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Abstract

Once an attacker compromises the operating system, the
integrity and availability of unprotected system audit logs still
kept on the computer become uncertain. In this paper, we
ask the question: can recently proposed audit systems aimed
at tackling such an attacker provide enough information for
forensic analysis? Our findings suggest that the answer is
no, because the inefficient logging pipelines of existing audit
systems prohibit generating log entries for a vast majority of
attack events and protecting logs as soon as they are created
(i.e., synchronously). This leads to a low attack event coverage
within generated logs, while allowing attackers to tamper with
unprotected logs after a compromise. To counter these limita-
tions, we present OMNILOG, a system audit architecture that
composes an end-to-end efficient logging pipeline where logs
are rapidly generated and protected using a set of platform-
agnostic security abstractions. This allows OMNILOG to en-
able high attack event coverage and synchronous log avail-
ability, while even outperforming the state-of-the-art audit
systems that achieve neither property.

1 Introduction

System auditing [66, 85] is a widely-used defense mecha-
nism on enterprise machines. Audit systems record important
events (e.g., system calls from unknown binaries) and store
them in local or remote storage. If a machine is found to be
compromised, logs are used by forensic analysts to determine
the attack vector and origin of the compromise.

However, audit systems are not robust against an adversary
that attacks the operating system [18, 43, 48, 51, 72, 73, 87]. In
particular, an adversary that obtains kernel privilege can tam-
per with the audit system to prevent it from generating logs
for all their post-compromise behavior and tamper with all
logs kept in the machine to hide most of their pre-compromise
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behavior. This is highly-concerning since kernel vulnerabili-
ties continue to be an important threat to computer security
with hundreds of CVEs for the Linux and Windows kernels in
recent years [27,28]. Such machines are a preferred target for
sophisticated malware such as Advanced Persistent Threats
(APTs) [19].

In recent years, significant research [8,34,44,72,73,83] has
been undertaken to design audit systems that at least protect
logs generated before compromise so that forensic analysts
are able to rely on them to detect or forensically analyze kernel
attacks. Our case-study, however, shows that log entries avail-
able to analysts are often inadequate to analyze the attacks
due to two fundamental limitations of existing audit systems:
low event coverage and asynchronous log availability.

First, due to inefficient log generation and storage, existing
systems are configured to record a small set of infrequent
events (e.g., file system or network access) [30, 61, 68, 70,
75, 90] to avoid prohibitive slowdowns (§3.1). This restricted
logging is insufficient to capture kernel exploit behaviors. Our
analysis of 164 Proof-of-Concept (PoC) kernel exploits with
CVEs finds a considerable number of exploits which leave no
trace under widely used audit policies. These PoCs had not
even been designed to evade the audit system. Sophisticated
attacks should be able to develop stealthier exploits than them.

Second, since existing systems rely on local or remote stor-
age for protection, they protect their generated log entries
after a noticeable delay (i.e., asynchronously) to avoid signifi-
cant slowdown (§3.2). Even the state-of-the-art, HardLog [8],
requires 15 ms to protect logs in the worst-case, whereas even
a naive attack took only ∼5 ms to tamper with logs on our
machine.

This paper rethinks audit system architectures and presents
OMNILOG, an audit system design that is optimized to effi-
ciently generate log entries for frequent events (i.e., all system
calls) and rapidly protect these entries at a location inaccessi-
ble to the operating system before allowing the events to hap-
pen. This allows OMNILOG to satisfy the two key properties—
high event coverage and synchronous log availability—while



incurring a geometric mean performance slowdown of less
than 4% across diverse real-world evaluation experiments.

The OMNILOG architecture (§4.1) divides the duties of
an audit system as follows. First, critical tasks like log pro-
tection and persistence are delegated to trusted components
running with higher CPU-enforced privileges than the oper-
ating system, namely OMNIMONITOR and OMNIKERNEL.
Hence, they can quickly protect log entries in-memory and
ensure eventual log persistence. Second, semi-critical tasks
like log retrieval are securely but collaboratively enabled by
trusted components and the operating system. Third, the non-
critical task of log generation is left to the operating system,
which is expected to handle it correctly until compromise.

There are two non-trivial hurdles towards the design of
OMNILOG. First, given the wide diversity of CPU platforms,
it is critical that our trusted components rely on security ab-
stractions that are easily realizable across platforms. Second,
even in-memory logging pipelines can become inefficient
especially for a large volume of events.

We define security abstractions required by OMNILOG’s
trusted components and show how they can be realized us-
ing CPU features on two major platforms (i.e., Arm and
x86) (§5.1). These abstractions include the ability to enable
secure runtime environments for trusted component execution
and interpose on power events to persist buffered log entries
before they are discarded on system reset. Each of our defined
abstractions can be enabled on major CPU platforms using
already-available features like the Arm TrustZone [37] and
x86 Extended Page Tables (EPT) [38].

We also compose an end-to-end efficient logging pipeline
to generate and protect log entries for a high volume of
events (§5.2). Inside the operating system, the logging
pipeline rapidly generates compact log entries to effectively
use the protected memory buffer space and reduce overall
storage costs. Then, it leverages per-core data structures to
maintain overall system concurrency while synchronously
protecting entries (in OMNIMONITOR’s memory). Finally, us-
ing OMNIKERNEL, the pipeline asynchronously but assuredly
persists buffered log entries to protected storage inaccessible
to the operating system.

To demonstrate the wide compatibility of OMNILOG, we
prototyped it for both Arm and x86-based computers (§6). We
perform a detailed security analysis of OMNILOG to show
that it enables synchronous log availability (§7). We also
evaluate both prototypes on micro-benchmarks and several
popular real-world applications: NGINX, Memcached, Redis,
Chromium, OpenSSL, 7-Zip, SQLite, and GNU Octave (§8).
OMNILOG’s geometric mean overhead across the real-world
applications is only 3.2% (Arm) and 3.6% (x86). This over-
head is 9.1× and 8.0× lower than that of Linux’s deployed
Auditd [85] on these platforms, respectively, and even outper-
forms state-of-the-art audit systems [8, 34, 73] that only log a
small set (43/341) of system calls. Consequently, OMNILOG
is readily-deployable today.

2 Background

2.1 Audit System

System auditing is the process by which the operating system
maintains system logs of security-related events on a machine.
These logs are maintained as a sequence of entries where each
entry corresponds to an event (e.g., system call). Audit logs
are implemented to support the detection and forensic analysis
of anomalies and suspicious activities [75]. Famous examples
of audit systems include the Linux Audit system [85] and
Microsoft’s Event Tracing for Windows (ETW) [66].

At a high-level, an audit system enables four main tasks:
log generation, protection, persistence, and retrieval. The log
generation task is handled by a kernel component which gen-
erates log entries according to a user-supplied audit policy.
The remaining tasks (protection, persistence, and retrieval) are
delegated to a root-level user-space daemon which receives
generated logs, stores them to root-owned file(s), and commu-
nicates with remote administrators for log retrieval. Both audit
system components communicate with each other through a
user-to-kernel interface (e.g., Netlink, shared memory).

2.2 Threat Model

Our threat model is similar to the classical model used in
recent studies [8, 34, 73]. In particular, we consider a remote
attacker who aims to take control of a corporate machine by
compromising its operating system. This machine is running
an audit system inside the operating system and our attacker
is aware of it. Hence, the attacker wants to hide their activities
from the audit system or impair its execution [90].

The attacker must compromise the operating system to tam-
per with the audit system or its produced logs. Prior to com-
promising the operating system, we assume that the attacker
completes attack preparation steps (i.e., initial reconnaissance,
initial compromise, and foothold establishment [62]) using
several stealthy techniques [19,76]. Then, the attacker exploits
a kernel vulnerability to compromise the operating system
with a sequence of system calls that complete at time tc.

Starting at tc, the attacker controls all aspects of the au-
dit system and corrupts it completely to hide their activities.
Specifically, they prevent the audit system from generating
log entries for their subsequent malicious activities [18,43,87].
Hence, all log entries generated after tc are worthless. More-
over, they tamper with the log entries generated before tc and
still on the computer to hide their attack exploit traces.

