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Abstract

Existing Siamese tracking methods, which are built on
pair-wise matching between two single frames, heavily rely
on additional sophisticated mechanism to exploit tempo-
ral information among successive video frames, hindering
them from efficiency and industrial deployments. In this
work, we resort to sequence-level target matching that can
encode temporal contexts into the spatial features through
a neat feedforward video model. Specifically, we adapt the
standard video transformer architecture to visual tracking
by enabling spatiotemporal feature learning directly from
frame-level patch sequences. To better adapt to the track-
ing task, we carefully blend the spatiotemporal information
in the video clips through sequential multi-branch triplet
blocks, which formulates a video transformer backbone.
Our experimental study compares different model variants,
such as tokenization strategies, hierarchical structures, and
video attention schemes. Then, we propose a disentan-
gled dual-template mechanism that decouples static and dy-
namic appearance clues over time, and reduces temporal
redundancy in video frames. Extensive experiments show
that our method, named as VideoTrack, achieves state-of-
the-art results while running in real-time.

1. Introduction

Visual Object Tracking (VOT) is a fundamental problem

in computer vision that aims to track an object of interest in

a video given its bounding box in the first frame [53]. In re-

cent years, mainstream approaches formulate visual track-

ing as a target matching problem, striking a good balance

between performance and simplicity.

The philosophy of target matching is to find the object by

looking for locations in the search area whose features have

the largest similarity with those in the target template. How-

*This work was done when Fei Xie was an intern at Microsoft Research
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Figure 1. Comparing to the pair-wise matching pipeline in

Siamese tracking shown in (a), which requires sophisticated mech-

anisms (a1)/(a2) to exploit temporal contexts, our neat video trans-

former tracking (VideoTrack) framework, as shown in (b), directly

lifts the pair-wise feature matching into spatiotemporal domain.

ever, target matching methods generally adopt per-frame

object matching manner, where the rich temporal informa-

tion in the video is largely overlooked. The representa-

tive methods are Siamese trackers [4, 20, 26, 27, 57]: pair-

wise frames are fed into Siamese network to extract fea-

tures and a matching network/operator is applied for target

matching. Although recent pure transformer-based Siamese

trackers [10, 16, 55, 61] unify feature extraction and match-

ing into a single step by leveraging the Vision Transformer

(ViT) [14,31,49], these Siamese trackers still follow a pair-

wise matching philosophy that hinders their exploitation of

temporal context.

To explore temporal information, some works have pro-

posed sophisticated yet complex temporal modelling meth-

ods to improve the robustness of pair-wise Siamese track-

ers, where online template updating [60, 64] and tempo-

ral context propagating among frame-wise features [47] are

two widely-adopted paradigms. Despite their great success,

extra hand-crafted hyper-parameters and complex network

modules are inevitably introduced to the Siamese pipeline,

which have a negative impact on the efficiency and are not

friendly to embedded devices. A natural question therefore

arises: can we exploit the temporal context while still main-
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tain the tracking pipeline in a neat, end-to-end fashion?

To get rid of the customized updating strategies and re-

dundant temporal modelling modules, we directly expand

the pair-wise input frames into video-level (see Fig. 1), to

capture rich temporal contexts. Specifically, we resort to

video transformers [1] to learn spatiotemporal features, and

establish the inter-frame temporal dependencies by simple

feedforward modelling. Compared to the popular pair-wise

Siamese matching [4, 27], our video transformer tracking

pipeline (VideoTrack) lifts the 2D matching pipeline into

the spatiotemporal domain, allowing the direct processing

of video-level inputs. Moreover, we modify the video trans-

former architecture to better adapt it to tracking task, based

on the following observations and prior knowledge:

Feature learning. A good feature representation is vital

for the downstream vision tasks. Equipped with dedicated

learning scheme in network layers, feature representations

can be effectively enhanced from the shallow to deep level.

Thus, we attempt to encode the temporal contexts at feature-

level by utilizing a video transformer backbone. To ensure

the generality and feasibility, we design our video trans-

former model with the following principles: 1) Scalabil-
ity: Transformer layer is the basic building unit that can

be stacked to construct the backbone network in different

model scales. 2) Compatibility: To avoid expensive pre-

training costs, the modified network should ideally be com-

patible with the model paramaters of the image-based vision

backbone, e.g. ViT [14]. It not only can utilize the available

pretraining weights, but also prevents the possible perfor-

mance degeneration during fine-tuning.

