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ABSTRACT

Relational tables, where each row corresponds to an entity and
each column corresponds to an attribute, have been the standard
for tables in relational databases. However, such a standard can-
not be taken for granted when dealing with tables “in the wild”.
Our survey of real spreadsheet-tables and web-tables shows that
over 30% of such tables do not conform to the relational standard,
for which complex table-restructuring transformations are needed
before these tables can be queried easily using SQL-based tools.
Unfortunately, the required transformations are non-trivial to pro-
gram, which has become a substantial pain point for technical and
non-technical users alike, as evidenced by large numbers of forum
questions in places like StackOverflow and Excel/Tableau forums.

We develop an Auto-Tables system that can automatically syn-
thesize pipelines with multi-step transformations (in Python or
other languages), to transform non-relational tables into standard
relational forms for downstream analytics, obviating the need for
users to manually program transformations. We compile an exten-
sive benchmark for this new task, by collecting 244 real test cases
from user spreadsheets and online forums. Our evaluation suggests
that Auto-Tables can successfully synthesize transformations for
over 70% of test cases at interactive speeds, without requiring any
input from users, making this an effective tool for both technical
and non-technical users to prepare data for analytics.
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1 INTRODUCTION

Modern data analytics like SQL and BI are predicated on a standard
format of relational tables, where each row corresponds to a distinct
“entity”, and each column corresponds to an “attribute” for the
entities that contains homogeneous data-values. While such tables
are de-facto standards in relational databases, such that as database
people we may take this for granted, a significant fraction of tables
“in the wild” actually fail to conform to such standards, making
them considerably more difficult to query using SQL-based tools.
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Non-relational tables are common, but hard to query. Real
tables in the wild, such as spreadsheet-tables or web-tables, can
often be “non-relational” and hard to query, unlike tables that we ex-
pect to find in relational databases. We randomly sampled hundreds
of user spreadsheets (in Excel), and web tables (from Wikipedia),
and found around 30-50% tables to have such issues. Figure 1 and
Figure 2 show real samples taken from spreadsheets and the web,
respectively, to demonstrate these common issues. (We emphasize
that the problem is prevalent at a very large scale, since there are
millions of tables like these in spreadsheets and on the web.)

Take Figure 1(a) for example. The table on the left is not a stan-
dard relational table, because each column marked in green con-
tains sales numbers for only a single day (“19-Oct”, “20-Oct”, etc.),
making these column values highly homogeneous in the horizon-
tal direction (while in typical relational tables, we expect values in
columns to be homogeneous in the vertical direction). Although this
specific table format makes it easy for humans to eyeball changes
day-over-day by reading horizontally, it is unfortunately hard to
analyze using SQL. Imagine that one needs to compute the 14-day
average of sales, starting from “20-Oct” – for this table, one has
to write: SELECT SUM(“20-Oct”, “21-Oct”, “22-Oct”, ...)
FROM T, across 14 different columns, which is long and unwieldy to
write. Now imagine we need 14-day moving averages with every
day in October as the starting date – the resulting SQL is highly
repetitive and hard to manage.

In contrast, consider a transformed version of this table, shown
on the right of Figure 1(a). Here the homogeneous columns in the
original table (marked in green) are transformed into only two new
columns: “Date” and “Units Sold”, using a transformation operator
called “stack” (listed in the first row of Table 1). This transformed
table contains the same information as the original table, but is
much easier to query – e.g., the same 14-day moving average can be
computed using a succinct range-predicate on the ‘Date” column,
where the starting date “20-Oct” is a literal parameter that can be
easily changed into other values.

There are many such spreadsheet tables that require different
kinds of transformations before they are ready for SQL-based anal-
ysis. Figure 1(b) shows another example where every 3 columns
form a group, representing “Revenue/Units Sold/Margin” for a
different year, repeating for many times (marked in red/green/blue
in the figure). Tables with these repeating column-groups are also
hard to query just like Figure 1(a), but in this case the required trans-
formation operator is different and called “wide-to-long” (listed
in the second row of Table 1).

Figure 1(c) shows yet another example, where each hotel corre-
sponds to a column (whose names are in row-1), and each “attribute”
of these hotels corresponds to a row. Note that in this case values
in the same rows are homogeneous (marked in different colors),
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Figure 1: Example input/output tables for 4 operators in Auto-Tables: (a) Stack, (b) Wide-to-long, (c) Transpose, (d) Pivot.

The input-tables (on the left) are not relational and hard to query, which need to be transformed to produce corresponding

output-tables (on the right) that are relational and easy to query. Observe that the color-coded, repeating row/column-groups

are “visual” in nature, motivating a CNN-like architecture like used in computer vision for object-detection.

Figure 2: Real Web tables fromWikipedia that are also non-relational, similar to the spreadsheet tables shown in Figure 1.

unlike relational tables where values in the same columns are ho-
mogeneous. A transformation called “transpose” is required in
this case (listed in the third row of Table 1), to make the resulting
table, shown on the right of the figure, easy to query – for instance,
a query to sum up the total number of hotel rooms is hard to write
on the original table, but can be easily achieved using a simple SUM
query on the “Single Room” column in the transformed table.

Figure 1(d) shows another example where columns are repre-
sented as rows in the table on the left. This is similar to Figure 1(c),
except that the rows in this case are “repeating” in groups, thus re-
quiring a different transformation operator called “pivot” (listed in
the fourth row of Table 1) as opposed to “transpose”. The resulting
table is shown on the right, which becomes easy to query.

While the examples so far are all taken from spreadsheets, we
note that similar structural issues are also widespread inWeb tables.
Figure 2 shows real examples from Wikipedia, which share similar
characteristics as the spreadsheet tables in Figure 1, which all re-
quire transformations before these tables can be queried effectively.

Non-relational tables are hard to “relationalize”.We men-
tioned that the example tables in Figure 1 and Figure 2 require
different transformation operators. Table 1 shows 8 such transfor-
mation operators commonly needed to relationalize tables (where
the first 4 operators correspond to the examples we see in Figure 1).

The first column of Table 1 shows the name of the “logical oper-
ator”, which may be instantiated differently in different languages



Table 1: Auto-Tables DSL: table-restructuring operators and their parameters to “relationalize” tables. These operators are

common and exist in many different languages, like Python Pandas and R, sometimes under different names.

DSL operator Python Pandas equivalent Operator parameters Description (example in parenthesis)

stack melt [18] start_idx, end_idx collapse homogeneous cols into rows (Fig. 1a)
wide-to-long wide_to_long [22] start_idx, end_idx, delim collapse repeating col-groups into rows (Fig. 1b)
transpose transpose [21] - convert rows to columns and vice versa (Fig. 1c)
pivot pivot [19] repeat_frequency pivot repeating row-groups into cols (Fig. 1d)
explode explode [16] column_idx, delim convert composite cells into atomic values
ffill ffill [17] start_idx, end_idx fill structurally empty cells in tables
subtitles copy, ffill, del column_idx, row_filter convert table subtitles into a column
none - - no-op, the input table is already relational

Figure 3: Example user question from StackOverflow, on how

to restructure tables. Questions like this are common not

only among technical users, but also non-technical users, as

similar questions are commonly found on forums for Excel,

Power-BI, and Tableau users too [6–9].

(e.g., in Python or R), with different names and syntax. The sec-
ond column of the table shows the equivalent Pandas operator in
Python [15], which is a popular API for manipulating tables among
developers and data scientists, that readers may be familiar with.

While the functionalities listed in Table 1 already exist in lan-
guages such as R and Python, they are not easy for users to invoke
correctly, because users need to:
• (1) Visually identify different structural issues in an input table
that make it hard to query (e.g., repeating row-/column-groups
shown in Figure 1(a-d)), which is not obvious to non-expert users;

• (2) Map the visual pattern identified from the input table, to a
corresponding operator in Table 1 that can handle such issues.
This is hard as users are often unfamiliar with the exact termi-
nologies to describe these transformation operators (e.g., pivot
vs. stack), often needing to search online for help;

• (3) Parameterize the chosen operator appropriately, using pa-
rameters tailored to the input table (e.g., which columns need
to collapse into rows, what is the repeating frequency of col-
umn groups, etc.). This is again hard, as even developers need to
consult the API documentation, which is often long and complex.

