via: Improving Internet Telephony Call Quality
Using Predictive Relay Selection. In SIGCOMM 2016.

Yuchen Jin, Colin Scott, Amogh Dhamdhere, Vasileios Giotsas, Arvind Krishna-
murthy, and Scott Shenker. Stable and Practical AS Relationship Inference with
ProbLink. In NSDI 2019.

Hyojoon Kim and Arpit Gupta. ONTAS: Flexible and Scalable Online Network
Traffic Anonymization System. In Workshop on Network Meets Al & ML 2019.
Thomas Koch, Ethan Katz-Bassett, John Heidemann, Matt Calder, Calvin Ardi,
and Ke Li. Anycast in Context: A Tale of Two Systems. In SIGCOMM 2021.
Cyrill Krihenbiihl, Seyedali Tabaeiaghdaei, Christelle Gloor, Jonghoon Kwon,
Adrian Perrig, David Hausheer, and Dominik Roos. Deployment and Scalability
of an Inter-Domain Multi-Path Routing Infrastructure. In CONEXT 2021.

Rupa Krishnan, Harsha V. Madhyastha, Sridhar Srinivasan, Sushant Jain, Arvind
Krishnamurthy, Thomas Anderson, and Jie Gao. Moving Beyond End-to-End
Path Information to Optimize CDN Performance. In IMC 2009.

Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. 2001. Delayed
Internet Routing Convergence. ToN (2001).

Raul Landa, Lorenzo Saino, Lennert Buytenhek, and Jodo Taveira Aratdjo. Staying
Alive: Connection Path Reselection at the Edge. In NSDI 2021.

Zhihao Li, Dave Levin, Neil Spring, and Bobby Bhattacharjee. Internet Anycast:
Performance, Problems, & Potential. In SIGCOMM 2018.

Honggqiang Harry Liu, Raajay Viswanathan, Matt Calder, Aditya Akella, Ratul
Mabhajan, Jitendra Padhye, and Ming Zhang. Efficiently Delivering Online
Services over Integrated Infrastructure. In NSDI 2016.

Matthew Luckie, Bradley Huffaker, Amogh Dhamdhere, Vasileios Giotsas, and
KC Clafty. AS Relationships, Customer Cones, and Validation. In IMC 2013.
Matthew Luckie, Bradley Huffaker, Alexander Marder, Zachary Bischof, Mari-
anne Fletcher, and KC Claffy. Learning to Extract Geographic Information from
Internet Router Hostnames. In CoONEXT 2021.

Andra Lutu, Diego Perino, Marcelo Bagnulo, Enrique Frias-Martinez, and Javad
Khangosstar. A Characterization of the COVID-19 Pandemic Impact on a Mobile
Network Operator Traffic. In IMC 2020.

Michael Markovitch, Sharad Agarwal, Rodrigo Fonseca, Ryan Beckett, Chuanji
Zhang, Irena Atov, and Somesh Chaturmohta. TIPSY: Predicting Where Traffic
Will Ingress a WAN. In SIGCOMM 2022.

Maxmind. 2022. GeoIP2 Databases. https://maxmind.com/en/geoip2-databases
Stephen McQuistin, Sree Priyanka Uppu, and Marcel Flores. Taming Anycast
in the Wild Internet. In IMC 2019.

Megaport. 2023. Agile Networking for Real-Time IT Transformation. https://
megaport.com

Microsoft. 2022.  SD-WAN Connectivity Architecture with Azure Vir-
tual WAN.  https://learn.microsoft.com/en-us/azure/virtual-wan/sd-wan-
connectivity-architecture