Appearance vs. motion clue. Video could be viewed as a

temporal evolution of a static appearance. Compared to the

video recognition task which takes the complete frame as

input, the input frames for most trackers are locally cropped

from the online predicted target location, which weakens

the motion clue in video-clips. Thus, we focus more on uti-

lizing the appearance clues. To leverage the strong prior in

video sequences, we explicitly divide them into three cate-

gories: initial frame containing strong appearance informa-

tion, intermediate frames which contain the dynamic states

of the target and search frame containing the target to be

predicted. Thus, we formulate a three-branch architecture
for the VideoTrack model.

Temporal redundancy. Consecutive video frames are

highly redundant. It is vital to reduce the temporal re-

dundancy as well as effectively modelling temporal con-

texts. Thus, we evaluate three basic temporal modelling

approaches in terms of efficiency, i.e. joint space-time, tem-

poral window and message token attention. With careful

analysis, we propose a disentangled dual-template mecha-
nism (see Sec. 3.4 for details) to integrate into the video

backbone which decouples the redundant video information

into the static & dynamic templates.

As shown in Fig. 2, we propose our VideoTrack frame-

work on top of ViT [14], formulated by interleaving a series

of building units, named as triplet-block. The triplet-block

has three hierarchical attention layers that mix the informa-

tion flow asymmetrically among three branches. Spatiotem-

poral guidance from the historical frames is passed to the

current search frame, obtaining a compact feature represen-

tation for the final target prediction.

In summary, the main contributions are as follows:

• In contrast to existing Siamese tracking methods and their

labor-intensive temporal modelling, we for the first time

lift the 2D pair-wise matching to spatiotemporal domain,

encoding temporal context at the feature-level via a neat

feedforward video model, i.e. video vision transformer.

• We make the first attempt to adapt video transformer to

visual tracking. A thorough ablation analysis of video

transformer tracking is conducted, including tokenisation

strategies, model variants and temporal modelling ap-

proaches. Comprehensive analysis may inspire follow-

ers to solve VOT task from the perspective of video-level

modelling. Moreover, our tracker exhibits encouraging

results on multiple VOT benchmarks.

2. Related Work

Visual tracking paradigm. The Siamese network [4,8,20,

26, 27, 57, 66] based tracking paradigms have drawn great

attention recently, in which they formulate the tracking as

per-frame target matching. Under the pair-wise matching

framework, Siamese trackers are improved with the help of

following techniques: powerful backbones [26, 66], elab-

orated prediction networks [20, 27, 57], attention mecha-

nism [17, 48] and model fine-tuning [29, 46]. Recent pure

transformer-based trackers [10, 16, 55, 61] leverage the vi-

sion transformer to unify the feature extraction and fu-

sion, while still not consider how to effectively model the

temporal dependency. Discriminative Correlation Filter

(DCF) [5, 11–13, 23, 34, 62, 68] is another popular tracking

paradigm, which can optimize the target model by solving

least-squares based regression. Though DCF can easily uti-

lize the temporal information by updating the model online,

it suffers from the complex handcrafted optimization.

Temporal modelling in Siamese tracking. Two represen-

tative paradigms are introduced to enhance the temporal

modelling in Siamese trackers: the first one is to update

templates using online mechanism [60] or deep-learning

based networks [17,64]; the second one [47] is to propagate

the target information from templates to search frame. De-

spite the improvements, both of them require extra hyper-

parameters and redundant network modules to equip the

original Siamese pipeline. In contrast to the sophisticated

methods and tedious hyper-parameters mentioned above,
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Figure 2. Overall architecture of video transformer model for tracking (VideoTrack). It is constructed by stacking multiple basic building

units, named as triplet-block which consists of three hierarchical attention layers. Inside the each layer of triplet-block, video attention

module mixes the multi-branch information flows among inputs asymmetrically. Then, the spatiotemporal learned features from search

frame are fed to the prediction head for final target classification (Cls) and size regression (Reg). FFN denotes FeedForwad Network [45].

VideoTrack is the first to encode the temporal informa-

tion via a simple feedforward video transformer backbone,

which is novel and conceptually neat.

Video vision transformer. Video transformers have re-

cently been introduced as powerful video recognition mod-

els, motivated by the impressive performance of transform-

ers in language and vision [7, 9, 10, 14, 16, 18, 31, 45, 49,

51, 52, 58]. ViViT [1], Timesformer [3], VTN [37] and

VideoSwin [32] are the pioneering works, which apply the

pure-transformer based models for video recognition. The

underlying reasons for their success lie in the characteristics

of video: videos are sequential data while transformer atten-

tion can capture the global dependency among all the video

segments. Considering visual tracking is highly sensitive to

spatial/appearance information, rather than semantic/cate-

gory, we modify the standard video transformer structure to

exploit more static/dynamic appearance clues for tracking.