• (4) Certain input tables require more than one transformation
step, for which users need to repeat steps (1)-(3) multiple times.
Completing these steps is a tall order even for technical users,

as evidenced by a large number of related questions on forums
like StackOverflow (e.g., [10–13]). Figure 3 shows such an exam-
ple question (popular with many up-votes), where the developer
provides example input/output tables to demonstrate the desired
transformation, and seek help on what Pandas operators to invoke.

If technical users like developers find it hard to restructure their
tables, as these StackOverflow questions would show, it comes as
no surprise that non-technical enterprise users, who often deal with
tables in spreadsheets, would find the task even more challenging.

We find a large number of similar questions on Excel and Tableau
forums (e.g., [6–9]), where users complain that without the required
transformations it is hard to analyze data using SQL-based or Excel-
based tools (e.g., [2–5]).

The prevalence of these questions confirms table-restructuring
as a common pain point for both technical and non-technical users.

Auto-Tables: synthesize transformations without exam-

ples. In this work, we propose a new paradigm to automatically
synthesize table-restructuring steps to relationalize tables, using
the Domain Specific Language (DSL) of operators in Table 1, with-
out requiring users to provide examples. Our key intuition of why we
can do away with examples in our task, lies in the observation that
given an input table, the logical steps required to relationalize it
are almost always unique and with little ambiguity, as the examples
in Figure 1 would all show. This is because the transformations
required in our task only “restructure” tables, that do not actually
“alter” the table content, which is unlike prior work that focuses
on row-to-row transformations (e.g., TDE [36] and FlashFill [34]), or
SQL-by-example (e.g. [26, 58]), where the output is “altered” that
can produce many possible outcomes, which would require users to
provide input/output examples to demonstrate the desired outcome.

For our task, we believe it is actually important not to ask users
to provide examples, because in the context of table-to-table trans-
formations like in our case, asking users to provide examples would
mean users have to specify an output table, which is a substantial
amount of typing effort, making it cumbersome to use.

As humans, we can “visually” recognize rows/columns patterns
(e.g., homogeneous value groups, as color-coded vertically and
horizontally in Figure 1), to correctly predict which operator to use.
The question we ask in this paper, is whether an algorithm can
“learn" to recognize such patterns by scanning the input tables alone,
to predict suitable transformations, in a manner that is analogous
to how computer-vision algorithms would scan a picture to identify
common but more complex objects like dogs and cats.

We should note that like computer vision problems such as ob-
ject detection, where hand-crafted heuristics are hard to write, the
row/column-level patterns existing in our target tables are also data-
dependent and subtle, which are hard to write as heuristic rules.
Consider for example the table in Figure 1(b) – for ease of illustra-
tion we pick a case with three distinct groups of columns (currency,
integers, and percentage-numbers, marked in different colors). One
may hand-craft a heuristic “similarity function” between columns
that may work for this simple example, but imagine the common
scenario where all these columns have similar-looking integer num-
bers (e.g., with no dollar signs and percentage signs), which is
much more challenging to predict using heuristics, as fine-grained
differentiation is required to tell the subtle differences between
columns (e.g., difference in column header semantics or column
value ranges), which is best learned from the data. In fact, we tested



a baseline using heuristic rules to predict only the simple “stack”,
which has a low 0.38 accuracy, because of the subtle differences in
data that are not captured by heuristics. We also tested an LLM-
based approach using GPT-3.5, also without success (with more
details in our experiments), further underlining the challenging
nature of our task. These motivate us to develop a learning-based
method specifically tailored to our table transformation task.

In computer vision, in order to pick up subtle clues from pic-
tures, object detection algorithms are typically trained using large
amounts of labeled data [31] (e.g., pictures of dogs that are manually
labeled as such). In our task, we do not have such labeled datasets.
Therefore, we devise a novel self-training framework that exploits
the inverse functional relationships between operators (e.g., the in-
verse of “stack” is known as “unstack”), to automatically build
large amounts of training data without requiring humans to label,
as we will explain in Figure 6. Briefly, in order to build a training
example for operator 𝑂 (e.g., “stack”), we start from a relational
table 𝑅 and apply the inverse of𝑂 , denoted by𝑂−1 (e.g., “unstack”),
to generate a table 𝑇 = 𝑂−1 (𝑅), which we know is non-relational.
For our task, given𝑇 as input, we know𝑂 must be its ground-truth
transformation, because by definition 𝑂 (𝑇 ) = 𝑂 (𝑂−1 (𝑅)) = 𝑅,
which turns 𝑇 back to its relational form 𝑅. This makes (𝑇,𝑂) an
(example, label) pair that we can automatically generate at scale,
and use as our training data.

Leveraging training data so generated, we develop an Auto-
Tables system that can “learn-to-synthesize” table-restructuring
transformations, using a deep tabular model we develop inspired
by CNN-like architectures popular in the computer vision litera-
ture. We show our approach is effective on real-world tasks, which
can solve over 70% of test cases collected from user forums and
spreadsheets, while being interactive with sub-second latency.

Contributions. We make these contributions in Auto-Tables:
• We propose a novel problem to automatically relationalize tables
without examples, which addresses a common pain point for
both technical and non-technical users, when they deal with
tables in the wild outside of database settings.

• We develop Auto-Tables that learns-to-synthesize transforma-
tions, using a computer-vision inspired model architecture that
exploits the common “visual” patterns in tables.

• We propose a self-supervision framework unique in our setting to
overcome the lack of training data, by exploiting the inverse func-
tional relationships between operators to auto-generate training
data, obviating the expensive process of human labeling.

• We compile an extensive benchmark for this task by collecting
244 real test cases from user spreadsheets and online forums.1
Our evaluation suggests that Auto-Tables can successfully syn-
thesize transformations for over 70% of test cases at interactive
speeds (with sub-second latency).

2 RELATEDWORK

By-example transformation using program synthesis. There
is a large body of prior work on using input/output examples to
synthesize transformations. One class of techniques focuses on
the so-called “row-to-row” transformations where one input row
maps to one output row (e.g., TDE [36] and FlashFill [34]), which

1Available at https://github.com/LiPengCS/Auto-Tables-Benchmark.

are orthogonal to the table-restructuring transformations in Auto-
Tables, because these systems do not consider operators shown
in Table 1 that can change the structure of tables. Other forms
of row-to-row transformations using partial specifications (e.g.,
transform-by-pattern [27, 56], transform-by-target [39, 41], and
transform-for-joins [46, 59]), are similarly also orthogonal to the
problem we study in this work.

A second class of by-example transformation consider “table-
to-table” operators, such as Foofah [38] and SQL-by-example tech-
niques like PATSQL [52], QBO [53], and Scythe [54]. These tech-
niques consider a subset of table-restructuring operators, which
fall short in the Auto-Tables task as we will show experimentally.
It is also worth pointing out that unlike Auto-Tables that takes
no examples, these systems require users to provide one example

output table, which is a significant amount of effort for users.
Computer vision models for object detection. Substantial

progress has been made in the computer vision literature on object
detection, with variants of CNN architectures being developed to
extract salient visual features from pictures [35, 42, 51].

Given the “visual” nature of our problem shown in Figure 1, and
the strong parallel between “pixles” in images and “rows/columns”
in tables, both of which form two-dimensional rectangles, ourmodel
architecture is inspired by CNN-architectures for object detection,
but specifically designed for our table transformation task.

Representing tables using deep models. Different techniques
have been proposed to represent tables using deep models (e.g.,
TaBERT [57], Tapas [37], Turl [32], etc.). Most of these focus on
natural-language (NL) aspects of tables, and tailor to NL-related
tasks (e.g., NL-to-SQL and entity-linking [37, 57]), which we show
are not suited for our table-transformation task, as it needs to
exploit the structural homogeneity of tables (e.g., cell similarity in
row/column-directions.).

