SVFormer: Semi-supervised Video Transformer for Action Recognition
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Abstract

Semi-supervised action recognition is a challenging but
critical task due to the high cost of video annotations. Exist-
ing approaches mainly use convolutional neural networks,
yet current revolutionary vision transformer models have
been less explored. In this paper, we investigate the use
of transformer models under the SSL setting for action
recognition. To this end, we introduce SVFormer, which
adopts a steady pseudo-labeling framework (i.e., EMA-
Teacher) to cope with unlabeled video samples. While a
wide range of data augmentations have been shown effec-
tive for semi-supervised image classification, they generally
produce limited results for video recognition. We there-
fore introduce a novel augmentation strategy, Tube Token-
Mix, tailored for video data where video clips are mixed
via a mask with consistent masked tokens over the temporal
axis. In addition, we propose a temporal warping augmen-
tation to cover the complex temporal variation in videos,
which stretches selected frames to various temporal dura-
tions in the clip. Extensive experiments on three datasets
Kinetics-400, UCF-101, and HMDB-51 verify the advan-
tage of SVFormer. In particulay, SVFormer outperforms
the state-of-the-art by 31.5% with fewer training epochs
under the 1% labeling rate of Kinetics-400. Our method
can hopefully serve as a strong benchmark and encour-
age future search on semi-supervised action recognition
with Transformer networks. Code is released at ht tps :
//github.com/ChenHsing/SVFormer.

1. Introduction

Videos have gradually replaced images and texts on In-
ternet and grown at an exponential rate. On video websites
such as YouTube, millions of new videos are uploaded ev-
ery day. Supervised video understanding works [4, 15, 17,
29,34,56,70] have achieved great successes. They rely on
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Figure 1. Comparison of our method with the supervised baseline
and previous state-of-the-art SSL method [64]. SVFormer signif-
icantly outperforms previous methods under the case with very

little labeled data.

large-scale manual annotations, yet labeling so many videos
is time-consuming and labor-intensive. How to make use of
unlabeled videos that are readily available for better video
understanding is of great importance [25,38,39].

In this spirit, semi-supervised action recognition [25,
40, 57] explores how to enhance the performance of deep
learning models using large-scale unlabeled data. This
is generally done with labeled data to pretrain the net-
works [57,64], and then leveraging the pretrained models to
generate pseudo labels for unlabeled data, a process known
as pseudo labeling. The obtained pseudo labels are further
used to refine the pretrained models. In order to improve
the quality of pseudo labeling, previous methods [57, 62]
use additional modalities such as optical flow [3] and tem-
poral gradient [50], or introduce auxiliary networks [64] to
supervise unlabeled data. Though these methods present
promising results, they typically require additional training
or inference cost, preventing them from scaling up.

Recently, video transformers [2,4,34] have shown strong
results compared to CNNs [15, 17,22]. Though great suc-
cess has been achieved, the exploration of transformers on
semi-supervised video tasks remains unexplored. While it
sounds appealing to extend vision transformers directly to
SSL, a previous study shows that transformers perform sig-
nificantly worse compared to CNNss in the low-data regime
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due to the lack of inductive bias [54]. As a result, directly
applying SSL methods, e.g., FixMatch [41], to ViT [13]
leads to an inferior performance [54].

Surprisingly, in the video domain, we observe that
TimeSformer, a popular video Transformer [4], initialized
with weights from ImageNet [11], demonstrates promising
results even when annotations are limited [37]. This en-
courages us to explore the great potential of transformers
for action recognition in the SSL setting.

Existing SSL methods generally use image augmenta-
tions (e.g., Mixup [67] and CutMix [66]) to speed up con-
vergence under limited label resources. However, such
pixel-level mixing strategies are not perfectly suitable for
transformer architectures, which operate on tokens pro-
duced by patch splitting layers. In addition, strategies
like Mixup and CutMix are particularly designed for image
tasks, which fail to consider the temporal nature of video
data. Therefore, as will be shown empirically, directly us-
ing Mixup or CutMix for semi-supervised action recogni-
tion leads to unsatisfactory performance.