Temporal modelling in video understanding. Temporal

context modelling is the key issue in video understanding

task. 3D convolutional block [6,39,43,44,56] is the widely

adopted technique, which expands 2D CNN into temporal

domain. Then, non-local network [50] applies self-attention

to capture long-range spatiotemporal dependencies on top

of 2D CNN. Recently, video transformers [1, 3] use self-

attention as the exclusive building block to capture spa-

tiotemporal context. In instance-level video understanding,

temporal shift [59,63] and message token [25] mechanisms

are equipped into video transformer to enhance the temporal

modelling as well as reducing the computation cost. In this

work, we empirically evaluate different temporal modelling

methods and develop a disentangled dual-template scheme

for VideoTrack model.

3. Proposed Method

In this section, we briefly introduce the vision trans-

former based Siamese tracking architecture, denoted as ViT-

track. Then, we expand it to temporal domain for process-

ing video-level input. Finally, we present necessary modifi-

cations to the video transformer and propose a disentangled

dual-template mechanism to better adapt it to tracking task.

3.1. Revisiting Vision Transformer Tracking

The attention mechanism of transformer [45] has been

applied in VOT for feature extraction and fusion [7, 10,

16, 58, 61]. ViTtrack adapts the transformer architecture

of [14, 49] to process 2D template-search image pair with

minimal changes. In particular, ViTtrack extracts {Nx, Nz}
non-overlapping image patches {xi ∈ R

h×w, zi ∈ R
h×w},

for search image and template image, respectively. The se-

quence of tokens input to the following vision transformer

layer is:

fzx = [fz, fx] = [Ex1, . . . ,ExNx ,Ez1, . . . ,EzNz ], (1)

where the projection by E is performed by a 2D convolu-

tion, and we omit the positional encoding here for simplic-

ity. The tokens are then passed through vision transformer

backbone consisting of a sequence of L transformer lay-

ers. Each layer � comprises of Multi-head Self-Attention

(MSA) [45], Layer Normalisation (LN) [2], and a Multi-

Layer perceptron (MLP) [14] as follows:

y�zx = MSA(LN(f �
zx)) + f �

zx,

f �+1
zx = MLP(LN(y�zx)) + y�zx,

(2)

where the MLP consists of two linear projections separated

by a GELU non-linearity [22]. The token-dimensionality

in vanilla ViT [14] remains fixed throughout all layers.

Recently, other improved ViTs [31, 49, 52] adopt multi-

scale structure which gradually expand the channel dimen-

sion and reduce the spatial size. We omit the multi-scale

structure in Eq. 2 for simplicity. Then, the template and

search image features {fz, fx} are jointly extracted and

fused through multiple attention layers. In the final stage,
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Figure 3. Three different embedding methods. (a) separated em-

bedding. (b) tubelet embedding. (c) combination of separated

(search frame) and tubelet embedding (templates).

a prediction network is used to decode the fused search im-

age feature fL
x to locate and estimate the size of target:

yreg = Φreg(f
L
x ), ycls = Φcls(f

L
x ), (3)

where {yreg, ycls} denote the target location and shape es-

timation results. {Φcls,Φreg} are classification and regres-

sion head. In next section, we present how to expand the

pair-wise ViTtrack architecture into video-level and special-

ized adaptations to VOT task.

3.2. Expanding Siamese Matching to Video Level

We first present the sampling strategies to construct

video-clips briefly. Then, to process video-level inputs, we

discuss two pillars in video transformer model: token em-

bedding and video attention scheme.

Video-clip sampling strategy. We construct the video-clip

{z, x, t0, t1, ..., tT } with the strong prior on VOT task: the

search frame x and first template z with ground truth are

always available. To get the fixed number (T ) of inter-

mediate frames t, a common strategy is uniform sampling

where each frame is distributed uniformly on the temporal

extent [3]. An alternative is to maintain a memory queue for

intermediate frames {t0, t1, ..., tT }, which is updated with

fixed temporal interval. These two strategies do not have

key impacts on tracking performance when videos are not

long. In this work, we select the memory queue strategy for

its flexibility to handle videos in different length.