Database schema design. There is a body of classical database
research on schema design, which typically involves normalizing or
decomposing one large table into multiple smaller tables, so that the
decomposed tables satisfy relational “normal forms” (3NF, BCNF,
etc.) [40], that can improve storage efficiency and avoid update
anomalies, among other things. In contrast, our work has the goal
of restructuring an input table to make it easy to query, which is
always single-table to single-table, and thus both orthogonal and
complementary to schema design (e.g., our transformed table can
then be subject to schema-design steps if it needs to be stored in
databases).

3 PRELIMINARY AND PROBLEM

In this section, we will introduce the table-restructuring operators
considered in this work, and describe our synthesis problem.

3.1 Table-restructuring operators

We consider 8 table-restructuring operators in our DSL, which are
listed in Table 1. Based on our analysis of tables in the wild (in user
spreadsheets and on the web), these operators cover a majority
of scenarios required to relationalize tables. Note that since our
synthesis framework uses self-supervision for training that is not
tied to the specific choices of operators, our approach can be easily
extended to include additional operators for new functionalities.

https://github.com/LiPengCS/Auto-Tables-Benchmark


Figure 4: An example input table (on the left) that requires two transformation steps to relationalize: (1) a “transpose” step to

swap rows and columns, (2) a “stack” step to collapse homogeneous columns (C to H) into two new columns. The resulting

output table (on the right) becomes substantially easier to query with SQL (e.g., to filter and aggregate).

In this section, we will introduce the first 4 operators and their
parameters shown in Table 1 (we will give additional details in our
technical report [1] in the interest of space).

Stack. Stack is a Pandas operator [20] (also known as melt
and unpivot in other contexts), that collapses contiguous blocks
of homogeneous columns into two new columns. Like shown in
Figure 1(a), column headers of the homogeneous columns (“19-Oct”,
“20-Oct”, etc.) are converted into values of a new column called
“Date”, making it substantially easier to query (e.g., to filter using a
range-predicate on the “Date” column).

Parameters. In order to properly invoke stack, one needs to pro-
vide two important parameters, start_idx and end_idx (listed in
the third column of Table 1), which specify the starting and ending
column index of the homogeneous column-group that needs to be
collapsed. In the case of Figure 1(a), we should use start_idx=3
(corresponding to column D) and end_idx=12 (column M).

Note that because in Auto-Tables we aim to synthesize com-
plete transformation steps that can execute on input tables, which
requires us to predict not only the operators (e.g., stack for the table
in Figure 1(a)), but also the exact parameters values correctly (e.g.,
slightly different parameters such as start_idx=4 and end_idx=12
would fail to produce the desired transformation).

Wide-to-long. Wide-to-long is an operator in Pandas [22], that
collapses repeating column groups into rows (similar functionality
can also be found in R [24]). Figure 1(b) shows such an example,
where “Revenue/Units Sold/Margin” from different years form
column-groups that repeat once every 3 columns. All these repeat-
ing column-groups can collapse into 3 columns, with an additional
“Year” column for year info from the original column headers, as
shown on the right in Figure 1(b). Observe that wide-to-long is
similar in spirit to stack as both collapse homogeneous columns,
although stack cannot produce the desired outcome when columns
are repeating in groups, as is the case in this example.

Parameters. wide-to-long has 3 parameters, where start_idx
and end_idx are similar to the ones used in stack. It has an addi-
tional parameter called “delim”, which is the delimitor used to split
the original column headers, to produce new column headers and
data-values. For example, in the case of Figure 1(b), “delim” should
be specified as “ - ” to produce: (1) a first part corresponding to
values for the new “Year” column (“2018”, “2019”, etc.); and (2)
a second part corresponding to the new column headers in the
transformed table (“Revenue”, “Units Sold”, etc.). Like in stack,
all 3 parameters here need to be instantiated correctly, before we
can synthesize the desired transformation.

Transpose. Transpose is a table-restructuring operator that
converts rows to columns and columns to rows, which is also used
in other contexts such as in matrix computation. Figure 1(c) shows
an example input table on the left, for which transpose is needed to
produce the output table shown on the right, which would become
relational and easy to query.

Parameters. Invoking transpose requires no parameters, as all
rows and columns will be transposed.

Pivot. Like transpose, pivot also converts rows to columns,
as the example in Figure 1(d) shows. However, in this case rows
show repeating-groups (whereas in wide-to-long columns show
repeating-groups), which need to be transformed into columns, like
shown on the right of Figure 1(d).

Parameters. Pivot has one parameter, “repeat_frequency”, which
specifies the frequency at which the rows repeat in the input table.
In the case of Figure 1(d), this parameter should be set to 4, as the
color pattern of rows would suggest.

Additional operators.Table 1 has 4 additional table-restructuring
operators, which we will briefly mention here. These include (1):
“explode” [16], which converts columns with composite values (vi-
olating the First Normal Form [30]) into atomic values, so that the
table can be queried using standard SQL; (2): “ffill” [17] that fills
values in structurally empty cells so that the table can be queried;
(3): “subtitle” that converts rows representing table sub-titles
into separate columns for ease of queries; and finally (4): a “none”
operator for input tables that are already relational, for which no
transformation is needed, which is needed explicitly so that we do
not “over-trigger” on tables that require no transformation.

3.2 Problem statement

Given these table-restructuring operators listed in Table 1, we now
introduce our synthesis problem as follows.

Definition 1. Given an input table 𝑇 , and a set of operators
O = {𝑠𝑡𝑎𝑐𝑘, 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒, 𝑝𝑖𝑣𝑜𝑡, . . .}, where each operator 𝑂 ∈ O
has a parameter space 𝑃 (𝑂). Synthesize a sequence of multi-step
transformations 𝑀 = (𝑂1 (𝑝1),𝑂2 (𝑝2), . . . ,𝑂𝑘 (𝑝𝑘 )), with 𝑂𝑖 ∈ O
and 𝑝𝑖 ∈ 𝑃 (𝑂𝑖 ) for all 𝑖 ∈ [𝑘], such that applying each step𝑂𝑖 (𝑝𝑖 ) ∈
𝑀 successively on 𝑇 produces a relationalized version of 𝑇 .

Note that in our task, we need to predict both the operator𝑂𝑖 and
its exact parameters 𝑝𝑖 correctly, each step along the way. This is
challenging as the search space is large – even for a single-step trans-
formation, there are thousands of possible operators/parameters to
choose from (e.g., a table with 50 columns that requires “stack” will
have 50x50 = 2500 possible parameters of start_idx and end_idx);
for two-step transformations the search space is already in the
millions (e.g., for “stack” alone it is 25002 ≈ 6𝑀). Given the large
search space, even a small difference in parameters can render the
resulting transformation incorrect, as shown below.

Example 1. Given the input table𝑇 shown on the left of Figure 4,
the ground-truth transformation𝑀 to relationalize𝑇 has two-steps:
𝑀 = (transpose(), stack(start_idx:“2015”, end_idx:“2020”)). Here
the first step “transpose” swaps the rows with columns, and the
second step “stack” collapses the homogeneous columns (between
column “2015” and “2020”). Note that this is the only correct se-
quence of steps – reordering the two steps, or using slightly different
parameters (e.g., start_idx=“2016” instead of “2015”), will all lead to
incorrect output, which makes the problem challenging.



Figure 5: Architecture overview of Auto-Tables

Also note that although we show synthesized programs using
our DSL syntax, the resulting programs can be easily translated into
different target languages, such as Python Pandas or R, which can
then be directly invoked. We should also note that two syntactically
different programs 𝑀1 and 𝑀2 may be semantically equivalent,
which can be verified under a set of algebraic rules. 2

4 AUTO-TABLES: LEARN-TO-SYNTHESIZE

We now describe our proposed Auto-Tables system, which learns
to synthesize transformations. We will start with an architecture
overview before we delve into individual components.

4.1 Architecture overview

We represent our overall architecture in Figure 5. The system op-
erates in two modes, with the upper-half of the figure showing
the offline training-time pipeline, and the lower-half showing the
online inference-time steps.

At offline training time, Auto-Tables uses three main compo-
nents: (1) A “training data generation” component that consumes
large collections of relational tables 𝑅, to produce (example, la-
bel) pairs; (2) An “input-only synthesis” module that learns-to-
synthesize using the training data, and (3) An “input-output re-
ranking” module that holistically considers both the input table
and the output table (produced from the synthesized program), to
find the most likely program.