https://3gpp.org/ftp//Specs/archive/23_series/23.501/23501-g60.zip
https://3gpp.org/ftp//Specs/archive/23_series/23.501/23501-g60.zip
https://akamai.com/resources/akamai-secure-access-service-edge-sase
https://akamai.com/resources/akamai-secure-access-service-edge-sase
https://aws.amazon.com/blogs/networking-and-content-delivery/simplify-sd-wan-connectivity-with-aws-transit-gateway-connect/
https://aws.amazon.com/blogs/networking-and-content-delivery/simplify-sd-wan-connectivity-with-aws-transit-gateway-connect/
https://developer.apple.com/documentation/foundation/urlsessionconfiguration/improving_network_reliability_using_multipath_tcp
https://developer.apple.com/documentation/foundation/urlsessionconfiguration/improving_network_reliability_using_multipath_tcp
https://developer.apple.com/documentation/xcode/configuring-network-extensions
https://developer.apple.com/documentation/xcode/configuring-network-extensions
https://about.att.com/story/2021/att_microsoft_azure.html
https://about.att.com/story/2021/att_microsoft_azure.html
https://barracuda.com/products/network-security/sd-wan
https://barracuda.com/products/network-security/sd-wan
https://bgp.us/routing-table/full-bgp-table-benefits-and-dangers
https://bgpstream.caida.org/data
https://cisco.com/c/en/us/solutions/enterprise-networks/sd-wan/index.html
https://cisco.com/c/en/us/solutions/enterprise-networks/sd-wan/index.html
https://cloudflare.com/products/argo-smart-routing/
https://cloudflare.com/products/argo-smart-routing/
https://wireshark.org/docs/man-pages/tshark.html
https://wireshark.org/docs/man-pages/tshark.html
https://blog.apnic.net/2021/03/03/what-will-happen-when-the-routing-table-hits-1024k/
https://blog.apnic.net/2021/03/03/what-will-happen-when-the-routing-table-hits-1024k/
https://docs.flexiwan.com/
https://cloud.google.com/network-connectivity-center
https://cloud.google.com/network-connectivity-center
https://www.youtube.com/watch?v=At6cHrL6sOQ
https://bgp.potaroo.net
https://bgp.potaroo.net
https://ibm.com/products/sevone-network-performance-management
https://ibm.com/products/sevone-network-performance-management
https://datatracker.ietf.org/doc/rfc6182/
https://datatracker.ietf.org/doc/rfc6182/
https://datatracker.ietf.org/rg/panrg/about/
https://datatracker.ietf.org/rg/panrg/about/
https://datatracker.ietf.org/doc/html/draft-liu-multipath-quic-02
https://datatracker.ietf.org/doc/html/draft-liu-multipath-quic-02
https://datatracker.ietf.org/doc/draft-ietf-masque-connect-ip/
https://datatracker.ietf.org/doc/draft-ietf-masque-connect-ip/
https://inap.com/network/
https://mordorintelligence.com/industry-reports/network-as-a-service-market-growth-trends-and-forecasts
https://mordorintelligence.com/industry-reports/network-as-a-service-market-growth-trends-and-forecasts
https://maxmind.com/en/geoip2-databases
https://megaport.com
https://megaport.com
https://learn.microsoft.com/en-us/azure/virtual-wan/sd-wan-connectivity-architecture
https://learn.microsoft.com/en-us/azure/virtual-wan/sd-wan-connectivity-architecture

[69] Microsoft. 2023. Microsoft Azure Private 5G Core. https://azure.microsoft.com/

en-us/products/private-5g-core

Microsoft. 2023. Microsoft Datacenters. https://datacenters.microsoft.com/
Microsoft. 2023. Microsoft Global Network. https://learn.microsoft.com/en-us/
azure/networking/microsoft-global-network

Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski, Suzan Bayhan, Walter
Wong, and Jussi Kangasharju. Pruning Edge Research With Latency Shears. In
HotNets 2020.

Giovane C. M. Moura, John Heidemann, Ricardo de O Schmidt, and Wes
Hardaker. Cache Me If You Can: Effects of DNS Time-to-Live. In IMC 2019.
Giovane C. M. Moura, Ricardo de Oliveira Schmidt, John Heidemann, Wouter B.
de Vries, Moritz Muller, Lan Wei, and Cristian Hesselman. Anycast vs. DDoS:
Evaluating the November 2015 Root DNS Event. In IMC 2016.
NANOG. 2022. Panel: Buying and Selling IPv4 Addresses.
com/watch?v=8FITJEct9_s

Srinivas Narayana, Wenjie Jiang, Jennifer Rexford, and Mung Chiang. Joint
Server Selection and Routing for Geo-Replicated Services. In International Con-
ference on Utility and Cloud Computing 2013.