2.3 Assumptions

We make the following general assumptions about our hard-
ware, software, and configuration. First, we assume that a cor-
porate machine’s built-in hardware components (e.g., CPU,
motherboard) are trustworthy. Second, we assume that the
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MITRE NISPOM DSS OSPP STIG MSD Academic
[90] [70] [75] [30] [68] [61] [8, 72, 73]

Average 14.7% 12.4% 10.0% 9.8% 9.8% 10.2% 15.4%
Variance 17.1% 15.3% 14.8% 14.2% 13.9% 14.3% 21.6%
0% coverage 60/164 77/164 122/164 77/164 77/164 80/164 11/164

Table 1: Attack event coverage for industry-standard and aca-
demic audit rulesets using our attack exploit case-study.

machine is provisioned and managed by trustworthy IT ad-
ministrators. This management includes machine recovery
and forensic data collection through physical access or re-
mote mechanisms [29, 36, 54, 95] after a machine compro-
mise. Third, we assume that the employee who is using the
machine is not allowed to arbitrarily reprovision the machine
and change its security configuration. Fourth, we assume that
the machine’s operating system (including the audit subsys-
tem) behaves as designed until attackers exploit and take
control of it. Lastly, we assume that there is no significant
bug in our codebase and in the system software, except for
the operating system.

3 Case-Study on Today’s System Auditing

Ideally, an audit system designed for kernel-level exploits
leveraged by our attacker should ensure two properties:
P1: High event coverage. An audit system provides high
coverage if it generates log entries for a large majority of
attack-related events on a computer. Given our threat model
and that of similar auditing studies [8,34,72,73], we consider
these events to be system calls executed by a user process in
the course of exploiting a kernel vulnerability. A high event
coverage gives defenders (e.g., forensics analysts) a good
chance to perform analysis on these attacks.
P2: Synchronous log availability. An audit system provides
synchronous availability if it guarantees that every generated
log entry is stored beyond the reach of our attacker before
its corresponding event occurs. Kernel exploits can complete
within a very short interval, especially once attack prepara-
tion is complete. Synchronous availability ensures that every
generated log entry will be eventually available to a defender
for analysis, no matter the kernel exploit speed.

Through case-studies on attack event coverage (§3.1) and
log availability (§3.2), this section analyzes whether the con-
figuration and design of existing audit systems [8, 34, 72, 73,
85] is suitable to achieve an ideal scenario for auditing.

3.1 Event Coverage

We first determine whether widely-used audit rulesets can log
all attack-related events on known real-world kernel exploits
(hence, achieve P1). For this study, we collected 164 PoC ex-
ploits with publicly disclosed CVEs from several open-source

GitHub repositories, which include diverse kernel exploits
(with payloads) from the last 15 years affecting various sub-
systems (e.g., memory, scheduling) of Linux and exploits that
leverage popular kernel vulnerabilities like dirty COW [1].
While our collected exploit database is statistically small
given that hundreds of kernel vulnerabilities are discovered
each year, it serves as a good starting point for discussion in
terms of auditing under kernel exploits.

To understand how kernel exploits are logged today, we
studied the logging specifications of several influential infor-
mation security standards, a real-world system, and academic
papers. In particular, we studied five standards, including the
MITRE ATT&CK framework [90] and the United States De-
partment of Defense National Industrial Security Program
Operation Manual (NISPOM) [70], and collected their audit
rulesets [58]. We also analyzed the audit ruleset of Microsoft
Defender ATP for Linux [61] and prior academic papers that
attempt to secure logs against kernel exploits [8, 72, 73].

Using the collected attack exploits and rulesets, we per-
formed an automated offline analysis by extracting all the
system calls contained in the kernel exploits and referencing
them with the system calls logged by the audit rulesets. This
allowed us to determine the attack event coverage on each
exploit for these rulesets. We will release links to the GitHub
repositories for the PoC exploits and rulesets, and our analysis
scripts for future research. We believe this release has no ethi-
cal issue because these exploits are with publicly disclosed
CVEs and governed by GitHub policies [33].

Our finding (Table 1) was that existing rulesets do not
log an overwhelming majority of attack-related events—the
highest average attack event coverage on our database was
only 15.4%. In fact, five out of seven rulesets did not log even
a single event for more than 40% of the kernel exploits. This
was a highly surprising result given that these exploits are
PoCs, hence, not even designed to evade auditing.

While it might seem trivial to address the problem of low
event coverage using a more comprehensive audit ruleset,
the diversity of exploited system calls (146 unique system
calls) suggest that audit systems must log all system calls to
maximize coverage. However, the runtime cost of typical audit
systems likely prohibits such an expansive configuration.

To estimate the runtime cost of a comprehensive audit
policy, we ran several real-world workloads with Linux Au-
ditd [85], the defacto Linux audit system, while configuring
it to log all system calls on our x86 computer (§6.2). We
observed that workloads like memcached show up to 261%
overhead (Figure 1). Since some systems show that Auditd’s
performance can be improved by optimizing its kernel to
user log transmission pipeline [8, 59], we also ran Auditd
entirely in-memory where each entry was discarded right af-
ter generation instead of sending to a user daemon (shown
as Auditd-IM). This is a setting that assumes logs can be
protected instantaneously after generation, which is not prac-
tical (§3.2), but serves as a good basis for comparison. To our
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Figure 1: Performance overhead incurred by Auditd and Auditd-
IM using a few real-world programs on our x86 computer. The
platform and experiment settings are noted in §6.2 and §8.

surprise, Auditd-IM’s reported throughput for memcached
(using the comprehensive ruleset) was still 33% lower than
native, a significant cost on enterprise computers.

A closer examination of Auditd’s logging pipeline revealed
several inefficiencies. In particular, Auditd produces string-
formatted log entries which are very large (200–1024 B) and
incur a significant time (∼12k cycles) to generate. These log
entries are enqueued in a single buffer shared across all cores
through serialization operations. Since the log entries are large
and sent through a local network interface to Auditd’s user
daemon, the bandwidth that can be supported through this
interface also becomes a bottleneck. For instance, we noticed
a ping latency of 0.031 ms on our x86 computer’s loopback
network interface. This means the computer can support 32k
packets of 64 B per second. In contrast, Memcached invoked
more than 66k system calls per second per core, with an aver-
age log entry size of more than 300 B. Finally, the 60-second
benchmark also produced 2.2 GiB of logs, which also creates
a storage problem.

Findings: Comprehensive policies for logging all sys-
tem calls are needed to ensure a high event coverage
(P1), but inefficiencies in the logging pipeline of state-
of-the-art audit systems prohibit such configurations.

3.2 Log Availability
Next, we determine whether the design of existing audit sys-
tems is sufficient to synchronously protect every generated
log (hence, achieve P2). Remote storage has been the de facto
log protection mechanism for decades. However, given high
network latency, remote storage mechanisms are too slow to
ensure synchronous log availability; hence, logs are protected
asynchronously after long periods. Many systems [34, 72, 73]
attempt to secure such asynchronously-protected log entries
using cryptographic tamper-evident hashes, which inherently
cannot provide availability and suffer from false alerts [8].

HardLog [8] synchronously stores log entries to protected
local storage but can do so only infrequently for a small set

of 11 system calls without incurring excessive overhead. For
all remaining system calls, HardLog asynchronously stores
log entries within a small bounded delay. While this bounded
delay is a noteworthy step towards log availability, HardLog’s
smallest achieved bound of 15 ms is still a long time on mod-
ern computers for attackers to tamper with logs and harm
availability. For example, on our x86 machine (§6.2), it takes
only ∼5 ms to load and execute an attack kernel module
(4.1 kB) which overwrites a known buffer address. Note that
this is a naive attack. In principle, attackers can complete this
address overwrite entirely in-memory at a system call.

We surmise that audit systems must synchronously protect
logs in main memory for efficiency. While modern storage
and networking hardware can reach very high bandwidths,
storing or sending data invariably incurs a fixed setup cost [8]
which is too high for synchronous use-cases. However, since
memory is finite and volatile, the logs must be eventually
stored (in a guaranteed manner) to persistent drives.

Findings: In-memory log protection with eventual but
assured persistence is needed to ensure efficient syn-
chronous log availability (P2), but existing audit sys-
tems rely on slow network or storage protection.