The online inference-time part closely follows the offline steps,
where we directly invoke the two models trained offline (the last
two blue boxes shown in the figure).When given an input table from
users, we pass the table through our input-only synthesis model,
to identify top-𝑘 candidate programs, which are then re-ranked by
the input-output model for final predictions.

We now describe these three modules in turn below.

4.2 Self-supervised training data generation

As discussed earlier, the examples in Figure 1 demonstrate that
there are clear patterns in the input tables that we can exploit
(e.g., repeating column-groups and row-groups) to predict required
transformations for a given table. Note that these patterns are
“visual” in nature, which can likely be captured by computer-vision-
like algorithms.3

The challenge however, is that unlike computer vision tasks that
typically have large amounts of training data (e.g., ImageNet [31])

2For example, pivot is equivalent to transpose followed by wide-to-long, and wide-to-
long is equivalent to stack-split-pivot. Furthermore, the order of ffill and stack/wide-
to-long can be swapped, as long as they operate on disjoint subsets of columns, etc. In
our synthesis, we consider synthesized programs that are semantically equivalent to
the ground-truth program also correct.
3Like computer vision problems such as object detection where hand-crafted heuristics
are hard to write, the row/column-level patterns existing in our tables are also hard to
write with heuristics, which makes a learning-based method necessary.

Figure 6: Leverage inverse operators to generate training data.

In order to learn-to-synthesize operator𝑂 , we can start from

any relational table𝑅, apply its inverse operator𝑂−1 to obtain
𝑂−1 (𝑅). Given 𝑇 = 𝑂−1 (𝑅) as an input table, we know𝑂 must

be its ground-truth transformation, because 𝑂 (𝑂−1 (𝑅)) = 𝑅.

in the form of (image, label) pairs, in our synthesis task, there is no
existing labeled data that we can leverage. Labeling tables manually
from scratch are likely too expensive to scale.

Leverage inverse operators. To overcome the lack of data, we
propose a novel self-supervision framework leveraging the inverse
functional-relationships between operators, to automatically gen-
erate large amounts of training data without using humans labels.

Figure 6 shows the overall idea of this approach. For each op-
erator 𝑂 in our DSL that we want to learn-to-synthesize, we can
find its inverse operator (or construct a sequence of steps that are
functionally equivalent to its inverse), denoted by 𝑂−1. For exam-
ple, in the figure we can see that the inverse of “transpose” is
“transpose”, the inverse of “stack” is “unstack”, while the inverse
of “wide-to-long” can be constructed as a sequence of 3 steps
(“stack” followed by “split” followed by “pivot”).

The significance of the inverse operators, is that it allows us
to automatically generate training examples. Specifically, to build
a training example for operator 𝑂 (e.g., “stack”), we can sample
any relational table 𝑅, and apply the inverse of 𝑂 , or 𝑂−1 (e.g.,
“unstack”), to generate a non-relational table 𝑇 = 𝑂−1 (𝑅). For
our task, given 𝑇 as input, we know 𝑂 must be its ground-truth
transformation, since by definition 𝑂 (𝑇 ) = 𝑂 (𝑂−1 (𝑅)) = 𝑅, and 𝑅
is known to be relational. This thus allows us to generate (𝑇,𝑂) as
an (example, label) pair, which can be used for training.

Furthermore, we can easily produce such training examples at
scale, by sampling: (1) different relational tables 𝑅; (2) different
operators 𝑂 ; and (3) different parameters associated with each 𝑂 ,
therefore addressing our lack of data problem in Auto-Tables.

The overall steps of the data generation process are shown in
Algorithm 1, where Line 2, Line 3, Line 6 correspond to the sampling
of operators (𝑂), tables (𝑅), and parameters (𝑝), respectively, that
together creates diverse training examples. We note that in Line 4,
we perform an additional “data augmentation” step to create even
more diversity in training, which we explain below.

Data Augmentation. Data augmentation [50] is a popular tech-
nique in computer vision and related fields, to enhance training
data and improve model robustness. For example, in computer
vision tasks, it is observed that training using additional data gen-
erated from randomly flipped/rotated/cropped images, can lead
to improved model performance (because an image that contains



Algorithm 1: Auto-gen training examples
input :DSL operators O, large collections of relational tables R
output :Training table-label pairs: (𝑇,𝑂𝑝 )

1 𝐸 ← {}
2 foreach𝑂 in O do

3 foreach 𝑅 in R do

4 foreach 𝑅′ in Augment(𝑅) // Crop rows and columns

5 do

6 𝑝 ← sample valid parameter from space 𝑃 (𝑂 )
7 𝑂−1

𝑝′ ← construct the inverse of𝑂𝑝

8 𝑇 ← 𝑂−1
𝑝′ (𝑅

′ )
9 𝐸 ← 𝐸 ∪ { (𝑇,𝑂𝑝 ) }

10 return all training examples 𝐸

an object, say dog, should still contain the same object after it is
flipped/rotated, etc.) [50].

In the same spirit, we augment each of our relational table 𝑅
by (1) Cropping, or randomly sampling contiguous blocks of rows
and columns in 𝑅 to produce a new table 𝑅′; and (2) Shuffling, or
randomly reordering the rows/columns in 𝑅 to create a new 𝑅′. In
Auto-Tables, we start from over 15K relational tables crawled from
public sources (Section 5), and create around 20 augmented tables
for each relational table 𝑅. This further improves the diversity of
our training data and end-to-end model performance, as we will
show in the experiments.

4.3 Input-only Synthesis

After obtaining large amounts of training data in the form of (𝑇,𝑂𝑝 )
using self-supervision, we now describe our “input-only” model
that takes 𝑇 as input, to predict a suitable transformation 𝑂𝑝 .

4.3.1 Model architecture.
We develop a computer-vision inspired model specifically designed
for our task, which scans through rows and columns to extract
salient tabular features, reminiscent of how computer-visionmodels
extract features from image pixels for object detection.

Our model architecture in Figure 7 consists of four sets of layers:
(1) table embedding, (2) dimension reduction, (3) feature extraction,
and (4) output layers. We will describe each in turn below.

Table embedding layers. Given an input table 𝑇 , the embedding
layer encodes each cell in 𝑇 into a vector, to obtain an initial repre-
sentation of 𝑇 for training. At a high level, for each cell we want
to capture both (1) the “semantic features” (e.g., people-names vs.
company-names), and (2) the “syntactic feature” (e.g., data-type,
string-length, punctuation, etc.), because both semantic and syntac-
tic features provide valuable signals in our task, e.g., in determining
whether rows/columns are homogeneous or similar.

For semantic features, we use the pre-trained Sentence-BERT [48]
(a state-of-the-art embedding in NLP), which maps each cell into a
384-dimension vector that encodes its semantic meaning. For syn-
tactic features, we encode each cell using 39 pre-defined syntactic
attributes (data types, string lengths, punctuation, etc.). Concatenat-
ing the syntactic and semantic features produces a 423-dimension

vector for each cell. For an input table𝑇 with𝑛 rows and𝑚 columns,
this produces a 𝑛 ×𝑚 × 423 tensor as its initial representation.4

The left half of Figure 8 shows a simple sketch of this embedding
step, which we will explain in more detail later.

Dimension reduction layers. Since the initial representation from
the pre-trained Sentence-BERT has a large number of dimensions
(with information likely not needed for our task, which can slow
down training and increase the risk of over-fitting), we add dimension-
reduction layers using two convolution layers with 1× 1 kernels, to
reduce the dimensionality from 423 to 64 and then to 32, to produce
𝑛 ×𝑚 × 32 tensors. Note that we explicitly use 1 × 1 kernels so
that the trained weights are shared across all table-cells, to produce
consistent representations after dimension reduction.