Nokia. 2022. Nokia 5G Core Software as a Service in Practice. https://www.
youtube.com/watch?v=_4DHzjrtB34

Larry Peterson and Oguz Sunay. 2020. 5G Mobile Networks: A Systems Ap-
proach. Synthesis Lectures on Network Systems (2020).

Matthew Prince. 2013. Load Balancing without Load Balancers. https://blog.
cloudflare.com/cloudflares-architecture-eliminating- single-p/

Enric Pujol, Ingmar Poese, Johannes Zerwas, Georgios Smaragdakis, and Anja
Feldmann. Steering Hyper-Giants’ Traffic at Scale. In CONEXT 2019.

RIPE. 2022. RIPE IPmap. https://ipmap.ripe.net/

ASM Rizvi, Leandro Bertholdo, Jodo Ceron, and John Heidemann. Anycast
Agility: Network Playbooks to Fight DDoS. In USENIX Security Symposium
2022.

Corey Satten. 2008. Lossless Gigabit Remote Packet Capture with Linux. https://
staff.washington.edu/corey/gulp/

Patrick Sattler, Juliane Aulbach, Johannes Zirngibl, and Georg Carle. Towards a
Tectonic Traffic Shift? Investigating Apple’s New Relay Network. In IMC 2022.
Brandon Schlinker, Todd Arnold, Italo Cunha, and Ethan Katz-Bassett. PEERING:
Virtualizing BGP at the Edge for Research. In CONEXT 2019.

Brandon Schlinker, Italo Cunha, Yi-Ching Chiu, Srikanth Sundaresan, and Ethan
Katz-Bassett. Internet Performance from Facebook’s Edge. In IMC 2019.
Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett, Harsha V.
Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr Lapukhov, and Hongyi
Zeng. Engineering Egress with Edge Fabric: Steering Oceans of Content to the
World. In SIGCOMM 2017.

Rachee Singh, Sharad Agarwal, Matt Calder, and Paramvir Bahl. Cost-Effective
Cloud Edge Traffic Engineering with Cascara. In NSDI 2021.

Raffaele Sommese, Leandro Bertholdo, Gautam Akiwate, Mattijs Jonker, Roland
van Rijswijk-Deij, Alberto Dainotti, KC Claffy, and Anna Sperotto. MAnycast2:
Using Anycast to Measure Anycast. In IMC 2020.

Harrison J. Son. 2017. Comparison of the SD-WAN Vendor Solu-
tions. https://netmanias.com/en/post/oneshot/12481/sd-wan-sdn-nfv/
comparison-of-the-sd-wan-vendor-solutions

Austin Spreadbury and Nicole Singh. 2023. Azure Operator Voice-
mail: Take the First Step to Move Voice Workloads to the Cloud.
https://techcommunity.microsoft.com/t5/azure-for-operators-blog/azure-
operator-voicemail-take-the-first- step-to-move-voice/ba-p/3751315

Neil Spring, Ratul Mahajan, and Thomas Anderson. The Causes of Path In-
flation. In Applications, technologies, architectures, and protocols for computer
communications 2003.

RIPE NCC Staff. 2015. RIPE Atlas: A Global Internet Measurement Network.
Internet Protocol Journal (2015).

https://youtube.

[94
[95

[96

[97

[98

[99

[100

[101

[102
[103
[104

[105

[106

[107]

[108

[109

[110

[111]

[112

[113

[114

[115]

[116

RIPE NCC Staff. 2023. RIS Live. (2023). https://ris-live.ripe.net

Thibaut Stimpfling, Normand Belanger, JM Pierre Langlois, and Yvon Savaria.
2019. SHIP: A Scalable High-Performance IPv6 Lookup Algorithm that Exploits
Prefix Characteristics. ToN (2019).

Subspace. 2022. Optimize Your Network on Subspace. https://subspace.com/
solutions/reduce-internet-latency

Peng Sun, Laurent Vanbever, and Jennifer Rexford. Scalable Programmable
Inbound Traffic Engineering. In SOSR 2015.

