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In this paper, we present an algorithmic study on how to surpass competitors in popularity by strategic promotions in social networks.

We first propose a novel model, in which we integrate the Preferential Attachment (PA) model for popularity growth with the

Independent Cascade (IC) model for influence propagation in social networks called PA-IC model. In PA-IC, a popular item and a

novice item grab shares of popularity from the natural popularity growth via the PA model, while the novice item tries to gain extra

popularity via influence cascade in a social network. The popularity ratio is defined as the ratio of the popularity measure between the

novice item and the popular item. We formulate Popularity Ratio Maximization (PRM) as the problem of selecting seeds in multiple

rounds to maximize the popularity ratio in the end. We analyze the popularity ratio and show that it is monotone but not submodular.

To provide an effective solution, we devise a surrogate objective function and show that empirically it is very close to the original

objective function while theoretically, it is monotone and submodular. We design two efficient algorithms, one for the overlapping

influence and non-overlapping seeds (across rounds) setting and the other for the non-overlapping influence and overlapping seed

setting, and further discuss how to deal with other models and problem variants. Our empirical evaluation further demonstrates that

the proposed PRM-IMM method consistently achieves the best popularity promotion compared to other methods. Our theoretical and

empirical analyses shed light on the interplay between influence maximization and preferential attachment in social networks.

CCS Concepts: • Information systems → Data mining; Computational advertising; Social networking sites.

Additional Key Words and Phrases: graph algorithms, preferential attachment, popularity ratio maximization

1 INTRODUCTION

Influence maximization (IM) is the problem of finding a subset of nodes (seed nodes) in a social network that could

maximize the spread of influence [18]. It is a well-studied problem with applications on viral marketing, information

propagation monitoring and control, etc (cf. [8, 23]). While most studies treat influence maximization as a stand-alone

problem for viral marketing, in this paper, we want to explore the means of using influence maximization to boost the

popularity of an item (an idea, a product, etc) and surpass a competitor in a natural growth environment.

Consider the following hypothetical motivating example. Alice opened her new restaurant, Café Alice, at a local

shopping mall. However, a popular restaurant Bob’s Kitchen is in the same mall. Without promotion, Alice would

definitely lose many customers to Bob’s Kitchen. Thus Alice wants to distribute free-dish coupons to selected people,

hoping them to propagate the information about Café Alice and attract more people to her restaurant, boosting the

popularity of her restaurant in a short period of time to catch up or even surpass Bob’s Kitchen. Similar situations

arise in online social media, such as a new blogger or podcaster trying to increase popularity through promotion in

social networks. Different from pure viral marketing, popularity growth has a natural rich-get-richer effect independent
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of the social network, meaning that the popular item would naturally attract more customers or users. For example,

customers typically check nearby restaurants’ popularity ratings on mobile apps such as Yelp for restaurant selection,

making more people visit the popular restaurant. This effect certainly gives a hard time for the new restaurant to catch

up. Thus, incentive promotion by the new restaurant needs to incorporate this factor when deciding on viral marketing

strategies.

This paper integrates the natural popularity growth with the incentive promotion into one coherent model to solve

the above problem. In particular, the preferential attachment (PA) [1, 28, 36] is a well-known model for the natural

rich-get-richer effect of popularity growth, while the independent cascade (IC) model [18] is a classical model for

influence propagation. We integrate these two models into the novel PA-IC model to characterize the combined effect of

natural popularity growth and incentive promotion. More specifically, in a multi-round setting, we model the popularity

growth of a novice item and a popular item. We use 𝑑
𝑝
𝑡 and 𝑑𝑛𝑡 to denote the popularity of the popular and novice items

respectively, at the end of round 𝑡 . Each round, 𝑧 number of customers pick from these two items with probability

proportional to their popularity, realizing the preferential attachment model. Meanwhile, the novice item executes a

promotion plan, selecting a set of seeds 𝑆𝑡 in round 𝑡 for 𝑇 consecutive rounds, and the influence spread generated by

the seed set 𝑆𝑡 would add to the popularity measure of the novice item at the end of round 𝑡 . We define 𝑟𝑡 = 𝑑𝑛𝑡 /𝑑
𝑝
𝑡

as the popularity ratio in round 𝑡 . The promotion task of the novice item is defined as the following popularity ratio

maximization (PRM) problem: Given (a) the social network and its IC model parameters, (b) the initial popularity

measures 𝑑
𝑝

0
and 𝑑𝑛

0
, and (c) a promotion budget 𝑘 , find 𝑘 seeds and allocate them into 𝑇 consecutive rounds such

that the popularity ratio 𝑟𝑇 at the end of round 𝑇 is maximized. Depending on whether we allow overlapping seeds

(OS) across rounds and whether repeated activation of the same nodes in different rounds are repeatedly counted

(overlapping influence, OI), we further consider different settings such as the overlapping influence and non-overlapping

seeds (OINS) and the non-overlapping influence and overlapping seeds (NIOS).

For both OINS and NIOS settings, we derive the formula for the popularity ratio and show that it is monotone but

not submodular, indicating that direct optimization on this objective function may be complex. To provide an effective

solution, we simplify the objective function and obtain a surrogate function and show that empirically it is very close

to the original objective function while theoretically, it is monotone and submodular. Based on the reverse influence

sampling approach [3] and the Influence Maximization via Martingales(IMM) algorithm [32], we design PRM-IMM

algorithms to solve this surrogate problem for the two settings, and prove their theoretical guarantees. We further

discuss how to handle other models and problem variants, such as when the popular item also conducts promotion,

and when the novice item wants to use the minimum budget to surpass the popular item in a given time limit. Our

empirical evaluation demonstrates that the proposed PRM-IMM method always achieves the best popularity promotion

compared to other methods.

One important point we demonstrate both analytically and empirically is that the seed allocation of the novice item

is tightly dependent on the natural growth of the environment as well as the popularity of the popular item. This

point indicates that the PRM task is quite different from the classical influence maximization — the promotion of the

novice item has to consider the popularity growth and its relative position against the popular item, while the classical

influence maximization only targets at increasing one’s own influence spread or popularity.

In summary, our contributions include: (a) proposing the PA-IC model that integrates preferential attachment with

independent cascade propagation model; (b) formulating the PRM problem and studying its properties; and (c) designing

an efficient algorithm to solve the PRM problem, and discussing the extension to other problem variants. To the best of
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our knowledge, this is the first study that integrates preferential attachment and an influence propagation model into a

coherent popularity growth model and provides an algorithmic study on such an optimization problems.

2 RELATEDWORKS

Preferential Attachment. Yule firstly considered using the preferential attachment to explain the power-law distribu-

tion of flowering plants [36]. A clearer and more general development of how preferential attachment leads to a power

law was given by Simon [28]. The BarabÃąsi-Albert (BA) model shows that the power-law degree distribution in the

real networks can be produced by the combination of growth and preferential attachment [1]. Preferential attachment

is now the standard model for the rich-get-richer effect.

Influence Maximization. Domingos and Richardson first study influence maximization (IM) [12, 27]. Then it is

formulated as an optimization problem by Kempe et al. [18], who define the famous independent cascade and linear

threshold models, showing that influence maximization under these models are NP-hard, and connecting the problem to

monotone and submodular function maximization. Influence maximization has been extensively studied (see surveys [8,

23]). One direction is to improve the scalability of the algorithms [3, 9–11, 14, 17, 19, 21, 35]. The state-of-the-art scalable

solution is based on the reverse influence sampling (RIS) approach first proposed by Borg et al. [3], and later improved

and refined by a series of studies [6, 26, 31–33]. Our algorithms are also based on the RIS approach and is adapted from

the IMM algorithm of [32].

Another related direction is competitive influence maximization for multiple items [4, 8, 15, 16, 22, 24]. However, all

these studies focus on the competitive diffusion of multiple items in social networks. In contrast, the competition in our

model stems from the popularity growth dictated by preferential attachment, and influence maximization is only a tool

for the novice item to increase popularity. To the best of our knowledge, we are the first to consider popular growth via

both the PA effect and network diffusion, and study their nontrivial interplay in an optimization problem.

3 MODEL AND PROBLEM DEFINITION

In this section, we introduce the PA-IC model, which integrates the preferential attachment (PA) mechanism for

popularity growth with the independent cascade (IC) model for influence propagation. The PA mechanism models show

two items, a popular item and a novice item, divide the shares of popularity from the natural growth of the customer

base, while the novice item further utilizes the IC model propagation to promote its popularity in order to catch up

with the popular item. Based on the PA-IC model, we define the optimization problem of popularity ratio maximization,

which characterizes how to allocate the promotional budget of the novice item to achieve the best promotion results.

3.1 PA-IC Model

Preferential attachment (PA) [1] is a well-known model to characterize the rich-get-richer effect in the growth of

networks or popularity. The basic form of the PA model is as follows. Let 𝑑𝑖𝑡 be the popularity measure of item 𝑖 at

time 𝑡 . When a number of 𝑧 users come at time 𝑡 , each user selects item 𝑖 with probability proportional to 𝑑𝑖𝑡 . Thus

popularity grows proportionally, i.e., 𝑑𝑖
𝑡+1

= 𝑑𝑖𝑡 + 𝑧 · 𝑑𝑖𝑡/
∑

𝑗 𝑑
𝑗
𝑡 , where 𝑧 is the natural growth parameter.

Beyond the natural growth of popularity governed by the PA mechanism, we would like to incorporate the influence

propagation model for popularity promotion. Independent cascade (IC) model [18] is a classical diffusion model widely

adopted in the information and influence propagation literature, and its parameters can be effectively learned in many

applications (e.g. [2, 8]). In the IC model, a social network is modeled as a directed graph 𝐺 = (𝑉 , 𝐸, 𝑝), where 𝑉 is the

set of 𝑁 = |𝑉 | nodes representing individuals, 𝐸 is the set of𝑀 = |𝐸 | directed edges representing influence relationships
3
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between pairs of individuals, and 𝑝 : 𝐸 → (0, 1] gives the influence probability on every edge, i.e., 𝑝 (𝑢, 𝑣) is the influence
probability on edge (𝑢, 𝑣) ∈ 𝐸. Nodes have two states, active and inactive. Nodes that have been activated will always

remain active. The propagation process starts from a seed set 𝑆 ⊆ 𝑉 in discrete time steps. At step 𝜏 = 0, only the nodes

in 𝑆 are active. At step 𝜏 ≥ 1, a node 𝑢 activated at step 𝜏 − 1 attempts to activate each of its inactive out-neighbor 𝑣 with

success probability 𝑝 (𝑢, 𝑣). Propagation terminates when no more nodes are activated. A key measure is the influence

spread of the seed set 𝑆 , denoted as 𝜎 (𝑆), which is the expected number of activated nodes at the end of propagation

starting from the seed set 𝑆 . The IC model has the following equivalent live-edge graph description. A random live-edge

graph 𝐿 is sampled from 𝐺 = (𝑉 , 𝐸, 𝑝) such that every edge (𝑢, 𝑣) ∈ 𝐸 has an independent probability of 𝑝 (𝑢, 𝑣) to be

included in 𝐿. Then given a seed set 𝑆 , the set of nodes activated in a stochastic diffusion from 𝑆 is the set of nodes

reachable from 𝑆 in the live-edge graph 𝐿, denoted as Γ(𝑆, 𝐿). Therefore, we have 𝜎 (𝑆) = E𝐿 [|Γ(𝑆, 𝐿) |].
We integrate the PA model with the IC model in the following PA-IC model to characterize both the natural growth

and the promotional growth of the popularity. For simplicity, this paper focuses on two competing items: a popular

item and a novice item, since all items grow proportionally in the PA model.

The popular item starts with a higher popularity measure, while the novice item starts with a lower one. If only

natural growth is available, the novice item would never catch up with the popular item, and the gap would only be

widened due to the rich-get-richer effect of the PA model. To catch up and surpass the popular item, the novice item

needs to employ incentive promotion in the social network to increase its popularity. The technical description of the

PA-IC model to cover the above aspects is given below.

In the PA-IC model, we model𝑇 rounds of promotion and influence propagation. Let 𝑑
𝑝
𝑡 and 𝑑𝑛𝑡 denote the popularity

measure of the popular and novice items respectively, at the end of round 𝑡 . In each round 𝑡 ∈ [𝑇 ], some customers

would naturally select between the novice and popular item. We use the natural growth parameter 𝑧 to denote the

number of customers. These 𝑧 customers select between novice and popular items according to the PA model.

Besides the natural growth, in each round 𝑡 , the novice item would select a seed set 𝑆𝑡 for its promotion, and these

seeds will propagate influence throughout the social network 𝐺 following the IC model. Note that in round 𝑡 , the

IC model may take multiple steps to propagate the promotion until the propagation ends. The expected number of

influenced nodes 𝜎□ (𝑆𝑡 ) is also added to the popularity measure of the novice item, where the actual form of 𝜎□ (𝑆𝑡 )
depends on the setting we consider, and it will be explained shortly after Eq.(1) below.

The natural growth mechanism and propagation mechanism respectively model two different growth processes of

an item’s popularity in reality. Therefore, the natural growth mechanism and the propagation mechanism together give

the following inductive formulation of the popularity growth of the two items.

𝑑
𝑝
𝑡 = 𝑑

𝑝

𝑡−1
+

𝑧 · 𝑑𝑝
𝑡−1

𝑑
𝑝

𝑡−1
+ 𝑑𝑛

𝑡−1

, 𝑑𝑛𝑡 = 𝑑𝑛𝑡−1
+ 𝜎□ (𝑆𝑡 ) +

𝑧 · 𝑑𝑛
𝑡−1

𝑑
𝑝

𝑡−1
+ 𝑑𝑛

𝑡−1

. (1)

In Eq.(1), the notation 𝜎□ needs to be instantiated to a concrete quantity according to the actual setting used. We

mainly consider two settings — the overlapping influence (OI) and the non-overlapping influence (NI) settings. In the

overlapping influence (OI) setting, the influence spread between different rounds are allowed to be overlapped when

they are added to the popularity measure. In this case, 𝜎□ (𝑆) is instantiated to 𝜎𝑂𝐼 (𝑆), and is simply the standard

influence spread 𝜎 (𝑆). In the non-overlapping Influence (NI) setting, the influence spread of 𝑆𝑡 in round 𝑡 cannot overlap

with the influence spread in the previous rounds, and thus it is the marginal influence spread of 𝑆𝑡 given the seed sets
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Fig. 1. A numerical example of the PA-IC model with the overlapping influence setting. In this example, we show the changes in
popularity measure of two items, within two rounds. In this directed graph, every edge’s activation probability is equal to 1. Black
nodes is the "active" nodes in each round.

Table 1. Four settings of the PRM problem

Overlapping Influence Non-overlapping Influence

Overlapping Seeds OIOS NIOS

Non-overlapping Seeds OINS NINS

𝑆1, . . . , 𝑆𝑡−1 of the previous rounds. Hence, in this case 𝜎□ (𝑆) is instantiated to 𝜎𝑁𝐼 (𝑆𝑡 |𝑆1, . . . , 𝑆𝑡−1), as defined below:

𝜎𝑁𝐼 (𝑆𝑡 |𝑆1 · · · 𝑆𝑡−1) = E𝐿1,...,𝐿𝑡

[�����Γ(𝑆𝑡 , 𝐿𝑡 ) \ 𝑡−1⋃
𝑖=1

Γ(𝑆𝑖 , 𝐿𝑖 )
�����
]
. (2)

where 𝐿𝑖 , 𝑖 ∈ [𝑡] is the random live-edge graph in round 𝑖 . When the context is clear, we use 𝜎𝑁𝐼 (𝑆𝑡 ) as a shorthand
for 𝜎𝑁𝐼 (𝑆𝑡 |𝑆1 · · · 𝑆𝑡−1).

One remark to Eq.(1) is that both the natural growth and the social network promotion parts are represented in the

expectation form. One may formulate them as random variables, and take the expectation in the end. The expectation

form is easier to handle, and our empirical evaluation would show that such representation does not lose fidelity in

terms of the solution quality.

Another remark concerns the distinction of the natural growth and promotion in our model. The natural growth

follows the preferential attachment and is independent of the social network, while the promotion follows the influence

diffusion model and is dependent on the social network. One may say that the natural growth may also generate

influence diffusion in social networks. The reason we do not include the social network diffusion for the natural growth

part of the model is that (a) the natural growth mainly reflects the rich-get-richer effect and models the behavior that

people gets the popularity information from online review platforms such as Yelp or direct offline observations (e.g., by

observing the occupancy of the restaurants) and act accordingly, and this part is not related to social network diffusion;

and (b) inclusion of the influence diffusion for the natural growth part will further complicate the model, making it

less clear in demonstrating the interaction between the preferential attachment for natural growth and the influence

diffusion for viral promotion.