Feature extraction layers. We next have feature extraction layers
that are reminiscent of CNN [43] but specifically design for our
table task. Recall from Figure 1 that the key signals for our task are:
• (1) identify whether values in row or column-directions are “simi-

lar” enough to be “homogeneous” (e.g., Figure 1(b) vs. Figure 1(c));
• (2) identify whether entire rows or columns are “similar” enough
to show repeating patterns (e.g., Figure 1(b) vs. Figure 1(d)).
Intuitively, if we were to hand-write heuristics, then signal (1)

above can be extracted by comparing the representations of adjacent
cells in row- and column-directions. On the other hand, signal (2)
can be extracted by computing the average representations of each
row and column, which can then be used to find repeating patterns.

Based on this intuition, and given the strong parallel between
the row/columns in tables and pixels in images, we design feature-
extraction layers inspired by convolution filters [43] that are popular
in CNN architectures to extract visual features from images [42, 51].
Specifically, as shown in Figure 7, we use 1x2 and 1x1 convolu-
tion filters followed by average-pooling, in both row- and column-
directions, to represent rows/columns/header. Unlike general 𝑛x𝑚
filter used for image tasks (e.g., 3x3 and 5x5 filters in VGG [51]
and ResNet [35]), our design of filters are tailored to our table task,
because:
• (a) 1x2 filters can easily learn-to-compute signal (1) above (e.g.,
1x2 filters with +1/-1 weights can identify the representation
differences between neighboring cells, which when averaged,
can identify homogeneity in row/column directions).

• (b) 1x1 filters can easily learn-to-compute signal (2) above (e.g.,
1x1 filters with +1 weights followed by average-pooling, corre-
spond to representations for entire rows/columns, which can be
used to find repeating patterns in subsequent layers).
We use an example below to demonstrate why these 1x1 and

1x2 filters are effective for extracting tabular features.
Example 2. Figure 8(a) shows a simplified example, when us-

ing Column-B of Figure 1(a) as input, which has a list of val-
ues “Sports”, “Electronics”, etc. These raw cell values first pass
through the embedding step, which produces a row of features
for each value, with both syntactic features (under the headers
“is-string”, “str-length”, etc.), and semantic features (under the
header “s-BERT” for sentence-BERT). This results in an embedding
table, where each row corresponds to an input cell.

4Like in computer vision problems that use a fixed “window”, we take the first 100
data-rows (plus a header) and 50 columns at the top-left of each input𝑇 (producing
a 101 × 50 × 423 tensor), which is sufficient to identify table patterns and predict
transformations, like the examples in Figure 1 would show.



Figure 7: Input-only synthesis: model architecture.

Next, we pass this embedding table through 1x1 and 1x2 con-
volution filters, which performs element-wise dot-product [43].
Assuming we have a simple 1x1 filter shown at the top of the figure,
with weights [1, 0, . . .]. Because only the first bit of this simple filter
is 1 and the rest is 0, performing a dot-product on the embedding
table essentially only extracts the “is-string” type information of
each cell, which in this case is all 1, leading to a matrix of [1, 1, 1, 1]
(since all cells are of type string). After average pooling, this results
in a single feature-value 1 to represent a specific aspect of this
entire column (in this case, type information).

We should note that this is just one example 1x1 filter – there
exists many such 1x1 filters (shown as stacked in the figure), all of
which have learned weights that extract different aspects of syntac-
tic/semantic information from input cells (string-length, semantic-
meaning, etc.), thus forming a holistic representation of values
in the column, to facilitate downstream comparison of “similar”
columns (e.g., to identify repeating rows/columns), as mentioned
above as signal (2) for our task.

The 1x2 filters, on the other hand, work to “compare” adjacent
values in the same column, which intuitively test for homogeneity.
For instance, assuming there is a simple 1x2 filter with only +1 and
-1 weights in the first column, as shown in the figure. Performing a
dot-product in this case “compares” the “is-string” type info for
neighboring cells, using a sliding window for rows from the top to
bottom, which results in [0, 0, 0] (because the convolution computes
1∗1+1∗(−1) = 0). This is again averaged to produce a feature-value
0, indicating no type difference, and thus good homogeneity, in the
list of given values in the column-direction.

This is again only one example 1x2 filter – there are many other
1x2 filters with different learned-weights (stacked in the figure) that
use different syntactic/semantic features to test for homogeneity
between neighboring cells, which corresponds to the signal (1) we
want to extract as mentioned earlier.

Recall that our CNN-inspired architecture uses convolution fil-
ters to scan line-by-line, in both row and column directions. So in
the row-direction our filters work in a similar manner.

The same operations in row-direction is shown in Figure 8(b),
which uses Row-2 of the table in Figure 1(a) as example. In this
case we have a list of heterogeneous cell values “Huffy 18 in.”,
“Sports”, “s_sk_101”, “5”, etc. In this case, performing a dot-product
using the same 1x2 filter produces a feature-vector of [0, 0, 1] (note
that the last entry is 1 because the “is-string” value for the last
two input cells are 1 and 0, leading to a convolution of 1∗1+(−1)∗0 =
1). Average-pooling would then produce 0.33 here, indicating in-
consistent types for the list of values in the row-direction (0 would

(a) Feature extraction for the input table in Figure 1(a), Column-B

(b) Feature extraction for the input table in Figure 1(a), Row-2

Figure 8: Example feature extraction using 1x1 and 1x2 filters

indicates homogeneity, with +1/-1 filter-weights). Other 1x2 fil-
ters would work in similar manners, to identify more signals of
heterogeneity in the row-direction, all of which are important in-
gredients to identify latent patterns in the table and corresponding
transformations.

These first-level of features-values from row/column-directions
will then go through a second-level of 1x1 and 1x2 convolution
filters, to compare and identify similar rows/columns (based on
row/column representation from 1x1 filters), to ultimately reveal
repeating rows and columns like the color-coded patterns show in
Figure 1. These tabular features will pass down to the next output
layers, for final classifications.

Output layers. Our output layers use two fully connected layers
followed by softmax classification, as shown in Figure 7, which
produces an output vector that encodes both the predicted operator-
type, and its parameters. For example, since we consider 8 possible
operator types in our DSL, we encode this as a 8-dimension one-
hot vector. Similarly, we represent parameters of each operator as
additional bits in the same output vector, resulting in an output
vector of 270 dimensions, which in effect makesmultiple predictions
(operator-type and parameters) simultaneously, for a given 𝑇 .

We apply standard softmax functions [45] on each prediction
vector, so that the output of each prediction is normalized into a
probability distribution.



4.3.2 Training and inference.
We now describe how we train this model shown in Figure 7, and
at inference time, use it to synthesize transformations.
Training time: Loss Function. Given a training input table 𝑇 ,
its ground truth operator 𝑂 and corresponding parameters 𝑃 =

(𝑝1, 𝑝2, ...), let 𝑂̂ and 𝑃̂ = (𝑝̂1, 𝑝̂2, ...) be the model predicted prob-
ability distributions of 𝑂 and 𝑃 respectively. The training loss on
𝑇 can be computed as the sum of loss on all predictions (both the
operator-type, and parameters relevant to this operator):

𝐿𝑜𝑠𝑠 (𝑇 ) = 𝐿 (𝑂, 𝑂̂ ) +
∑︂

𝑝𝑖 ∈𝑃,𝑝̂𝑖 ∈𝑃̂

𝐿 (𝑝𝑖 , 𝑝𝑖̂ ) (1)

Here 𝐿(𝑦, 𝑦̂) denotes the cross-entropy loss [45] commonly used
in classification – let 𝑦 be a 𝑛-dimensional ground truth one-hot
vector, and 𝑦̂ a model predicted vector, 𝐿(𝑦, 𝑦̂) is defined as:

𝐿 (𝑦, 𝑦̂) = −
𝑛∑︂
𝑖=1

𝑦𝑖𝑙𝑜𝑔 (𝑦̂𝑖 ) (2)

Given large amounts of training data T (generated from our self-
supervision in Section 4.2), we train our Auto-Tables model by
minimizing the overall training loss

∑︁
𝑇 ∈T 𝐿𝑜𝑠𝑠 (𝑇 ) using gradient

descent until convergence. We will refer to this trained model as 𝐻 .