4 OMNILOG Overview

OMNILOG is an audit system architecture that efficiently
achieves high event coverage and synchronous log protec-
tion (§3). This section provides an overview of OMNILOG’s
architecture and expands on two design challenges.

4.1 Audit System Architecture

Following from an audit system’s four main tasks (§2.1),
OMNILOG delegates log protection and persistence to trusted
components, OMNIMONITOR and OMNIKERNEL, respec-
tively, while leaving log generation to the untrusted operating
system’s logging subsystem. Log retrieval is handled securely
but collaboratively by the trusted and untrusted components.
Figure 2 gives an overview of the main architectural compo-
nents. We explain each component in the next paragraphs.
OMNIMONITOR. It is a trusted security monitor executing
on the enterprise machine as the main security enforcement
component of OMNILOG. It executes at a CPU-enforced layer
more privileged than the operating system like virtualization-
based monitors (e.g., Microsoft’s VBS [65]) and TrustZone-
based monitors (e.g., Samsung’s TZ-RKP [12]). This monitor
isolates a region of the system’s memory to rapidly protect log
entries generated by the logging subsystem, while facilitating
their persistence and retrieval through OMNIKERNEL.
OMNIKERNEL. It is a trusted but separate environment
spun by OMNIMONITOR, with two main components: the
log keeper and log manager. The log keeper is responsible
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Figure 2: Overview of OMNILOG.

for reliably storing protected log entries in persistent storage,
while the log manager addresses queries by remote adminis-
trators (e.g., for log retrieval). Both components can access a
protected persistent storage device (OMNIDRIVE).

Although both OMNIMONITOR and OMNIKERNEL are
trusted, we separate them primarily from a Trusted Com-
puting Base (TCB) and implementation standpoint. In partic-
ular, a separate trusted environment limits the attack surface
since all communication between the untrusted logging sub-
system and OMNIKERNEL goes through OMNIMONITOR.
Moreover, frameworks with isolated monitors and kernels can
be widely-implemented in today’s computers (§6).

Unlike storage access, OMNIKERNEL does not have direct
network access and all network communication from the sys-
tem administrator is received through the operating system but
through an authenticated channel. Like prior audit work [8]
and several trusted execution environments without direct
network access [40], OMNILOG uses the operating system
as an untrusted network transport mechanism, while relying
on an end-to-end TLS-based secure communication channel
between OMNIKERNEL and the remote administrator.

Finally, the log manager supports all typical audit system
commands from the remote administrator, including log re-
trieval, filtration, and other processing commands [8].
Logging subsystem. This subsystem is shipped as part of
the operating system. Like typical audit systems, it contains a
kernel-level event logger and user-level log service.

The event logger is responsible for (a) intercepting security-
related events and generating log entries and (b) initiating
blocking requests to trusted components of OMNILOG when
log entries must be protected and persisted. For instance, the
logger intercepts all system call events and generates log en-
tries corresponding to them. Then, it submits a request to
OMNIMONITOR for log protection. This request is a block-

ing call, where the logger stops executing until the request
completes. Then, it resumes and allows the event to happen.

The log service receives signed queries (e.g., for log re-
trieval) from a remote system administrator and sends them to
the trusted kernel. This service also relays the (encrypted and
signed) responses for these queries to the admin. The remote
administrator would frequently retrieve logs to detect attacks,
conduct forensics analysis, and vacate the log storage.

4.2 Challenges

This section presents two significant challenges towards the
design of the OMNILOG architecture.
C1: Formulating platform-agnostic security abstractions.
Given the wide diversity of CPU platforms (e.g., Arm, x86),
it is critical to show that OMNIMONITOR’s CPU-enabled
security abstractions can be realized across major existing
platforms to clear hurdles towards wide adoption.
C2: Composing an end-to-end efficient logging pipeline.
Given the inefficiency of existing logging pipelines, even
when configured for unprotected in-memory logging, on com-
prehensive auditing policies (§3.1), it is critical to compose a
new pipeline that can rapidly generate and protect logs.

5 OMNILOG Design

5.1 Platform-Agnostic Security Abstractions

This section outlines OMNIMONITOR’s required security ab-
stractions and discusses how they can be fulfilled using pop-
ular CPU-enforced security monitor designs [37, 65, 80] on
major CPU platforms (i.e., x86 and Arm). In particular, we
consider the hypervisor enforcement layer (e.g., Intel VMX)
and architectural system management mode (i.e., Arm’s EL3).
S1: Secure key provision and load. OMNIMONITOR must
be securely provisioned on the computer during initial setup
and executed before the operating system starts at each subse-
quent computer reset to ensure it can uphold security proper-
ties (e.g., protect OMNIDRIVE).

During initial setup, OMNIMONITOR is installed on a ma-
chine by a trusted administrator. At this time, they also provi-
sion a pair of public and private cryptographic keys to enable
an authenticated secure communication channel with the mon-
itor at a later time (e.g., for log retrieval).

On each subsequent boot, OMNIMONITOR must execute
before the operating system so that it can implement protec-
tions. This execute-before property can be achieved using a
verification or protection approach. In particular, many sys-
tems leverage secure signature verification [9] during boot
to halt execution on tampering of the boot configuration like
UEFI Secure Boot [94]. Other systems [52, 95] write-protect
boot configurations—kept in block storage or non-volatile
RAM (NVRAM)—at runtime, and load trusted binaries from
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isolated storage drives. OMNILOG can implement this prop-
erty using the write-protection and device isolation primitives
(S2 and S3).

S2: Secure runtime environment. OMNILOG must have
the ability to create a secure runtime environment (protected
from the operating system) for its own context.

OMNILOG’s secure runtime environment requires (a) com-
plete memory protection (i.e., read, write, and execute protec-
tion) and (b) trusted call gates. Read protections prevent the
attacker from stealing provisioned secrets (S1). Write protec-
tions prevent the attacker from overwriting the code or data
of trusted components, protected log buffers (OMNIBUFFER),
and system boot configurations. Execute protections prevent
the attacker from initiating arbitrary control-flow transfers to
the execution of trusted components and attempt to sabotage
the log protection or persistence process. Moreover, since a
compromised operating system might launch these attacks us-
ing Direct Memory Access (DMA)-capable devices, memory
protection is needed from devices too. Finally, trusted call
gates control the execution of trusted components and verify
parameters passed by untrusted callers (e.g., through registers
or shared memory) before execution.

All security monitor designs we consider can create secure
runtime environments. In particular, to restrict CPU mem-
ory accesses, the x86 hypervisor layer and Arm EL3 can
leverage EPT [38] and TrustZone Address Space Controller
(TZASC) [37] features, respectively. Also, the Input-Output
Memory Management Unit (IOMMU) on x86 [38] and Sys-
tem Memory Management Unit (SMMU) [17] on Arm can
protect against malicious devices. Finally, they have trusted
call gate mechanisms: hypercall (e.g., VMCALL, HVC) for
the hypervisor and Secure Monitor Call (SMC) for Arm EL3.

S3: Protected device interface. OMNILOG requires exclu-
sive OMNIDRIVE access to securely (a) store logs and (b)
keep the monitor and trusted kernel images. To achieve this,
OMNIMONITOR must be able to configure the computer’s
device configuration and interfaces to isolate OMNIDRIVE
from the rest of the machine and maintain this configuration
even when the operating system is compromised.

Device isolation is well-studied. In x86, hypervisor-level
monitors can use the EPT and IOMMU to enable protected
device access [98]. Also, on Arm EL3, the TrustZone Pro-
tection Controller (TZPC) and SMMU (Arm’s IOMMU) can
isolate devices and I/O memory ranges [37].

S4: Controlled power management. A compromised op-
erating system should not be allowed to reset or shut down
the computer while logs are still transient (in OMNIBUFFER).
Hence, OMNIMONITOR must interpose on all power man-
agement interfaces traditionally available to the operating
system to ensure that log entries in OMNIBUFFER are stored
to OMNIDRIVE before power cycle or hibernation events.

Traditionally, computers have two categories of power
management interfaces: (a) internal interfaces for CPUs like

Advanced Configuration and Power Interface (ACPI) and
(b) power-related external device interfaces (e.g., IPMI and
BMC). The latter class of interfaces are generally controlled
by system administrators using out-of-band channels. Hence,
OMNILOG isolates these devices from the operating system
(using S3). Some systems also have a watchdog timer for peri-
odic reset. OMNILOG also isolates this timer in such systems.