Fig. 1 is a numerical example to illustrate our PA-IC model in the OI setting. There are two items in this social

network: item p is the popular item with the initial popularity measure 𝑑
𝑝

0
= 8, item n is the novice item with the initial

popularity measure 𝑑𝑛
0
= 2, and the natural growth 𝑧 = 5. All edges in the social network have probability 1. In round 1,
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according to the PA mechanism, the popularity measure of item p will increase by 4, and the popularity measure of item

n will increase by 1. At the same time, the novice item chooses the seed set 𝑆1 = {1, 5} to promote their product and the

influence spread 𝜎 (𝑆1) = 5. So the popularity measure of item n will additionally increase by 5. At the end of round

1, 𝑑
𝑝

1
= 𝑑

𝑝

0
+ 𝑧 ·𝑑𝑝

0

𝑑
𝑝

0
+𝑑𝑛

0

= 12, 𝑑𝑛
1
= 𝑑𝑛

0
+ 𝑧 ·𝑑𝑛

0

𝑑
𝑝

0
+𝑑𝑛

0

+ 𝜎 (𝑆1) = 8. In round 2, according to the PA mechanism, the popularity

measure of item p will increase by 3, and the popularity measure of item n will increase by 2. In this round, item n

chooses the seed set 𝑆2 = {9} to promote their product, which generates influence spread 𝜎 (𝑆2) = 5. So at the end of

round 2, 𝑑
𝑝

2
= 𝑑𝑛

2
= 15, which means that the novice item has caught up with the popular item.

Finally, the model can be further extended to allow different natural growth count 𝑎𝑡 for each round 𝑡 , or allow the

popular item to also have a viral promotion mechanism. We defer the discussion of these extensions and their impacts

on our algorithm to Section 6.

3.2 Popularity Ratio Maximization

We define the popularity ratio between the novice and the popular item at the end of round 𝑡 as 𝑟𝑡 = 𝑑𝑛𝑡 /𝑑
𝑝
𝑡 . Without

the promotional mechanism, this ratio would not change. Thus, from the novice item’s perspective, it wants to increase

this ratio as much as possible and as soon as possible through promotion, but it certainly has budget constraints.

Technically, wemodel this as a popularity ratio maximization problem under a budget constraint. We use the pair (𝑣, 𝑡)
to denote that the novice item selects 𝑣 in round 𝑡 as a seed, i.e., 𝑣 ∈ 𝑆𝑡 , and we use S = 𝑆1 × {1} ∪𝑆2 × {2} · · · ∪𝑆𝑇 × {𝑇 }
to represent the overall allocation of seeds over 𝑇 rounds. The novice item has a total budget 𝑘 , restricting the total

number of seeds that it can select, i.e., |S| ≤ 𝑘 . Let the final popularity ratio after𝑇 rounds promotion be 𝑟𝑇 (S) = 𝑑𝑛
𝑇
/𝑑

𝑝

𝑇
.

Informally, popularity ratio maximization (PRM) is to find a seed allocation S with |S| ≤ 𝑘 for the novice item

so that popularity ratio 𝑟𝑇 (S) at the end of round 𝑇 is maximized. In the seed allocation S, the seed set for different

round may or may not be allowed to overlap, and both may be reasonable depending on the application scenario.

Thus, together with the overlapping or non-overlapping influence settings, there are four settings as shown in Table 1,

where OIOS refers to overlapping influence and overlapping seeds and NINS refers to non-overlapping influence and

non-overlapping seeds. The other two settings have been defined before. Formally, we define the PRM problem below

based on these settings.

Definition 1 (Popularity Ratio Maximization). Given (a) a social network 𝐺 = (𝑉 , 𝐸, 𝑝), (b) initial popularity measures

𝑑𝑛
0
and 𝑑𝑝

0
for the novice and popular items respectively, (c) total round number 𝑇 , (d) natural growth count 𝑧, (e) budget 𝑘 ,

the task of popularity ratio maximization (PRM) is to find an optimal seed set allocation S∗ for the novice item in one

of the four settings depicted in Table 1, such that the total number of seeds does not exceed 𝑘 , and when the popularity

measures evolve according to Eq.(1), the final popularity ratio 𝑟𝑇 (S∗) is maximized. For the OINS setting, it is

S∗ ∈ argmax

S⊆𝑉 ×[𝑇 ], |S |≤𝑘,𝑆𝑡∩𝑆𝑡 ′=∅∀𝑡≠𝑡 ′
𝑟𝑇 (S) .

Other settings can be similarly formulated.

Note that it may not be wise to use all the budget in the first round since too many seeds could generate redundant

activations of the same node, which is only counted once in the popularity measure. On the other hand, spreading the

budget evenly across all 𝑇 rounds may not be a good choice either, since it would make the popularity growth of the

novice item slower and thus harder to catch up with the popular item. Moreover, even though the objective is to increase

the popularity of the novice item, the problem is still tightly related to the popularity of the popular item, because the

PA mechanism links them together. Therefore, PRM is non-trivial both in considering seed allocation across multiple
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rounds and in considering the relationship with the popular item. Furthermore, PRM needs to consider the impact of

different settings. In the following two sections, we will consider two representative settings — overlapping influence

and non-overlapping seeds (OINS) and non-overlapping influence and overlapping seeds (NIOS). Other settings can be

treated similarly.

PRM can be extended to other variants, and we will consider a number of them in Section 6.

4 RESULTS ON THE OINS SETTING

We study the OINS setting in this section. We first derive the exact formula for the objective function of the PRM

problem. We show that the exact objective function is not submodular, implying a rather difficult optimization task.

To tackle this problem, we provide a heuristic simplification of the objective function, resulting in a round-weighted

influence objective function 𝜌𝑇 (S), and its corresponding surrogate optimization task called round-weighted influence

maximization (RWIM). We show that function 𝜌𝑇 (S) is monotone and submodular, which allows us to design an

efficient approximation algorithm PRM-IMM based on the IMM algorithm [32]. The technical novelty of PRM-IMM

includes properly defining the pair-wise reverse reachable set (PW-RR set) to estimate the seed set’s influence in the

different rounds with different weights, and calculating the number of PW-RR sets needed to satisfy the approximate

ratio. Although our approximation guarantee is on the surrogate RWIM algorithm, our experimental evaluation will

demonstrate that it also solves the original PRM problem with the best performance compared to other baselines.

4.1 Objective Function under the OINS Setting

The following lemma states the exact formula for the objective function 𝑟𝑂𝐼
𝑇

(S) of PRM under the overlapping influence

(OI) setting, which is derived recursively.

Lemma 1. For the OINS setting, the popularity ratio function at the end of round 𝑇 is:

𝑟𝑂𝐼
𝑇 (S) = (𝑟0 + 1)

𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧 · 𝑡 + ∑𝑡−1

𝑖=1
𝜎 (𝑆𝑖 )

)
− 1, (3)

where 𝑟0 = 𝑑𝑛
0
/𝑑𝑝

0
is the initial popularity ratio, S =

⋃𝑇
𝑡=1

𝑆𝑡 × {𝑡}.

Proof. We show Eq.(3) by deriving the recursive formula for 𝑟𝑡 , 𝑡 ≥ 1. Suppose at the end of round 𝑡 − 1 the

popularity ratio is 𝑟𝑡−1, and the popularity measures for the novice and popular items are 𝑑𝑛
𝑡−1

and 𝑑
𝑝

𝑡−1
, respectively.

By definition, we have

𝑟𝑡 + 1 =
𝑑𝑛𝑡 + 𝑑𝑝𝑡

𝑑
𝑝
𝑡

=
𝑑
𝑝

𝑡−1
+ 𝑑𝑛

𝑡−1
+ 𝜎𝑂𝐼 (𝑆𝑡 ) + 𝑧

𝑑
𝑝

𝑡−1
+ 𝑧 · 𝑑

𝑝

𝑡−1

𝑑
𝑝

𝑡−1
+𝑑𝑛

𝑡−1

(4)

=
𝑑
𝑝

𝑡−1
+ 𝑑𝑛

𝑡−1
+ 𝜎𝑂𝐼 (𝑆𝑡 ) + 𝑧

𝑑
𝑝

𝑡−1
+ 𝑑𝑛

𝑡−1
+ 𝑧

·
𝑑
𝑝

𝑡−1
+ 𝑑𝑛

𝑡−1

𝑑
𝑝

𝑡−1

=

(
1 + 𝜎𝑂𝐼 (𝑆𝑡 )

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧 · 𝑡 + ∑𝑡−1

𝑖=1
𝜎𝑂𝐼 (𝑆𝑖 )

)
(𝑟𝑡−1 + 1), (5)

where the second equality in (4) is from Eq.(1), and Eq.(5) uses the fact that 𝑑
𝑝

𝑡−1
+ 𝑑𝑛

𝑡−1
is the total popularity measure

of the two items at the end of round 𝑡 − 1, which is accumulated from 𝑑𝑛
0
+ 𝑑𝑝

0
by 𝑡 − 1 rounds of natural growth (𝑡 · 𝑧)

7



SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA Hao Liao and Sheng Bi, et al.

and the promotion effect (

∑𝑡−1

𝑖=1
𝜎𝑂𝐼 (𝑆𝑖 )). Eq. (3) can be obtained immediately with the above recursive formula and the

fact that 𝜎𝑂𝐼 (𝑆𝑖 ) = 𝜎 (𝑆𝑖 ).
□

One feature of Eq. (3) is that the popularity ratio depends on the interplay among the parameters of the novice item

(𝑑𝑛
0
), the popular item (𝑑

𝑝

0
), the natural growth (𝑧) and the total influence effect 𝜎 (𝑆𝑡 ), which makes the seed selection

more complicated in the PRM task than the classical influence maximization task.

A set function 𝑓 : 2
𝑉 → R is monotone if 𝑓 (𝑆) ≤ 𝑓 (𝑄) whenever 𝑆 ⊆ 𝑄 ⊆ 𝑉 , and 𝑓 is submodular if, for any

𝑆 ⊆ 𝑄 ⊆ 𝑉 and any 𝑥 ∈ 𝑉 \𝑄 , 𝑓 (𝑆 ∪ {𝑥}) − 𝑓 (𝑆) ≥ 𝑓 (𝑄 ∪ {𝑥}) − 𝑓 (𝑄). Submodularity means that the marginal value

of an element with respect to a set 𝑆 decreases as 𝑆 grows. Maximizing a monotone and submodular set function with

a cardinality constraint can be achieved by a simple greedy algorithm with an approximation ratio of 1 − 1/𝑒 [25].
Unfortunately, the exact popularity ratio function in Eq. (3) is not submodular, as shown below.

Lemma 2. The popularity ratio function 𝑟𝑂𝐼
𝑇

(S) is monotone but not submodular.

The proof is omitted, and the non-submodularity is due to the multiplication of submodular functions in Eq.(3).

4.2 Round-Weighted Influence Maximization

Due to the non-submodularity of the popularity ratio function, it is challenging to design a good algorithm for the PRM

problem directly. In this section, we simplify the popularity ratio function to obtain a surrogate function and show that

this surrogate function is monotone and submodular.

As indicated in the proof sketch of Lemma 2, the complication of the original objective function of Eq.(3) is the

series of multiplications, and thus this is the target of our simplification. In particular, our simplification consists of

two steps: (a) expanding the multiplication series of Eq.(3) and only keeping the first-order terms; (b) removing the

𝜎 (𝑆1), . . . , 𝜎 (𝑆𝑇−1) in the denominator of each term left after step (a). Step (a) decreases the objective value, while step

(b) increases the objective value, compensating the effect of step (a). Our experimental evaluation (Section 7.2) shows

that the surrogate function we develop is reasonably close to the original function in all the test cases. The following is

the formula for the surrogate function (ignoring the constant factor 𝑟0 + 1 and the additive terms in Eq.(3)):

𝜌𝑂𝐼
𝑇 (S) = 𝜎 (𝑆1)

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧

+ 𝜎 (𝑆2)
𝑑𝑛

0
+ 𝑑𝑝

0
+ 2𝑧

+ · · · + 𝜎 (𝑆𝑇 )
𝑑𝑛

0
+ 𝑑𝑝

0
+𝑇 · 𝑧

.

In the above formula, we can set

𝑤𝑡 =
1

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑡 · 𝑧

(6)

as the weight for 𝜎 (𝑆𝑡 ) for every round 𝑡 , and turn the objective function into the following more general objective

function:

𝜌𝑂𝐼
𝑇 (S) =

𝑇∑︁
𝑡=1

𝑤𝑡 · 𝜎𝑂𝐼 (𝑆𝑡 ) =
𝑇∑︁
𝑡=1

𝑤𝑡 · 𝜎 (𝑆𝑡 ). (7)

Function 𝜌𝑂𝐼
𝑇

(S) means that we need to find an allocation of seeds of 𝑇 rounds and each round 𝑡 ∈ [𝑇 ] has its own
importance weight 𝑤𝑡 , which is non-negative and decreasing, i.e., 𝑤1 ≥ 𝑤2 ≥ · · · ≥ 𝑤𝑇 ≥ 0. We call 𝜌𝑂𝐼

𝑇
(S) the

round-weighted influence function.

The relationship between the popularity ratio function and round-weighted influence function is 𝑟𝑂𝐼
𝑇

(S) ≈ (1 +
𝜌𝑂𝐼
𝑇

(S))(𝑟0 + 1) − 1. The surrogate function is summarized below as the round-weighted influence maximization

problem.

8



Popularity Ratio Maximization: Surpassing Competitors through Influence Propagation SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA

Definition 2 (Round-weighted Influence Maximization in the OINS Setting). Given (a) a social network𝐺 = (𝑉 , 𝐸, 𝑝),
(b) initial popularity measures 𝑑𝑛

0
and 𝑑

𝑝

0
for the novice and popular items respectively, (c) total round number 𝑇 , (d)

natural growth count 𝑧, (e) budget 𝑘 , (f) the non-negative and non-increasing weight sequence𝑤1,𝑤2, . . . ,𝑤𝑇 , the task of

round-weighted influence maximization (RWIM) in the OINS setting is to find an optimal seed set allocation S∗ for the

novice item under the constraints that the seeds selected for each round are disjoint, and the total number of seeds does not

exceed 𝑘 , such that the round-weighted influence 𝜌𝑂𝐼
𝑇

(S∗) is maximized. That is,

S∗ ∈ argmax

S⊆𝑉 ×[𝑇 ], |S |≤𝑘,𝑆𝑡∩𝑆𝑡 ′=∅∀𝑡≠𝑡 ′
𝜌𝑂𝐼
𝑇 (S) .

Lemma 3. For any influence graph𝐺 = (𝑉 , 𝐸, 𝑝), under the PA-IC model, the round-weighted influence function 𝜌𝑂𝐼
𝑇

(S)
defined in Eq.(7) is monotone and submodular.

4.3 Pair-wise Reverse Reachable Sets

State-of-the-art IM algorithms, including IMM, use the reverse influence sampling (RIS) approach governed by reverse

reachable (RR) sets. An RR set is a random set of nodes sampled from the graph by (a) first selecting a node 𝑣 uniformly

at random from the graph, and (b) simulating the reverse propagation of the model (e.g., IC model) and adding all visited

nodes into the RR set. The main property of a random RR set R is that: influence spread 𝜎 (𝑆) = 𝑁 · E [I{𝑆 ∩ 𝑅 ≠ ∅}] for
any seed set 𝑆 , where I is the indicator function, 𝑁 is the number of nodes in graph 𝐺 . After finding a large enough

number of RR sets, the original influence maximization problem is turned into a 𝑘-max coverage problem — finding a

set of 𝑘 nodes that covers the most number of RR sets, where a set 𝑆 covers an RR set 𝑅 means that 𝑆 ∩ 𝑅 ≠ ∅. All RIS
algorithms have the following two steps: 1. Generate a sufficiently large set of random RR sets, called Sampling step. 2.

Find 𝑘 nodes that cover the most number of RR sets, called NodeSelection step.

We now introduce our adaptation of the RR set to the PRM setting, particularly, the pair-wise reverse reachable

(PW-RR) set.

PW-RR set and its generation process. Since the RR set is not designed to estimate the influence of nodes in

different rounds, we define the pair-wise reverse reachable (PW-RR) set for the PRM problem and denote it as 𝑅 (𝑡 )
.

PW-RR can distinguish between different rounds of RR set, and it also corresponds to different weights for different

rounds of RR sets so that the round-weighted influence of nodes in different rounds can be calculated. A (random)

pair-wise RR set 𝑅 (𝑡 )
is an RR set 𝑅 rooted at a node picked uniformly at random from 𝑉 , and 𝑡 is picked uniformly at

random from [𝑇 ], and 𝑅 (𝑡 ) = 𝑅 × {𝑡}.
Property of PW-RR set The main property of random PW-RR set 𝑅 (𝑡 )

’s is that we can use them to estimate the

round-weighted influence spread 𝜌𝑂𝐼
𝑇

(S).