Tessares. 2019. Introducing a Client Library for 0-RTT Converter. https://
tessares.net/open-source/introduction-a-client-library-for-0-rtt-converter/
Zartash Afzal Uzmi, Markus Nebel, Ahsan Tariq, Sana Jawad, Ruichuan Chen,
Aman Shaikh, Jia Wang, and Paul Francis. SMALTA: Practical and Near-Optimal
FIB Aggregation. In CoNEXT 2011.

Vytautas Valancius, Bharath Ravi, Nick Feamster, and Alex C Snoeren. Quan-
tifying the Benefits of Joint Content and Network Routing. In SIGMETRICS
2013.

Verizon. 2020. Edgecast.
delivery/network/
VMware. 2023. VMware SD-WAN. https://sase.vmware.com/sd-wan
VULTR. 2023. VULTR Cloud. https://vultr.com/

Chengke Wang, Hao Wang, Feng Qian, Kai Zheng, Chenglu Wang, Fangzhu

Mao, Xingmin Guo, and Chenren Xu. Experience: A Three-Year Retrospective
of Large-Scale Multipath Transport Deployment for Mobile Applications. In

MobiCom 2023.

Feng Wang, Zhuoging Morley Mao, Jia Wang, Lixin Gao, and Randy Bush. . A
Measurement Study on the Impact of Routing Events on End-to-End Internet
Path Performance. ([n.d.]).

Kaiqiang Wang, Minwei Shen, Junguk Cho, Arijit Banerjee, Jacobus Van der
Merwe, and Kirk Webb. MobiScud: A Fast Moving Personal Cloud in the Mobile
Network. In AllThingsCellular 2015.

Jun Xu, Jinliang Fan, Mostafa H. Ammar, and Sue B Moon. Prefix-Preserving IP
Address Anonymization: Measurement-Based Security Evaluation and a New
Cryptography-Based Scheme. In ICNP 2002.

Wen Xu and Jennifer Rexford. MIRO: Multi-Path Interdomain Routing. In
SIGCOMM 2006.

Xiaowei Yang, David Clark, and Arthur W Berger. 2007. NIRA: A New Inter-
Domain Routing Architecture. ToN (2007).

Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holli-
man, Gary Baldus, Marcus Hines, Taeeun Kim, Ashok Narayanan, Ankur Jain,
et al. Taking the Edge off with Espresso: Scale, Reliability and Programmability
for Global Internet Peering. In SIGCOMM 2017.

Xiao Zhang, Tanmoy Sen, Zheyuan Zhang, Tim April, Balakrishnan Chan-
drasekaran, David Choffnes, Bruce M. Maggs, Haiying Shen, Ramesh K. Sitara-
man, and Xiaowei Yang. AnyOpt: Predicting and Optimizing IP Anycast Perfor-
mance. In SIGCOMM 2021.

Yang Zhang, Jean Tourrilhes, Zhi-Li Zhang, and Puneet Sharma. 2021. Improving
SD-WAN Resilience: From Vertical Handoff to WAN-Aware MPTCP. ToN (2021).
Zheng Zhang, Ming Zhang, Albert G. Greenberg, Y. Charlie Hu, Ratul Mahajan,
and Blaine Christian. Optimizing Cost and Performance in Online Service
Provider Networks. In NSDI 2010.

Zhilong Zheng, Yunfei Ma, Yanmei Liu, Furong Yang, Zhenyu Li, Yuanbo Zhang,
Jiuhai Zhang, Wei Shi, Wentao Chen, Ding Li, et al. Xlink: QoE-Driven Multi-
Path QUIC Transport in Large-Scale Video Services. In SIGCOMM 2021.
Minyuan Zhou, Xiao Zhang, Shuai Hao, Xiaowei Yang, Jiaqi Zheng, Guihai
Chen, and Wanchun Dou. Regional IP Anycast: Deployments, Performance,
and Potentials. In SIGCOMM 2023.