Security monitor designs can also interpose on
motherboard-related power events. In particular, in
modern x86 machines, power reset and shutdown events
are sent as ACPI function calls to UEFI [80]. Monitors can
prevent such calls by (a) write-protecting UEFI runtime com-
munication regions (using S2) and (b) exposing an alternate
emulated power management interface [4]. Similarly, all
power management events are delivered to Arm EL3 through
the Power State Coordination Interface (PSCI) [10]. Thus,
OMNIMONITOR can intercept power cycling requests and
persist log entries with our custom secure monitor before
power cycling the machines.

5.2 Efficient Protected Logging Pipeline
OMNILOG implements a new logging pipeline that avoids
lengthy stalls and reduces storage I/O cost. This is critical
since each generated log entry must be protected before its
corresponding event happens. In particular, OMNILOG en-
sures that the event logger speedily generates log entries in
a compact format, generated logs from concurrent proces-
sors are sent to OMNIMONITOR, and hence, protected, with
a small latency, and the transient in-memory logs are always
flushed to storage but in an asynchronous fashion.
Fast compacted log generation. Many real-world audit sys-
tems like the Linux Audit system [3] generate logs in human-
readable format using raw data, but this conversion is slow
and the format requires extra space [97]. Instead, OMNILOG’s
event logger generates log entries in raw format while fur-
ther compacting them by removing static content which can
be regenerated, implementing variable-length encoding, and
using protected hash tables for lengthy strings. All these re-
sult in fast and storage-efficient log generation. During log
compaction, OMNILOG maintains all information produced
by the native auditing system for regeneration. For instance,
all attributes recorded by Auditd (also called Linux Audit
Subsystem or LAuS) are kept in our implementation (§6).

Each compacted log entry is generated with metadata to re-
construct its human-readable counterpart during future foren-
sic analysis. This metadata structure is primarily needed be-
cause different system calls produce different log entries.
For instance, network-related system calls have an additional
socket address. Such conditional fields can be encoded in the
metadata as 1 or 0 to denote their presence or absence.

Human-readable log entries typically contain static infor-
mation [97]. For example, Auditd’s system-call log entry al-
ways starts with type=syscall, msg=audit(timestamp). Our
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event logger removes all such information because it can be
automatically generated during post-processing.

Although fields in log entries can take up a different number
of memory bytes, a naive raw encoding would allocate a
fixed size based on type. For instance, system call arguments
would be encoded as 8-byte integers, even if they only occupy
a single byte. To avoid such waste, OMNILOG implements
variable-length encoding to pack each value of an entry to
its minimum number of required bytes. The required number
of bytes are transposed into the metadata of each log entry
field. We chose to keep this packing at a byte-level instead
of a bit-level since the latter resulted in a very large metadata
(e.g., 64 bits instead of 8 bits for an 8-byte object).

Log entries also contain various lengthy strings that cannot
be efficiently packed. For instance, entries can contain names
and directory paths of the application being audited and spe-
cial keystrings used to describe certain log rules. OMNILOG
replaces such values with unique small counter-based integer
identifiers. OMNILOG tracks the unique identifiers and their
corresponding full string inside chained hash tables.

The string replacement hash tables are kept (a) in protected
memory and (b) at a per-core granularity. The hash tables must
be kept in protected memory, otherwise the attacker can tam-
per with them to avoid decompaction of log entries. Naively,
it would result in a context switch to the OMNIMONITOR
each time to retrieve the unique identifier. To avoid such extra
context switches, OMNILOG ensures that the hash table is
mapped read-only to the event logger’s address space (us-
ing memory protection primitives discussed in S2). Hence,
the event logger can directly read the hash table to retrieve
integers but must go through OMNIMONITOR to update the
hash table. Moreover, the tables are kept individually for each
core to avoid serialization operations on their access. The
processor core number is appended to the log entry to track
which core’s hash table the unique identifier belongs to.
Concurrent log protection. Once the event logger gener-
ates the compact log entry for an event, it protects the log
entry before allowing the event’s execution. The event log-
ger submits the log entry to OMNIMONITOR for protection
through shared memory (Figure 2 1 – 2 ). Then, the logger
context switches to the monitor, which copies the log entry to
OMNIBUFFER ( 3 ) and returns ( 4 ). At this point, the logger
passes the event to its corresponding event handler ( 5 ).

Log protection is within the critical path of an event’s exe-
cution; hence, it must be optimized to avoid system slowdown.
There are two challenges we must overcome to ensure effi-
cient log protection. First, multiple threads can concurrently
execute a system call. To maintain their concurrency, the log
protection path must minimize synchronization operations
while ensuring no race conditions. Second, OMNIBUFFER
is finite and volatile, so we must flush it to OMNIDRIVE
before it fills up. If a thread executes a system call when
OMNIBUFFER is filled, the logger blocks the thread until the
log keeper flushes OMNIBUFFER and the event’s entry is pro-

tected. This blocking degrades performance; thus, the system
must ensure high availability of OMNIBUFFER.

We address these issues by constructing OMNIBUFFER as
per-core double buffers. We assign local buffers to each core
to transfer and save log entries while avoiding any serializa-
tion operations on the critical path. This leads to a reordering
of log entries, but it can always be corrected as each log entry
contains a unified timestamp (obtained using a CPU instruc-
tion like RDTSCP which is constant for all cores in the same
socket [38] or can be calibrated across multiple sockets [47]).

To minimize contention between log protection and per-
sistence (explained in the next heading), OMNILOG aug-
ments per-core buffering with two demarcated buffers: bm
for OMNIMONITOR and bk for the log keeper. Initially, both
buffers are empty and the monitor adds new entries to bm.
When bm becomes full, it swaps bm for bk (i.e., swaps their
pointer values), allowing the log keeper to asynchronously
flush bk (which was bm) to OMNIDRIVE while adding new
entries to bm (which was bk).

If both bm and bk are full (which should only happen in
an exceptional situation), OMNIMONITOR explicitly calls the
log keeper to flush bk, waits until bk becomes empty, and then
swaps bm and bk. Since a buffer swap operation could be re-
quested while log keeper is flushing bk, it is serialized with
the log keeper’s buffer flushing operations to avoid a race con-
dition. This buffer flushing does not add significant synchro-
nization delay because it occurs infrequently and swapping is
fast. (i.e., it only swaps pointer values.)

Asynchronous persistence with fallback. Log entries tran-
sient in OMNIBUFFER must be flushed to OMNIDRIVE to
avoid delays if the buffer is full and losing logs if there is
a power event. At the same time, the buffer should not be
flushed frequently because this buffer flushing affects the sys-
tem performance—i.e., it blocks buffer swap operations and
thus event execution.

To satisfy both requirements, the event logger asyn-
chronously runs the log keeper if bk becomes full. (i.e., the
monitor swaps bm and bk.) In particular, after protecting each
log entry on a buffer, OMNIMONITOR returns a buffer status
to the event logger (Figure 2 4 ). If the status indicates that bk
is full, the event logger unblocks a background thread which
context switches to OMNIMONITOR ( A ) and asks it to exe-
cute the log keeper ( B ). Then, the log keeper flushes the filled
bk to OMNIDRIVE ( C – D ). It flushes other bk’s (belonging
to different cores) as well if they are full.

OMNILOG also implements a fallback mechanism to pre-
vent transient log entries from being discarded if a com-
promised operating system does not notify log keeper and
resets or turns off the machine. Specifically, every power
event that the operating system can trigger is intercepted by
OMNIMONITOR (§5.1) which then executes the log keeper to
flush all log entries in both bm and bk. Hence, all log entries
generated before the compromise are persisted.
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OMNILOG-Arm OMNILOG-x86

Component Base Ver. SLoC Base Ver. SLoC

OMNIMONITOR TF-A [11] 2.6 551 Linux/KVM 5.16.9 573
OMNIKERNEL OP-TEE [92] 3.10.0 158 Linux kernel 5.16.9 274
Logging subsystem Linux kernel 5.15.32 2551 Linux kernel 5.16.9 1863

Table 2: Base software framework and the source lines of C code
we added or changed for our two prototypes.