Lemma 4. For any set of node-round pairs S, we have

𝜌𝑂𝐼
𝑇 (S) = 𝑁 ·𝑇 · E

[
𝑤𝑡 · I

[
S ∩ 𝑅 (𝑡 ) ≠ ∅

] ]
, (8)

where 𝑅 (𝑡 ) is a random PW-RR set, and the expectation is taken from the randomness of (a) the root of a PW-RR set 𝑅 (𝑡 )

uniformly chosen at random, (b) the randomly generated RR set from the root, and (c) round number 𝑡 uniformly chosen at

random.
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Proof. The lemma is shown by the following:

E
[
𝑤𝑡 · I

[
S ∩ 𝑅 (𝑡 ) ≠ ∅

] ]
=

1

𝑇

𝑇∑︁
𝑡=1

𝑤𝑡 · E [I{𝑆𝑡 ∩ 𝑅 ≠ ∅}] (9)

=
1

𝑇

𝑇∑︁
𝑡=1

𝑤𝑡 ·
1

𝑁
𝜎 (𝑆𝑡 ) =

1

𝑁 ·𝑇 𝜌𝑂𝐼
𝑇 (S), (10)

where the 𝑅 in Eq.(9) is a random RR set as defined at the beginning of this section, the first equality in (10) is by the

property of the RR set as given at the beginning of this section, and the second equality in (10) is by Eq.(7).

□

Lemma 4 reflects the overlapping influence (OI), and it is clearly seen in Eq.(10) where influence spread of different

rounds are summed up, allowing overlapping influence.

4.4 Popularity Ratio Maximization IMM

We could base the key formula of Eq.(8) to estimate the overlapping influence spread 𝜌𝑂𝐼
𝑇

(S). Let R be a collection

of 𝜃 PW-RR sets we generated independently, R = {𝑅 (𝑡1 )
1

, 𝑅
(𝑡2 )
2

, . . . , 𝑅
(𝑡𝜃 )
𝜃

}. Define random variable 𝑌 R
𝑖
(S) = 𝑤𝑡𝑖 ·

I
[
S ∩ 𝑅

(𝑡𝑖 )
𝑖

≠ ∅
]
. We can estimate 𝜌𝑂𝐼

𝑇
(S) using the following estimator 𝜌𝑂𝐼

𝑇
(S,R):

𝜌𝑂𝐼
𝑇 (S,R) = 𝑁 ·𝑇

𝜃

𝜃∑︁
𝑖=1

𝑌 R
𝑖 (S).

Estimator 𝜌𝑂𝐼
𝑇

(S,R) can be viewed as a weighted coverage function on a bipartite graph with 𝑉 × [𝑇 ] on the one

side and PW-RR sets R on the other side.

Our PRM-IMM algorithm follows the IMM structure [32] and consists of two components: PRM-NodeSelection for

selecting top 𝑘 pairs from the above bipartite graph, and PRM-Sampling for generating enough PW-RR set samples. We

now explain the main adaption of these two components to our PRM settings.

PRM-NodeSelection-OINS Algorithm 1 provides the pseudocode for the PRM-NodeSelection under the OINS

setting, which is patterned from the similar algorithms in [7, 32]. It mainly implements a greedy selection of 𝑘 pairs to

cover the PW-RR sets. Several points worth mentioning are: (a) the greedy algorithm works on PW-RR sets for (𝑣, 𝑡)
pairs, as described in Section 4.3; (b) the overlapping influence (OI) aspect is reflected in the PW-RR set design and

Lemma 4; and (c) the non-overlapping seed (NS) aspect is reflected in line 5, where nodes already selected, S
node

, are

removed from further consideration in seed selection.

Due to the NS requirement, the feasible solutions for the bipartite coverage problem are no longer following a simple

cardinality constraint, but actually they form a matroid.
1
The greedy algorithm on a matroid gives a 1/2 approximation

of the optimal solution [25].
2

PRM-Sampling The sampling procedure also follows the IMM structure (Algorithm 2), in that it uses iterative

halving to estimate a lower bound 𝐿𝐵 of the optimal solution OPT , and then use 𝐿𝐵 to determine the final number of

PW-RR sets needed. The parameters 𝛼, 𝛽 are defined below:

1
A matroid (𝐸, I) on a finite ground element set 𝐸 is a collection I of subsets of 𝐸, each called an independent set, with the following two properties: (a)

a subset of an independent set is still an independent set; and (b) for two independent sets 𝐼1, 𝐼2 ∈ I, if |𝐼1 | < |𝐼2 | , then there is at least one element

𝑒 ∈ 𝐼2 \ 𝐼1 such that 𝐼1 ∪ {𝑒 } is also an independent set.

2
We are aware that there is a polynomial-time algorithm that achieves (1 − 1/𝑒 )-approximation for submodular maximization under a matroid

constraint [5], but the algorithm is highly inefficient, and thus we choose the simple greedy algorithm for our implementation.
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Algorithm 1 PRM-NodeSelection-OINS

Input: PW-RR sets R, budget 𝑘 , weights (𝑤𝑡 )𝑡 ∈[𝑇 ] (Eq.(6))

Output: seed set
ˆS𝑔

1: 𝑅𝑅 [(𝑣, 𝑡)] = {𝑅 ∈ R|(𝑣, 𝑡) ∈ 𝑅}, 𝑐 [(𝑣, 𝑡)] = 𝑤𝑡 · |𝑅𝑅 [(𝑣, 𝑡)] |, ∀(𝑣, 𝑡) ∈ 𝑉 × [𝑇 ] /* 𝑅𝑅 [(𝑣, 𝑡)]’s and 𝑐 [(𝑣, 𝑡)]’s can be

constructed during the generation of R */

2: for all 𝑅 ∈ R, 𝑡 ∈ [𝑇 ], 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 [𝑅] = false
3: S = ∅ /* the element of S is (𝑣, 𝑡) */
4: for 𝑖 = 1 to 𝑘 do
5: (𝑣, 𝑡) = argmax(𝑣,𝑡 ) ∈ (𝑉 \Snode )×[𝑘 ] 𝑐 [(𝑣, 𝑡)]
6: /*S𝑛𝑜𝑑𝑒 is the node set of S */

7: S = S ∪ {(𝑣, 𝑡)}
8: for 𝑅 ∈ 𝑅𝑅 [(𝑣, 𝑡)] ∧ 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 [𝑅] == false do
9: 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 [𝑅] = 𝑡𝑟𝑢𝑒

10: for (𝑢, 𝑡) ∈ 𝑅 ∧ 𝑢 ≠ 𝑣 do
11: 𝑐 [(𝑢, 𝑡)] = 𝑐 [(𝑢, 𝑡)] −𝑤𝑡

12: end for
13: end for
14: end for
15: return ˆS𝑔 = S

𝛼 =
√
𝑙 ln𝑁 + ln 4 , 𝛽 =

√︄
1

2

·
(
ln

(
𝑁

𝑘

)
+ 𝛼2 + 𝑘 ln𝑇

)
. (11)

There are a few differences compared to the classical IMM. First, the 𝜃𝑖 (line 4) and
˜𝜃 (line 12) have additional

coefficients 𝑤1 and 𝑇 in the numerator. Factor 𝑇 is because we allocate seeds in 𝑇 rounds. Factor 𝑤1 is technically

because random variable 𝑌 R
𝑖
(S)/𝑤1 is bounded within [0, 1], so that we can apply the Chernoff bound on it to obtain

the desired result. Second, the parameter 𝛽 also adds an extra 𝑘 ln𝑇 , because in our problem, the number of possible

solutions is upper bounded by

(𝑁
𝑘

)
·𝑇𝑘

, which means that 𝑘 nodes are selected among 𝑁 nodes and each selected node

may be placed in any of the 𝑇 rounds. Of course, our approximation guarantee is also changed from 1 − 1/𝑒 − 𝜀 to

1/2 − 𝜀, because we are dealing with a more general matroid constraint. The regeneration of PW-RR sets in line 13

ensures that all PW-RR sets in R are mutually independent [6].

The following theorem summarizes the correctness and time complexity of our algorithm PRM-IMM.

Theorem 5. Let ˆS𝑔 be the output of PRM-IMM-OINS and S∗ be the optimal solution of round-weighted influence

maximization problem. We have that with the probability at least (1 − 1

𝑁 𝑙 ),

𝜌𝑂𝐼
𝑇 ( ˆS𝑔) ≥

(
1

2

− 𝜀

)
𝜌𝑂𝐼
𝑇 (S∗),

where 𝜀 > 0, 𝑙 > 0. The expected running time of PRM-IMM-OINS is 𝑂 ((𝑘 + 𝑙) (𝑀 + 𝑁 )𝑇 log(𝑁 ·𝑇 )/𝜀2).

The proof of the theorem follows the analysis structure of IMM [32], and utilizes the key result in Lemma 4.

We can see that PRM-IMM-OINS provides the approximation guarantee while still runs in time near linear to the

graph size. Compared to the original IMM, the running time is increased by a factor of 𝑇 , caused by the spreading of

search of seeds across 𝑇 rounds rather than in one round.

11
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Algorithm 2 PRM-IMM-OINS algorithm

Input: directed graph 𝐺 = (𝑉 , 𝐸), round number 𝑇 , budget 𝑘 ,

weights (𝑤𝑡 )𝑡 ∈[𝑇 ] (Eq.(6)), approximate ratio parameter 𝜀,

Error probability parameter 𝑙 .

Output: ˆS𝑔

1: R = ∅, 𝐿𝐵 = 𝑤1, 𝜀
′ =

√
2, 𝜃0 = 0

2: for 𝑖 = 1 to

⌊
log

2
𝑁

⌋
− 1 do

3: 𝑥𝑖 =

∑𝑇
𝑡=1

𝑤𝑡 ·𝑁
2
𝑖

4: 𝜃𝑖 =

⌈
𝑤1 ·𝑁 ·𝑇 (2+ 2

3
𝜀′) (ln log

2
𝑁+2𝛽2)

𝜀′2𝑥𝑖

⌉
5: independently generate 𝜃𝑖 − 𝜃𝑖−1 PW-RR sets into R:
6: S = PRM-NodeSelection-OINS(R, 𝑘, (𝑤𝑡 )𝑡 ∈[𝑇 ] )
7: if 𝜌𝑇 (S,R) ≥ (1 + 𝜀′) 𝑥𝑖 then
8: 𝐿𝐵 =

𝜌𝑇 (S,R)
1+𝜀′

9: break
10: end if
11: end for

12:
˜𝜃 =

⌈
2𝑤1 ·𝑁 ·𝑇 ( 1

2
𝛼+𝛽)2

𝐿𝐵 ·𝜀2

⌉
/* 𝛼 and 𝛽 is defined in Eq.(11).*/

13: clear the R, and regenerate
˜𝜃 PW-RR sets into R

14:
ˆS𝑔

= PRM-NodeSelection-OINS(R, 𝑘, (𝑤𝑡 )𝑡 ∈[𝑇 ] )
15: return

ˆS𝑔

5 RESULTS ON THE NIOS SETTING

We now turn to the non-overlapping influence with overlapping seeds (NIOS) setting. The NI setting causes important

changes to the objective function and the algorithm design, as we will describe in this section.

5.1 Objective Function under the NIOS Setting

Similar to Eq.(3) for the OINS setting, we have

𝑟𝑁𝐼
𝑇 (S) = (𝑟0 + 1)

𝑇∏
𝑡=1

(
1 + 𝜎𝑁𝐼 (𝑆𝑡 )

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧 · 𝑡 + ∑𝑡−1

𝑖=1
𝜎𝑁𝐼 (𝑆𝑖 )

)
− 1.

The main difference is that it uses the marginal influence 𝜎𝑁𝐼 (𝑆𝑡 ) as defined in Eq.(2), because influence cannot be

overlapping under NIOS. With a similar heuristic simplification, we obtain the round-weighted influence function with

𝑤𝑡 defined in (6):

𝜌𝑁𝐼
𝑇 (S) =

𝑇∑︁
𝑡=1

𝑤𝑡 · 𝜎𝑁𝐼 (𝑆𝑡 ) .

One can show that 𝜌𝑁𝐼
𝑇

(S) has the following equivalent form:

𝜌𝑁𝐼
𝑇 (S) =

∑︁
𝑣∈𝑉

E𝐿1,...,𝐿𝑇

[
max

𝑡 ∈[𝑇 ]
𝑤𝑡 · I{𝑣 ∈ Γ(𝑆𝑡 , 𝐿𝑡 )}

]
. (12)
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This is because for any node 𝑣 ∈ 𝑉 , it may be influenced by some pair (𝑢, 𝑡) ∈ S in round 𝑡 , and when multiple

seed-round pairs occur, the one with the largest weight among these pairs is taken to calculate the final influence to 𝑣 .

Based on Eq.(12), one can show that 𝜌𝑁𝐼
𝑇

(S) is monotone and submodular.

5.2 Efficient Algorithm for NIOS setting

The PRM-IMM-NIOS algorithm follows the same structure as the PRM-IMM-OINS algorithm, but due to the non-

overlapping influence requirement and the round-based weights nature, the RR set and the node selection procedure

has significant difference, as we now explain.

For the RR set, for each randomly selected root 𝑣 ∈ 𝑉 , we need to generate 𝑇 RR sets rooted at 𝑣 , denoted as

𝑅𝑣,𝑡 , 𝑡 ∈ [𝑇 ] in pair notation. The multi-round RR set (MR-RR set) is the union of all 𝑇 RR sets, as 𝑅𝑣 =
⋃𝑇

𝑡=1
𝑅𝑣,𝑡 . This

is because in the NI setting a node 𝑣 is only influenced once in all 𝑇 rounds. The MR-RR set is similar to the one used

in [29], but here different rounds have different weights, leading to a more complicated node selection procedure.

In the PRM-NodeSelection-NIOS procedure (Algorithm 3), we maintain a variable 𝑡𝑅 for each MR-RR set 𝑅, and it

denotes the lowest round number 𝑡 in which the root 𝑣𝑅 of 𝑅 has been influenced by some already selected seed nodes.

Initially, 𝑡𝑅 = 𝑇 + 1, since no seed has been selected and thus no node is influenced. We also use variable 𝑐 [(𝑢, 𝑡)] to
store the remaining marginal influence of pair (𝑢, 𝑡) on all MR-RR sets. Variables 𝑡𝑅 and 𝑐 [(𝑢, 𝑡)] are used to keep track

of the marginal influence to 𝑣𝑅 when some additional pair (𝑣, 𝑡) is selected as a seed (lines 7– 16): when 𝑡 < 𝑡𝑅 , this

means that the root 𝑣𝑅 is now influenced at the lowest round 𝑡 , and thus for any other pair (𝑢, 𝑡 ′) ∈ 𝑅 with 𝑡 ′ < 𝑡𝑅 , if

𝑡 ′ ≥ 𝑡 , it no long generates any marginal influence to 𝑣𝑅 (the marginal influence is reduced by𝑤𝑡 ′ −𝑤𝑡𝑅 , line 10); and if

𝑡 ′ < 𝑡 , the remaining marginal influence (𝑢, 𝑡 ′) could generate to 𝑣𝑅 through 𝑅 is𝑤𝑡 ′ −𝑤𝑡 (the marginal influence is

reduced by𝑤𝑡 −𝑤𝑡𝑅 , line 12). This makes this node selection procedure more complicated than the OINS setting. Note

that in line 5, we select the next seed from 𝑉 × [𝑘]\S, reflecting that we allow overlapping seeds in different rounds.

In the sampling part, similar to OINS setting, we can iteratively guess the lower bound 𝑥𝑖 by halving and verifying

through NodeSelection. We only need to modify parameter 𝛽 to

√︂
1

2
·
(
ln

(𝑁𝑇
𝑘

)
+ 𝛼2

)
, and the

(𝑁𝑇
𝑘

)
is due to selecting 𝑘

pairs from all 𝑁𝑇 pairs in the overlapping seeds setting. All other aspects of sampling part remains the same, and thus

we ignore the pseudocode here. For the other two problems mentioned in Section 3.2, NINS and OIOS, we can plug in

different components in OINS and NIOS to achieve the goal, and we omit the details here.

6 OTHER VARIANTS OF PRM PROBLEM

In this section, we show that our object function analysis and algorithm design are robust in that they can be adapted

to a number of variants of the PRM problem.

6.1 Per-round Budget

In the PRM definition (Definition 1), the budget 𝑘 is over all 𝑇 rounds. One variant is that every round has its own

budget 𝑘 , similar to [29]. It also has four settings as in Table 1. Among them, the OIOS setting is the same as solving

the traditional IM problem and then using the same seed set for all rounds. Other settings can be solved following the

similar technique as the overall budget case, but when selecting next node-round pair as a seed, it needs to respect the

per-round budget rather than the overall budget.

13
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Algorithm 3 PRM-NodeSelection-NIOS

Input: the set of MR-RR sets R, seeds budget 𝑘 ,
weights (𝑤𝑡 )𝑡 ∈[𝑇 ] (Eq.(6)). particularly, the value of𝑤𝑇+1 is 0.