Video-level token embedding. We first consider two em-

bedding methods: separated frame embedding [3] and

tubelet frame embedding [1] for mapping a video-clip. In

Fig. 3 (a), separated frame embedding is a straightforward

method of tokenising the video frames which embeds each

2D frame independently [3]. An alternate method, tubelet

frame embedding, is to extract non-overlapping, spatio-

temporal tubes and embed them into tokens through 3D

convolutional layers [1]. As shown in Fig. 3 (b), this method

fuses spatio-temporal information during tokenisation, in

contrast to separated frame embedding without inter-frame

temporal fusion. As the feature embeddings in shallow lay-

ers may not formulate a rich representation [28, 54] and the

prediction is only conducted on the search frame, early in-

teractions may contaminate the search frame. Thus, we also

perform the combination of two embedding methods, where

tubelet frame embedding is only for templates and separated

embedding for the search frame (see Fig. 3 (c)). More dis-

cussions can be found in Sec. 4.2.

Video transformer attention. In contrast to the clas-

sical 2D transformer in Siamese tracking [7, 10, 16, 58],

video transformer is required to process the feature tokens

which have longer temporal extents. Moreover, temporal

modelling scheme of video transformer layer needs to be

adapted to VOT task and we present it in Sec. 3.3.

3.3. Adapting Video Transformer to Tracking

In this section, we further adapt video transformer model

to visual tracking in the following aspects: network struc-

ture, video attention and temporal modelling.

Stacked hierarchical structure. As shown in Fig. 2, we

propose a basic VideoTrack architecture which has multiple

stacked triplet-blocks. Triplet-block, as the basic construc-

tion unit, is composed of three standard transformer layers

in a sequence. Inside the triplet-block, hierarchical attention

computation for the video inputs is performed:

vl+1 = MSTBi
l(v

l), v ∈ {z, x, t},
vl+2 = MSTBi

l+1(v
l+1), v ∈ {z, x, t},

vl+3 = MSTBi
l+2(v

l+2), v ∈ {z, x, t},
(4)

where MSTBi
l denotes the lth layer in ith Multi-head Self-

attention Triplet-Block and v denotes video-clip tokens. For

clarity in this work, we let the {z, x, t} denote the corre-

sponding feature tokens in each layer instead of {fz, fx, ft}
and t indicates all intermediate templates whose the quan-

tity is T . Thus, VideoTrack can be scaled up to large model

capacity by simply stacking more triplet-blocks.

Integrated into original ViT model. As we keep Video-

Track be compatible with ViT [14] in terms of model

parameter, so VideoTrack can be built on ViT-Base [14]

(L=12, NH=12, d=768) seamlessly, where L is the num-

ber of transformer layers, each with an attention module of

NH heads and hidden dimension d. It avoids the specialized

initialization on the incompatible parameters, thus prevents

the possible performance degeneration during fine-tuning.

Multi-branch asymmetric attention. We explicitly divide

the video inputs into three categories: the search image x
which needs to predict the target online, the first template

z containing the strong appearance clue of our target and

intermediate templates {t0, t1, ..., tT } which store the dy-

namic states of the tracked target. In Fig. 4 and Fig. 5, the

inputs {z, x, t0, t1, ..., tT } formulate three branches inside

the block, and the video-level attention matching can be

flexibly arranged to mix the information asymmetrically. In

this work, we adopt vanilla self/cross attention scheme [45]

without tricks (see Sec. 4.2 for more discussions).
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Figure 4. Three basic temporal modelling methods in the building unit with two-layer structure : (I) denotes the divided space time pattern;

(II) denotes the temporal window pattern; (III) denotes the pattern with message token for temporal modelling. The number of total layers

in all building units is 12. The dash line indicates the weight-sharing of convolutional layers. We omit the MLP and residual connection for

simplicity. tl denotes all the tokens from intermediate templates {tl0, tl1, ..., tlT } in lth layer unless specified. Best viewed with zooming in.

Figure 5. Three different building units with three-layer hierarchical structure (triplet-block): (IV) denotes the enhanced message token

pattern; (V) denotes the message token attention with separated layer pattern; (VI) denotes the disentangled dual-template video attention

pattern. we still keep the number of total layers as 12. Other annotations can be referred to Fig. 4. More conclusions on the pattern design

can be found in appendix. Best viewed with zooming in.

Temporal context modelling. We present three basic meth-

ods to model the temporal information in video attention:

joint space-time, temporal window and message token at-

tention. A direct way to modelling the temporal context is

to compute the dense attention among all spatiotemporal to-

kens across space-time:

yst =
∑

s′t′
vs′t′ · exp〈qst,ks′t′〉∑

s̄t̄ exp〈qst,ks̄t̄〉
, (5)

where query-key-value vectors qst,kst,vst are the linear

projections of corresponding feature token from each space-

time location st in video frames. For clarity, we neglect the

LN and replace the MSA with single-head in Eq. 5. Ob-

viously, quadratic complexity in both space and time, i.e.,

O(S2T 2), hinders it from capturing longer temporal con-

texts, as the temporal redundancy rises dramatically. An al-

ternative is to partition the video input into windows along

temporal dimension: 3D windows are arranged to partition

the video input in a non-overlapping manner, then the atten-

tion computes within it (refer to [32] for technical details).