The audited system’s performance under OMNILOG is
bounded by OMNIDRIVE throughput. In particular, if a thread
running on a processor core begins to execute a system call
while the core’s bm and bk are both full, the event logger
blocks the system call’s execution until the log keeper flushes
bk. Our evaluation will show this aspect (§8). Moreover, it
is the administrator’s duty to prevent OMNIDRIVE from fill-
ing up, otherwise, the computer will halt until the stored log
entries are retrieved, much like the policy of other systems [8].

6 Implementation

We demonstrate the wide applicability of OMNILOG by pro-
totyping it for Arm and x86. We summarize the source lines
of C code we added to or changed in individual software com-
ponents in Table 2. We will open-source them to help foster
research and development.

6.1 OMNILOG-Arm
We implemented OMNILOG for an Arm machine which sup-
ports TrustZone and other required security features.
Hardware specification. We used an NXP IMX8MQ-EVK
board featuring an i.MX 8MQ application processor with
four Cortex A53 cores running at 1.5 GHz, 3 GiB of RAM,
and 16 GB eMMC. The device ran Debian 9 with Linux
kernel 5.15.32 as its main operating system on the eMMC
module. We attached a 64 GB SD Card to the device to use
it as OMNIDRIVE. This board provides required hardware-
based security features: TZASC to isolate DRAM, Central
Security Unit (CSU) to isolate device memory (like TZPC),
Resource Domain Controller (RDC) to restrict the device’s
DMA (like SMMU), and PSCI to manage power events [69].
OMNIMONITOR: TF-A runtime firmware at EL3. We
implemented the monitor by modifying TrustedFirmware-
A (TF-A) [11]. TF-A consists of early boot code and run-
time firmware which executes at EL3 as the secure monitor.
The rest of this section describes how we enabled all critical
OMNILOG security invariants (§5.1: S1–S4).

We configured our board to load OMNIMONITOR on
power-on or reset (S1). In particular, we set its DIP switch to
always boot from OMNIDRIVE (i.e., the SD Card) contain-
ing the boot code (TF-A and U-Boot SPL 2020.04 [91]) and
the OMNILOG code. By default, the boot code is configured
to load the monitor prior to any other code. At runtime, the

monitor prevents the untrusted operating system and devices
from corrupting OMNIDRIVE (S3). It configures the CSU to
make the SD Card controller for OMNIDRIVE a secure-world
device and the RDC to prevent other devices from accessing
the controller. That is, it sets the CSU_CSL_USDHC2 register to
make the controller only accessible to TrustZone. Also, it sets
the RDC_MDA_A53 and other RDC_MDA_* registers to assign the
A53 cores to a specific domain while assigning other DMA
masters to other domains, and sets the RDC_PDAP_USDHC2 reg-
ister to make the SD Card controller only accessible to the
A53 domain [11, 69]. These settings remain locked until the
next device reset.

OMNIMONITOR establishes the secure runtime environ-
ment once it is loaded (S2). It configures the TZASC to re-
strict access to secure-world memory regions from non-secure
exception levels (for the main operating system and applica-
tions) and configures the RDC to prevent arbitrary devices
from accessing the secure-world memory regions. Then, it
locks these settings such that they cannot be changed until
the next device reset. The monitor also specifies an SMC han-
dler to protect log entries on a secure-world memory buffer
OMNIBUFFER which is accessible to OMNIKERNEL.

For controlled power management (S4), OMNIMONITOR
(a) configures PSCI to intercept software-driven power events
and (b) isolates the board’s watchdog timer from the operating
system using the RDC and CSU. This allows the monitor to
flush all buffered logs to OMNIDRIVE before power events.
OMNIKERNEL: OP-TEE at S-EL1. We implemented
OMNIKERNEL using Open Portable TEE (OP-TEE) [92]
which runs at Secure EL1. OMNIMONITOR loads it before
the Linux operating system. We implemented its log keeper
as a Pseudo Trusted Application (PTA). For ease of imple-
mentation, we did not port a storage device driver to OP-
TEE. Instead, we enabled TF-A’s MMC driver (847 source
lines of C code in total) and exposed SMC handlers to allow
OMNIKERNEL to access it. This simple driver’s performance
is limited (§8). In the future, a custom storage driver can be
implemented for OMNIKERNEL using automated tools [32].
Logging subsystem. Our event logger is based on LAuS [3].
In particular, we replace its formatted-string-based log gen-
eration with our compact log generation (§5.2). Also, we
access the Arm processor’s CNTVCT_EL0 register to obtain a
timestamp value. To share log entries with OMNIMONITOR
once they are generated, the event logger maintains a tiny
buffer dedicated to store a single log entry for each processor
core which is accessible to OMNIMONITOR. The event log-
ger asynchronously instructs OMNIKERNEL to store a part of
OMNIBUFFER (i.e., bk) to OMNIDRIVE if the part is full.

6.2 OMNILOG-x86
We implemented OMNILOG for an x86 machine using vir-
tualization. Although we think that a lightweight hypervi-
sor [42, 65, 80, 84] is ideal, there is no publicly available
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and mature lightweight x86 hypervisor. Hence, our proto-
type used a full-featured hypervisor (i.e., Linux KVM [50])
while replicating a lightweight hypervisor’s setup (e.g., de-
vice passthrough). This approach has TCB and deployment
challenges in certain scenarios, but both can be overcome as
we explain in the next paragraphs.

In x86 enterprise servers with multiple virtual machines,
OMNIMONITOR would execute alongside a hypervisor, in-
creasing its TCB. This TCB problem can be mitigated using a
compartmentalization approach [81] to isolate a security mon-
itor (including OMNIMONITOR) from the remaining hyper-
visor. Also, we can use memory lockdown for code integrity
and compiler instrumentation for control-flow integrity [93].

The main deployment hurdle of a virtualization design is
the overhead of running laptop or desktop systems inside
full VMs. However, even though our current implementa-
tion considers this design for prototyping ease, a host-only
virtualization approach is ideal. This approach implements
hardware-assisted checks (capable of supporting all primitives
in §5.1) on the system’s execution with passthrough access to
all permitted devices. Host-only virtualization provides near-
native performance since hardware checks are lightweight [2].
Moreover, it is enabled by default in Windows 11 [67].
Hardware specifications. Our x86 machine featured an
Intel Core i5-12600K CPU with 10 physical cores (16 logical
threads) at up to 4.9 GHz, 20 MiB of L3 cache, and 32 GiB of
DDR5 RAM. We attached two 1 TB PCIe SSDs (Teamgroup
MP33) to the machine to use as OMNIDRIVE and operating
system storage, respectively. The machine ran Ubuntu 22.04
with Linux kernel 5.16.9 as its KVM (hypervisor) host.
OMNIMONITOR: KVM hypervisor at VMX root mode.
We implemented OMNIMONITOR by modifying KVM. To
securely boot the machine into OMNIMONITOR when it
is powered on or reset (S1), we changed UEFI settings to
make OMNIDRIVE the primary boot device. In addition to
the monitor, the drive also contained the system bootloader
(GRUB v2.06) and OMNIKERNEL. Once loaded, the moni-
tor prevents untrusted code and devices from corrupting the
UEFI NVRAM (where boot configurations are stored) and
OMNIDRIVE (using S2 and S3 primitives below).

OMNIMONITOR creates a secure runtime environment and
protected storage using VMX features. The operating system
(Ubuntu 22.04) runs inside a VM and its access is restricted
within the VM using the EPT and IOMMU (S2). The VM is
provided passthrough access to all non-critical devices (e.g.,
untrusted storage) using Virtual Function I/O (VFIO) [88],
but the IOMMU configuration prevents it from using these
devices to access outside regions. Also, to prevent DMA redi-
rection attacks [77] (S3), the monitor assigns it an isolated
IOMMU group with PCIe Access Control Services (ACS) [7].