Output: 𝑘 size seed set
ˆS𝑔
.

1: 𝑅𝑅 [(𝑣, 𝑡)] = {𝑅 ∈ R|(𝑣, 𝑡) ∈ 𝑅}, 𝑐 [(𝑣, 𝑡)] = 𝑤𝑡 · |𝑅𝑅 [(𝑣, 𝑡)] |, ∀(𝑣, 𝑡) ∈ 𝑉 × [𝑇 ] /* 𝑅𝑅 [(𝑣, 𝑡)]’s and 𝑐 [(𝑣, 𝑡)]’s can be

constructed during the generation of R */

2: for all 𝑅 ∈ R, 𝑡𝑅 = 𝑇 + 1;𝑤𝑇+1 = 0

3: S = ∅ /* the element of S is (𝑣, 𝑡) */
4: for 𝑖 = 1 to 𝑘 do
5: (𝑣, 𝑡) = argmax(𝑣,𝑡 ) ∈𝑉 ×[𝑘 ]\S 𝑐 [(𝑣, 𝑡)]
6: S = S ∪ (𝑣, 𝑡)
7: for 𝑅 ∈ 𝑅𝑅 [(𝑣, 𝑡)] ∧ 𝑡 < 𝑡𝑅 do
8: for (𝑢, 𝑡 ′) ∈ 𝑅 ∧ (𝑢, 𝑡 ′) ≠ (𝑣, 𝑡) ∧ 𝑡 ′ < 𝑡𝑅 do
9: if 𝑡 ′ ≥ 𝑡 then
10: 𝑐 [(𝑢, 𝑡 ′)] = 𝑐 [(𝑢, 𝑡 ′)] − (𝑤𝑡 ′ −𝑤𝑡𝑅 )
11: else
12: 𝑐 [(𝑢, 𝑡 ′)] = 𝑐 [(𝑢, 𝑡 ′)] − (𝑤𝑡 −𝑤𝑡𝑅 )
13: end if
14: end for
15: 𝑡𝑅 = 𝑡

16: end for
17: end for
18: return ˆS𝑔 = S

6.2 Variable Natural Growth Count

We can relax the assumption that the natural growth count 𝑧 is constant for all rounds to allow a natural growth vector

𝒛 = [𝑧1, 𝑧2, · · · , 𝑧𝑇 ] with 𝑧𝑡 denoting the natural customer count in round 𝑡 . Then, similar to the derivation process in

Section 4.1, we can obtain the formula for 𝑟𝑂𝐼
𝑇

(S) as follows:

𝑟𝑂𝐼
𝑇 (S) = (𝑟0 + 1)

𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
0
+ 𝑑𝑝

0
+ ∑𝑡

𝑖=1
𝑧𝑖 +

∑𝑡−1

𝑖=1
𝜎 (𝑆𝑖 )

)
− 1.

The derivation of the surrogate function 𝜌𝑂𝐼
𝑇

(S) and the rest algorithm design is the same, and we just need to redefine

the weight𝑤𝑡 = 1/(𝑑𝑛
0
+ 𝑑𝑝

0
+ ∑𝑡

𝑖=1
𝑧𝑖 ).

6.3 Popular Item Engages in Promotion

Our PRM problem considers passive popular item that does not engage in promotion. When popular item also engages

in promotion, the situation is more complicated. Here we assume that the promotion of the popular item in all rounds

are known, and the promotional result on round 𝑡 is given as 𝑝𝑡 , 𝑡 ∈ [𝑇 ].
The case of unknown popular item promotions would lead the problem into the game-theoretic setting, which is

beyond the scope of this paper. When 𝑝1, . . . , 𝑝𝑇 are known, in the OINS setting, the close form of the objective function

14
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Table 2. Datasets

DM LastFM FX01/02 HEPT Yelp DBLP LJ

nodes 0.6K 1.8K 29.3K 27.7K 110K 650K 4800K

edges 3.3K 12.7K 212.6K 352.8K 950K 1900K 42800K

avg.degree 4.96 13.44 7.24 12.70 15.92 3.04 8.83

𝑟𝑂𝐼
𝑇

(S) is not easily derived as in Lemma 1. Instead we can obtain its upper and lower bound as follows.

𝑟𝑇 ≤ (𝑟0 + 1)
𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧𝑡 + ∑𝑡−1

𝑖=1
(𝜎 (𝑆𝑖 ) + 𝑝𝑖 )

)
− 1, (13)

𝑟𝑇 ≥ (𝑟0 + 1)
𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 ) − 𝑝𝑡

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧𝑡 + ∑𝑡−1

𝑖=1
(𝜎 (𝑆𝑖 ) + 𝑝𝑖 ) + 𝑝𝑡

)
− 1. (14)

Eq.(13) can be viewed as treating 𝑝𝑡 as the additional natural growth in round 𝑡 , and thus disfavor of the popular item

and in favor of the novice item. Eq.(14) works when 𝑑𝑡𝑝 ≥ 𝑑𝑡𝑛 , i.e. popular item is still the majority in popularity. These

bounds lead to two weight settings:

𝑤𝑡 =
1

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑡 · 𝑧 + ∑𝑡

𝑖=1
𝑝𝑖
, 𝑤𝑡 =

1

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑡 · 𝑧 + ∑𝑡

𝑖=1
𝑝𝑖 + 𝑝𝑡

.

Then following the sandwich approximation strategy [24], we can apply the two sets of weights to the corresponding

PRM-IMM algorithm, obtain two seed allocations, and compare their results to find the better one. The approximation

ratio for the surrogate objective would have an extra factor of max𝑡 ∈𝑇 𝑤𝑡/𝑤𝑡 .

6.4 Two Other Optimization Objectives

Beyond the fundamental problem of maximizing the popularity ratio, it is natural to investigate two other variants of

the PRM problem in surpassing the competitor: minimizing seed budget and minimizing the number of rounds needed.

• Seed Minimization: Given a round budget 𝑇 , minimize the number of seeds in S such that the final popularity

ratio is at least 1, i.e., 𝑟𝑇 (S) ≥ 1.

• Round Minimization: Given a seed budget 𝑘 , minimize the round number 𝑇 such that the final popularity ratio is

at least 1, i.e., 𝑟𝑇 (S) ≥ 1.

Note that 𝑟𝑇 (S) ≥ 1 means that the novice item has successfully caught up or surpassed the popular item at the end of

the promotional period. For the seed minimization problem, we first find the range of minimum budget by doubling the

budget from 1, and then determine the minimum budget that would make 𝑟𝑇 ≥ 1 by a binary search on the budget, and

for each budget tried, we use the PRM-IMM algorithms developed. Same binary search idea can be applied to the round

minimization problem.

6.5 Multiple Items

In this section, we discuss the PRM problem when there are multiple items in the system.

The Novice Item View Point, with Multiple Promotional Items We first focus on the view point from the

targeted novice item, which is trying to increase its popularity compared with other items. Other competing items may
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Table 3. Parameter Settings

DM LastFM FX01 FX02 HEPT Yelp DBLP LJ

𝑟0 0.25 0.067 0.13 0.067 0.25 0.02 0.025 0.025

𝑑0 900 1600 1700 1600 5000 51000 20500 205000

𝑧 10 100 50 100 150 2000 2500 25000

or may not have their own promotions. We denote other items as items 1, . . . , 𝑠 , and the popularity of item 𝑗 ∈ [𝑠] at
the end of round 𝑡 is 𝑑

𝑗
𝑡 .

We do not need to distinguish between popular and novice items among other items, and only need to denote

whether an item conducts promotion or not. Each item 𝑗 ∈ [𝑠] may conduct promotion 𝑝
𝑗
𝑡 in round 𝑡 , and 𝑝

𝑗
𝑡 = 0 means

no promotion. The popularity ratio of our targeted novice item, 𝑟𝑡 , is defined as 𝑟𝑡 = 𝑑𝑛𝑡 /(
∑𝑠

𝑗=1
𝑑
𝑗
𝑡 ). The following

theorem demonstrates that, even in the multiple-item case, we are able to derive the upper and lower bounds for the

popularity ratio 𝑟𝑇 , similar to the results presented in Section 6.3.

Theorem 6. In the setting of multiple items with promotions, we can bound 𝑟𝑇 as follows:

𝑟𝑇 ≤ (𝑟0 + 1)
𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 )

𝜁

)
− 1, (15)

𝑟𝑇 ≥ (𝑟0 + 1)
𝑇∏
𝑡=1

©­«1 +
𝜎 (𝑆𝑡 ) −

∑𝑠
𝑗=1

𝑝
𝑗
𝑡

𝜁 + ∑𝑠
𝑗=1

𝑝
𝑗
𝑡

ª®¬ − 1, (16)

where 𝜁 = 𝑑𝑛
0
+ ∑𝑠

𝑗=1
(𝑑 𝑗

0
) + 𝑧𝑡 + ∑𝑡−1

𝑖=1
(𝜎 (𝑆𝑖 ) +

∑𝑠
𝑗=1

𝑝
𝑗
𝑖
), and Inequality (16) holds when 𝑑𝑛𝑡 ≤ ∑𝑠

𝑗=1
𝑑
𝑗
𝑡 , for 𝑡 < 𝑇 .

The implication of the above theorem is that, from the perspective of the targeted novice item, all other items can be

treated as one single composite item — as long as we know the combined promotional effect of all other items, namely∑𝑠
𝑗=1

𝑝
𝑗
𝑡 , we can treat all other items as one single item and compute the promotion to the novice item in the same

way as described in Section 6.3. Moreover, it is easy to verify that if none of the other items conduct promotion, i.e.

𝑝
𝑗
𝑡 = 0 for all 𝑡 ’s and 𝑗 ’s, we can treat all other items as a single composite item and derive the exact formula for 𝑟𝑇

as in Lemma 1. The main reason for the above property is that the preferential attachment mechanism remains the

proportional allocation whether the novice item is facing one other item or many other items.

This further extends our understanding of popularity ratio maximization in cases where multiple items (popular or

not, having promotions or not) co-exist in the system.

The Game Theoretic Point of View The above is from one novice item’s view point, on how to allocate seeds

to maximize its popularity ratio when other items’ promotions are known. When items’ promotions are unknown

to one another, we need to study the dynamic of the overall system, and we enter the game-theoretic setting. Here,

each item’s strategy is the allocation of seeds over 𝑇 rounds under its budget, and its utility is its popularity ratio.

The algorithm we designed before can be viewed as the algorithm for each individual item (player) to achieve its best

response, or approximate best response. Collectively, we can study the best-response dynamic and the equilibrium

behavior. Alternatively, one may also map our basic PA-IC model into the Stackelberg game model [13], where the

novice item and the popular make moves one after another based on the other side’s previous moves. However, the full
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Fig. 2. The popularity ratio vs. budgets for different algorithms in OINS setting.

study of the game-theoretic aspect under our PA-IC model and the PRM problem setting would be too complicated to

be included in this paper, and we will leave the detailed formulation and the technical study as a future work item.

7 EXPERIMENTS

In this section, we empirically validate our algorithms on eight real-world networks.

7.1 Experiment Setup

Data description We apply eight real-world network datasets in our experiments, with basic statistics shown in Table

2. The DM dataset is a collaboration network where nodes represent the data-mining researchers and edges represent

co-authorships [30]. The FX01/02 datasets are from the Flixster, a network of American social movie discovery services

[2]. Each node is a user and a directed edge from node 𝑢 to 𝑣 is formed if 𝑣 rates one movie shortly after 𝑢 does so on the

same movie. FX01/02 represent two networks on two different movie topics [2], The NetHEPT dataset is an academic

collaboration network from the âĂĲHigh Energy Physics TheoryâĂİ section of arXiv from 1991 to 2003, where nodes

represent the authors and each edge represents one paper co-authored by two nodes [9]. LastFM is a UK-based music

site that focuses on online radio and music communities
3
. We use the friend relationship on LastFM to build a user

relationship social network. The Yelp dataset is released by yelp officially
4
. Yelp.com is the largest review site in the

United States. We use the friend relationship data in Yelp to build a user’s social network. DBLP is another academic

collaboration network extracted from the online archive DBLP (dblp.uni-trier.de) and used for influence studies [34].

LiveJournal, denoted as LJ, is a free online community with almost 10 million members; a significant fraction of these

members are highly active. It is obtained from StanfordâĂŹs SNAP project [20].

MetricsWe consider the following three metrics, reflecting what one could consider in practice:

• Popularity ratio. The popularity ratio at the end of promotions.

• Surpass budget. Given a fixed round𝑇 , the minimum budget needed for the novice item to surpass the popular item.

3
http://www.last.fm/

4
http://www.yelp.com
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• Surpass time. Given a fixed budget 𝑘 , the minimum round number when the novice item surpasses the popular item.

Parameter setup and reproducibility For DM and FX datasets, we use the edge weights learned in their respective

studies [2, 30]. For the remaining datasets, we use the following âĂĲWeighted CascadeâĂİ policy adopted in [18]

and often used in other influence maximization studies (e.g. [10, 32, 34]): for each edge (𝑢, 𝑣), 𝑝 (𝑢, 𝑣) is set to be

1

𝑁𝑖𝑛 (𝑣) , where 𝑁𝑖𝑛 (𝑣) is the in-degree of 𝑣 . Every PRM instance is also determined by the parameters 𝑟0, 𝑑0, 𝑧. We set

proper parameters for each dataset, as shown in Table 3, to reflect different scenarios and match with the network

size. Specifically, the settings of 𝑑0 and 𝑧 are mainly related to the size of the network. When the network size is large,

promotion may generate large popularity from the social network. Thus, to match the natural growth parameter and to

avoid promotion dominating the natural growth, we need to adjust 𝑑0 and 𝑧 accordingly to compensate for the large

popularity generated by promotion. Parameter 𝑟0 further covers different scenarios among the datasets.

We further vary these parameters and study their effects (Fig.4 and Fig.5). Following [32], we set the error probability

parameter 𝑙 = 1, approximation ratio parameter 𝜀 = 0.1 in PRM-IMM. For implementation details see the source code

and proof appendix in this repository
5
.

Baselines There is no existing baseline for the newly proposed PRM problem. Thus, we compare with the following

reasonable heuristic baselines.

• OneShot-IMM: The largest 𝑘 nodes are picked by the IMM algorithm, and all are placed in round 1.

• Uni-IMM-NS/Uni-IMM-OS: The NS version selects the largest 𝑘 nodes by IMM and places them in all rounds

separately with equal size in the order of the greedy selection. The OS version simply repeats the first round seeds in

later rounds (for NIOS tests).

• RandRound-IMM: Pick the largest 𝑘 nodes by the IMM algorithm and put them into 𝑇 rounds randomly.

• RandSeed&Round: Randomly select 𝑘 nodes and randomly place these nodes in each round.

• Dec-IMM-NS/Dec-IMM-OS: The NS version picks the largest 𝑘 nodes by IMM and places seed nodes in descending

order. The method of generating the decreasing sequence is to use one-fifth of the budget in the first round and

one-fifth of the remaining budget in each subsequent round. The OS version repeats the seeds in the first round with

the same budget as the NS version.

• Greedy: Directly apply the greedy algorithm, using simulations to estimate marginal gains and do not use the RIS

approach.

The first five baselines are all heuristics with no theoretical guarantee. AlgorithmGreedy has the theoretical guarantee

as PRM-IMM, but it is very slow in running simulations, and we will only show its result on the two small datasets DM

and LastFM.

7.1.1 Platform. We implement all algorithms in C++, compiled in Visual Studio 2019, and run our tests on a computer

with 3.6GHz Intel(R) Core(TM) i9-9900K CPU (16 cores), 128G memory, and Windows 10 professional (64 bits).

7.2 Results

OINS main results. Fig. 2 shows the result of popularity ratio vs. budget on all datasets and all algorithms in the OINS

setting. The results are averaged over 10 independent runs. Note that the y-axis corresponds to the original objective

function (Eq. (3)), not the surrogate function (Eq. (7)). It is obvious that PRM-IMM outperforms the baseline algorithms

with a large margin in many cases. More specifically, RandomSeed&Round is much worse than other algorithms,

5
https://github.com/Complex-data/PRM
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Table 4. Running Time (OINS setting,𝑇 = 100, 𝑘 = 100, results in seconds, average over 5 runs)

IMM PRM-IMM Greedy100 Greedy500

DM 0.067 13.7 397.8 3489

LastFM 1.24 82.86 11976 53681

FX01 4.07 437 - -

FX02 3.42 432 - -

HEPT 2.39 399 - -

Yelp 44.36 2959 - -

DBLP 47.46 1176 - -

LJ 371 15026 - -

Table 5. Running Time (OINS setting, 𝑘 = 500, 1000 results in seconds, average over 5 runs)

𝑘 = 500 𝑘 = 1000

IMM PRM-IMM IMM PRM-IMM

DM 0.13 1.16 0.13 1.98

LastFM 0.54 48.59 0.61 48.59

FX01 11.47 138.62 16.51 229.9

FX02 10.52 137.52 16.25 253.48

HEPT 15.11 67.83 13.79 106.93

Yelp 20.36 1639.34 24.51 2715

DBLP 332.46 1317.18 383.73 1939.36

LJ 2505 5607 4251 10760

showing that randomly giving out promotions should be avoided if possible. Uniform-IMM and RandomRound-IMM

have similar performance since both spread the seeds more or less evenly among the 𝑇 rounds, and in many cases such

even spreading results in poor performance. OneShot-IMM is at the opposite extreme, only allocating seeds in the first

round. It has unstable performance, and in most cases it performs poorly, except for the DM and DBLP datasets.