In this work, we propose SVFormer, a transformer-based
semi-supervised action recognition method. Concretely,
SVFormer adopts a consistency loss that builds two dif-
ferently augmented views and demands consistent predic-
tions between them. Most importantly, we propose Tube
TokenMix (TTMix), an augmentation method that is natu-
rally suitable for video Transformer. Unlike Mixup and Cut-
Mix, Tube TokenMix combines features at the token-level
after tokenization via a mask, where the mask has consistent
masked tokens over the temporal axis. Such a design could
better model the temporal correlations between tokens.

Temporal augmentations in literatures (e.g. varying
frame rates) only consider simple temporal scaling or shift-
ing, neglecting the complex temporal changes of each part
in human action. To help the model learn strong temporal
dynamics, we further introduce the Temporal Warping Aug-
mentation (TWAug), which arbitrarily changes the temporal
length of each frame in the clip. TWAug can cover the com-
plex temporal variation in videos and is complementary to
spatial augmentations [10]. When combining TWAug with
TTMix, significant improvements are achieved.

As shown in Fig. 1, SVFormer achieves promising re-
sults in several benchmarks. (i) We observe that the super-
vised Transformer baseline is much better than the Conv-
based method [22], and is even comparable with the 3D-
ResNet state-of-the-art method [64] on Kinetics400 when
trained with 1% of labels. (ii) SVFormer-S significantly
outperforms previous state-of-the-arts with similar param-
eters and inference cost, measured by FLOPs. (iii) Our
method is also effective for the larger SVFormer-B model.
Our contributions are as follows:

* We are the first to explore the transformer model for
semi-supervised video recognition. Unlike SSL for

image recognition with transformers, we find that us-
ing parameters pretrained on ImageNet is of great im-
portance to ensure decent results for action recognition
in the low-data regime.

* We propose a token-level augmentation Tube Token-
Mix, which is more suitable for video Transformer
than pixel-level mixing strategies. Coupled with Tem-
poral Warping Augmentation, which improves tempo-
ral variations between frames, TTMix achieves signif-
icant boost compared with image augmentation.

* We conduct extensive experiments on three benchmark
datasets. The performances of our method in two
different sizes (i.e., SVFormer-B and SVFormer-S)
outperform state-of-the-art approaches by clear mar-
gins. Our method sets a strong baseline for future
transformer-based works.

2. Related Works

Deep Semi-supervised Learning Deep learning relies on
large-scale annotated data, however collecting these anno-
tations is labor-intensive. Semi-supervised learning is a nat-
ural solution to reduce the cost of labeling, which lever-
ages a few labeled samples and a large amount of unla-
beled samples to train the model. The research and applica-
tion of SSL mainly focus on image recognition [41,44, 54]
with a two-step process: data augmentation and consis-
tency regularization. Concretely, different data augmenta-
tions [10] views are input to the model, and their output
consistencies are enforced through a consistency loss. An-
other line of work generates new data and labels using mix-
ing [5, 19,49] to train the network. Among these state-of-
the-art methods, FixMatch have been widely used due its
effective and its variants have been extended to many other
applications, such as object detection [27,32], semantic seg-
mentation [ 1, 8], 3D reconstruction [61], etc. Although Fix-
Match has achieved good performance in many tasks, it may
not achieve satisfactory results when directly transferred to
video action recognition due to the lack of temporal aug-
mentation. In this paper, we introduce temporal augmen-
tation TWAug with mixing based method TTMix, which is
suitable for video transformers at SSL settings.

Semi-supervised Action Recognition VideoSSL [25]
presents a comparative study of applying 2D SSL methods
to videos, which verifies the limitations of the direct ex-
tension of pseudo labeling method. TCL [40] explores the
effect of a group contrastive loss and self-supervised tasks.
MVvVPL [62] and LTG [57] introduce optical flow or tempo-
ral gradient modal to generate high quality pseudo labels
for training, respectively. CMPL [64] introduce an auxiliary
network, which requires more frames in training, increasing
the difficulty of application. Besides, previous methods are



all based on 2D [40] or 3D convolutional [57, 62, 64] net-
works, which require more training epochs. Our approach
is the first to make the exploration of Video Transformer for
SSL action recognition and achieves the best performance
with the least training cost.