Jiangchen Zhu, Kevin Vermeulen, Italo Cunha, Ethan Katz-Bassett, and Matt
Calder. The Best of Both Worlds: High Availability CDN Routing Without
Compromising Control. In IMC 2022.

https://verizondigitalmedia.com/media-platform/


https://azure.microsoft.com/en-us/products/private-5g-core
https://azure.microsoft.com/en-us/products/private-5g-core
https://datacenters.microsoft.com/
https://learn.microsoft.com/en-us/azure/networking/microsoft-global-network
https://learn.microsoft.com/en-us/azure/networking/microsoft-global-network
https://youtube.com/watch?v=8FlTJEct9_s
https://youtube.com/watch?v=8FlTJEct9_s
https://www.youtube.com/watch?v=_4DHzjrtB34
https://www.youtube.com/watch?v=_4DHzjrtB34
https://blog.cloudflare.com/cloudflares-architecture-eliminating-single-p/
https://blog.cloudflare.com/cloudflares-architecture-eliminating-single-p/
https://ipmap.ripe.net/
https://staff.washington.edu/corey/gulp/
https://staff.washington.edu/corey/gulp/
https://netmanias.com/en/post/oneshot/12481/sd-wan-sdn-nfv/comparison-of-the-sd-wan-vendor-solutions
https://netmanias.com/en/post/oneshot/12481/sd-wan-sdn-nfv/comparison-of-the-sd-wan-vendor-solutions
https://techcommunity.microsoft.com/t5/azure-for-operators-blog/azure-operator-voicemail-take-the-first-step-to-move-voice/ba-p/3751315
https://techcommunity.microsoft.com/t5/azure-for-operators-blog/azure-operator-voicemail-take-the-first-step-to-move-voice/ba-p/3751315
https://ris-live.ripe.net
https://subspace.com/solutions/reduce-internet-latency
https://subspace.com/solutions/reduce-internet-latency
https://tessares.net/open-source/introduction-a-client-library-for-0-rtt-converter/
https://tessares.net/open-source/introduction-a-client-library-for-0-rtt-converter/
https://verizondigitalmedia.com/media-platform/delivery/network/
https://verizondigitalmedia.com/media-platform/delivery/network/
https://sase.vmware.com/sd-wan
https://vultr.com/

=
o
o

Restricted to Probes
—— AllUGs

B [} ®
o o o

Percent of Volume Covered by Targets
N
o

100 200 300 400 500 600 700
Geolocation Uncertainty (km)

(@)

»
o

w
wn

w
=}

N
5}

N
=}

=
5}

Iy
=}

I
wn

Median Absolute Latency Difference (ms)

100 200 300 400 500 600 700
Geolocation Uncertainty (km)

(b)
Figure 12: Coverage of policy-compliant ingresses at various geoloca-
tion uncertainties (12a) and median absolute difference in estimated
and actual latency (12b).

Appendices are supporting material that has not been peer-
reviewed.

A RESIDENTIAL NETWORK DATA

To demonstrate the limited ability of clouds to quickly redirect
network traffic due to the prevalence of DNS TTL violations, we
passively collected traffic from 12 residential buildings managed by
Columbia University. One building accommodates returning and
nontraditional students, while the other buildings house graduate
students, faculty, staff, and their families. All the buildings have
20-50 private or shared apartments, and approximately 400 rental
units are in the dataset. The university serves as the residents’ ISP,
and they share the set of recursive DNS resolvers by default.

To protect user privacy, our data collection process adheres to
existing anonymization best practices [53]—it anonymizes privacy-
sensitive fields (e.g., MAC addresses and IP addresses) and discards
the payload at collection time. We use Gulp to capture the traffic
[83], tshark to extract non-sensitive information (e.g., protocol, TLS
SNI, DNS A record) [28], and cryptoANT to anonymize privacy-
sensitive fields [107]. We discard the payload above layer 4 except
for TLS fields and DNS packets. Cryptographic anonymization keys
are rotated every six hours. The privacy and security team of the
IT department at Columbia University thoroughly reviewed and
approved the data collection process, and our Institutional Review
Board (IRB) declared that our project is not human-subjects research

and does not require further review.
To obtain our results regarding DNS dynamics (§2.2), we pas-

sively captured all traffic sent to and from residential units during

10-11 am and all DNS traffic from 5-11 am during December 1-23,
2022. Packets with the same 5-tuple in the IP header (transport
protocol, source IP, destination IP, source port, destination port)
in a 6 hour window are considered as a single flow, and flows are
associated with the latest DNS record that was transmitted to the
same residential IP and included the destination IP in the DNS
response. Since only 0.06% of flows are paired with DNS records be-
tween 5-6am and extending the collection period does not notably
increase the number of matched flows, we limited our use of DNS
records to 6 hours to match an one-hour capture of network traffic.
Our methodology for matching traffic to DNS records is similar to
that in prior work [4].