To further reduce the computation cost, message token

communication [25,59] utilizes pre-defined fixed tokens mt

to summarize the per-frame context information and use it

for temporal propagation:

al+1,ml+1
a = MSAl([a

l,ml
a]), a ∈ {z, x, t},

ml+2
z ,ml+2

x ,ml+2
t = MSAl+1([m

l+1
z ,ml+1

x ,ml+1
t ]),

(6)

where [..., ...] denotes concatenation among tokens. ma

is expanded from the learned message tokens m for each

frame-wise tokens a. We empirically evaluate mentioned

methods and find that they either cannot convey thorough

appearance clues for tracking or not keep affordable com-

putation cost for long temporal extents (see Sec. 4.2).

3.4. Disentangled Dual-Template Mechanism

By analyzing above three basic methods in terms of

temporal modelling efficiency, we propose a disentangled

dual-template mechanism to decouple the static and dy-

namic state of the appearance information across time. The

main idea is to explicitly leverage the strong static appear-

ance information from the first template and the dynamic

factors of the intermediate templates through the efficient

temporal modelling. It reduces the computation & tempo-

ral redundancy in joint space-time attention by only per-

forming the cross attention among intermediate templates,

while propagating the appearance information more thor-

oughly than the message token communication. As shown

in Fig. 5 (VI), our mechanism is applied to the triplet-
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case Pattern I Pattern VI

Separate 71.3 70.6
Tubelet for t 66.4 65.8

Tubelet 65.3 63.1

Table 1. Ablations on input encoding. The performance is AO in

GOT-10k [24].

case Pattern I Pattern VI

None 70.1 69.5

Space-only 70.5 69.8

Space-Time 71.3 70.7

Table 2. Ablations on positional embedding. The performance is

AO in GOT-10k [24].

case Pattern I Flops Param.

Vanilla ViT [14] Attn 71.3 67.7 G 85.4 M

VideoSwin [32] Attn 69.2 49.6 G 90.9 M

Trajectory [38] Attn 71.5 70.5 G 85.4 M

Table 3. Ablations on video attention design. The performance is

AO in GOT-10k [24].

block. The spatiotemporal matching among the video to-

kens {zl, xl, tl0, t
l
1, ..., t

l
T } in lth triplet-block is computed

by three-level asymmetric attention. The intermediate tem-

plates {tl0, tl1, ..., tlT } are first encoded by the spatial layer

respectively, then the nearest intermediate template tl+1
T

performs cross attention to aggregate the dynamic informa-

tion from other templates {tl+1
0 , tl+1

1 , ..., tl+1
T−1}. In the third

layer, the generated dynamic template tl+2
T is added to the

matching between the zl+2 and xl+2:

tl+1
i = MSTBi

l(t
l
i), i ∈ {1, 2, ..., T},

tl+2
T = MCTBi

l+1(t
l+1
T , [tl+1

0 , tl+1
1 , ..., tl+1

T−1]),

zl+3, xl+3, tl+3
T = MSTBi

l+2([z
l+2, xl+2, tl+2

T ]),

(7)

where MCTBi
l(A,B) indicates the lth layer in ith Triplet-

Block that conducts Multi-head Cross-attention (A per-

forms as query and B as key/value). [..., ...] denotes con-

catenation among tokens. Here, we omit the matching be-

tween the z and x in first two layers for clarity.

4. Experiments
This section firstly describes the implement details and

experimental settings. Then, we conduct a comprehensive

analysis on the VideoTrack framework and compare it to

state-of-the-art (sota) trackers on four VOT benchmarks.

4.1. Implementation Details

Network architecture and training. Our VideoTrack

architecture is on top of ViT-Base [14] (L=12, NH=12,

d=768). We use the COCO [30], LaSOT [15], GOT-

10k [24] and TrackingNet [36] as training datasets. Con-

sidering the memory restriction, we set the T as 2. Thus,

each batch has 4 frames, resulting in total batch size of 128

for 8 Tesla V100 GPUs. The template and search image size

case Pattern I Pattern VI

None 62.1 60.5

ImageNet-1k [14] 70.4 70.2

ImageNet-21k [14] 71.2 70.8

VideoMAE [41] 64.1 63.5

MAE [21] 73.3 72.6

Table 4. Ablations on pretrain. MAE pre-training is more effec-

tive. The performance is AO in GOT-10k [24].

case Pattern I

Label 65.3

No label 71.6

Figure 6. Ablations on foreground label. It shows the IoU curve

during training and their best performance in GOT-10k [24].

are cropped as 128 and 256, respectively. The total training

epochs are set to 300 with 60k sequences per epoch. More

details can be found in appendix.