Video Transformer The great success of vision trans-
former [13,30,33,45,68] in image recognition leads to the
development of exploring the transformer-base architecture
for video recognition tasks. VTN [36] uses additional tem-
poral attention on the top of the pretrained ViT [13]. TimeS-
former [4] investigates different spatial-temporal attention
mechanisms and adopts factored space time attention as a
trade-off of speed and accuracy. ViViT [2] explores four
different types of attention, and selects the global spatio-
temporal attention as the default to achieve promising per-
formance. In addition, MviT [14], Video Swin [34] , Uni-
former [28] and Video Mobile-Former [53] incorporate the
inductive bias in convolution into transformers. While these
methods focus on fully-supervised setting, limited effort has
been made for transformers in the semi-supervised setting.

Data Augmentation Data augmentation is an essential step
in modern deep networks to improve the training efficiency
and performance. Cutout [12] removes random rectangle
regions in images. Mixup [67] performs image mixing by
linearly interpolating both the raw image and labels. In Cut-
Mix [66], patches are cut and pasted among image pairs.
AutoAugment [10] automatically searches for augmenta-
tion strategies to improve the results. PixMix [24] explores
the natural structural complexity of images when perform-
ing mixing. TokenMix [31] mixes images at the token-level
and allows the region to be multiple isolated parts. Though
these methods have achieved good results, they are all spe-
cially designed for pure image and most of them are pixel-
level augmentations. In contrast, our TTMix coupled with
TWAug is devised for video.

3. Method

In this section, we first introduce the preliminaries of
SSL in Sec. 3.1. The pipeline of our proposed SVFormer is
described in Sec. 3.2. Then we detail the proposed Tube To-
kenMix (TTMix) in Sec. 3.3, as well as the effective albeit
simple temporal warping augmentation. Finally, we show
the training paradigm in Sec. 3.4.

3.1. Preliminaries of SSL

Suppose we have N training video samples, including
Ny, labeled videos (z;,y;) € Dy, and Ny unlabeled videos
z, € Dy, where z; is the labeled video sample with a cat-
egory label y;, and x,, is the unlabeled video sample. In
general, Ny > Np. The aim of SSL is to utilize both D,
and Dy to train the model.
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Figure 2. Overview of our Tube TokenMix training framework.
The two input unlabeled samples are mixed via a tube mask, where
the generated sample is fed into the Student model. The two sam-
ples are also fed into the EMA-Teacher to obtain their pseudo la-
bels, which are further linearly interpolated via mask ratio A to
produce pseudo label for the generated sample. “SG” means stop
gradient. The data augmentation is omitted here.

®: Multiplication

3.2. Pipeline

SVFormer follows the popular semi-supervised learn-
ing framework FixMatch [41] that use a consistency loss
between two differently augmented views. The training
paradigm is divided into two parts. For the labeled set
{(z, yl)}f\; %, the model optimizes the supervised loss L,:

1

Nr
= EZH(7($1)7yz), (1

Ly

where F(-) refers to the predictions produced by the model
and H is the standard cross entropy loss.

For unlabeled samples x,,, we first use weak augmen-
tations (e.g., random horizontal flipping, random scaling,
and random cropping) and strong augmentations (e.g., Au-
toAugment [10] or Dropout [43]) to generate two views
separately, ., = Aweak(Tu), s = Astrong(u). Then
the pseudo label of the weak view ¢, = arg max(F(x,,)),
which is produced by the model, is utilized to supervise the
strong view, with the following unsupervised loss:

Ny
ﬁun = NLUZH(HI&X(]:(I'M))) > 6)7‘[(.7:(1'5),@1”)7 (2)

where ¢ is the predefined threshold, and I is the indicator
function that equals 1 when the maximum class probability
exceeds ¢ otherwise 0. The confidence indicator is used to
filter the noisy pseudo labels.

EMA-Teacher In FixMatch, the two augmented inputs
share the same model, which tends to cause model collaps-
ing easily [21,23]. Therefore, we adopt the exponential



moving average (EMA)-Teacher in our framework, which
is an improved version of FixMatch. The pseudo labels are
generated by the EMA-Teacher model, whose parameters
are updated by exponential moving average of the student
parameters, formulated as:

9t — m@t + (1 — m)@s, 3)

where m is a momentum coefficient, 6; and 6, are the pa-
rameters of teacher and student model, respectively. EMA
has achieved success in many tasks, such as self-supervised
learning [21,23], SSL of image classification [19, 44], and
object detection [27,32]. Here we are the first to adopt this
method in semi-supervised video action recognition.