B INGRESS LATENCY ESTIMATION

Azure connects to other organizations at over 200 PoPs around
the world [70]. We wished to estimate latency to Azure through
specific ingresses, as we could not conduct advertisements from
Azure for operational reasons. The key idea of our methodology
was to estimate the latency through an ingress as the latency to
an IP address in the peer/provider’s IP space physically close to
the corresponding ingress. Here we thoroughly explain our target-
determination methodology, estimate how accurate our ingress
latency approximation heuristic is, and describe how we chose
allowable target geolocation uncertainty.

Methodology. Azure’s peerings are often between two physical
interfaces on peering routers. Oftentimes, these interfaces are as-
signed IP addresses belonging to either an Azure or peer/provider’s
subnet (each case occurs roughly half the time). We use the latency
to the interface’s IP address as a proxy for latency through that
ingress if the address was in the peer/provider’s IP space. We could
not target IP addresses in Azure’s IP space since Azure advertises
covering prefixes for these addresses at all PoPs (hence the route
is the same as the anycast route). In this way, we were only able
to obtain target addresses for fewer than 500 ingresses as many
addresses were unresponsive.

To find targets for the remaining (vast majority of) ingresses, we
obtained lists of candidate IP addresses by (a) crawling RIPE Open
IPMap [81] and Maxmind [65], (b) parsing Azure traceroutes from
clients, and (c) using RDNS hints (specifically using Hoiho [62]). We
exclude addresses known to be anycast according to a publicly avail-
able list [89]. We confirmed target locations using measurements
from RIPE Atlas probes with known locations. The geolocation
uncertainty of each target was then the minimum latency from any
RIPE Atlas probe to the address converted to distance in fiber, plus
the distance from the RIPE Atlas probe to the associated ingress’s
PoP. We conducted a secondary check that targets were not anycast
by checking for speed of light violations when measuring to targets
from several RIPE Atlas probes.

We were only able to find a subset of ingress targets at a given
geolocation uncertainty due to the limitations (i.e., coverage) of our
geolocation methodology. To quantify how representative ingress
targets were for a given geolocation uncertainty, we tabulated all
(UG, ingress) tuples for which a path from the UG through the
ingress could be policy-compliant (§3.1) and for which an ingress
target was geolocated to within the uncertainty.

For the purposes of determining our coverage, we excluded
(UG, ingress) tuples which were unlikely to provide latency ben-
efits to that UG. We say an ingress at a PoP is unlikely to provide
latency benefits if the anycast latency from that UG is lower than
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Figure 13: Packet journey through PAINTER. TM-Edge tunnels client
traffic along different ingress paths (1-2), TM-PoP NATs client traffic
(3-4), and sends the traffic back to TM-Edge who forwards it to the
client (5-6).

the distance from the UG to the PoP converted to the speed of light
in fiber (i.e., the best possible latency to the PoP). For example, we
do not count policy-compliant ingresses at Azure’s Chicago PoP
for a UG in Ashburn (900 km) towards our coverage if that UG had
anycast latency < 9 ms (speed of light in a direct fiber path). To
calculate our coverage metric we divide each UG’s traffic volume
evenly among its possible ingresses and accumulate volume over
ingresses for which we have a target.

In addition to ensuring we had broad coverage of ingresses,
assessed the accuracy of our latency estimates by comparing es-
timated latencies to actual latencies through the corresponding

peerings to Azure for a subset of cases. We conducted traceroutes
from RIPE Atlas probes to Azure’s anycast address and tabulated a
list of {probe, peering) tuples corresponding to cases where we
observed a known peering connection’s IP address in the traceroute.
We compared the minimum latencies reported by traceroutes to our
estimated latencies. We bucket absolute latency differences by ge-
olocation uncertainty and in Figure 12b plot the median difference
for each bucket.