Dec-IMM in general performs better than the OneShot/Uniform

/RandomRound versions, but it still has a clear gap with our algorithm PRM-IMM. This is because all these heuristics

cannot adjust to different network structure and diffusion characteristics of the networks (such as whether important

seeds are likely to have overlapping influence), while our PRM-IMM automatically balances the early promotion and

the influence redundancy among seeds.

Greedy should perform equally well as PRM-IMM, since PRM-IMM is just a more efficient way of implementing

Greedy. But Greedy is very time consuming — as shown in Table 4, Greedy with 100 and 500 simulations per estimation

is already several orders of magnitude slower than PRM-IMM, and it takes Greedy500 almost 15 hours to run on the

1.8K node LastFM network. Thus Greedy is not scalable and we cannot run it on other datasets except for DM and

LastFM. Even for LastFM, Fig. 2(b) shows that Greedy500 and Greedy100 are not as competitive as PRM-IMM, due to

the insufficient number of simulations.

The top left corner of each subfigure in Fig.2 shows the result of different algorithms under larger seed budget of

𝑘 = 500, 1000. It can be seen that PRM-IMM still performs better than other baselines for larger 𝑘’s.

Table 4 shows that the running time of the algorithms with 𝑘 = 100. Note that Random Seed&Round is a trivial

baseline with almost instant running time, but its quality is far worse than all others as reported in Fig.2, and thus we
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Fig. 3. Model justification. (a) Comparing between the random growth (red) and average growth (blue); (b) Comparing between the
original objective function and the surrogate function.

do not include it in the running time table. For all other baselines except Greedy, they call IMM to select seeds first, and

then do various simple allocation of seeds over rounds. Thus their running time is dominated by the IMM running

time, which is reported in the table. The result shows that (a) Greedy100/Greedy500 is two to three orders of magnitude

slower than PRM-IMM, and thus is not scalable at all; (b) PRM-IMM is around 100 times slower than the pure IMM

algorithm (except for DBLP and LJ), which aligns with our theoretical analysis showing that our running time has an

extra 𝑇 factor. Note that for the two large datasets DBLP and LJ, we reduce its round input 𝑇 to save time, since the

results from smaller budgets show that only the first few rounds get allocated for seeds.

Table 5 shows the running time of PRM-IMM vs. IMM with 𝑘 = 500, 1000. For this test, we optimize for 𝑇 , meaning

that we set𝑇 to a small value, and if the resulting allocation of PRM-IMM does not use all rounds, we stop the algorithm;

otherwise, we double the 𝑇 value and retry the algorithm. We can see that PRM-IMM can still scale to larger seed

budgets and large networks.

Overall, our OINS results clearly show that our PRM-IMM algorithm outperforms all simple heuristics, while it runs

much more efficiently than the greedy algorithm. PRM-IMM achieves a good balance between quality and efficiency.

Model justificationWe now justify two choices we made in our model formulation. First, Eq.(1) is based on the

average popularity growth in each round rather than the random popularity growth, as we discussed in Section 3.1. We

compare the effect of the average growth with the random growth, using the seed allocation selected by PRM-IMM

with the budget ranging from 10 to 100. Fig. 3(a) shows that the results of the two effects are very close in four datasets

(the other four have similar results), justifying our use of the average effect in Eq.(1).

Next, we compare the original objective function of Eq. (3) with the surrogate round-weighted influence function

of Eq. (7). We use seed allocations selected by PRM-IMM for this comparison. Fig. 3(b) shows that the two functions

agree with each other very well, with average derivation less than 5% for four datasets (and the other four have similar

results). Hence, using the surrogate function is a reasonable choice, even though our PRM is a heuristic with respect to

the original objective.

Parameter analysis in PRM We now analyze the effect of the initial total popularity measure 𝑑0 and natural

growth count 𝑧 on the PRM-IMM algorithm. We run PRM-IMM to select 100 seeds for this analysis. Fig. 4 shows the

result for FX01, and results on other datasets are similar.

Fig. 4(a) shows that when 𝑧 increases, the popularity ratio decreases, indicating that the larger the natural growth

of the popularity measure, the more difficult it is for the novice item to catch up with the popular item. Fig. 4(b) also
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Fig. 6. The popularity ratio vs. budgets for different algorithms in NIOS setting
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Table 6. Running Time (NIOS setting,𝑇 = 100, 𝑘 = 100, results in seconds, average over 5 runs)

IMM PRM-IMM greedy-100 greedy-500

DM 0.067 342.8 1274.8 3489

LastFM 1.24 1258 51034 249656

FX01 4.07 4396 - -

FX02 3.42 6163 - -

HEPT 2.39 8056 - -

Yelp 44.36 39582 - -

DBLP 47.46 1395 - -

LJ 371 76396 - -
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Fig. 7. (a) Fix round 𝑇 = 20, find the smallest budget to make the popularity ratio exceed 1. (b) Fix budget (LastFM, 𝑘 = 55; Yelp,
𝑘 = 75; DBLP, 𝑘 = 230; LJ, 𝑘 = 125), make the popularity ratio exceed 1 in as few rounds as possible.

shows the decreasing trend with respect to 𝑑0. This is because when 𝑑0 is larger while 𝑟0 remains the same, the gap

between the popular and novice item becomes larger and it is more difficult for the noice item to catch up.

Among the parameters, 𝑧 and 𝑑
𝑝

0
(initial popularity of the popular item) are not directly related to the novice item.

Thus, we further investigate how 𝑧 and 𝑑
𝑝

0
would affect the seed allocation choice of the novice item in Fig. 5. Y-axis

“max round” means the maximum number of rounds used in the allocation. Fig. 5 shows that when 𝑧 increases, the max

round decreases, and when 𝑑
𝑝

0
increases, the max round also increases. This shows the interesting adaptive property of

PRM-IMM: when the natural growth count per round increases, the algorithm tries to put more seeds earlier, otherwise

natural growth in each round will cause more people going to the popular item and making it harder to catch up; but if

only the initial popularity of the popular item increases, the algorithm can use more rounds to achieve a better catch-up

result in the end.

Results on NIOS The popularity ratio and running time results for NIOS are shown in Fig. 6 and Table 6, respectively.

For this test, we further include baselines Uni-IMM-OS and Dec-IMM-OS to consider seed overlaps. Overall, the results

are similar to those of OINS, and our PRM-IMM algorithm always performs the best among all baselines, and it runs

significantly faster than the simple greedy algorithm. The performance gap between our algorithm and other baselines

is even larger in many cases compared to OINS. This is perhaps because the NIOS setting demands more sophisticated
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Fig. 8. The popularity ratio vs. budgets for different algorithms when the popular item has promotion.

seed allocation. For example, we notice that seed overlaps vary with the networks. The OS specific baselines in many

cases perform not as well as their NS counterparts, indicating that it is not easy to adjust proper overlaps among seeds.

Compared to OINS, our PRM-IMM algorithm runs slower, and this is mainly because each MR-RR set for NIOS is much

larger than the PW-RR set for OINS.

Alternative Objectives. Finally, we evaluate the two alternative objectives discussed in Section 6.4. Since Random-

Seed&Round is clearly worse than other algorithms, while OneShot-IMM cannot assign seeds to multiple rounds, we

do not include them as baselines in this part. We apply the idea in Section 6.4 to conduct these experiments for the

OINS setting.

Fig.7 shows the results on four datasets, and the results on the other four datasets are similar. Fig.7(a) shows the result

for the Seed Minimization problem, in which we fix 𝑇 = 20, and then use different algorithms to find the minimum

budget that can make the popular ratio exceed 1. Fig.7(b) shows the result for the Round Minimization problem. For

this problem, we need to set different budgets for different datasets based on our result from Fig.7(a) to balance the

influence of 𝑇 and 𝑘 .

The results in both figures show that our algorithm can achieve the best results compared to all other baselines.

Popular item having promotion. In this section, we evaluate different algorithms in the situation when the novice

item knows the promotion plan of the popular item. We assume that the popular item uses a budget of 30 and uses

three different strategies: PRM-IMM, Dec-IMM, Uni-IMM, to select seeds. Then the novice item uses PRM-IMM and

other baselines to select seed nodes and evaluate the final popularity ratio. The results on FX01 and HEPT dataset are

shown in Fig.8. We can see that even when the popular item has promotions, our PRM-IMM still performs well and

beats all the baselines. Moreover, the end popularity ratio increases when the popular item promotion moves from

PRM-IMM algorithm to Dec-IMM and then Uni-IMM, suggesting that the novice item can achieve better promotion

result when the popular item uses a less competitive promotion strategy.
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8 FUTUREWORK

One interesting future direction is to study adaptive strategies, where the seed selection of later rounds depends on the

actual promotional results of the earlier rounds. Another direction is to consider the delayed effect of promotion, where

social network promotion may take multiple rounds to generate popularity growth. One may also look into the model

where the promotion of the popular item and the novice item also competes in the social network.
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Table 7. Notations

Notation Description

𝐺 = (𝑉 , 𝐸) a social network 𝐺 with a node set 𝑉 and an edge set 𝐸

𝑁,𝑀 the numbers of nodes and edges in 𝐺 , respectively

𝑑𝑛𝑡 the popularity measure of Novice item at the end of round 𝑡

𝑑
𝑝
𝑡 the popularity measure of Popular item at the end of round 𝑡

𝑘 number of seeds to be selected

𝜏 time step index, each time step is one step in one round of IC model propagation

𝑡 round index, each round is a promotional round

𝑇 Total rounds

𝑆𝑡 seed set of round 𝑡

S =
⋃𝑇

𝑡=1
𝑆𝑡 × {𝑡} pair set, a pair (𝑢, 𝑡) is a node 𝑢 at round 𝑡

S∗
optimal pair set

𝑟𝑇 (S) the popularity ratio at the end of round 𝑇

𝑟0 the initial popularity ratio

𝑝 (𝑢, 𝑣) the probability of node 𝑢 active 𝑣

𝑧 total natural growth of popularity measure

𝜎 (𝑆) the influence spread of seed set 𝑆

𝑤 = (𝑤1,𝑤2 ...𝑤𝑇 ) the weight vector,𝑤𝑡 is the weight of round 𝑡

𝜌𝑇 (S) weighted overlapping influence spread

𝜌 (𝑡 ) (𝑆𝑡 ) weighted overlapping influence spread of round 𝑡

𝑅, 𝑅(𝑣) one RR set, 𝑅(𝑣) is the RR set rooted at node 𝑣

𝑅 (𝑡 ) , 𝑅 (𝑡 ) (𝑣) one PW-RR set, 𝑅 (𝑡 ) = 𝑅 × {𝑡}, 𝑅 (𝑡 ) (𝑣) is the RR set rooted at pair (𝑣, 𝑡)
R the set of pair-wised RR set

𝜃 the number of PW-RR sets that need to be generated

𝑙 Error probability parameter

𝜀 Approximate ratio parameter

𝑏,Q, 𝑖, 𝑗, 𝑥𝑖 , 𝛼, 𝛽,𝑂𝑃𝑇, 𝛿, 𝐿𝐵, 𝑃𝑟, 𝜔,Ω parameters in derivation

A NOTATIONS

Table.7 shows all terms’ notations in this paper.

B PROOF OF MONOTONICITY AND NON-SUBMODULARITY OF POPULARITY RATIO FUNCTION
(LEMMA 2)

Proof. It is proved that the expected influence spread set function 𝜎 is monotone and submodular, we don’t show

the proof process here. So we only need to prove that the popularity ratio function is monotone with respect to the

function 𝜎 (𝑆𝑖 ), 0 < 𝑖 < 𝑇 . We can prove the monotone of the popularity ratio function. For simplicity, we denote
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𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝑧 as 𝑑𝑡 , denote 𝜎 (𝑆𝑖 ) as 𝑥𝑖 , 0 < 𝑖 < 𝑇 .

𝜕𝑟𝑇

𝜕𝑥𝑖
= (𝑟0 + 1)

𝑖−1∏
𝑡=1

(
1 + 𝑥𝑡

𝑑𝑡

) [
1

𝑑𝑖

𝑇∏
𝑡=𝑖+1

(
1 + 𝑥𝑡

𝑑𝑡

)
+

𝑇∑︁
𝑡=𝑖+1

−𝑥𝑡
𝑑2

𝑡

𝑇∏
𝑠=𝑖,𝑠≠𝑡

(
1 + 𝑥𝑠

𝑑𝑠

) ]
= 𝑟𝑇 ·

[
𝑧

𝑑𝑖+1 (𝑑𝑖 + 𝑥𝑖 )
+ · · · + 𝑧

𝑑𝑇 (𝑑𝑇−1 + 𝜎 (𝑆𝑇−1))

+ 1

𝑑𝑇 + 𝑥𝑇

]
> 0

For any 0 < 𝑖 < 𝑇,
𝜕𝑟𝑇
𝜕𝑥𝑖

> 0, the popularity ratio function is monotone.

However the popularity ratio function does not satisfy submodular, and we will illustrate this property with a counter

example below.

Consider the simplest case that social network has only three nodes 𝑢, 𝑣,𝑤 . No edges between nodes, the initial

popularity measure of Novice item is 𝑑𝑛
0
= 1 and the initial popularity measure of Popular item is 𝑑

𝑝

0
= 2, the increment

of popularity measure of each round 𝑧 = 1. In this case, the original

𝑟𝑇 (S) = (𝑟0 + 1)
𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧 · 𝑡 + ∑𝑡−1

𝑖=1
𝜎 (𝑆𝑖 )

)
− 1

where 𝑇 is at most 3, 𝑟0 =
𝑑𝑛

0

𝑑
𝑝

0

= 1

2
.

𝑟𝑇 (S)

=
3

2

∗ (1 + 𝜎 (𝑆1)
𝑑𝑛

0
+ 𝑑𝑝

0
+ 𝑧

) ∗ (1 + 𝜎 (𝑆2)
𝑑𝑛

1
+ 𝑑𝑝

1
+ 𝑧

) ∗ (1 + 𝜎 (𝑆3)
𝑑𝑛

2
+ 𝑑𝑝

2
+ 𝑧

) − 1

where 𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧 = 4, 𝑑𝑛

1
+ 𝑑𝑝

1
+ 𝑧 = 5 + 𝜎 (𝑆1), 𝑑𝑛

1
+ 𝑑𝑝

1
+ 𝑧 = 6 + 𝜎 (𝑆1) + 𝜎 (𝑆2).

𝑟𝑇 (S)

=
3

2

∗ (1 + 𝜎 (𝑆1)
4

) ∗ (1 + 𝜎 (𝑆2)
5 + 𝜎 (𝑆1)

) ∗ (1 + 𝜎 (𝑆3)
6 + 𝜎 (𝑆1) + 𝜎 (𝑆2)

) − 1

Now the two pair set S ⊂ Q, S = {(𝑢, 1)}, Q = {(𝑢, 1), (𝑣, 1)}, and a pair 𝑏 = (𝑤, 2), Clearly 𝑏 ∉ S.

𝑟𝑇 (S) = 0.875, 𝑟𝑇 (S ∪ {𝑏}) = 1.1875

𝑟𝑇 (Q) = 1.25, 𝑟𝑇 (Q ∪ {𝑏}) = 1.5714

𝑟𝑇 (Q ∪ {𝑏}) − 𝑟𝑇 (Q) = 0.3214, 𝑟𝑇 (S ∪ {𝑏}) − 𝑟𝑇 (S) = 0.3125

𝑟𝑇 (Q ∪ {𝑏}) − 𝑟𝑇 (Q) > 𝑟𝑇 (S ∪ {𝑏}) − 𝑟𝑇 (S)

In this case, the marginal value of Q is larger than S. So the set popularity ratio function is not submodular. □
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C SIMPLIFICATION PROCESS FROM POPULARITY RATIO FUNCTION TO ROUNDWEIGHTED
INFLUENCE FUNCTION (SECTION 4.2

The first step: expanding the multiplication series of Eq.(3) and only keeping the first-order terms;

𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧 · 𝑡 + ∑𝑡−1

𝑖=1
𝜎 (𝑆𝑖 )

)
=

𝜎 (𝑆1)
𝑑𝑛

0
+ 𝑑𝑝

0
+ 𝑧

+ 𝜎 (𝑆2)
𝑑𝑛

0
+ 𝑑𝑝

0
+ 2𝑧 + 𝜎 (𝑆1)

+ · · · + 𝜎 (𝑆𝑇 )
𝑑𝑛

0
+ 𝑑𝑝

0
+𝑇 · 𝑧 + ∑𝑇−1

𝑖=0
𝜎 (𝑆𝑖 )

second step: removing the 𝜎 (𝑆1), . . . , 𝜎 (𝑆𝑇−1) in the denominator of each term left after step (a).