3.3. Tube TokenMix

One of the core problems in semi-supervised frameworks
is how to enrich the dataset with high-quality pseudo labels.
Mixup [67] is a widely adopted data augmentation strategy,
which performs convex combination between pairs of sam-
ples and labels as follows:

fc:)\-xl—l—(l—)\)-xg, 4)

g=Xy1+(1—=X) -y, (5)

where the ratio X is a scalar that conforms to the beta dis-
tribution. Mixup [67] and its variants (e.g. CutMix [66])
have achieved success in many tasks in the low-data regime,
such as long-tail classification [9, 69], domain adaptation
[63] [55], few-shot learning [35, 60], efc. For SSL, Mixup
also performs well by mixing the pseudo labels of unlabeled
samples in image classification [49].

Mixing in Videos While directly applying Mixup or Cut-
Mix to video scenarios results in clear improvements in
Conv-based methods [71], these methods show unsatisfac-
tory performance in our method. The reason is that our
method adopts the Transformer backbone, where the pixel-
level mixing augmentation (Mixup or CutMix) may be not
perfectly suitable for such token-level models [31]. To nar-
row the gap, we propose 3 token-level mixing augmentation
methods for video data, namely, Rand TokenMix, Frame
TokenMix, and Tube TokenMix.

Fig. 2 illustrates the pipeline of our method. Given unla-
beled video clips x4, z, € RTXWXT our method employ
a token-level mask M € {0, 1}7>WxT (o perform sample
mixing. Note that H and W are the height and width of the
frame after patch tokenization, and 7' is the clip length. To
generate a new sample ,,;,, we mix x, and x; after strong
data augmentations As;yong as follows:

Tmiz = Astrong (xa> O] M + Astrong (xb) O) (1 - M)a (6)

Figure 3. Examples of masks in three token mixing strategies. (a)
Rand TokenMix. (b) Tube TokenMix. (c) Frame TokenMix.

Algorithm 1 Consistency loss for Tube TokenMix

Require: Unlabeled clip batch x,
Require: Tube TokenMask M, mask ratio A
Require: Teacher model F;
Require: Student model Fg
Require: Confidence threshold §
xp = shuffle(x,) {shuffle samples in batch}
X, = spatial_aug(x,) {spatial aug.}
Xp = temporal_aug(xp,) {temporal warping aug.}
¥ = stop_gradient(F;(x,)) {teacher pred.}
¥ = stop_gradient(F;(xyp))
Ca = max; y,[i] {confidence of prediction}
Cp = max; yp|i]
Xmiz = Xq * M + Xp x (1 — M) {mix clips}
Ymiz = FYa * A+ ¥ x (1 — ) {mix tea. preds.}
Crmiz = Cq * A+ ¢ * (1 — \) {mix confidence.}
q = mean(cp; > 0) {mean of conf. mask}
Ymiz = Fs(Xmiz) {stu. pred. on mixed clip}
Loz = QHYmix - ymzx”% {COIIS. IOSS}
Return Z,,,;,.

where © is element-wise multiplication, and 1 is a binary
mask with all ones.

The mask M differs in the three augmentation meth-
ods, as demonstrated in Fig. 3. For Rand TokenMix, the
masked tokens are randomly selected from the whole video
clip (from H x W x T tokens). For Frame TokenMix, we
randomly select frames from the 7" frames and mask all the
tokens in these frames. For Tube TokenMix, we adopt the
tube-style masking strategy, that is, different frames share
the same spatial mask matrix. In this case, the mask M has
consistent masked tokens over the temporal axis. While our
mask design shares similarity with the recent masked im-
age/video modeling [16,47,51, 52,58, 59], our motivation
is totally different. They focus on removing certain regions
and making the model predict the masked areas for feature
learning. In contrast, we leverage the mask to mix two clips
and synthesize a new data sample.