Inference time: Synthesizing transformations. At inference
time, given an input 𝑇 , our model 𝐻 produces a probability for
any candidate step 𝑂𝑃 that is instantiated with operator 𝑂 and
parameters 𝑃 = (𝑝1, 𝑝2, . . .), denoted by 𝑃𝑟 (𝑂𝑃 |𝑇 ), as:

𝑃𝑟 (𝑂𝑃 |𝑇 ) = 𝑃𝑟 (𝑂) ·
∏︂
𝑝𝑖 ∈𝑃

𝑃𝑟 (𝑝𝑖 ) (3)

Using the predicted probabilities, finding the most likely trans-
formation step 𝑂∗

𝑃
given 𝑇 is then simply:

𝑂∗𝑃 = argmax
𝑂,𝑃

𝑃𝑟 (𝑂𝑃 |𝑇 ) (4)

This gives us the most likely one-step transformation given 𝑇 .
As we showed in Figure 4, certain tables may require multiple
transformation steps for our task.

To synthesize multi-step transformations, intuitively we can
invoke our predictions step-by-step until no suitable transformation
can be found. Specifically, given an input table𝑇 , at step (1) we can
find the most likely transformation 𝑂1

𝑃
for 𝑇 using Equation (4),

such that we can apply 𝑂1
𝑃
on 𝑇 to produce an output table 𝑂1

𝑃
(𝑇 ).

We then iterate, and at step (2) we feed 𝑂1
𝑃
(𝑇 ) as the new input

table into our model, to predict the most likely𝑂2
𝑃
(𝑇 ), and produce

an output table 𝑂2
𝑃
(𝑂1

𝑃
(𝑇 )). This iterates until at the 𝑘-th step, a

“none” transformation is predicted (recall that “none” is a no-op
operator in our DSL in Table 1, to indicate that the input table is
already relational and requires no transformations). The resulting
𝑀 = (𝑂1

𝑃
,𝑂2

𝑃
, . . .) then becomes the multi-step transformations we

synthesize for the original 𝑇 .
The procedure above is an intuitive sketch of multi-step syn-

thesis, though it considers only the top-1 choice at each step. In
general we need to consider top-k choices at each step, to find the
most likely multi-step transformations overall. We perform the
general search procedure of the most likely top-𝑘 steps using beam
search [45], as outlined in Algorithm 2.

We start in Algorithm 2 with an empty pipeline𝑀 and the origi-
nal input table 𝑇 . At each iteration, we invoke model 𝐻 on top-𝑘

Algorithm 2:Multi-step pipeline synthesis by top-k search
input :Auto-Tables model 𝐻 , input table𝑇
output :Top-𝑘 predicted pipelines by probabilities:𝑀1,𝑀2 ...𝑀𝑘

1 𝐶𝑎𝑛𝑑𝑠 = [ ],𝑀 ← [],𝑀.𝑝𝑟𝑜𝑏 = 1 // initialize

2 𝐵𝑐𝑢𝑟 ← [(𝑇,𝑀 ) ]
3 for i = 1, 2, ... L do

4 𝐵𝑛𝑒𝑥𝑡 ← []
5 foreach (𝑇,𝑀 ) in 𝐵𝑐𝑢𝑟 do

6 𝑂𝑝1ˆ ,𝑂𝑝2ˆ ., .𝑂𝑝𝑘
ˆ ← 𝐻 (𝑇 ) // top k predictions

7 for j = 1, 2, ...k do

8 𝑇𝑛𝑒𝑥𝑡 ← 𝑂𝑝 𝑗
ˆ (𝑇 ) ,𝑀𝑛𝑒𝑥𝑡 ← 𝑀.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑂𝑝 𝑗

ˆ )
9 𝑀𝑛𝑒𝑥𝑡 .𝑝𝑟𝑜𝑏 ← 𝑀.𝑝𝑟𝑜𝑏 ×𝑂𝑝 𝑗

ˆ .𝑝𝑟𝑜𝑏

10 if 𝑂𝑝 𝑗
ˆ = 𝑛𝑜𝑛𝑒 then

11 𝐶𝑎𝑛𝑑𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑀𝑛𝑒𝑥𝑡 )
12 else

13 𝐵𝑛𝑒𝑥𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 ( (𝑇𝑛𝑒𝑥𝑡 , 𝑀𝑛𝑒𝑥𝑡 ) )
14 sort 𝐵𝑛𝑒𝑥𝑡 by𝑀.𝑝𝑟𝑜𝑏, 𝐵𝑐𝑢𝑟 ← 𝐵𝑛𝑒𝑥𝑡 [: 𝑘 ]
15 Sort𝐶𝑎𝑛𝑑𝑠 by𝑀.𝑝𝑟𝑜𝑏

16 return𝐶𝑎𝑛𝑑𝑠 [: 𝑘 ]

output tables from the last iteration, to obtain the top 𝑘 candidate
operators for each (Line 6). We perform the predicted transforma-
tions and expand each𝑀 with one additional predicted step to get
𝑀𝑛𝑒𝑥𝑡 (Line 8), whose probability can be computed as the product
of the probability of its operators (Line 9). If a predicted operator is
“none", we reach a terminal state and save it as a candidate pipeline
(Line 10-11). Otherwise, we keep the current pipeline in the beam
for further search (Line 13). At the end of each iteration, we rank all
partial pipelines by probabilities, and keep only the top 𝑘 pipelines
with the highest probability (Line 14). We terminate the search after
a total of 𝐿 steps (Line 3), and return the top-𝑘 with the highest
probabilities as output (Line 15-16).

We demonstrate Algorithm 2 using the following example.

Example 3. We revisit Example 1. Given the input table𝑇 shown
on the left of Figure 4, we invoke our trained model 𝐻 to predict
likely transformations, where the top-2 is: (1)𝑂1: “transpose” with
probability 0.5, which leads to an output table𝑂1 (𝑇 ) (shown in the
middle of Figure 4), (2) 𝑂2: “stack” (with parameters: start-idx =
Col-B, end-idx=Col-E) which also has a probability 0.5, that will lead
to an output table𝑂2 (𝑇 ). We keep both 1-step candidates {𝑂1,𝑂2},
and continue our search of possible second steps.

For the second step, if we follow the path of 𝑂1 we will operate
on 𝑂1 (𝑇 ) as the new input table, for which the top-2 predicted
steps is: (1) 𝑂3 “stack” (start-idx = Col-C, end-idx=Col-E), with
probability 0.8, and (2)𝑂4 “none” with probability 0.1. Alternatively,
if we follow the path of 𝑂2 we would have 𝑂2 (𝑇 ) as the new input,
for which we also generate its top-2. This leads to a total of 2×2 = 4
possible 2-step transformations, from which we pick the top-2 with
the highest probabilities, to continue our search with 3-steps, etc.

We rank all resulting multi-step transformations by probabilities.
This returns {𝑂1,𝑂3} as the most likely (with probability 0.5*0.8
= 0.4), which is indeed the desired transformation as discussed in
Example 1.



Figure 9: Input/output re-ranking: model architecture.

4.4 Input/output Re-ranking

So far, our synthesis model is “input-only”, as it only uses the
characteristics of the input table 𝑇 to predict transformations 𝑀 .
However, sometimes this is not enough, as the characteristics of the
output table,𝑀 (𝑇 ) would also provide useful signals. We illustrate
this using the following example.

Example 4. In Example 3, based only on the input 𝑇 in Figure 4,
ourmodel predicts both𝑂1 “transpose” and𝑂2 “stack” as possible
choices (both with probability=0.5). “Stack” was incorrectly ranked
high, because from𝑇 alone “stack” looks plausible, as𝑇 has a large
number of homogeneous columns (Col-B to E), which fits the typical
pattern for “stack” as shown in Figure 1(a).

We can better predict whether 𝑂1 or 𝑂2 is more suitable, if we
apply both programs on 𝑇 and inspect the resulting output 𝑂1 (𝑇 )
and 𝑂2 (𝑇 ). It can be verified that for 𝑂1 (𝑇 ) values in the same
columns are homogeneous, whereas 𝑂2 (𝑇 ) (using “stack”) leads
to a table where values such as “ES”, “MS” (from “GroupID”) become
intermixed with integers in the same columns, which is not homo-
geneous and not ideal, and is something that our tabular model can
detect and penalize. Inspecting the output 𝑂1 (𝑇 ) and 𝑂2 (𝑇 ) thus
allows us to correctly re-rank 𝑂1 as a more likely transformation
than 𝑂2, which is difficult when a model looks at 𝑇 alone.