=
𝜎 (𝑆1)

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧

+ 𝜎 (𝑆2)
𝑑𝑛

0
+ 𝑑𝑝

0
+ 2𝑧

+ · · · + 𝜎 (𝑆𝑇 )
𝑑𝑛

0
+ 𝑑𝑝

0
+𝑇 · 𝑧

Combining the above simplified process, it can be noted that

𝜌𝑇 (S) =
𝜎 (𝑆1)

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧

+ 𝜎 (𝑆2)
𝑑𝑛

0
+ 𝑑𝑝

0
+ 2𝑧

+ · · · + 𝜎 (𝑆𝑇 )
𝑑𝑛

0
+ 𝑑𝑝

0
+𝑇 · 𝑧

is our weighted overlapping influence function, where 𝑑𝑛
0
, 𝑑

𝑝

0
, 𝑧 are our predefined parameters. Thus we can denote the

weighted overlapping influence function as

𝜌𝑇 (S) =
𝑇∑︁
𝑡=1

𝑤𝑡 · 𝜎 (𝑆𝑡 ) (17)

D PW-RR GENERATION PROCESS

RR set 𝑅 is generated by independently reverse simulating the propagation from 𝑣 in round 𝑡 . A (random) pair-wise RR

set (𝑅, 𝑡) is a RR set 𝑅 rooted at a node picked uniformly at random from 𝑉 , and 𝑡 is picked uniformly at random from

[𝑇 ].

Algorithm 4 PW-RR generation process.

Input: directed graph 𝐺 = (𝑉 , 𝐸), IC model, Max round 𝑇

Number of PW-RR set 𝜃

Output: the set of PW-RR set R
1: R = ∅
2: for 0 < 𝜃 do
3: 𝜃 = 𝜃 − 1

4: Generate an RR set 𝑅 for a random node 𝑣 ∈ 𝑉

5: choose a round 𝑡 uniformly at random from [𝑇 ]
6: put the RR set 𝑅 and round 𝑡 together as 𝑅 (𝑡 )

7: R = R ∪ {𝑅 (𝑡 ) }
8: end for
9: return R

28



Popularity Ratio Maximization: Surpassing Competitors through Influence Propagation SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA

E PROOF OF MONOTONICITY AND NON-SUBMODULARITY OF POPULARITY RATIO FUNCTION
(LEMMA 3)

Proof. For every 𝑡 ∈ [𝑇 ] and every set S of pairs in 𝑉 × [𝑇 ], define 𝜌 (𝑡 ) (S) = 𝜎 (𝑆𝑡 ). Using the fact that the

influence spread function 𝜎 (𝑆) is monotone and submodular with respect to 𝑆 , we want to show that 𝜌 (𝑡 ) (S) is
monotone and submodular with respect to S. In fact, for every S ⊆ Q ⊆ 𝑉 × [𝑇 ], we know that 𝑆𝑡 ⊆ 𝑄𝑡 , and therefore

𝜌 (𝑡 ) (S) = 𝜎 (𝑆𝑡 ) ≤ 𝜎 (𝑄𝑡 ) = 𝜌 (𝑡 ) (Q), and thus the monotonicity holds.

Now, suppose that S ⊆ Q ⊆ 𝑉 × [𝑇 ] and 𝑏 = (𝑣, 𝑗) ∈ 𝑉 × [𝑇 ] \ Q. If 𝑗 ≠ 𝑡 , then S ∪ {𝑏} and S has the

same node set for round 𝑡 , which means 𝜌 (𝑡 ) (S ∪ {𝑏}) − 𝜌 (𝑡 ) (S) = 0. Similarly, 𝜌 (𝑡 ) (Q ∪ {𝑏}) − 𝜌 (𝑡 ) (Q) = 0. Thus,

𝜌 (𝑡 ) (Q∪{𝑏}) −𝜌 (𝑡 ) (Q) ≤ 𝜌 (𝑡 ) (S∪{𝑏}) −𝜌 (𝑡 ) (S). If 𝑗 = 𝑡 , then we have 𝑆𝑡 ⊆ 𝑄𝑡 and 𝑣 ∈ 𝑉 \𝑄𝑡 . By the submodularity

of 𝜎 , we have 𝜌 (𝑡 ) (Q ∪ {𝑏}) − 𝜌 (𝑡 ) (Q) = 𝜎 (𝑄𝑡 ∪ {𝑣}) − 𝜎 (𝑄𝑡 ) ≤ 𝜎 (𝑆𝑡 ∪ {𝑣}) − 𝜎 (𝑆𝑡 ) = 𝜌 (𝑡 ) (S ∪ {𝑏}) − 𝜌 (𝑡 ) (S).
Therefore submodularity also holds.

Finally, since 𝜌 (𝑡 ) (S) is monotone and submodular with respect to S for every 𝑡 , by the well known fact that the

nonnegative weighted summation of monotone submodular functions is still monotone and submodular, we know that

𝜌𝑇 (S) =
∑𝑇
𝑡=1

𝑤𝑡𝜎 (𝑆𝑡 ) =
∑𝑇
𝑡=1

𝑤𝑡 𝜌
(𝑡 ) (S) is also monotone and submodular with respect to S. □

F PROOF OF PROPERTY OF PW-RR (LEMMA 4)

Proof. The randomness of 𝑌 (S) is from two aspect: (1) the root of a PW-RR set is uniformly random choose, (2) the

round 𝑡 of the PW-RR set is uniformly random choose.

E [𝑌 (S)]

=
1

𝑇

𝑇∑︁
𝑡=1

𝑤𝑡 · E (I {S ∩ R ≠ ∅})

=
1

𝑇

𝑇∑︁
𝑡=1

𝑤𝑡 · Pr

{
𝑆𝑡 ∩ 𝑅 (𝑡 ) ≠ ∅

}
=

1

𝑇

𝑇∑︁
𝑡=1

𝑤𝑡 ·
1

𝑁

∑︁
𝑣∈𝑉

Pr

{
𝑆𝑡 ∩ 𝑅 (𝑡 ) (𝑣) ≠ ∅

}
=

1

𝑇

𝑇∑︁
𝑡=1

𝑤𝑡 ·
1

𝑁

∑︁
𝑣∈𝑉

𝑎𝑝 (𝑆𝑡 , 𝑣)

=
1

𝑇

𝑇∑︁
𝑡=1

𝑤𝑡 ·
1

𝑁
𝜎 (𝑆𝑡 )

For any seed set 𝑆𝑡 ∈ 𝑉 , any node 𝑣 ∈ 𝑉 , the probability that the seed set 𝑆𝑡 activates node 𝑣 with probability

𝑎𝑝 (𝑆𝑡 , 𝑣). 𝑎𝑝 (𝑆𝑡 , 𝑣) is the probability that 𝑆𝑡 have an intersaction with a random RR set 𝑅(𝑣) rooted from node 𝑣 . i.e.

𝑎𝑝 (𝑆, 𝑣) = Pr{𝑆 ∩ 𝑅(𝑣) ≠ ∅}
□

G CORRECTNESS OF PRM-IMM ALGORITHM (THEOREM 5)

We first give a general conclusion (Theorem 7) to show how the greedy solution obtained by the PRM-NodeSelection

approaches the optimal solution of the weighted overlapping influence maximization problem when the 𝜌𝑇 (S,R) itself
satisfies monotone submodular (It is easy to proof that 𝜌𝑇 (S,R) is submodular and nondecreasing with respect to S).
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We denote the random estimation of 𝜌𝑇 (S) as 𝜌𝑇 (S, 𝜔), where 𝜔 ∈ Ω is a sample in random space Ω. S∗
is the

optimal solution of 𝜌𝑇 (S), OPT = 𝜌𝑇 (S∗). ˆS𝑔 (𝜔) is the greedy result of 𝜌𝑇 (·, 𝜔). For 𝜀 > 0, we say a solution S is bad,

if 𝜌𝑇 (S) < (1/2 − 𝜀) · OPT .

Theorem 7. for any 𝜀 > 0, 𝜀1 ∈ (0, 2𝜀), 𝛿1, 𝛿2 > 0, if:

(a) Pr

𝜔∼Ω
{𝜌𝑇 (S∗, 𝜔) ≥ (1 − 𝜀1) · OPT } ≥ 1 − 𝛿1

(b) for any bad S ,

Pr

𝜔∼Ω

{
𝜌𝑇 (S, 𝜔) ≥ 1

2
(1 − 𝜀1) · OPT

}
≤ 𝛿2

𝑇𝑘 ·(𝑁𝑘 )
(c) for all 𝜔 ∼ Ω, 𝜌𝑇 (S, 𝜔)is monotone and submodular with respect to S.

So that, Pr

𝜔∼Ω

{
𝜌𝑇

(
ˆS𝑔 (𝜔)

)
≥

(
1

2
− 𝜀

)
· OPT

}
≥ 1 − 𝛿1 − 𝛿2

Proof. Because 𝜌𝑇 (S, 𝜔)is monotone and submodular with respect to S, due to the property of matroid, we know

the greedy solution returns a 1/2-approximate solution.

𝜌𝑇

(
ˆS𝑔 (𝜔), 𝜔

)
≥ 1

2

𝜌𝑇
(
S∗, 𝜔

)
With (a), we have at least 1 − 𝛿1 probability that:

𝜌𝑇

(
ˆS𝑔 (𝜔), 𝜔

)
≥ 1

2

(1 − 𝜀1) ·𝑂𝑃𝑇

In𝑇 round, the number of the 𝑘 size seed set is at most𝑇𝑘 ·
(𝑁
𝑘

)
. The probability that every bad S satisfy (b) is less than

𝛿2

𝑇𝑘 ·(𝑁𝑘 )
, so the probability that existing a S to make 𝜌𝑇 (S, 𝜔) ≥ 1

2
(1 − 𝜀1) · OPT is at most 𝛿2.

So Pr

𝜔∼Ω

{
𝜌𝑇

(
ˆS𝑔 (𝜔)

)
≥

(
1

2
− 𝜀

)
· OPT

}
≥ 1 − 𝛿1 − 𝛿2 □

We will use the concentration inequality to find out how much 𝜃 is sufficient to satisfy the conditions (a) and (b) in

Theorem 7. For all subsequences of length 𝜃,R[𝜃 ] in the probability space Ω, each PW-RR set is also independent of

each other, so we can use Chernoff bounds of independent sequences to analyze, which is more simple and intuitive[6].

Theorem 8. For any 𝜀 > 0, 𝜀1 ∈ (0, 2𝜀), 𝛿1, 𝛿2 > 0:

𝜃 (1) =
2𝑤1𝑁 ·𝑇 · ln

1

𝛿1

OPT · 𝜀2

1

, 𝜃 (2) =
𝑤1𝑁 ·𝑇 · ln

(
𝑇𝑘 ·(𝑁𝑘 )

𝛿2

)
𝑂𝑃𝑇 ·

(
𝜀 − 1

2
𝜀1

)
2

For any fixed 𝜃 > 𝜃 (1) , Pr

𝜔∼Ω
{𝜌𝑇 (S∗, 𝜔) ≥ (1 − 𝜀1) · OPT } ≥ 1 − 𝛿1

For any fixed 𝜃 > 𝜃 (2) , any bad S,

Pr

𝜔∼Ω

{
𝜌𝑇 (S, 𝜔) ≥

1

2

(1 − 𝜀1) ·𝑂𝑃𝑇
}
≤ 𝛿2

𝑇𝑘 ·
(𝑁
𝑘

)
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Proof. When 𝜃 > 𝜃 (1) Notice that:

𝜌𝑇 (S,R) =
𝑁 ·𝑇
𝜃

𝜃∑︁
𝑗=1

𝑌 R
𝑗 (S)

Pr

R0∼Ω

{
𝜌𝑇

(
S∗,R0

)
< (1 − 𝜀1) · OPT

}
= Pr

R0∼Ω


𝑁 ·𝑇
𝜃

·
𝜃∑︁
𝑗=1

𝑌
R0

𝑗

(
S∗) < (1 − 𝜀1) · OPT


= Pr

R0∼Ω


𝜃∑︁
𝑗=1

𝑌
R0

𝑗

(
S∗) < 𝜃

𝑁 ·𝑇 · (1 − 𝜀1) · OPT


= Pr

R0∼Ω


𝜃∑︁
𝑗=1

𝑌
R0

𝑗

(
S∗) − 𝜃 · 𝜌𝑇 (S∗)

𝑁 ·𝑇 <
𝜃 (1 − 𝜀1) OPT

𝑁 ·𝑇 − 𝜃
𝜌𝑇 (S∗)
𝑁 ·𝑇


= Pr

R0∼Ω


𝜃∑︁
𝑗=1

𝑌
R0

𝑗

(
S∗) − 𝜃 · 𝜌𝑇 (S∗)

𝑁 ·𝑇 < −𝜀1 ·
(
𝜃 · 𝜌𝑇 (S∗)

𝑁 ·𝑇

)
= Pr

R0∼Ω


𝜃∑︁
𝑗=1

𝑌
R0

𝑗
(S∗)

𝑤1

− 𝜃 · 𝜌𝑇 (S∗)
𝑤1𝑁 ·𝑇 < −𝜀1 ·

(
𝜃 · 𝜌𝑇 (S∗)

𝑤1𝑁 ·𝑇

)
≤ exp

(
−
𝜀2

1

2

𝜃 · 𝜌𝑇 (S∗)
𝑤1𝑁 ·𝑇

)
≤ exp

(
−
𝜀2

1

2

·
2𝑤1𝑁 ·𝑇 · ln

1

𝛿1

OPT · 𝜀2

1

· 𝜌𝑇 (S∗)
𝑁 ·𝑇

)
= 𝛿1
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When 𝜃 > 𝜃 (2) , set 𝜀2 = 𝜀 − 1

2
𝜀1, 𝜌𝑇 (S) <

(
1

2
− 𝜀

)
· OPT

Pr

R0∼Ω

{
𝜌𝑇𝜃 (S,R0) ≥

1

2

(1 − 𝜀1) · OPT
}

= Pr

R0∼Ω


𝑁 ·𝑇
𝜃

·
𝜃∑︁
𝑗=1

𝑌
R0

𝑗
(S) ≥ 1

2

(1 − 𝜀1) · OPT


= Pr

R0∼Ω


𝜃∑︁
𝑗=1

𝑌
R0

𝑗
(S) − 𝜃 · 𝜌𝑇 (S)

𝑁 ·𝑇 ≥ 𝜃

𝑁 ·𝑇

[
1

2

(1 − 𝜀1) · OPT − 𝜌𝑇 (S)
]

/∗𝜌𝑇 (S) <
(

1

2

− 𝜀

)
· OPT ∗ /

≤ Pr

R0∼Ω


𝜃∑︁
𝑗=1

𝑌
R0

𝑗
(S) − 𝜃 · 𝜌𝑇 (S)

𝑁 ·𝑇 ≥ 𝜃

𝑁 ·𝑇 · 𝜀2 · OPT


= Pr

R0∼Ω


𝜃∑︁
𝑗=1

𝑌
R0

𝑗
(S)

𝑤1

− 𝜃 · 𝜌𝑇 (S)
𝑤1𝑁 ·𝑇 ≥

(
𝜀2 ·

OPT
𝜌𝑇 (S)

)
· 𝜃 · 𝜌𝑇 (S)

𝑤1𝑁 ·𝑇


≤ exp

©­­«−
(
𝜀2 · OPT

𝜌𝑇 (S)

)
2

2 + 2

3

(
𝜀2 · OPT

𝜌𝑇 (S)

) · 𝜃 · 𝜌𝑇 (S)
𝑤1𝑁 ·𝑇

ª®®¬
≤ exp

(
−

𝜀2

2
· OPT2

2𝜌𝑇 (S) + 2

3
𝜀2 · OPT

· 𝜃 · 1

𝑤1𝑁 ·𝑇

)

≤ exp

©­­«−
𝜀2

2
· OPT2

2

(
1

2
− 𝜀

)
· OPT + 2

3

(
𝜀 − 1

2
𝜀1

)
· OPT

· 𝜃 · 1

𝑤1𝑁 ·𝑇
ª®®¬

≤ exp

©­­­­«
−

(
𝜀 − 1

2
𝜀1

)
2

· OPT2

OPT
·
𝑤1𝑁 ·𝑇 · ln

(
𝑇𝑘 ·(𝑁𝑘 )

𝛿2

)
OPT ·

(
𝜀 − 1

2
𝜀1

)
2

· 1

𝑤1𝑁 ·𝑇

ª®®®®¬
=
𝑇𝑘 ·

(𝑁
𝑘

)
𝛿2

□

Now we discuss the setting of parameters 𝜀1, 𝛿1, 𝛿2. The Settings of these parameters are not unique, and the method

we describe below follows the settings in the original IMM algorithm. According to Theorem 8, assuming that OPT

is known, the target of these parameters is to make the output of greedy solution
ˆS𝑔
is the 1/2 − 𝜀 approximation of

optimal solution with probability at least 1 − 1/(2𝑁 𝑙 ). The high probability of 1 − 1/(2𝑁 𝑙 ) was achieved because, in the

next step, we would use the same high probability of 1 − 1/(2𝑁 𝑙 )to obtain a better lower-bound estimate of OPT . Thus,

the correctness of the overall algorithm would be guaranteed for an assignment with a high probability of 1 − 1/(𝑁 𝑙 ).
The following corollary give the setting of the parameters.
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Corollary 1. Set 𝛿1 = 𝛿2 = 1

4𝑛𝑙
, 𝜀1 = 𝜀 · 𝛼

1

2
𝛼+𝛽

𝛼 =
√
𝑙 ln𝑁 + ln 4, 𝛽 =

√︄
1

2

·
(
ln

(
𝑁

𝑘

)
+ 𝑙 ln𝑁 + ln 4 + 𝑘 ln𝑇

)
For any fixed 𝜃 >

2𝑁 ·𝑇 ·[ 1

2
𝛼+𝛽]2

𝜀2 ·OPT , if the input of PRM-NodeSelection is R0 [𝜃 ],R0 ∼ Ω,the probability that PRM-

NodeSelection-OINS’s output ˆS𝑔 (R0 [𝜃 ]) is the (1/2 − 𝜀) approximation of the optimal solution is at least 1 − 1

2𝑁 𝑙 .