The mixed sample x,,;, is then fed to the stu-
dent model F,, obtaining the model prediction y,,;x =
Fs(Tmiz). In addition, the pseudo labels g, §p for x4, zp
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Figure 4. One example of utilizing Temporal Warping Augmentation together with spatial augmentation in TTMix. The two clips are first
transformed by the two augmentations separately, after which TTMix is performed to generate a new clip.

are produced by inputting the weak augmented samples
Aweak(Ta), Aweak (xp) to the teacher model F:

Z,A/a = arg maX(-Ft (Aweak (wa))); (7)
Oy = arg max(Fi(Aweak (T5)))- (8)
Note that if max(F;(Awear(z))) < 6, the pseudo label
9 remains the soft label F;(Ayeax(x)). The pseudo label
Umiz TOT Ty 1S generated by mixing ¢, and g, with mask
ratio A:
Umiz = Ao + (L= X) - D 9)
Finally, the student model is optimized by the following
consistency loss:

1 N’ﬂl
— S )2
ﬁmix — Nim Z(ymzz ymmt) 9

where N,, is the number of mixed samples. The algorithm
of consistency loss for TTMix is shown in Algorithm 1.

(10)

Temporal Warping Augmentation Most existing aug-
mentation methods are designed for image tasks, which fo-
cus more on the spatial augmentation. They manipulate sin-
gle or a pair of images to generate new image samples, with-
out considering any temporal changes. Even the commonly
adopted temporal augmentations, including varying tempo-
ral locations [18] and frame rates [40, 65], only consider
simple temporal shift or scaling, that is, changing the holis-
tic location or play speed. However, human actions are very
complex and can have different temporal variation at every
timestamp. To cover such challenging cases, we propose to
distort the temporal duration of each frame, thus introduc-
ing higher randomness into the data.

Our Temporal Warping Augmentation (TWAug) can
stretch one frame to various temporal length. Given an ex-
tracted video clip of T frames (e.g., 8 frames), we randomly

|1 2|3|4|5|6|7|s|:>’|”1n|”27 ”””””””””””””””””””

video clip @

{’ Sample 2 frames
'

i Padding

1\1\57|7|8|

1 Padding

Figure 5. Illustration of Temporal Warping Augmentation. We
demonstrate three augment examples of different selected frames.

determine to keep all the frames, or select a small portion
of frames (e.g., 2 or 4 frames) while masking the others.
The masked frames are then padded with random neigh-
bouring visible (unmasked) frames. Note that after tempo-
ral padding, the frame order is still retained. Fig. 5 shows
three examples of selecting 2, 4, and 8 frames, respectively.
The proposed TWAug can help the model learn the flexible
temporal dynamics during training.

The Temporal Warping Augmentation serves as a strong
augmentation in TTMix. Typically, we combine TWAug
with the conventional spatial augmentation [10, 43] to per-
form the mixing. As shown in Fig. 4, the two input clips are
first transformed by spatial augmentation and TWAug sepa-
rately, after which the two clips are mixed through TTMix.
We verity the effectiveness of our TWAug in Sec. 4.3.

3.4. Training Paradigm

The training of SVFormer consists of three parts: super-
vised loss formulated by Eq. (1), unsupervised pseudo-label
consistency loss Eq. (2), and TTMix consistency loss Eq.
(10). The final loss function is as follows:

Lot = Ls +71Lun + 2 Lmiz, (11)

where 7, and 79 are the hyperparameters for balancing the
loss items.



Table 1. Comparisons with state-of-the-art methods on UCF-101 and Kinetics-400. Note that 3D-ResNet-18 and 3D-ResNet-50 denote
the backbone networks and their depths. We report Top-1 accuracy as the evaluation metric. “Input” shows the modalities used during
training, where “V” is the raw RGB video, “F” is optical flow and “G” is the temporal gradient.

UCF-101  Kinetics-400
Method Backbone Input  wImgNet Epoch % 10% 1% 10%
Supervised 3D-ResNet-50 v v 200 65 324 44 362
VIiT-S v v 30 127 625 199 56.6
FixMatch (NeurIPS 2020) [41] SlowFast-R50 \Y% v 200 16.1 551 10.1 494
VideoSSL(WACYV 2021) [25] 3D-ResNet-18 v v - - 42.0 - 33.8
TCL (CVPR 2021) [40] TSM-ResNet-18 \% 400 - - 8.5 -
ActorCutMix (CVIU 2021) [71] R(2+1)D-34 v v 600 - 53.0 9.02 -
MvPL (ICCV 2021) [62] 3D-ResNet-50  V+F+G 600 228 805 17.0 582
CMPL (CVPR 2022) [64] R50 + R50-1/4 \% v 200 251 791 17.6 584
LTG (CVPR 2022) [57] 3D-ResNet-18 V+G 180/360 - 624 9.8 438
TACL(TCSVT 2022) [46] 3D-ResNet-50 \% v 200 - 55.6 - -
L2A (ECCV 2022) [20] 3D-ResNet-18 v v 400 - 60.1 - -
SVFormer-S (Ours) ViT-S \" v 30 314 79.1 32,6 61.6
SVFormer-B (Ours) ViT-B v v 30 463 86.7 491 694
4. Experiment Table 2. Comparisons with state-of-the-art methods on