Results. In Figure 12a we show our coverage of ingresses
(weighted according to the above metric) at different maximum
geolocation uncertainties. In Figure 12b we show how ingress
target latencies compared to actual latencies through those
ingresses at different geolocation geolocation uncertainties.

Figure 12a demonstrates that we geolocate more targets, and
thus cover significantly more ingresses, as we admit less precise tar-
get geolocation. In particular, the “knee” of the curve is at around a
geolocation accuracy of 400 km. Our target coverage when restrict-
ing to RIPE Atlas probes and when considering all UGs are similar,
likely since RIPE Atlas probes tend to be in UGs that generate lots
of Azure traffic volume.

Figure 12b shows the median absolute difference between our
targets and the actual latency to Azure. Figure 12b demonstrates
that latencies agree as we require more geolocation accuracy in our
ingress targets. We chose to use targets within an uncertainty of 450
km for our evaluations since this uncertainty gives a nice tradeoff
between coverage (80.6% of Azure volume) and methodological

accuracy (median comparisons within 2 ms).
Close inspection revealed that disagreements in latencies at

low geographic uncertainty are likely due to inflation inside the
peer/provider’s AS to Azure specifically or on the reverse path from
Azure to the probe—i.e., the path to our ingress target was direct
and low latency, whereas the path to/from Azure was circuitous.
Hence, these cases still indicate room for latency improvement al-
though realizing those improvements might not be feasible through
advertisements to peers/providers if they route Azure traffic ineffi-
ciently.

C SIMULATING MEASUREMENTS FROM UGs

To evaluate the Advertisement Orchestrator on a much larger
set of UGs than are represented by RIPE Atlas probes, we simulate
measurements from UGs for which there is no available RIPE Atlas
probe. We consider the set of UGs that represent 99% of Azure traffic
volume, as this significantly reduces computational complexity (i.e.,
the number of UGs we need to consider).

We first tabulate the set of all policy-compliant ingresses from
UGs to Azure through Azure’s peerings. Then, for each UG, we find
all RIPE Atlas probes within 500 km of the UG whose median any-
cast latency to Azure is within 10 ms of the UG’s anycast latency.
We determine anycast latencies from Azure’s global measurement
system [22].

Finally, we take the union of all improvements these RIPE Atlas
probes saw along all their policy-compliant ingresses as a set of
‘representative improvements’. For each policy-compliant ingress
for the UG in question, we then randomly draw improvements over
anycast from this set of representative improvements.

As an example, assume a UG in East US is physically close to a
RIPE Atlas probe and experiences similar anycast latency to Azure.
Assume this probe sees ingress latencies relative to anycast of -5 ms,
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Figure 15: PAINTER scales linearly in the number of required prefixes
with deployment size (15a), and naturally provides a tradeoff be-
tween benefit uncertainty and prefix cost via a tunable parameter

(DVEMSE) (15b)‘

0 ms, 0 ms, and 3 ms. Then, hypothetical latencies from the UG along
its (possibly different) policy-compliant ingresses will be randomly
drawn from this distribution. Intuitively, probes in areas with “good”
routing (i.e., little improvement over anycast) will induce simulated
measurements for nearby UGs with “good” routing while areas with
bad routing will induce simulated measurements with bad routing
in those areas.

D TRAFFIC MANAGER TUNNELING MECHANISM

The Traffic Manager uses a tunneling mechanism similar to some
used by SD-WAN solutions [26] since it requires no endpoint modifi-
cation.