This motivates us to develop an “input/output-based” re-ranking
model as shown in Figure 9. After the input-only synthesis model
(Section 4.3) produces top-𝑘 likely operators {𝑂𝑝𝑖 , 𝑖 ∈ [𝑘]} (e.g.,
we consider top-8 operators for re-ranking in our experiments),
the re-ranking model will look at all output transformed tables
{𝑂𝑝𝑖 (𝑇 ), 𝑖 ∈ [𝑘]} and aims to generate a re-ranking score for each
of them indicating which operator is more suitable based on the
output transformed tables. To do so, similar to the input-only model,
we need to first convert each transformed table into a feature vector
using table embedding, dimension reduction and feature extraction
layers. Since the input-only model has been trained well at this time,
we directly reuse the architecture and weights of these layer from
the pre-trained input-model 5. We then concatenate the feature
vectors of all transformed tables and use fully connected layers
followed by a softmax function to produce a 𝑘-dimension vector
as re-ranking scores. For training, we consider the re-ranking as
a classification task to predict which of the 𝑘 transformed tables
is the ground truth. Thus, the training loss can be computed using
cross-entropy loss. We train the re-ranking model using the same
training data generated from self-supervision in Section 4.2

5We remove the fully-connected output layers from the input model, which are specific
to predicting synthesis outcomes and not relating to extracting table features.

5 EXPERIMENTS

We perform extensive evaluation on the performance of different
algorithms, using real test data. The results show that our method
significantly outperforms the baseline methods in terms of both
quality and efficiency. Our labeled benchmark data is available on
GitHub6 for future research.

5.1 Experimental Setup

Benchmarks. To study the performance of our method in real-
world scenarios, we compile an ATBench benchmark using real
cases from three sources: (1) online user forums, (2) Jupyter note-
books, and (3) real spreadsheet-tables and web-tables.

Forums. Both technical and non-technical users ask questions on
forums, regarding how to restructure their tables. As Figure 3 shows,
users often provide sample input/output tables to demonstrate their
needs. We sample 23 such questions from StackOverflow and Excel
user forums as test cases. (We feed Auto-Tableswith user-provided
input tables, and evaluate whether the correct transformation can
be synthesized to produce the desired output table given by users).

Notebooks. Data scientists frequently restructure tables using
Python Pandas, often inside Jupyter Notebooks. We sample 79
table-restructuring steps extracted from the Jupyter Notebooks
crawled in [55, 56] as our test cases. We use the transformations
programmed by data scientists as the ground truth.

Excel+Web. A large fraction of tables “in the wild” require trans-
formations before they are fit for querying, as shown in Figure 1
and 2. We sample 56 real web-tables and 86 spreadsheet-tables
(crawled from a search engine) that require such transformations,
and manually write the desired transformations as the ground truth.

Combining these sources, we get a total of 244 test cases as our
ATBench (of which 26 cases require multi-step transformations).
Each test case consists of an input table 𝑇 , ground-truth transfor-
mations𝑀𝑔

7, and an output table𝑀𝑔 (𝑇 ) that is relational. Detailed
statistics of the benchmark can be found in our technical report [1].

Evaluation Metrics. We evaluate the quality and efficiency of
different algorithms in synthesizing transformations.

Quality. Given an input table 𝑇 , an algorithm 𝐴 may generate
top-𝑘 transformations (𝑀̂1, 𝑀̂2, ...𝑀̂𝑘 ), ranked by probabilities, for
users to inspect and pick. We evaluate the success rate of synthesis
using the standard 𝐻𝑖𝑡@𝑘 metric [49], defined as:

𝐻𝑖𝑡@𝑘 (𝑇 ) =
𝑘∑︂
𝑖=1

1(𝑀̂𝑖 (𝑇 ) = 𝑀𝑔 (𝑇 ))

which looks for exact matches between the top-𝑘 ranked predictions
(𝑀̂𝑖 (𝑇 ), 1 ≤ 𝑖 ≤ 𝑘) and the ground-truth𝑀𝑔 (𝑇 ). The overall𝐻𝑖𝑡@𝑘

on the entire benchmark, is then simply the average across all test
cases 𝑇 . We report 𝐻𝑖𝑡@𝑘 up to 𝑘 = 3.

Efficiency. We report the latency of synthesis using wall-clock
time. All experiments are conducted on a Linux VM with 24 vCPU
cores, and 4 Tesla P100 GPUs.

6https://github.com/LiPengCS/Auto-Tables-Benchmark
7It should be noted that for some test cases, there may be more than one transformation
sequence that can produce the desired output. We enumerate all such sequences in
our ground-truth, and mark an algorithm as correct as long as it can synthesize one
ground-truth sequence.

https://github.com/LiPengCS/Auto-Tables-Benchmark


Table 2: Quality comparison using Hit@k, on 244 test cases

Method

No-example methods By-example methods

Auto-Tables TaBERT TURL GPT-3.5-fs FF FR SQ SC

Hit @ 1 0.570 0.193 0.029 0.196 0.283 0.336 0 0
Hit @ 2 0.697 0.455 0.071 - - - 0 0
Hit @ 3 0.75 0.545 0.109 - - - 0 0

Upper-bound - - - - 0.471 0.545 0.369 0.369

Table 3: Synthesis latency per test case

Method Auto-Tables

Foofah

(excl. 110 timeout cases)

FlashRelate

(excl. 91 timeout cases)

50 %tile 0.127s 0.287s + human effort 3.4s + human effort
90 %tile 0.511s 22.891s + human effort 57.16s + human effort
95 %tile 0.685s 39.188s + human effort 348.6s + human effort
Average 0.224s 5.996s + human effort 59.194s + human effort

Table 4: Ablation Studies of Auto-Tables

Method Full No Re-rank

No Re-rank &

No Aug No Bert No Syn 1x1 Only 5x5

Hit@1 0.570 0.508 0.463 0.467 0.504 0.471 0.480
Hit@2 0.697 0.652 0.582 0.627 0.648 0.607 0.594
Hit@3 0.75 0.730 0.656 0.693 0.676 0.652 0.660

Table 5: Sensitivity to different semantic embeddings.

Embedding methods sentenceBERT fastText GloVe No Semantic

Hit@1 0.508 0.529 0.525 0.467
Hit@2 0.652 0.656 0.676 0.627
Hit@3 0.730 0.734 0.734 0.734

Avg. latency per-case
w/ this embedding 0.299s 0.052s 0.050s 0.026s

Methods Compared. We compare with the following methods.
• Auto-Tables. This is our approach and is the only method that

does not require users to provide input/output examples (unlike
other existing methods). In order to train Auto-Tables, we gen-
erate 1.4M (input-table, transformation) pairs evenly distributed
across 8 operators, following the self-supervision procedure (Sec-
tion 4.2), using 15K base relational tables crawled from public
sources 8. We take a fixed size of input with the first 100 rows
and 50 columns at the top-left corner of each table and use zero-
padding for tables with less rows or columns. We implement our
method using PyTorch [47], trained using Adam optimizer, with
a learning rate of 0.001 for 50 epochs, using a batch size of 256.

• Foofah (FF) [38] synthesizes transformations based on input/output
examples. We use 100 cells from the top-right of the ground-truth
output table for Foofah to synthesize programs, which simulate
the scenario where a user types in 100 output cells (a generous
setting as it is unlikely that users are willing to provide so many
examples in practice). We test Foofah using the authors original
implementation [14], and we time-out each case after 30 minutes.

• Flash-Relate (FR) [28] is another approach to synthesize table-
level transformations, which howeverwould require input/output
examples.We used an open-source re-implementation of FlashRe-
late [25] (since the original system is not publicly available), and
we provide it with 100 example output cells from the ground-
truth. We use a similar time-out of 30 minutes for each test case.

• SQLSynthesizer (SQ) [58] is a SQL-by-example algorithm that
synthesizes SQL queries based on input/output examples. We use
the authors implementation [26], provide it with 100 example
output cells, and also set a time-out of 30 minutes.