In this section, we first introduce the experimental set-
tings in Sec. 4.1. Following previous work [57,64], we con-
duct experiments under different labeling rates in Sec 4.2.
In addition, we also perform ablation experiments and em-
pirical analysis in Section 4.3. If not emphasized, we only
use RGB modal for inference with the official validation set.

4.1. Experiment Settings

Datasets Kinetics-400 [7] is a large-scale human action
video dataset, with up to 245k training samples and 20k val-
idation samples, covering 400 different categories. We fol-
low the state-of-the-art methods MvPL [62] and CMPL [64]
to sample 6 or 60 labeled training videos per category, i.e.
at 1% or 10% labeling rates. UCF-101 [42] is a dataset with
13,320 video samples, which consists of 101 categories. We
also sample 1 or 10 samples in each category as the la-
beled set following CMPL [64]. As for HMDB-51 [26],
it is a small-scale dataset with only 51 categories composed
of 6,766 videos. Following the division of LTG [57] and
VideoSSL [25], we conduct experiments at three different
labeling rates: 40%, 50%, and 60%.

Evaluation Metric We show the accuracy of Top-1 in main
results, and also present the accuracy of Top-5 in some ab-
lation experiments.

Baseline We utilize the ViT [13] extended video TimeS-
former [4] as the backbone of our baseline. The hyperpa-
rameters are mostly kept the same as the baseline, and we
adopt the divided space-time attention as in TimeSformer
[4]. Since TimeSformer only have ViT-Base models, we
implement SVFormer-Small model from DeiT-S [48] with

HMDB-51. We report Top-1 accuracy. “Input” shows the modali-
ties used during training, where “V” is the raw RGB video, “F” is
optical flow and “G” is the temporal gradient.

Backbone Input  40% 50% 60%

VideoSSL [25] 3D-R18 \Y% 327 362 37.0
ActorCutMix [71]  R(2+1)D-34 \% 329 382 389
MvVPL [62] 3D-R18 V+F+G 305 339 358
LTG [57] 3D-R18 V+G 46.5 484 497
TACL [46] 3D-R18 v 38.7 402 417
L2A [20] 3D-R18 \" 42.1 463 47.1
SVFormer-S (Ours) ViT-S \% 56.2 582 59.7
SVFormer-B (Ours) ViT-B v 61.6 644 68.2

the dimension of 384 and 6 heads, in order to have com-
parable number of parameters with other Conv-based meth-
ods [22,62,64]. For fair comparisons, we train 30 epochs
for TimeSformer as the supervised baseline.

Training and Inference For training, we follow the setting
of TimeSformer [4]. The training uses 8 or 16 GPUs, with
a SGD optimizer using a momentum of 0.9 and a weight
decay of 0.001. For each setting, the basic learning rate
is set to 0.005, which is divided by 10 at epochs 25, and
28. As for the confidence score threshold, we search for
the optimal ¢ from {0.3, 0.5, 0.7, 0.9}. ~; and 7, are set
to 2. The masking ratio A is sampled from beta distribution
Beta(a, ), where v = 10. In the testing phase, following
the inference strategies in MvPL [62] and CMPL [64], we
uniformly sample five clips from the entire video, and make
three different crops to get 224 x 224 resolution to cover
most of the spatial areas of the clips. The final prediction is
the average of the softmax probabilities of these 5 x 3 pre-



Xa

Xp

Mixup

CutMix

PixMix

Frame
TokenMix

Rand
TokenMix

Tube
TokenMix

Figure 6. Example of the traditional pixel-level mixing methods
and our proposed token-level mixing. Note that token-level meth-
ods mix two samples after tokenization but the visualization is
shown on image-level for clear presentation.

dictions. We also conduct a comparison of inference setting
in the ablation study in Sec. 4.3.