Online inference. During inference, our VideoTrack model

is independent of the number of frames. In this work, for the

current search frame Ft, we select fixed number (T = 4) of

frames from historical frames (i.e. frame Ft−N×T to frame

Ft−1) as intermediate templates. Each intermediate tem-

plate is sampled from the nearest frame with the fixed time

interval N , where we set to 30 frames here. When current

time index t is over or less than the capacity of memory

queue, we drop the farthest intermediate template or dupli-

cate the first template at once.

4.2. Ablation study

In this section, we first evaluate the design choices re-

garding with processing video-level inputs. Then we ex-

plore the temporal modelling ability of different model vari-

ants. In the final, we study two additional commonly con-

cerned aspects: pretraining and usage of foreground label.

More conclusions can be found in appendix.

Input encoding. As the input encoding is vital to pro-

cess sequence-level frames, we first consider the two widely

adopted encoding methods in action recognition and their

combinations. In Tab. 1, we study the effect of separated

and tubelet frame embedding applied to the templates and

search image. Separated embedding in two model patterns

surpasses the tubelet embedding by a large margin (71.3%
vs. 65.3% in pattern I and 70.6% vs. 63.1% in pattern

VI). It is obvious that early feature interactions between

search image and template images make the model diffi-

cult to predict the tracked target. By comparing the sepa-

rated embedding to tubelet embedding only for templates

(71.3% vs. 66.4% in pattern I), we also find similar phe-

nomenon that early feature fusion between templates de-

teriorates the tracking performance. Thus, we suggest the

separated embedding for inter-/intra-frame patches to gen-

erate spatiotemporal tokens.
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T Pattern

I

Pattern

II

Pattern

III

Pattern

IV

Pattern

V

Pattern

VI

1 73.1 67.5 62.6 72.6 71.5 72.1

2 73.4↑ 68.2 ↑ 63.2↑ 71.5↓ 71.2 ↓ 72.3 ↑
3 72.2↓ 68.3↑ 62.8 ↓ 71.0 ↓ 70.8 ↓ 72.6 ↑
4 70.3↓ 67.1 ↓ 62.1↓ 70.6↓ 70.2 ↓ 72.7 ↑

Table 5. Ablations on intermediate templates in four model struc-

tures. The performance is AO in GOT-10k [24] and the arrow (↑/↓)

shows the trend when frame number increases.

T 1 2 3 4 5 8 10

Pattern I 69.4 69.7 69.8 69.3 68.7 68.1 67.7

Flops(G) 32.7 38.3 43.8 49.3 54.7 71.2 82.1

FPS 102.3 92.1 89.2 65.2 60.1 52.3 42.7

Pattern VI 69.2 69.3 69.8 70.1 69.9 68.8 68.6

Flops(G) 32.8 35.1 37.4 39.7 42.1 49.0 53.6

FPS 101.1 97.8 85.9 81.4 68.8 65.2 55.3

Table 6. Ablations on the length of input intermediate template

during inference. The performance is AO in LaSOT [15].

Position embedding. As the position embedding is vital for

the model to discriminate the video frames in both spatial

and temporal domain, we conduct experiments with a few

model variants that use: (1) no Positional Embedding (PE),

(2) space-only PE, and (3) space-time PE (refer to [3]).

Based on these results in Tab. 2, we observe that the variant

of our model that uses space-time PE produces the best AO

performance (71.3% and 70.6%) on both two model pat-

terns. Interestingly, we also observe that the gap between

space-time PE and space-only PE is larger than that of be-

tween space-only and not using PE (0.8% vs. 0.4% and

0.9% vs. 0.3%). This makes sense as the video-level input

processing demands complex temporal reasoning.

Attention scheme. It is non-trivial to design attention

scheme while the actual gain of specialized design remains

open. Under the same setting, we evaluate three attention

variants in Tab. 3: vanilla attention [14], 3D shifted window

attention in VideoSwin [32] and trajectory attention [38].

We find that VideoSwin (69.2%) and trajectory attention

(71.5%) do not have obvious advantages to the vanilla atten-

tion (71.3%) in terms of performance and model cost. This

is because the VideoSwin and trajectory attention are the

approximation of vanilla attention and their improvements

are mainly designed for the high-level video understanding

tasks, e.g., action recognition. So we adopt the vanilla at-

tention in this work for simplicity and efficiency.