We show a typical packet’s journey through PAINTER using our
tunneling mechanism in Figure 13. Packets generated by clients
reach TM-Edge (1), which encapsulates traffic in UDP datagrams
and sets the destination IP address of the outer packet according
to the optimal path to Azure (2) (§3.2). TM-PoPs decapsulate traffic
arriving at the other end of the optimal path. TM-PoP NATs the
traffic, storing the client’s source port and IP address in a lookup
table (‘Known Flows’) to retrieve later (3). TM-PoP acts as a NAT to
ensure return traffic goes back through the tunnel (not directly to
the client). TM-PoP receives response traffic from services (4) and,
using the lookup table, replaces the destination address with the cor-
responding client IP address. TM-PoP then re-encapsulates response
traffic and sends it to the corresponding TM-Edge (5) which then de-
capsulates the traffic and forwards it to the client (6). Each TM-PoP

has multiple IP addresses/NICs and so handles 65k connections for
each IP address, spread across all TM-Edges.

Scaling to Azure. TM-Edge performs minimal operations on pack-
ets, looking up optimal destinations for flows and encapsulating
packets so as to route traffic toward these destinations. The added
overhead of the UDP header (approximately 16 bytes per 1400) is
a small price to pay for the performance improvements PAINTER
provides. PAINTER scales linearly with the number of edge prox-
ies since TM-Edges only communicate directly to other TM-PoPs.
PAINTER similarly scales with the number of PoPs since there need
only be one TM-PoPs per PoP.

E ADVERTISEMENT ORCHESTRATOR FURTHER
ANALYSIS

E.1 Benefit Ranges over Budget

In Section 5.1 we showed estimated latency benefits for each ad-
vertisement strategy. In Figure 14, we explicitly show the entire
range of possible benefits from a ‘Lower’ to an ‘Upper’ bound. The
‘Mean’ line corresponds to an unweighted average across all possi-
ble ingresses, whereas the ‘Estimated’ corresponds to a weighted
average, where the weights assume inflated paths are less likely
(§5.1). The set of possible ingresses for a UG corresponds to the
set of policy-compliant ingresses over which the Advertisement
Orchestrator advertises the prefix the UGs selects. UGs select the
highest ‘Mean’ prefix over all their prefix choices (Eq. (2)).

One per PoP strategies have very large ranges of possible benefits
since they advertise prefixes via all peerings at PoPs, and so expose
many (possibly poor) valid ingresses for UGs. Hence, these strategies
tend to quickly achieve high Upper performance bounds (since they
quickly make all ingresses possible to reach, in theory), but do not
provide high Mean or Estimated benefits since UGs may be routed

to worse ingresses. In practice, larger ranges mean that some UGs
will be routed optimally while some will not, as was observed in

prior work [21].

PAINTER’s intelligent prefix reuse from far-away PoPs and via
peerings with non-overlapping customer cones allows it to quickly
achieve most latency benefit with little uncertainty. The One per
Peering strategy has no uncertainty since it advertises a unique
prefix via each peering, but it uses at least 3x the number of prefixes
as PAINTER to yield the same latency benefit.

E.2 Scale and Uncertainty

Figure 15 summarizes the Advertisement Orchestrator’s con-
vergence properties with respect to two parameters: deployment
size and the minimum reuse distance (Dyeyse). Figure 15a shows that
the required number of prefixes to obtain various percent benefits
scales linearly with deployment size, so we can expect system over-
head to grow proportionally with Azure growth. Hence PAINTER’s
required resources to calculate and deploy latency-improving ad-
vertisements scale with the many peerings that several clouds have
[9], unlike prior work [100, 111].

Figure 15b shows that increasing Dy.yse leads to less uncertainty
about user benefit, but requires more prefixes to obtain benefit
for users. As more uncertainty may lead to more incorrect latency
prediction heuristics, decreasing Dy,yse may require more learning
iterations for convergence in practice.

To generate this figure, we calculate PAINTER solutions over a
range of Dyeyse and calculate (a) how many prefixes PAINTER needs



to obtain 99% of the benefit (upper range) to quantify solution cost
and (b) the difference between the upper and estimated ranges
in Figure 6a at 99% benefit (upper range) to quantify benefit un-
certainty. As we make more “reasonable” assumptions about path
inflation (increasing Dyeyse), our uncertainty about user benefit

decreases. We use Dyeyse = 3,000 in Figure 6a as it provides a de-
cent tradeoff between uncertainty and cost. This is in contrast to
other solutions (e.g., One per PoP) which provide no way to control
benefit uncertainty (and have quite high uncertainty).
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