Theorem 9. The probability of 𝐿𝐵 ≤ OPT is at least 1 − 1

2𝑁 𝑙 , which means that the probability of ˜𝜃 ≥ 2𝑛𝑡 ·[ 1

2
·𝛼+𝛽]2

𝜀2 ·OPT is

at least 1 − 1

2𝑁 𝑙 .

G.1 Proof of Theorem 9

Theorem 10. For any 𝑖 = 1, 2, · · · ,
⌊
log

2
𝑁

⌋
− 1,

(1) if 𝑥𝑖 =
∑𝑘

1
𝑤𝑡 ·𝑁
2
𝑖 > OPT, the probability of 𝜌𝑇𝜃𝑖 (S𝑖 ,R0 [𝜃𝑖 ]) ≥

(
1 + 𝜀

′
)
· 𝑥𝑖 is at most 1

2𝑁 𝑙
log

2
𝑁
.

(2) if 𝑥𝑖 =
∑𝑘

1
𝑤𝑡 ·𝑁
2
𝑖 ≤ OPT, the probability of 𝜌𝑇𝜃𝑖 (S𝑖 ,R0 [𝜃𝑖 ]) ≥

(
1 + 𝜀

′
)
· OPT is at most 1

2𝑁 𝑙
log

2
𝑁
.

Proof. For any 𝑘 size seed set S.
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𝜌𝑇𝜃𝑖 (S,R0 [𝜃𝑖 ]) =
𝑁 ·𝑇 ·∑𝜃𝑖

𝑗=1
𝑌
R

0
[𝜃𝑖 ]

𝑗
(S)

𝜃𝑖

Pr

R0∼Ω

{
𝜌𝑇𝜃𝑖 (S,R0) ≥

(
1 + 𝜀′

)
· 𝑥𝑖

}
= Pr

R0∼Ω


𝑁 ·𝑇
𝜃𝑖

·
𝜃𝑖∑︁
𝑗=1

𝑌
R0 [𝜃𝑖 ]
𝑗

(S) ≥
(
1 + 𝜀′

)
· 𝑥𝑖


= Pr

R0∼Ω


𝜃𝑖∑︁
𝑗=1

𝑌
R0 [𝜃𝑖 ]
𝑗

(S) − 𝜃𝑖 · 𝜌𝑇 (S)
𝑁 ·𝑇 ≥ 𝜃𝑖 (1 + 𝜀′) 𝑥𝑖

𝑁 ·𝑇 − 𝜃𝑖 · 𝜌𝑇 (S)
𝑁 ·𝑇


/∗ because 𝑥𝑖 > OPT ≥ 𝜌𝑇 (S) ∗ /

≤ Pr

R0∼Ω


𝜃𝑖∑︁
𝑗=1

𝑌
R0 [𝜃𝑖 ]
𝑗

(S) − 𝜃𝑖 · 𝜌𝑇 (S)
𝑁 ·𝑇 ≥ 𝜃𝑖

𝑁 ·𝑇 𝜀′ · 𝑥𝑖


= Pr

R0∼Ω


𝜃𝑖∑︁
𝑗=1

𝑌
R0 [𝜃𝑖 ]
𝑗

(S) − 𝜃𝑖 · 𝜌𝑇 (S)
𝑁 ·𝑇 ≥ 𝜀′ · 𝑥𝑖

𝜌𝑇 (S)
· 𝜃𝑖 · 𝜌𝑇 (S)

𝑁 ·𝑇


= Pr

R0∼Ω


𝜃𝑖∑︁
𝑗=1

𝑌
R0 [𝜃𝑖 ]
𝑗

(S)
𝑤1

− 𝜃𝑖 · 𝜌𝑇 (S)
𝑤1𝑁 ·𝑇 ≥ 𝜀′ · 𝑥𝑖

𝜌𝑇 (S)
· 𝜃𝑖 · 𝜌𝑇 (S)

𝑤1𝑁 ·𝑇


≤ exp

©­­«−
(

𝜀′ ·𝑥𝑖
𝜌𝑇 (S)

)
2

2 + 2

3

(
𝜀′ ·𝑥𝑖
𝜌𝑇 (S)

) · 𝜃𝑖 · 𝜌𝑇 (S)
𝑤1𝑁 ·𝑇

ª®®¬ /∗ chernoff bound ∗ /

= exp

(
− (𝜀′ · 𝑥𝑖 )2

2𝜌𝑇 (S) + 2

3
(𝜀′ · 𝑥𝑖 )

· 𝜃𝑖

𝑤1𝑁 ·𝑇

)
≤ exp

(
− 𝜀′2 · 𝑥𝑖

2 + 2

3
𝜀′

· 𝜃𝑖

𝑤1𝑁 ·𝑇

)

≤ exp

(
− 𝜀′2 · 𝑥𝑖

2 + 2

3
𝜀′

·
𝑤1𝑁 ·𝑇

(
2 + 2

3
𝜀′

) (
ln𝑇𝑘 + ln

(𝑁
𝑘

)
+ 𝑙 ln𝑁 + ln 2 + ln log

2
𝑁

)
𝜀′2𝑥𝑖

· 1

𝑤1𝑁 ·𝑇

)
=

1

2𝑇𝑘 ·
(𝑁
𝑘

)
𝑁 𝑙

log
2
𝑁
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For any 𝑘 size set S.

Pr

R0∼Ω

{
𝜌𝑇𝜃𝑖 (S,R0) ≥

(
1 + 𝜀′

)
· OPT

}
= Pr

R0∼Ω


𝑁 ·𝑇
𝜃𝑖

·
𝜃𝑖∑︁
𝑗=1

𝑌
R0 [𝜃𝑖 ]
𝑗

(S) ≥
(
1 + 𝜀′

)
· OPT


Pr

R0∼Ω


𝜃𝑖∑︁
𝑗=1

𝑌
R0 [𝜃𝑖 ]
𝑗

(S) − 𝜃𝑖 · 𝜌𝑇 (S)
𝑁 ·𝑇 ≥ 𝜃𝑖

𝑁 ·𝑇
(
1 + 𝜀′

)
· OPT − 𝜃𝑖 · 𝜌𝑇 (S)

𝑁 ·𝑇


/∗OPT ≥ 𝜌𝑇 (S) ∗ /

≤ Pr

R0∼Ω


𝜃𝑖∑︁
𝑗=1

𝑌
R0 [𝜃𝑖 ]
𝑗

(S) − 𝜃𝑖 · 𝜌𝑇 (S)
𝑁 ·𝑇 ≥ 𝜃𝑖

𝑁 ·𝑇 𝜀′ · OPT


≤ Pr

R0∼Ω


𝜃𝑖∑︁
𝑗=1

𝑌
R0 [𝜃𝑖 ]
𝑗

(S) − 𝜃𝑖 · 𝜌𝑇 (S)
𝑁 ·𝑇 ≥ 𝜀′ · OPT

𝜌𝑇 (S)
· 𝜃𝑖 · 𝜌𝑇 (S)

𝑁 ·𝑇


≤ Pr

R0∼Ω


𝜃𝑖∑︁
𝑗=1

𝑌
R0 [𝜃𝑖 ]
𝑗

(S)
𝑤1

− 𝜃𝑖 · 𝜌𝑇 (S)
𝑤1𝑁 ·𝑇 ≥ 𝜀′ · OPT

𝜌𝑇 (S)
· 𝜃𝑖 · 𝜌𝑇 (S)

𝑤1𝑁 ·𝑇


≤ exp

©­­«−
(
𝜀′ ·OPT
𝜌𝑇 (S)

)
2

2 + 2

3

(
𝜀′ ·OPT
𝜌𝑇 (S)

) · 𝜃𝑖 · 𝜌𝑇 (S)
𝑤1𝑁 ·𝑇

ª®®¬
= exp

(
− (𝜀′ · OPT )2

2𝜌𝑇 (S) + 2

3
(𝜀′ · OPT )

· 𝜃𝑖

𝑤1𝑁 ·𝑇

)
≤ exp

(
−𝜀

′2 · OPT
2 + 2

3
𝜀′

· 𝜃𝑖

𝑤1𝑁 ·𝑇

)
≤ exp

(
− 𝜀′2 · 𝑥𝑖

2 + 2

3
𝜀′

· 𝜃𝑖

𝑤1𝑁 ·𝑇

)
≤ exp

(
− 𝜀′2 · 𝑥𝑖

2 + 2

3
𝜀′

·
𝑤1𝑁 ·𝑇

(
2 + 2

3
𝜀′

) (
ln𝑇𝑘 + ln

(𝑁
𝑘

)
+ 𝑙 ln𝑁 + ln 2 + ln log

2
𝑁

)
𝜀′2𝑥𝑖

· 1

𝑤1𝑛𝑇

)
=

1

2𝑇𝑘 ·
(𝑁
𝑘

)
𝑁 𝑙

log
2
𝑁

With the union bound Pr

R0∼Ω

{
𝜌𝑇𝜃𝑖 (S𝑖 ,R0) ≥ (1 + 𝜀′) · OPT

}
≤ 1

2𝑁 𝑙
log

2
𝑁

□

With Theorem 10 we know that 𝐿𝐵 is a lower bound of OPT with high probability, so 𝜃 satisfy the Corollary 1.

Further we can know that the probability of 𝐿𝐵 < OPT is at least 1 − 1/2𝑁 𝑙
.
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Proof. Set 𝐿𝐵𝑖 =
𝜌𝑇𝜃𝑖

(S𝑖 ,R0 )
(1+𝜀′ ) . When OPT ≥ 𝑥⌊log

2
𝑁 ⌋−1

.Set 𝑖 ≥ 1 is the smallest index to make OPT ≥ 𝑥𝑖 .

For any 𝑖
′ ≤ 𝑖 − 1,OPT < 𝑥𝑖′ ,

For any 𝑖
′′
> 𝑖 − 1,OPT ≥ 𝑥𝑖′′ ,

We define the event 𝜀 as: for any 𝑖
′ ≤ 𝑖 − 1, 𝜌𝑇𝜃𝑖′ (S𝑖′ ,R0) < (1 + 𝜀′) 𝑥𝑖′ , and for any 𝑖

′′ ≥ 𝑖 , 𝜌𝑇𝜃𝑖′ (S𝑖′ ,R0) ≥
(1 + 𝜀′) 𝑥𝑖′

Notice that 𝑖
′
, 𝑖

′′ ≥ 1, so when 𝑖 = 1, 𝑖
′
is not exist. The part of Event 𝜀 about 𝑖

′
is true. Event 𝜀 is the event that we

expected. Because as Event 𝜀 happens, 𝐿𝐵 = 𝐿𝐵𝑖 or 𝐿𝐵 = 1. So Event 𝜀 indicate that 𝐿𝐵 ≤ OPT so the upper bound of

Event 𝜀 not happen is that:

Pr

R0∼Ω
{¬𝜀} ≤

𝑖−1∑︁
𝑖
′
=1

Pr

R0∼Ω

{
𝜌𝑇𝜃

𝑖
′
(
S𝑖′ ,R0

)
≥ (1 + 𝜀

′
)𝑥𝑖′

}
+

⌊log
2
𝑁 ⌋−1∑︁

𝑖
′′
=𝑖−1

Pr

R0∼Ω

{
𝜌𝑇𝜃

𝑖
′′ (S𝑖′′ ,R0) ≥ (1 + 𝜀

′
)OPT

}
With the above, we know that Pr

R0∼Ω

{
𝜌𝑇𝜃𝑖′ (S𝑖′ ,R0) ≥ (1 + 𝜀

′ )𝑥𝑖′
}
≤ 1

2𝑁 𝑙
log

2
𝑁
. And Pr

R0∼Ω

{
𝜌𝑇𝜃

𝑖
′′ (S𝑖′′ ,R0) ≥ (1 + 𝜀

′ )OPT
}
≤

1

2𝑁 𝑙
log

2
𝑁
. So Pr

R0∼Ω
{¬𝜀} ≤ 1

2𝑁 𝑙 .

When OPT < 𝑥⌊log
2
𝑛⌋−1

. 𝐿𝐵 = 1 with probability at least 1 − 1

2𝑁 𝑙 . □

For any 𝜀 > 0, 𝑙 > 0, PRM-IMM Guarantees that
ˆS𝑔

is the
1

2
− 𝜀 approximation of OPT with probability at least

1 − 1

𝑁 𝑙 . Define the Event 𝜀 as the 𝐿𝐵 ≤ OPT , and put the R′
0
[ ˜𝜃 ] to PRM-NodeSelection to get the seed set

ˆS𝑔
is the

1

2
− 𝜀 approximation of the PRM problem.

𝜌𝑇

(
ˆS𝑔

(
R′

0
[ ˜𝜃 ]

))
≥

(
1

2

− 𝜀

)
· OPT

with union bound:

Pr

R0∼ΩR′
0
∼Ω

{¬𝜀} ≤ Pr

R0∼ΩR′
0
∼Ω

{LB > OPT}

+ Pr

R0∼ΩR′
0
∼Ω

{
LB ≤ OPT∧𝜌𝑇

(
ˆS𝑔

(
R′

0
[ ˜𝜃 ]

))
<

(
1

2

− 𝜀

)
· OPT

}
And Pr

R0∼ΩR′
0
∼Ω

{LB > OPT} = Pr

R0∼Ω
{LB > OPT} ≤ 1

2𝑁 𝑙 .

Now we know that:

Pr

R0∼ΩR′
0
∼Ω

{
LB ≤ OPT∧𝜌𝑇

(
ˆS𝑔

(
R′

0
[ ˜𝜃 ]

))
<

(
1

2
− 𝜀

)
· OPT

}
When 𝐿𝐵 ≤ OPT , ˜𝜃 ≥ 2𝑁 ·[ 1

2
·𝛼+𝛽]2

𝜀2 ·OPT , and
˜𝜃 ≤ 2𝑁 ·[ 1

2
·𝛼+𝛽]2

𝜀2
.

𝜃min =

⌈
2𝑁 ·[ 1

2
·𝛼+𝛽]2

𝜀2 ·OPT

⌉
, 𝜃max =

⌊
2𝑁 ·[ 1

2
·𝛼+𝛽]2

𝜀2

⌋
.
˜𝜃 is a integer range from 𝜃𝑚𝑖𝑛 to 𝜃𝑚𝑎𝑥 .