The monitor specifies two hypercall handlers to (a) pro-
tect log entries to OMNIBUFFER and (b) persist log entries
by calling OMNIKERNEL. Both handlers check the caller’s
Current Privilege Level (CPL) (which is stored inside the ma-

chine control structure on a hypercall [38]) and only interact
with operating system-level code (e.g., event logger). Finally,
to ensure controlled power management (S4), we modified
KVM’s ACPI emulation code to intercept the operating sys-
tem’s power event requests and flush buffered logs.
OMNIKERNEL: Linux at VMX non-root mode. We imple-
mented OMNIKERNEL based on Ubuntu 22.04 (kernel 5.16.9)
as a separate single-core VM and the log keeper as its kernel
module. The log keeper had direct access to OMNIBUFFER,
which was implemented using KVM’s inter-VM shared mem-
ory (ivshmem). Using a separate ivhsmem location, it waited
for log storage notifications and handled them. To avoid exter-
nal attacks, the VM was not assigned any other device (e.g.,
network-related) apart from the storage device.
Logging subsystem. OMNILOG-x86’s event logger is simi-
lar to OMNILOG-Arm’s (§6.1) except for two aspects. First, it
uses the RDTSCP instruction to obtain a timestamp value. Sec-
ond, it communicates with OMNIMONITOR using hypercalls.
Limitations: Both prototypes currently do not support log
retrieval. It does not affect our evaluation (§8). Implementing
log retrieval is a matter of engineering as both Linux and
OP-TEE provide feature-rich drivers and libraries [5, 89].

7 Security Claims and Analysis

This section shows that OMNILOG achieves synchronous
log protection (§3: P2)—all log entries whose events exe-
cuted before kernel compromise (time tc) are available and
unchanged—using five claims. Here, “an event executes at
time t” means that the event begins to be processed by a
corresponding event handler inside the kernel at time t.
Claim 1. All log entries for events executed before tc will be
stored in OMNIBUFFER.

The operating system’s event logger behaves correctly until
tc (§2.3)—it will faithfully execute all logging subsystem
tasks delegated to it by OMNILOG until this point (§4.1).
In particular, before tc, the event logger will allow an event
(which is a system call based on our policy) triggered by a
process to occur only after the logger (a) creates a log entry
for the event and (b) calls OMNIMONITOR to synchronously
copy the log entry to OMNIBUFFER. Once the entry is copied
into OMNIBUFFER (before the event’s execution), it cannot
be modified by the attacker, no matter how fast our attacker
can compromise the operating system after the event (§5.1).
Thus, for any event that executes before tc, the corresponding
log entry will also have been saved before tc.
Claim 2. All log entries that arrive at OMNIBUFFER will be
saved to OMNIDRIVE.

All log entries stored in OMNIBUFFER are handled
by our system’s trusted components, OMNIMONITOR and
OMNIKERNEL. These components (and the buffer) are pro-
tected from the attacker by OMNILOG’s secure runtime en-
vironment (§5.1: S2), and their correct behavior is ensured
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by our assumption that both the hardware and the OMNILOG
software running in it are free of bugs (§2.3).

The log keeper component of OMNIKERNEL (a) period-
ically and (b) before the system turns off persists buffered
log entries to OMNIDRIVE (§5.2). In particular, the keeper
will be notified periodically by the event logger to send logs
to disk. If OMNIBUFFER is full and a new log entry arrives,
OMNIMONITOR will invoke the log keeper to ensure buffered
logs are persisted before appending new log entries to the
buffer. Finally, OMNIMONITOR interposes on the execution
of all operating system-driven power events on the machine,
and at such an event will invoke the log keeper to ensure
entries are persisted before the power event occurs (S4).
Claim 3. The operating system can never directly or indi-
rectly (e.g., through devices) access OMNIDRIVE.

At the first system boot, OMNIMONITOR will load and
run before the operating system. This is ensured by the
provisioning of an initial trusted boot configuration by our
system administrator (§5.1: S1). Once booted, the monitor
configures the hardware (S2–S3) to protect its own context,
OMNIKERNEL, OMNIDRIVE (where trusted boot images and
logs are kept), and boot configurations from the operating sys-
tem. These hardware configurations prevent the operating sys-
tem from corrupting trusted computations and OMNIDRIVE
directly or indirectly (via controlled DMA master devices).
OMNIMONITOR will allow the operating system to boot
only after these protections are in place. Finally, boot con-
figuration protections ensure that, on each subsequent boot,
OMNIMONITOR will run before the operating system and
repeat these configuration steps.
Claim 4. Only the system administrator can remove log
entries from OMNIDRIVE.

All log retrieval and subsequent removal commands are
guaranteed to come to the log manager (in OMNIKERNEL)
from the system administrator. In particular, the commands
are accepted only after a remote administrator has initiated
and successfully completed an authenticated TLS connection
with the manager. The connection’s authenticity is ensured
by the administrator’s public key and OMNILOG’s private
keys, both of which are securely provisioned in the boot im-
age by the administrator (S1), kept in protected memory at
runtime (S2), and securely persisted in OMNIDRIVE (S3).
Claim 5. OMNILOG ensures the integrity and availability of
all log entries whose events executed before tc.

The integrity and availability guarantee for OMNILOG fol-
lows by combining the previous four claims.

8 Evaluation

8.1 Experimental Setup

For each of our two implementations, the experimental setup
consists of the target device and a workload generator. We

ensure that the workload generator (a) is separated from the
target so that it does not interfere with the measurements and
(b) has sufficiently high bandwidth to saturate the target. The
radically different computational power of our two hardware
devices leads us to different experimental setups.
OMNILOG-Arm. We run the workload generator on a sep-
arate PC (with an Intel Core i5-8250U CPU featuring eight
logical threads and 16 GiB of RAM) connected to the target
Arm device over 1 Gb Ethernet. This ensures isolation and
saturation of all four i.MX 8MQ cores. On the target device,
we allocate 32 MiB of RAM (out of 3 GiB) to the secure
world (i.e., TF-A, OP-TEE). Out of these 32 MiB, we allo-
cate 512 KiB for OMNIBUFFER (i.e., two 64 KiB buffers per
core).
OMNILOG-x86. We partition our physical machine between
the workload generator and the target because saturating our
machine over a network connection from a separate computer
would have required high-speed networking equipment and a
very fast second computer (neither of which we had readily
available). We configure our target to be a VM with 8 GiB
of RAM and four virtual processors backed by four pinned
logical threads. OMNIKERNEL runs in a separate VM with
1 GiB of RAM and one virtual processor. Out of the 1 GiB, we
allocate 128 MiB for OMNIBUFFER (i.e., two 16 MiB buffers
per core). Most of the remaining resources (i.e., 23 GiB of
RAM and 11 logical threads) are available to the workload
generator which we run on the host system.
Other configurations. We compare OMNILOG against the
Auditd and Auditd-IM configurations defined in §3.1. In all
three cases, logging is enabled for all system calls. We present
the results normalized over a baseline in which logging is
turned off. Auditd-IM also serves as a proxy to compare
against several other audit systems [8, 72, 73] because it is
faster than the current state-of-the-art HardLog [8], which
incurs additional performance cost (over Auditd-IM) due to
log buffering and criticality-aware protection.

Auditd (and Auditd-IM) typically does not run under vir-
tualization in non-server machines, but we ran them in the
same VM environment as OMNILOG-x86 for fair comparison.
In particular, our VM-based OMNILOG implementation adds
extra performance overhead to experiments (over bare-metal)
because several hardware devices (e.g., GPU) and features
(e.g., ACPI) are virtualized. This overhead is not incurred in
an ideal implementation (§6.2). Hence, to avoid its impact on
our experiments, we run all configurations inside the VM.