Temporal modelling. As shown in Fig. 4, we first evaluate

three fundamental temporal modelling using the same two-

layer hierarchical transformer structure (pattern I, II and

III). The results are shown in Tab. 5. The pattern I achieves

the best 73.1% AO performance indicating that space-time

attention has stronger temporal modelling ability than the

time window (68.3%) and message token attention (63.2%).

However, the performance of three patterns degrades as the

frame number increases, which reveals their weakness at

capturing long-range temporal contexts. Then, we add one

Figure 7. Visualization tracking results of different frame number

in video input and their heat maps (T = 3) of the cross attention

in the intermediate layer of triplet-block. We can see that our dual

template mechanism can adaptively exploit the temporal informa-

tion. Best viewed with zooming in.

more transformer layer to enhance the temporal modelling

(pattern IV, V and VI), which are shown in Fig. 5. Both

the three-layer patterns IV (72.6%) and pattern V (71.5%),

improve the performance by large margin comparing to the

pattern II (62.6%). However, the performance degeneration

when the frame number increases still exits. As our pro-

posed disentangled dual-template mechanism (pattern VI)

reduces the temporal redundancy in intermediate templates

by cross attention, its performance has a rising tendency

facing the longer video-clip (72.1% to 72.7%). Notice that

the videos in GOT-10k [24] is not long, it may explain why

the improvements is relatively small. We further validate it

in long video benchmarks.

Varying the number of input frames. The scalability of

VideoTrack allows it to operate on longer videos. In Tab. 6,

we further compare the pattern I and pattern VI in terms of

efficiency on the long video benchmark LaSOT [15]. The

best performance of pattern VI surpasses pattern I by 0.3%
with more input frames (T = 4 vs. T = 3). It is worth

noting that pattern VI achieves 9.4% computation Flops re-

duction and raises 16.2 FPS inference speed, comparing

to the model I. It validates that our proposed disentangled

dual-template mechanism can reduce the temporal redun-

dancy and effectively convey appearance information. Ob-

serving that both two patterns cannot benefit from over long

video frames, we infer that over-expanding the temporal ex-

tents does not provide more meaningful appearance clues

but harm the model efficiency. It is consistent with our mo-

tivation to propose pattern VI. Moreover, the performance

drop also comes from the online tracking error accumula-

tion which deteriorates the quality of templates.

Pretrain. We empirically evaluate the pretrained weight

from ImageNet-1K [40], ImageNet-22k [42] and recent pro-

posed MAE [21, 41] method. The results of Tab. 4 show

that MAE [21] pretraining outperforms the other pretraining

methods (73.3% vs.70.4%). However, we also observe that

VideoMAE [41] pretraining does not perform well which

only achieves 64.1% AO, comparing to the 70.4% AO from
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Tr Stark Mixformer SBT OStrack

SiamRPN++ ATOM DiMP Siam TransT st101 1k large large 256 VideoTrack
[26] [12] [5] [47] [7] [58] [10] [16] [61]

AO ↑ 51.8 55.6 61.1 66.0 67.1 68.8 67.9 70.4 71.0 72.9
SR50 ↑ 61.6 63.4 71.7 76.6 76.8 78.1 77.3 80.8 80.4 81.9
SR75 ↑ 32.5 40.2 49.2 57.1 60.9 64.1 63.9 64.7 68.2 69.8

Table 7. Comparison on the GOT-10k [24] test set.

Tr Stark Mixformer SBT Ostrack

SiamRPN++ ATOM DiMP Siam TransT DTT s50 1k large 256 VideoTrack
[26] [12] [5] [55] [47] [7] [62] [58] [10] [16] [61]

AUC ↑ 49.6 51.5 56.9 62.4 64.9 60.1 65.8 67.9 66.7 69.1 70.2
Prec↑ 49.1 50.5 56.7 60.0 69.0 - 69.7 73.9 71.1 75.2 76.4

Table 8. Comparison on the LaSOT [15] test set.
Stark Mixformer Ostrack

ECO SiamFC SiamFC++ PrDiMP D3S AutoMatch TransT st50 1k 256 VideoTrack
[11] [4] [57] [13] [33] [65] [7] [58] [10] [61]

AUC ↑ 55.4 57.1 75.4 75.8 72.8 76.0 81.4 81.3 82.6 83.1 83.8
Norm.Prec↑ 61.8 66.3 80.0 81.6 76.8 82.4 86.7 86.1 87.7 87.8 88.7
Prec↑ 49.2 53.3 70.5 70.4 66.4 72.5 80.3 - 81.2 82.0 83.1

Table 9. Comparison on the TrackingNet [36] test set.