4.2. Main Results

The main results of Kinetics-400 [7] and UCF-101 [42]
are shown in Table 1. Compared with previous methods,
our model SVFormer-S achieves the best performance with
the fewest training epochs among the methods that only use
RGB data. In particular, at the labeling rate of 1% setting,
SVFormer-S improves previous approach [64] by 6.3% in
UCF-101 and 15.0% in Kinetics-400. In addition, when
adopting larger models, SVFormer-B significantly outper-
forms the state-of-the-art methods.

Specifically, in Kinetics-400, SVFormer-B can achieve
69.4% with only 10% labeled data, which is comparable
to 77.9% of fully-supervised setting in TimeSformer [4].
Moreover, as shown in Table 2, for the small-scale dataset
HMDB-51 [26], our SVFormer-S and SVFormer-B have
also improved by about 10% and 15% compared with the
previous method [57].

4.3. Ablation Studies

To understand the effect of each part of the design in
our method, we conduct extensive ablation studies on the
Kinetics-400 and UCF-101 at the 1% labeling ratio setting

Table 3. SSL framework selection. We compare the EMA-
Teacher framework with FixMatch. The results are reported on
Kinetics-400 and UCF-101 with 1% labeling ratio.

Method UCF-1% Kinetic-1%
TOp- 1 TOp-5 TOp- 1 Top_ 5
Baseline 12.7 29.8 19.9 42.3

FixMatch [41]  25.1 473 282 54.6
EMA-Teacher 314 56.9 32.6 59.0

Table 4. TokenMix Mask sampling. We compare different token
masking strategies. The results are reported on Kinetics-400 and
UCF-101 with 1% labeling ratio.

Method/Dataset UCF-1% Kinetic-1%
Top-1 Top-5 Top-1 Top-5
Baseline 26.1 48.9 23.6 47.7
CutMix [66] 28.7 51.3 28.6 53.7
Mixup [67] 29.8 53.0 29.3 55.1
PixMix [24] 29.7 52.4 29.6 55.8

Frame TokenMix 29.8 54.2 26.3 50.0
Rand TokenMix 30.3 55.3 28.8 54.2
Tube TokenMix 314 56.9 32.6 59.0

with SVFormer-S.

Analysis of SSL framework The comparison of FixMatch
and EMA-Teacher is shown in Table 3. It is clear that the
two methods have significantly improved the baseline ap-
proach. In addition, EMA-Teacher has exhibited consid-
erable gains over FixMatch in both datasets with very few
labeled samples, probably because it has improved the sta-
bility of training. FixMatch [41] may lead to model collapse
with limited labels as shown in [6].

Analysis of different mixing strategies We now compare
the Tube TokenMix strategy with three pixel-level mixing
methods, CutMix [66], Mixup [67], PixMix [24], as well
as the other two token-level mixing methods, i.e., Frame
TokenMix and Rand TokenMix. The examples of different
mixing methods are shown in Fig. 6. The quantitative re-
sults are shown in Table 4. Compared with these alternative
methods, all mixing methods can improve the performance,
which proves the effectiveness of mixing-based consistency
losses. In addition, we observe that the token-level methods
(Rand TokenMix and Tube TokenMix) perform better than
the pixel-level mixing methods. This is not surprising since
transformers operate on tokens, and thus token-level mixing
has inherent advantages.

The performance of Frame TokenMix is even worse than
that of pixel-level mixing methods, which is also expected.
We hypothesize that replacing entire frames in video clip
will scramble up the temporal reasoning, thus leading to
poor temporal attention modeling. In addition, Tube Token-



Table 5. Effects of Spatial and Temporal Warping Augmen-
tations (TWAug). The results are reported on Kinetics-400 and
UCF-101 with 1% labeling ratio.

UCF-1%
Top-1 Top-5 Top-1 Top-5

Spatial  Temporal Kinetic-1%

Baseline 29.5 521 285 542
Spatial-only v 299 532 303 559
Temporal-only v 30.2 55.8 30.8 56.4
Spatial+Temporal v v 314 569 326 59.0

Table 6. Effects of different inference schemes. We compare
the sparse sampling strategy and dense sampling method with dif-
ferent frames. The a x b in ‘Frames’ column means sampling a
frames at frame rate b. The results are reported on Kinetics-400
and UCF-101 with 1% labeling ratio.