• Scythe (SC) [54] is another SQL-by-example method. We used
authors implementation [23] and provide it with 100 example
output cells, like previous methods.

• TaBERT [57] is a table representation approach developed in
the NLP literature, and pre-trained using table-content and cap-
tions for NL-to-SQL tasks. To test the effectiveness of TaBERT
in our transformation task, we replace the table representation
in Auto-Tables (i.e., output of the feature extraction layer in
Figure 7) with TaBERT’s representation, and train the following
fully connected layers using the same training data as ours.

• TURL [32] is another table representation approach for data
integration tasks. Similar to TaBERT, we test the effectiveness of
TURL by replacing Auto-Tables representation with TURL’s.

8We use the dataset from [44], which has thousands of relational Power-BI models
crawled from public sources. We sample 15K fact and dimension tables from these
models as our “base” relational tables. Since our training data is collected via Power-BI
data models, they are completely separate from our test data (Web and Excel tables).

• GPT [29] is a family of large language models pre-trained on text
and code, which can follow instructions to perform a variety of
tasks. While we do not expect GPT to perform well on Auto-
Tables tasks, we perform a comparison nevertheless, using GPT-
3.59 as a baseline.We perform few-shot in-context learning, using
a description of the operators, together with pairs of (input-table,
desired-operator) in the prompt to demonstrate the task. We
provide one example demonstration per operator, for a total of
7 examples (which fit in the context allowed by GPT-3.5). We
denote this method as GPT-3.5-fs (few-shot).10

5.2 Experiment Results

Quality Comparison. Table 2 shows the comparison between
Auto-Tables and baselines, evaluated on our benchmark with 244
test cases. We group all methods into two classes: (1) “No-example
methods” that do not require users to provide any input/output
examples, which include our Auto-Tables, and variants of Auto-
Tables that use TaBERT and TURL for table representations, re-
spectively; and (2) “By-example methods” that include Foofah (FF),
FlashRelate (FR), SQLSynthesizer (SQ), and Scythe (SC), all of which
are provided with 100 ground truth example cells.

As we can see, Auto-Tables significantly outperforms all other
methods, successfully transforming 75% of test cases in its top-3,
without needing users to provide any examples, despite the chal-
lenging nature of our tasks. Recall that in our task, even for a
single-step transformation, there are thousands of possible opera-
tors+parameters to choose from (e.g., a table with 50 columns that
requires “stack” will have 50x50 = 2,500 possible parameters of
start_idx and end_idx) and for two-step transformations, the search
space is in the millions (e.g., for “stack” alone it is 25002 ≈ 6𝑀),
which is clearly non-trivial.

Compared to other no-example methods, Auto-Tables outper-
forms TaBERT and TURL respectively by 37.7 and 54.1 percentage
point on Hit@1, 20.5 and 64.1 percentage point on Hit@3. This
shows the strong benefits for using our proposed table represen-
tation and model architecture, which are specifically designed for
the table transformation task (Section 4.3).

Compared to by-example methods, the improvement of Auto-
Tables is similarly strong. Considering the fact that these baselines
use 100 output example cells (which users need to manually type),
whereas our method uses 0 examples, we argue that Auto-Tables
is clearly a better fit for the table-restructuring task at hand. Since

9We used the “gpt-3.5-turbo” API endpoint, accessed in July 2023.
10Note that GPT-3.5-fs is still a no-example method, as we use general-purpose exam-
ples to demonstrate each operator in our few-shot examples, which are fixed and do
not vary based on different input tables.



Figure 10: Auto-Tables latency analysis Figure 11: Vary input size Figure 12: Vary number of filters

some of these methods (FF and FR) only return top-1 programs, we
also report in the last row their “upper-bound” coverage, based on
their DSL (assuming all transformations supported in their DSL can
be successfully synthesized).

Additional quality results. We report additional results on qual-
ity, such as a breakdown by benchmark sources, and Hit@K in the
presence of input tables that are already relational (for which Auto-
Tables should correctly detect and not over-trigger, by performing
no transformations), in our technical report [1].

Running Time. Table 3 compares the average and 50/90/95-th
percentile latency, of all methods to synthesize one test case. Auto-
Tables is interactive with sub-second latency on almost all cases,
whose average is 0.224. Foofah and FlashRelate take considerably
longer to synthesize, even after we exclude cases that time-out after
30 minutes. This is also not counting the time that users would
have to spend typing in output examples for these by-example
methods, which we believe make Auto-Tables substantially more
user-friendly for our transformation task.

Figure 10 shows the average latency of Auto-Tables, on cases
with different number of non-empty input cells. As we can see, the
latency grows linearly as the number of cells increases, but since
we only need to use at most the top-left 100 rows and 50 columns to
correctly synthesize a program, this is always bounded by a couple
of seconds at most. Furthermore, we notice that the running time
is dominated by SentenceBERT embedding, which accounts for
91.5% of the latency. In comparison, the actual inference time of
Auto-Tables (the green line) is very small and almost constant.

Ablation Study We perform ablation studies to understand the
benefit of Auto-Tables components, which is shown in Table 4.

Contribution of Input/Output Re-Ranking. To study the contri-
bution of our re-ranking model (Section 4.4), we compare the per-
formance of Auto-Tables with and without re-ranking. Table 4
shows that our “Full” method (with re-ranking) produces substan-
tially better Hit@1 and Hit@2 compared to “No Re-rank”.

Contribution of Data Augmentation. To study the benefits of
data augmentation in training data generation (Section 4.2), we
disable augmentation when generating training data (i.e., using
only the base relational tables). Table 4 shows this result under “No
Aug”, which suggests that our Hit@k drop substantially, underscor-
ing the importance of data augmentation.

Contribution of Embeddings. Recall that we use both syntactic
embedding and semantic embedding (sentenceBERT) to represent
each cell (Section 4.3). To understand their contributions, we remove
each embedding in turn, and the results are shown under “No Bert”
and “No Syntactic” in Table 4. Both results show a substantial drop
in performance, confirming their importance (semantic embedding

with sentenceBERT is likely more important, as removing it leads
to a more significant drop).

Contribution of 1D Filters. Recall that we use convolution filters
of size 1x1 and 1x2 to extract features from rows and columns
(Section 4.3). To understand the effectiveness of this design, we
evaluate our method with alternative filters. First, we replace all
the 1x2 filters with 1x1 filters. The result is labeled “1x1 Only”
and shows a significant drop. Second, we replace all filters with
filters of size 5x5 that is common in computer vision tasks [42, 51],
which leads to another substantial drop. Both results confirm the
effectiveness of our model design that is tailored to table tasks.

Sensitivity analysisWeperform sensitivity analysis to understand
the effect of different settings in Auto-Tables.

Varying Input Size. In Auto-Tables, we feed the top 100 rows
and left-most 50 columns from the input table 𝑇 into the model,
which is typically enough to correctly predict the right transforma-
tions. To understand its effect on model performance, in Figure 11,
we vary the number of rows/columns used here and show the
input-only model performance. As we can see, when we increase
the number of rows/columns that the model uses, the resulting
quality improves until it plateaus at about 30 columns and 50 rows.

Varying Number of Filters. Figure 12 shows the quality of Auto-
Tables input-only model with different numbers of convolution
filters (the total number of 1x1 and 1x2 filters for rows/columns
before AvgPool in the feature extraction layer in Figure 7). As we
can see, using 32 filters is substantially better than 4 filters, as it
can extract more features. However, the improvement beyond 32
filters is not significant, suggesting diminishing returns beyond a
certain level of model capacity.

Additional results. We report additional results such as sensitiv-
ity to different embeddings, error analysis, and accuracy of param-
eter predictions, in [1] in the interest of space.

6 CONCLUSIONS AND FUTUREWORK

We propose a new problem of synthesizing transformations to rela-
tionalize tables. By leveraging visual characteristics of input tables
using compute-vision-inspired algorithms, we obviate the need
for users to provide input/output examples, which is a substantial
departure from prior work. Future directions include extending
the functionality to a broader set of operators, and exploring the
applicability of this technique on other classes of transformations.
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