Tr Stark Mixformer OStrack

ATOM Ocean AutoMatch SiamGAT DiMP TransT st50 1k 256 VideoTrack
[12] [67] [65] [19] [47] [7] [58] [10] [61]

AUC ↑ 61.7 62.1 64.4 64.6 67.0 68.1 69.2 68.7 68.3 69.7
Prec↑ 82.7 82.3 83.8 84.3 87.6 87.6 88.2 89.5 - 89.9

Table 10. Comparison on the UAV123 [35] test set.

image classification pretraining. This is explained by the

fact that video datasets have much temporal redundancy

and image-based pretraining can help VideoTrack to cap-

ture more appearance clues than motion clues.

Foreground label map. We study the necessity to use fore-

ground label maps in the backbone network as shown in

Fig. 6. Foreground label maps are added to the templates

in video inputs, which is similar to the STMtrack [17]. The

setting with label has a faster convergence, but lower track-

ing performance (65.3% vs. 71.6%). Besides the overfitting

caused by rich template clues, encoding the temporal con-

texts at the feature-level makes the online temporal error

accumulation contaminate the feature representations more

easily. Thus, we suggest not using explicit foreground label

encoding in the video backbone model.

4.3. Qualitative Analysis

Fig. 7 shows the visual heat map of the cross attention in

pattern VI, which exhibits the attention score of the interme-

diate layer in last triple-block. The red area in the heat map

indicates a high attention degree and the query points are

specified. The first row shows the full occlusion situation

where the longer video sequences (T > 2) can effectively

improve the robustness comparing to the tracking drift to

the similar distractor object (person on white clothes) where

limited frames are used (T = 1). The cross attention in-

tensity shows that the model tends to aggregate the nearer

temporal information than the farther one, validating that

the over-long temporal extends do not provide more useful

clues but redundancy. A more interesting fact lies in the

second row: Two intermediate templates are copied from

the same frame which still helps the model to successfully

track the object, comparing to the baseline using the same

intermediate template but only once. It is consistent with

Figure 8. AUC and precision plots on LaSOT [15] and success

plot on GOT-10k [24]. Better viewed with zooming in.
our observation that the appearance clue plays an more im-

portant role than motion clue in that matching with the same

template double times enhances the discrimination ability.

4.4. Comparison to state-of-the-art

We compare our proposed VideoTrack with sota track-

ers on four popular VOT benchmarks: GOT-10k [24], La-

SOT [15], TrackingNet [36] and UAV [35]. Please refer to

the appendix for detailed description of benchmarks.

GOT-10k [24] : GOT-10k has the zero overlap of object

classes between training and testing subset. We strictly fol-

low the official GOT-10k protocol which forbids the exter-

nal datasets for training. In Tab. 7 and Fig. 8, our approach

obtains 72.9% AO score, significantly outperforming the

sota pure-transformer trackers OStrack/SBT/Mixformer by

1.9%/2.5%/5.0%. VideoTrack also ranks the first in other

two metrics: 81.9% in SR50 and 69.8% in SR75.

LaSOT [15]: LaSOT is a large-scale long-term dataset,

where temporal modelling is crucial. As shown in Tab. 8,

VideoTrack achieves the top-rank AUC score (70.2%) and

Precision score (76.4%), which surpasses the other three

strong pair-wise Siamese trackers Ostrack/SBT/TransT for

1.1/3.5/5.3 points AUC score.

TrackingNet [36]: TrackingNet consists of 511 sequences

for testing. Tab. 9 shows that, compared with sota models,

VideoTrack ranks at the first in AUC score of 83.8% and

normalized precision of 88.7%.

UAV123 [35] : UAV123 is a specific dataset for unmanned

aerial vehicles, including 123 videos. In Tab. 10, the pre-

vious sota trackers such as OStrack [61], Mixformer [10],

TransT [7], and Stark [58] are included, VideoTrack outper-

forms those methods by a considerable margin and achieves

69.7%/89.9% in AUC/Precision score.

5. Conclusion
In this work, we are the the first to utilize the video trans-

former backbone for VOT, which lifts the classic pair-wise

Siamese matching to spatiotemporal domain. VideoTrack

avoids labor-intensive temporal modelling modules and te-

dious online hyper-parameters, formulating a neat and con-

ceptual simple framework to exploit temporal contexts. We

conduct a systematic study on video transformer tracking,

e.g. model architectures and temporal modelling methods.

VideoTrack achieves promising results and may enlighten

other template-matching tasks to choose video models.
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