Method Frames Test View UCF-1% Kinetic-1%
MvPL [62] 8 x 8 10 x 3 22.8 17.0
CMPL [64] 8 x 8 10 x 3 25.1 17.6
SVFormer-S 8 x 32 1x3 29.3 31.0
SVFormer-S 8 x8 5x%x3 314 32.6
SVFormer-S 16 x 4 10 x 3 31.6 33.1

Mix achieves the best results. We suppose the consistent
masked tokens over temporal axis can prevent information
leaky between adjacent frames in the same spatial locations,
especially in such a short-term clip. Therefore, Tube Token-
Mix could better model the spatio-temporal correlations.

Analysis of Augmentations The effects of spatial augmen-
tation and temporal warping augmentation are evaluated in
Table 5. The baseline indicates removing both strong spatial
augmentation (e.g. AutoAugment [10] and Dropout [43])
and TWAug in all branches. In this case, the experimental
performance drops dramatically. When spatial augmenta-
tion or temporal warping augmentation is incorporated into
the baseline separately, the performance is improved. The
best practice is to perform data augmentations in both spa-
tial and temporal.

Analysis of Inference We evaluate the effect of frame rate
sampling and different inference schemes, as shown in Ta-
ble 6. Previous methods, i.e. CMPL [64] and MVPL [62],
utilize the clip-based sparse sampling, which samples 8
frames at frame rate 8 as a clip. For each video, 10 clips
are sampled, where each clip is cropped 3 times accord-
ing to different spatial positions. Finally, the predictions
of 10 x 3 samples are averaged. TimeSformer [4] adopts
the video-based sparse sampling, that is, 8 frames are sam-
pled at frame rate 32 as the representation of the whole
video. Then 3 different cropped views are used, namely
8 x 32. Applying the video-based sparse sampling scheme
as in TimeSformer [4] can reduce the inference cost, but the
performance is worse than that of clip-based sampling. Ex-
periments at sampling schemes of 8 x 8 and 16 x 4 demon-
strate better performance. For the trade-off between effi-
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Figure 7. Effects of hyperparameters. Results of varying thresh-
old 4, ratio between unlabeled and labeled data in a mini-batch
(Bu/Bi), momentum coefficient m, and loss weights (1, 2) are
included to comprehensively study the effects of the hyperparam-
eters. Reported on Kinetics-400 with 1% labeling ratio.

ciency and accuracy, we use 8 x 8 as the default setting
following CMPL [64] and MVPL [62].

Analysis of hyperparameters Here we explore the effect
of different hyperparameters. We conduct experiments un-
der 1% setting of Kinetics-400. We first explore the effect
of different threshold values of §. As shown in Fig. 7(a),
we can observe that when labeled samples are extremely
scarce, best results are achieved by setting a small § value
(6 = 0.3). We then evaluate how the ratio between labeled
samples and unlabeled samples in a mini-batch affect the
result. We fix the labeled sample number B; to 1, and sam-
ple B,, unlabeled samples to form a mini-batch, where B,,
isin {1, 2, 3, 5, 7}. The results are shown in Fig. 7(b).
When B,, = 5, the model produces the highest result. Fi-
nally, we explore the choice of momentum coefficient m of
EMA and the loss weights ; and 79, as shown in Fig. 7(c)
and Fig. 7(d). We thus set m = 0.99 and v; = 72 = 2 as
default setting in all the experiments.

5. Conclusion

In this paper we present SVFormer, a transformer-based
semi-supervised video action recognition method. We pro-
pose Tube TokenMix, a data augmentation method that is
specially designed for video transformer models. Cou-
pled with the temporal warping augmentation, which cov-
ers the complex temporal variations by arbitrarily chang-
ing the frame length, TTMix achieves significant improve-
ment compared with conventional augmentations. SV-
Former outperforms the state-of-the-art with a large margin
on UCF-101, HMDB-51 and Kinetics-400 without increas-
ing overheads. Our work establishes a new benchmark for
semi-supervised action recognition and encourages future
work to adopt Transformer architecture.
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