Pr

R0∼ΩR′
0
∼Ω

{
LB ≤ OPT∧𝜌𝑇

(
ˆS𝑔

(
R′

0
[ ˜𝜃 ]

))
<

(
1

2

− 𝜀

)
· OPT

}
≤ Pr

R0∼ΩR′
0
∼Ω

{
˜𝜃 ≥ 𝜃min ∧ ˜𝜃 ≤ 𝜃max ∧ 𝜌𝑇

(
ˆS𝑔

(
R′

0
[ ˜𝜃 ]

))
<

(
1

2

− 𝜀

)
· OPT

}
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=

𝜃max∑︁
𝜃=𝜃min

Pr

R0∼ΩR′
0
∼Ω

{
˜𝜃 = 𝜃 ∧ 𝜌𝑇

(
ˆS𝑔

(
R′

0
[ ˜𝜃 ]

))
<

(
1

2

− 𝜀

)
· OPT

}
=

𝜃max∑︁
𝜃=𝜃min

Pr

R0∼ΩR′
0
∼Ω

{
˜𝜃 = 𝜃 ∧ 𝜌𝑇

(
ˆS𝑔 (

R′
0
[𝜃 ]

) )
<

(
1

2

− 𝜀

)
· OPT

}
/∗ because R0 is independent with R′

0
* /

=

𝜃max∑︁
𝜃=𝜃min

𝑃𝑟
R0∼Ω

{ ˜𝜃 = 𝜃 } · Pr

R′
0
∼Ω

{
𝜌𝑇

(
ˆS𝑔 (

R′
0
[𝜃 ]

) )
<

(
1

2

− 𝜀

)
· OPT

}
≤

𝜃max∑︁
𝜃=𝜃min

Pr

R0∼Ω

{
˜𝜃 = 𝜃

}
· 1

2𝑁 𝑙
=

1

2𝑁 𝑙

So Pr

R0∼Ω,R
′
0
∼Ω

{¬𝜀} ≤ 1

𝑁 𝑙 , which means that with probability at least 1 − 1

𝑁 𝑙 , the output of PRM-IMM
ˆS𝑔

is the
1

2
− 𝜀

approximation of OPT .

H TIME COMPLEXITY OF PRM-IMM

The time complexity of RPM-IMM is 𝑂 ((𝑘 + 𝑙) (𝑀 + 𝑁 )𝑇 log(𝑁𝑇 )/𝜀2).

Proof. We use the Martingale theorem in the IMM algorithm[32] to estimate the time complexity of the PRM-IMM

algorithm. Then the time complexity of the IMM algorithm is 𝑂 (E[
_

𝜃 + ˜𝜃 ] · (EPT + 1)), where E[
_

𝜃 + ˜𝜃 ] is the overall
number of PW-RR sets needed to be generated.

E[ ¯𝜃 + ˜𝜃 ] ≤ 8 (𝜆∗ + 𝜆′) · (1 + 𝜀′)2

·𝑂𝑃𝑇 + 2,

where

𝜆∗ =
4𝑤1𝑁𝑇 · (·𝛼 + 𝛽)2

𝜀2

𝜆′ =
𝑤1𝑁𝑇 ·

(
2 + 2

3
𝜀′

)
·
(
ln

(𝑁
𝑘

)
+ ℓ ln𝑁 + ln 2 + ln log

2
𝑁 + ln𝑇𝑘

)
𝜀′2

,

and 𝛼 and 𝛽 is defined in section 5.

Therefore, E[ ¯𝜃 + ˜𝜃 ] = 𝑂

(
𝑤1 (𝑘+𝑙 )𝑁𝑇 log𝑁𝑇

OPT𝜀2

)
. And EPT = 𝑀

𝑁
· E[𝜎 (𝑣)] is the expected running time of generating a

PW-RR set. Because E[𝜎 (𝑣)] ≤ OPT
𝑤1

, so the expected running time is:

𝑂

(
(𝑘 + 𝑙) (𝑁 +𝑀)𝑇 log𝑁𝑇

𝜀2

)
□

37



SIGMOD ’23, June 18–23, 2023, Seattle, WA, USA Hao Liao and Sheng Bi, et al.

I OBJECTIVE FUNCTIONWHEN NATURAL GROWTH COUNT IS VARIABLE(PROOF OF SECTION 6.2)

We use the natural growth vector : 𝒛 = [𝑧1, 𝑧2, · · · , 𝑧𝑡 ] with 𝑧𝑡 denoting the natural customer count in round 𝑡 .

𝑑𝑛
1
= 𝑑𝑛

0
+ 𝑧1 ·

𝑑𝑛
0

𝑑𝑛
0
+ 𝑑𝑝

0

+ 𝜎 (𝑆1)

𝑑
𝑝

1
= 𝑑

𝑝

0
+ 𝑧1 ·

𝑑
𝑝

0

𝑑𝑛
0
+ 𝑑𝑝

0

𝑟1 =

𝑑𝑛
0
+ 𝑧1 ·

𝑑𝑛
0

𝑑𝑛
0
+𝑑𝑝

0

+ 𝜎 (𝑆1)

𝑑
𝑝

0
+ 𝑧1 ·

𝑑
𝑝

0

𝑑𝑛
0
+𝑑𝑝

0

𝑟1 = 𝑟0 +
(𝑟0 + 1) 𝜎 (𝑆1)
𝑑𝑛

0
+ 𝑑𝑝

0
+ 𝑧1

𝑟𝑡 = 𝑟𝑡−1 +
𝜎 (𝑆𝑡−1)

𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝑧𝑡
(𝑟𝑡−1 + 1)

𝑟𝑡 + 1 = 𝑟𝑡−1 +
𝜎 (𝑆𝑡−1)

𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝑧𝑡
(𝑟𝑡−1 + 1) + 1

𝑟𝑡 + 1 =

(
1 + 𝜎 (𝑆𝑡−1)

𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝑧𝑡

)
(𝑟𝑡−1 + 1)

𝑟𝑡 + 1 =

(
1 + 𝜎 (𝑆𝑡−1)

𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝑧𝑡

)
(𝑟𝑡−1 + 1)

𝑟𝑇 (𝑆) = (𝑟0 + 1)
𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
0
+ 𝑑𝑝

0
+ ∑𝑡

𝑖=1
𝑧𝑖 +

∑𝑡−1

𝑖=1
𝜎 (𝑆𝑖 )

)
− 1

J UPPER AND LOWER BOUND OF OBJECTIVE FUNCTION (POPULAR ITEM PROMOTION SECTION 6.3)

The objective function 𝑟𝑇 (S) is not easily derived. So we can obtain its upper and lower bound as follows.

Upper bound:

𝑟𝑡 + 1 =
𝑑𝑛𝑡 + 𝑑𝑝𝑡

𝑑
𝑝
𝑡

=
𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝜎 (𝑆𝑡 ) + 𝑧 + 𝑝𝑡

𝑑
𝑝

𝑡−1
+ 𝑧 · 𝑑

𝑝

𝑡−1

𝑑𝑛
𝑡−1

+𝑑𝑝

𝑡−1

+ 𝑝𝑡

=
𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝜎 (𝑆𝑡 ) + 𝑧 + 𝑝𝑡

𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝑧 + 𝑝𝑡 ·
𝑑𝑛
𝑡−1

+𝑑𝑝

𝑡−1

𝑑
𝑝

𝑡−1

· 𝑑
𝑛
𝑡−1

+𝑑𝑝

𝑡−1

𝑑
𝑝

𝑡−1

<
𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝜎 (𝑆𝑡 ) + 𝑧 + 𝑝𝑡

𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝑧 + 𝑝𝑡
·
𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

𝑑
𝑝

𝑡−1

=

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝑧 + 𝑝𝑡

)
· (𝑟𝑡−1 + 1)

𝑟𝑡 + 1 <

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧 · 𝑡 + ∑𝑡−1

1
𝜎 (𝑆𝑖 ) +

∑𝑡
1
𝑝𝑖

)
· (𝑟𝑡−1 + 1)
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𝑟𝑡−1 + 1 <

(
1 + 𝜎 (𝑆𝑡−1)

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧 · (𝑡 − 1) + ∑𝑡−2

1
𝜎 (𝑆𝑖 ) +

∑𝑡−1

1
𝑝𝑖

)
· (𝑟𝑡−2 + 1)

𝑟𝑇 + 1 < (𝑟0 + 1)
𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧 · 𝑡 + ∑𝑡−1

1
𝜎 (𝑆𝑖 ) +

∑𝑡
1
𝑝𝑖

)
𝑟𝑇 < 𝑟 ′𝑇

= (𝑟0 + 1)
𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧 · 𝑡 + ∑𝑡−1

1
𝜎 (𝑆𝑖 ) +

∑𝑡
1
𝑝𝑖

)
− 1

Lower bound:

𝑟𝑡 + 1 =
𝑑𝑛𝑡 + 𝑑𝑝𝑡

𝑑
𝑝
𝑡

=
𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝜎 (𝑆𝑡 ) + 𝑧 + 𝑝𝑡

𝑑
𝑝

𝑡−1
+ 𝑧 · 𝑑

𝑝

𝑡−1

𝑑𝑛
𝑡−1

+𝑑𝑝

𝑡−1

+ 𝑝𝑡

=
𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝜎 (𝑆𝑡 ) + 𝑧 + 𝑝𝑡

𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝑧 + 𝑝𝑡 ·
𝑑𝑛
𝑡−1

+𝑑𝑝

𝑡−1

𝑑
𝑝

𝑡−1

·
𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

𝑑
𝑝

𝑡−1

>
𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝜎 (𝑆𝑡 ) + 𝑧 + 𝑝𝑡

𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝑧 + 2 · 𝑝𝑡
·
𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

𝑑
𝑝

𝑡−1

=

(
1 + 𝜎 (𝑆𝑡 ) − 𝑝𝑡

𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝑧 + 2 · 𝑝𝑡

)
· (𝑟𝑡−1 + 1)

𝑟𝑡 + 1 >

(
1 + 𝜎 (𝑆𝑡 ) − 𝑝𝑡

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧 · 𝑡 + ∑𝑡−1

1
𝜎 (𝑆𝑖 ) +

∑𝑡
1
𝑝𝑖 + 𝑝𝑡

)
· (𝑟𝑡−1 + 1)

𝑟𝑡−1 + 1 >

(
1 + 𝜎 (𝑆𝑡−1) − 𝑝𝑡−1

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧 · (𝑡 − 1) + ∑𝑡−2

1
𝜎 (𝑆𝑖 ) +

∑𝑡−1

1
𝑝𝑖 + 𝑝𝑡−1

)
· (𝑟𝑡−2 + 1)

𝑟𝑇 > (𝑟0 + 1)
𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 ) − 𝑝𝑡

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧 · 𝑡 + ∑𝑡−1

1
𝜎 (𝑆𝑖 ) +

∑𝑡
1
𝑝𝑖 + 𝑝𝑡

)
− 1

𝑟𝑇 > 𝑟 ′′𝑇

= (𝑟0 + 1)
𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 ) − 𝑝𝑡

𝑑𝑛
0
+ 𝑑𝑝

0
+ 𝑧 · 𝑡 + ∑𝑡−1

1
𝜎 (𝑆𝑖 ) +

∑𝑡
1
𝑝𝑖 + 𝑝𝑡

)
− 1

K UPPER AND LOWER BOUND OF OBJECTIVE FUNCTION (MULTI-ITEM PROMOTION THEOREM 6)

In the setting of multiple items with promotions, we can derive the bound of 𝑟𝑇 as follows.
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Upper bound:

𝑟𝑡 + 1 =
𝑑𝑛𝑡 + ∑𝑠

𝑗=1
𝑑
𝑝 𝑗

𝑡∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡

=
𝑑𝑛
𝑡−1

+ ∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡−1
+ 𝜎 (𝑆𝑡 ) + 𝑧 + ∑𝑠

𝑗=1
𝑝 𝑗∑𝑠

𝑗=1
𝑑
𝑝 𝑗

𝑡−1
+ 𝑧 ·

∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡−1

𝑑𝑛
𝑡−1

+∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡−1

+ ∑𝑠
𝑗=1

𝑝 𝑗

=
𝑑𝑛
𝑡−1

+ ∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡−1
+ 𝜎 (𝑆𝑡 ) + 𝑧 + ∑𝑠

𝑗=1
𝑝 𝑗

𝑑𝑛
𝑡−1

+ ∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡−1
+ 𝑧 +

(∑𝑠
𝑗=1

𝑝 𝑗
)
· 𝑑

𝑛
𝑡−1

+∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡−1∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡−1

·
𝑑𝑛
𝑡−1

+ ∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡−1∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡−1

<
𝑑𝑛
𝑡−1

+ ∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡−1
+ 𝜎 (𝑆𝑡 ) + 𝑧 + ∑𝑠

𝑗=1
𝑝 𝑗

𝑑𝑛
𝑡−1

+ ∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡−1
+ 𝑧 +

(∑𝑠
𝑗=1

𝑝 𝑗
) ·

𝑑𝑛
𝑡−1

+ ∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡−1∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡−1

=
©­«1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
𝑡−1

+ ∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡−1
+ 𝑧 + ∑𝑠

𝑗=1
𝑝 𝑗

ª®¬ · (𝑟𝑡−1 + 1)

𝑟𝑡 + 1

<

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
0
+ ∑𝑠

𝑗=1
𝑝 𝑗 + 𝑧 · 𝑡 + ∑𝑡−1

1
𝜎 (𝑆𝑖 ) +

∑𝑡
1
𝑝𝑖

)
· (𝑟𝑡−1 + 1)

𝑟𝑡−1 + 1 <(
1 + 𝜎 (𝑆𝑡−1)

𝑑𝑛
0
+ ∑𝑠

𝑗=1
𝑝 𝑗 + 𝑧 · (𝑡 − 1) + ∑𝑡−2

1
𝜎 (𝑆𝑖 ) +

∑𝑡−1

1
𝑝𝑖

)
· (𝑟𝑡−2 + 1)

𝑟𝑇 + 1

< (𝑟0 + 1)
𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
0
+ ∑𝑠

𝑗=1
𝑝 𝑗 + 𝑧 · 𝑡 + ∑𝑡−1

1
𝜎 (𝑆𝑖 ) +

∑𝑡
1
𝑝𝑖

)
𝑟𝑇 < 𝑟 ′𝑇

= (𝑟0 + 1)
𝑇∏
𝑡=1

(
1 + 𝜎 (𝑆𝑡 )

𝑑𝑛
0
+ ∑𝑠

𝑗=1
𝑝 𝑗 + 𝑧 · 𝑡 + ∑𝑡−1

1
𝜎 (𝑆𝑖 ) +

∑𝑡
1
𝑝𝑖

)
− 1
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Lower bound:

𝑟𝑡 + 1 =
𝑑𝑛𝑡 + 𝑑𝑝𝑡

𝑑
𝑝
𝑡

=
𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝜎 (𝑆𝑡 ) + 𝑧 + 𝑝𝑡

𝑑
𝑝

𝑡−1
+ 𝑧 · 𝑑

𝑝

𝑡−1

𝑑𝑛
𝑡−1

+𝑑𝑝

𝑡−1

+ ∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡

=
𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝜎 (𝑆𝑡 ) + 𝑧 + ∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡

𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝑧 + ∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡 · 𝑑
𝑛
𝑡−1

+𝑑𝑝

𝑡−1

𝑑
𝑝

𝑡−1

·
𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

𝑑
𝑝

𝑡−1

>
𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝜎 (𝑆𝑡 ) + 𝑧 + ∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡

𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝑧 + 2 · ∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡

·
𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

𝑑
𝑝

𝑡−1

=
©­«1 +

𝜎 (𝑆𝑡 ) −
∑𝑠

𝑗=1
𝑑
𝑝 𝑗

𝑡

𝑑𝑛
𝑡−1

+ 𝑑𝑝
𝑡−1

+ 𝑧 + 2 · ∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡

ª®¬ · (𝑟𝑡−1 + 1)

𝑟𝑡 + 1 >
©­«1 +

𝜎 (𝑆𝑡 ) −
∑𝑠

𝑗=1
𝑑
𝑝 𝑗

𝑡

𝑑𝑛
0
+ ∑𝑠

𝑗=1
𝑝 𝑗 + 𝑧 · 𝑡 + ∑𝑡−1

1
𝜎 (𝑆𝑖 ) +

∑𝑡
1
𝑝𝑖 +

∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡

ª®¬
· (𝑟𝑡−1 + 1)

𝑟𝑡−1 + 1 >

(
1 + 𝜎 (𝑆𝑡−1) − 𝑝𝑡−1

𝑑𝑛
0
+ ∑𝑠

𝑗=1
𝑝 𝑗 + 𝑧 · (𝑡 − 1) + ∑𝑡−2

1
𝜎 (𝑆𝑖 ) +

∑𝑡−1

1
𝑝𝑖 + 𝑝𝑡−1

)
· (𝑟𝑡−2 + 1)

𝑟𝑇 > (𝑟0 + 1)

𝑇∏
𝑡=1

©­«1 +
𝜎 (𝑆𝑡 ) −

∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡

𝑑𝑛
0
+ ∑𝑠

𝑗=1
𝑝 𝑗 + 𝑧 · 𝑡 + ∑𝑡−1

1
𝜎 (𝑆𝑖 ) +

∑𝑡
1
𝑝𝑖 +

∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡

ª®¬ − 1

𝑟𝑇 > 𝑟 ′′𝑇 = (𝑟0 + 1)

𝑇∏
𝑡=1

©­«1 +
𝜎 (𝑆𝑡 ) −

∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡

𝑑𝑛
0
+ ∑𝑠

𝑗=1
𝑝 𝑗 + 𝑧 · 𝑡 + ∑𝑡−1

1
𝜎 (𝑆𝑖 ) +

∑𝑡
1
𝑝𝑖 +

∑𝑠
𝑗=1

𝑑
𝑝 𝑗

𝑡

ª®¬ − 1
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