8.2 Micro-benchmarks

Log generation latency. OMNILOG and Auditd-IM gener-
ate log entries synchronously for each event, adding latency.
To estimate it, we make one million system calls to getpid
in a tight loop and measure the total number of cycles for a
baseline in which auditing is turned off, and Auditd-IM and a
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Figure 3: LMbench overhead.

version of OMNILOG in which only log generation is enabled.
We subtract the baseline cycle count from the cycle counts
for the other two configurations to obtain the net overhead.
Results: The log generation latencies of OMNILOG are 3,856
cycles (Arm) and 3,407 cycles (x86). The corresponding la-
tencies of Auditd-IM are 22,747 cycles and 8,001 cycles.
These numbers are averages over ten runs. The standard devi-
ation was less than 2% in all cases. In summary, OMNILOG
has a significantly lower log generation latency.
Log protection latency. OMNILOG’s synchronous log pro-
tection adds further latency in addition to log generation. To
measure it, we repeat the previous experiment with a different
variant of OMNILOG which enables both log generation and
synchronous copying to OMNIBUFFER.
Results: The combined log generation and protection laten-
cies are 4,795 cycles (Arm) and 5,324 cycles (x86). That is,
the additional latencies to copy a log entry (∼68 bytes for
getpid §8.4) to a secure region are 939 cycles (Arm) and
1,468 cycles (x86). The x86 version takes longer due to the
expensive hypercall and second-level address translation. The
combined latencies for OMNILOG are still noticeably lower
than those of Auditd-IM.
Amortized log storage latency. Although OMNILOG log
storage is asynchronous, it may affect the system call latency
because OMNIBUFFER is finite. Especially, if logs are fre-
quently generated like in our getpid micro-benchmark, all
buffers can fill up and OMNILOG will block system calls until

Application Parameters

NGINX Four worker threads in a local network; tested with
Apachebench for 10k requests and 32 concurrency

Memcached Default settings; benchmarked with default memaslap
for 120 s with a concurrency level of 16

Redis Ran with 16 databases; benchmarked using a mix of 1M set
and 1M get commands with 50 clients and a pipeline of 32

SQLite Phoronix benchmark pts/sqlite-speedtest

Chromium Ran Speedometer 2.0 in a chromium browser GUI

OpenSSL Phoronix benchmark pts/openssl

7zip Phoronix benchmark pts/compress-7zip

GNU Octave Phoronix benchmark system/octave-benchmark

Table 3: Description of real world workloads.

it flushes a full buffer to storage. We measure these effects on
our experiment with fully enabled OMNILOG.

Results: The average latencies for full OMNILOG are 8,913
cycles (Arm) and 6,286 cycles (x86). That is, the additional
latencies mainly due to occasional stalls for buffer flushing
are 4,118 cycles (Arm) and 962 cycles (x86). The impact
of asynchronous storage on x86 is moderate thanks to high-
bandwidth PCIe SSD storage. In contrast, on Arm, the average
overhead per system call almost doubles. This is the result of
our simple storage driver which can operate the SD Card only
up to a bandwidth of 10 MiB/s (as opposed to up to 104 MB/s
supported by the i.MX 8MQ SD Card controller [69]).

System call latency (LMBench). LMBench [64] is a micro-
benchmark suite focusing on low-level system functions. We
ran a collection of LMBench micro-benchmarks for all three
logging configurations and the no-audit baseline. The concrete
list of benchmarks is displayed on the x-axis of Figure 3.

Results: Figure 3a and Figure 3b show the overhead for Arm
and x86. Due to the micro-benchmark nature of these work-
loads which involve unusually high rates of system calls per
second, the overheads are significant for all configurations.
OMNILOG is generally significantly faster than Auditd and
noticeably faster than Auditd-IM. The main exception is
file_create which creates a large number of files with dif-
ferent (random) names. The corresponding large number of
unique filename strings causes the hash table heuristic we use
to generate compressed logs (§5.2) to become very slow. It
appears unlikely that the problem will arise with real applica-
tions. If necessary, OMNILOG could also stop using the hash
table heuristic if it observes hit ratios to be low.

8.3 Real-world Programs

Common settings. We evaluate OMNILOG on eight real-
world programs, selected based on prior work [8] to facilitate
comparison. Our test applications are OpenSSL, Chromium,
7-zip, GNU Octave, Memcached, Redis, SQLite, and NGINX.
The configuration details and workload settings are in Table 3.

11



NGINX

Memcach
ed Redis SQLite

Chrom
ium

OpenS
SL 7zip

GNU Octav
e
Geom

ean
0

25

50

75

100

125

150
Pe

rf
or

m
an

ce
 o

ve
rh

ea
d 

(in
 %

)

29
4.
4

79
6.
8

29
.3

4.
6

3.
2

Auditd
Auditd-IM
OmniLog-ARM

(a) Arm platform

NGI
NX

Memc
ache

d
Red

is
SQL

ite

Chro
miu

m
Ope

nSS
L 7zip

GNU
 Oct

ave
Geo

mea
n

0

25

50

75

100

125

150

Pe
rf
or
m
an
ce
 o
ve
rh
ea
d 
(in

 %
)

26
1.
5

71
5.
4

28
.7

5.
5

3.
6

Auditd
Auditd-IM
OmniLog-x86

(b) x86 platform

Figure 4: Performance overhead of the real world workloads.

We averaged results over five runs. The standard deviation
was less than 4%.

Results. Figure 4a and Figure 4b show the overhead. The
geometric mean overhead of OMNILOG is 3.2% on Arm and
3.6% on x86. It is quite low considering that all system calls
are being logged. The geometric mean overhead of Auditd-
IM is slightly higher than OMNILOG’s on both Arm and x86
in spite of not storing logs. This overhead again demonstrates
the impact of OMNILOG’s significantly faster log generation.
The geometric mean overhead for Auditd is noticeably larger
on Arm (29.3%) and x86 (28.7%), 9.1× and 8.0× higher than
OMNILOG’s on these platforms, respectively.

Across applications, the overhead of OMNILOG is gener-
ally low except for SQLite. SQLite performs system calls at a
significantly higher rate than the other applications. We have
measured more than 550k system calls per second per core
for native SQLite (i.e., no logging) on our x86 machine.

Buffer scalability analysis. We investigated whether both
buffers (bk and bm) could fill up and cause delays for our most
intensive benchmark, SQLite (Table 4). Under default buffer
sizes, we observed no such stall since the storage throughput
on each platform was significantly higher than the log gen-
eration throughput (§8.2). It is worth noting that even under
default buffers, OMNILOG was using significantly less mem-
ory than Auditd, which we configured to use ∼300 MiB in
our experiments like prior work [8]. However, to observe the
impact of buffer sizes and fill-up delays, we experimented
with small buffers on each platform. We observed delays for
buffer sizes at and below 128 KiB on both platforms, but the

Arm platform x86 platform

Buffer Overhead Fill-ups Buffer Overhead Fill-ups

512 KiB 0.0% 0 128 MiB 0.0% 0
256 KiB 2.0% 1 16 MiB 0.0% 0
128 KiB 7.3% 10 2 MiB 0.0% 0

64 KiB 27.8% 1354 128 KiB 1.3% 11

Table 4: OMNILOG’s performance scalability on different buffer
sizes while running SQLite. Shaded row is for default settings.
The reported performance overhead is relative to OMNILOG’s
baseline performance with default buffer settings.

Workload Arm platform x86 platform

Auditd-IM OMNILOG Auditd-IM OMNILOG

NGINX 5270 5624 23471 23724
Memcached 2043 2211 48290 63499
Redis 1755 1946 21526 23162
Chromium 1849 1987 11616 12129
OpenSSL 480 477 112 83
7zip 371 387 473 481
SQLite 27904 35717 245968 294907
GNU Octave 3182 3182 25967 31412

Table 5: System calls per second per core of the real world work-
loads.

additional overhead compared to the default buffer settings
was small. These buffer sizes are miniscule and unrealistic.
Nevertheless, they show that OMNILOG’s end-to-end logging
pipeline remains highly efficient even under tiny buffers.

Context switch statistics. In OMNILOG, each system call
results in a switch to OMNIMONITOR to synchronously
protect a corresponding log entry. To identify its statistics,
we measured each program’s per-core system call rate un-
der OMNILOG and Auditd-IM (Table 5). On Arm, system
calls per second per core range from several hundreds to
∼36k (SQLite). For x86, the per-core call rates range up to
∼295k (SQLite). OMNILOG supported more system calls per
second per core (with lower overhead) than Auditd-IM.

Key performance takeaways. Across the real-world pro-
grams, OMNILOG performs better than Auditd and even an
unrealistic completely in-memory Auditd-IM. There are a
few aspects of its compaction (e.g., hashing) that can result in
higher overhead, and they can be automatically adjusted with
profiling. Moreover, like all general-purpose audit systems,
OMNILOG has a limit as to how frequently it can produce
logs; hence, it can incur high overheads for workloads which
frequently make system calls (e.g., SQLite). Nevertheless,
OMNILOG’s log production limit is significantly higher than
that of other systems, allowing it to synchronously log all sys-
tem calls with a low (3%–4%) typical overhead. Therefore, it
is suitable for the vast majority of workloads today.
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8.4 Storage

Log entry sizes. We computed the average log entry size for
the logs generated by OMNILOG and Auditd in the getpid,
NGINX and Memcached runs of the previous subsections by
dividing the total log size by the number of log entries. For
getpid, the average Auditd log entry was 348 bytes vs. 68
bytes for OMNILOG. For NGINX, the results were 320 bytes
for Auditd vs. 55 bytes for OMNILOG. For Memcached, the
sizes are 335 bytes for Auditd vs. 56 bytes for OMNILOG. In
each case, OMNILOG reduced the log entry size by 5–6×.
Storage requirements. We evaluate how OMNILOG’s high
event coverage affects storage requirements. We compare the
log sizes produced by OMNILOG with those of an established
audit policy used by many previous audit systems [8, 72, 73]
for three applications: Redis, Memcached, and SQLite. For
Memcached, we configure the memaslap benchmark to ex-
ecute one million operations (get and set). We run Redis
with 1000 parallel connections/clients, sending a total of 50
million requests. For SQLite, we run the SQLite-speed test
in the Phoronix test suite under the default setting. We run
each application with the specified configuration twice: with
OMNILOG and with Auditd under the academic rule set.

For Memcached, the log sizes are 778 MiB for OMNILOG
and 3.3 GiB for the academic rule set. The significantly larger
size of the latter indicates that it contains a large fraction of the
log entries of the OMNILOG log. Every Memcached request
involves network connections that the academic rule set logs.
The rest of the size difference is explained by OMNILOG’s
compact log entry size. For Redis, similarly, the log sizes are
314 MiB for OMNILOG and 2.1 GiB for the academic rule
set. Again, it appears that the bulk of the log entries comes
from network-related system calls. The situation is different
for SQLite. The log sizes are 5.9 GiB for OMNILOG and
a mere 11 MiB for the academic rule set. This is because
SQLite frequently uses pread64 and pwrite64 to access files,
but the academic rule set does not log them.

In summary, relative log sizes are highly workload-
dependent. Much of the variability arises from the system
calls traditional audit policies monitor. There are widely used
applications for which OMNILOG, in spite of its high event
coverage, does not increase storage requirements.

9 Discussion

General limitations. OMNILOG has a few limitations in
terms of deployment compared to software-only secure log-
ging mechanisms like cryptography-based tamper-evident
logging [34, 73]. Specifically, it requires hardware supporting
the security features mentioned in §5.1 and an ISA-specific se-
curity monitor (§6). Both are reasonable because such security
features are widely available nowadays, and the ISA-specific
modification is small (less than 600 SLoC Table 2).

Intra-kernel privilege separation. Existing systems [20,21]
create security monitors at the same privilege level as the
operating system (e.g., ring-0), minimizing hardware depen-
dencies. In particular, Nested Kernel [21] relies on the x86
write-protection feature to implement a security monitor, as
well as protected memory to secure critical kernel data struc-
tures and access logs. SVA [20] relies on compiler-based
Software Fault Isolation (SFI) [23] to restrict the kernel’s
memory accesses and implement a security monitor. Both
systems can be potentially extended to support OMNILOG’s
security abstractions. However, it would require non-trivial
code changes [14,16] to use an IOMMU for device protection.

HardLog comparison. OMNILOG is inspired by Hard-
Log [8]’s secure logging requirements. However, OMNILOG
ensures high event coverage and synchronous log availability
that HardLog’s inefficient audit device and conventional log-
ging pipeline cannot solve. OMNILOG realizes a protected
runtime environment by carefully leveraging widely-available
security abstractions (§5.1), formulating new abstractions like
a host-based device isolation interface (S3) and rethinking
system power management aspects (S4). Further, it points out
the logging pitfalls that all existing audit systems (including
HardLog) suffer from (§3) and efficiently overcomes them by
redesigning the end-to-end logging pipeline (§5.2).

x86-based Trusted Execution Environments (TEEs). The
commercial x86 TEEs, AMD SEV [22], Intel SGX [63], and
Intel TDX [39], are mainly used today to prevent cloud oper-
ators from leaking sensitive user code and data. They focus
on confidentiality and integrity but not availability. Untrusted
system code (i.e., the OS and/or hypervisor) retains control of
the hardware resources including storage devices and power
management to allow flexible resource management by cloud
providers. These aspects fundamentally prevent x86 TEEs
from satisfying OMNILOG’s critical requirements: protected
device interface (S3) and controlled power management (S4).
Thus, we leveraged virtualization for our x86 implementation.

Audit security history. The observation that attackers can
use software vulnerabilities to tamper with audit data goes
back to at least Karger and Schell’s 1974 Multics security
evaluation [46, 3.4.4]. However, the threat received little di-
rect attention. TCSEC [71], the influential security standard
of the time, put the focus of auditing on assuring individual
accountability (i.e., logging the actions of registered users)
and aimed for medium to high-assurance systems in which
kernel-level vulnerabilities would be rare or not exist. Sev-
eral influential systems follow this general approach [25, 31].
In contrast, the VAX security kernel [45], a high-assurance
VMM for the lower-assurance VMS and Ultrix guest oper-
ating systems, considered the guests as untrusted subjects
and implemented all relevant security functionality separately.
OMNILOG also uses a protected layer to implement important
security functionality. However, OMNILOG leaves the bulk
of the security functionality in the operating system and lets
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it cooperate with the protected layer to maintain both security
and performance.
Cross-boundary calls. With OMNILOG, the event logger’s
calls into OMNIMONITOR (§4.1) have the character of a mi-
crokernel Remote Procedure Call (RPC) [6, 57]. Notably,
OMNILOG shares the main techniques of the highly opti-
mized lightweight RPC [15] (i.e., simple control and data
transfer and design for concurrency).
RISC-V port. OMNILOG can be extended to another popu-
lar architecture, RISC-V, as it has hardware features satisfying
the four security abstractions (§5.1). RISC-V has an archi-
tectural system management mode known as Machine-mode
(M-mode), Physical Memory Protection (PMP) [55] to re-
strict CPU memory accesses, and an IOMMU [82]. Their
combination can satisfy S1–S3. Also, all power management
events are delivered to M-mode through the Supervisor Binary
Interface (SBI) [78], satisfying S4.

10 Related Work

Efficient logging. Numerous researchers have proposed effi-
cient logging schemes by optimizing log generation and man-
agement or reducing log size. Logging schemes typically gen-
erate human-readable log entries which is slow due to format
string handling. Instead, efficient logging schemes [66,79,97]
generate encoded log entries and construct human-readable
ones later. Also, logging schemes need to exchange log en-
tries between the producer (e.g., a kernel component) and
consumers (e.g., user services). Conventional schemes use a
socket-based channel for log transfers which is portable but
slow. Instead, efficient logging schemes [8, 59, 60, 74] use
shared memory to reduce such communication overhead. In
addition, some logging schemes compress log entries to re-
duce log storage overhead [24, 26, 35, 56, 86, 96]. OMNILOG
also uses encoded log entries and the shared memory channel
to improve its logging performance as well as a loseless com-
pression method to reduce its overall log size before writing
logs to storage.
Privileged monitoring. Several recent privileged monitoring
schemes trap and log all important activities of an operat-
ing system in an environment that runs at higher privilege
(e.g., hypervisor or TrustZone secure world) [12, 13, 49, 53].
However, these approaches suffer from the semantic gap prob-
lem [13, 41] because monitoring and logging are performed
outside of the target context. Nested Kernel [21] does not
have the semantic gap problem, but it requires nontrivial ker-
nel code changes. Further, the extra code for monitoring and
logging bloats the privileged environment. Unlike the these
systems, OMNILOG generates log entries inside the operating
system and leverages the privileged environment to construct
secure and efficient log storage only. Thus, it neither suffers
from the semantic gap problem nor heavily bloats the privi-
leged environment.

11 Conclusion

Inefficiencies in the logging pipelines of current audit systems
result in only a small selection of events being logged, while
log entries remain subject to tampering. OMNILOG addresses
both problems by monitoring all system calls and ensuring
synchronous availability for all logs. It does so with low over-
head by carefully redesigning key parts of the log generation
and secure storage pipeline. We prototype OMNILOG on Arm
and x86. Our evaluation shows that the overheads are low.
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