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Abstract

Vision Transformers (ViTs) have achieved overwhelming
success, yet they suffer from vulnerable resolution scalabil-
ity, i.e., the performance drops drastically when presented
with input resolutions that are unseen during training. We
introduce, ResFormer, a framework that is built upon the
seminal idea of multi-resolution training for improved per-
formance on a wide spectrum of, mostly unseen, testing res-
olutions. In particular, ResFormer operates on replicated
images of different resolutions and enforces a scale con-
sistency loss to engage interactive information across dif-
ferent scales. More importantly, to alternate among vary-
ing resolutions effectively, especially novel ones in testing,
we propose a global-local positional embedding strategy
that changes smoothly conditioned on input sizes. We con-
duct extensive experiments for image classification on Im-
ageNet. The results provide strong quantitative evidence
that ResFormer has promising scaling abilities towards a
wide range of resolutions. For instance, ResFormer-B-MR
achieves a Top-1 accuracy of 75.86% and 81.72% when
evaluated on relatively low and high resolutions respec-
tively (i.e., 96 and 640), which are 48% and 7.49% better
than DeiT-B. We also demonstrate, moreover, ResFormer is
flexible and can be easily extended to semantic segmenta-
tion, object detection and video action recognition. Code is
available at https://github.com/ruitian12/resformer.

1. Introduction
The strong track record of Transformers in a multi-

tude of Natural Language Processing [60] tasks has moti-
vated an extensive exploration of Transformers in the com-
puter vision community. At its core, Vision Transformers
(ViTs) build upon the multi-head self-attention mechanisms
for feature learning through partitioning input images into
patches of identical sizes and processing them as sequences

†Corresponding author.
Note that we use resolution, scale and size interchangeably.
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Figure 1. Comparisons between ResFormer and vanilla ViTs. Res-
Former achieves promising results on a wide range of resolutions.

for dependency modeling. Owing to their strong capabil-
ities in capturing relationships among patches, ViTs and
their variants demonstrate prominent results in versatile vi-
sual tasks, e.g., image classification [41, 57, 73, 78], object
detection [4, 35, 63], vision-language modeling [29, 46, 62]
and video recognition [3, 34, 42, 72].

While ViTs have been shown effective, it remains un-
clear how to scale ViTs to deal with inputs with varying
sizes for different applications. For instance, in image clas-
sification, the de facto training resolution of 224 is com-
monly adopted [41, 57, 58, 73]. However, among works in
pursuit of reducing the computational cost of ViTs [44, 49],
shrinking the spatial dimension of inputs is a popular strat-
egy [7, 37, 64]. On the other hand, fine-tuning with higher
resolutions (e.g., 384) is widely used [16, 41, 55, 58, 67, 70]
to produce better results. Similarly, dense prediction tasks
such as semantic segmentation and object detection also re-
quire relatively high resolution inputs [1, 35, 40, 63].

Despite of the necessity for both low and high resolu-
tions, limited effort has been made to equip ViTs with the
ability to handle different input resolutions. Given a novel
resolution that is different from that used during training, a
common practice adopted for inference is to keep the patch
size fixed and then perform bicubic interpolation on posi-
tional embeddings directly to the corresponding scale. As
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shown in Sec. 3, while such a strategy is able to scale ViTs
to relatively larger input sizes, the results on low resolutions
plunge sharply. In addition, significant changes between
training and testing scales also lead to limited results (e.g.,
DeiT-S trained on a resolution of 224 degrades by 1.73%
and 7.2% when tested on 384 and 512 respectively).

Multi-resolution training, which randomly resizes im-
ages to different resolutions, is a promising way to accom-
modate varying resolutions at test time. While it has been
widely used by CNNs for segmentation [23], detection [25]
and action recognition [66], generalizing such an idea to
ViTs is challenging and less explored. For CNNs, thanks
to the stacked convolution design, all input images, regard-
less of their resolutions, share the same set of parameters in
multi-resolution training. For ViTs, although it is feasible
to share parameters for all samples, bicubic interpolations
of positional embeddings, which are not scale-friendly, are
still needed when iterating over images of different sizes.

In this paper, we posit that positional embeddings of
ViTs should be adjusted smoothly across different scales for
multi-resolution training. The resulting model then has the
potential to scale to different resolutions during inference.
Furthermore, as images in different scales contain objects
of different sizes, we propose to explore useful information
across different resolutions for improved performance in a
similar spirit to feature pyramids, which are widely used
in hierarchical backbone designs for both image classifica-
tion [25, 41] and dense prediction tasks [23, 24, 38].

To this end, we introduce ResFormer, which which takes
in inputs as multi-resolution images during training and ex-
plores multi-scale clues for better results. Trained in a sin-
gle run, ResFormer is expected to generalize to a large span
of testing resolutions. In particular, given an image dur-
ing training, ResFormer resize it to different scales, and
then use all scales in the same feed-forward process. To
encourage information interaction among different resolu-
tions, we introduce a scale consistency loss, which bridges
the gap between low-resolution and high-resolution features
by self-knowledge distillation. More importantly, to facili-
tate multi-resolution training, we propose a global-local po-
sitional embedding strategy, which enforces parameter shar-
ing and changes smoothly across different resolutions with
the help of convolutions. Given a novel resolution at testing,
ResFormer dynamically generates a new set of positional
embeddings and performs inference.

To validate the efficacy of ResFormer, we conduct com-
prehensive experiments on ImageNet-1K [14]. We observe
that ResFormer makes remarkable gains compared with
vanilla ViTs which are trained on single resolution. Given
the testing resolution of 224, ResFormer-S-MR trained on
resolutions of 128, 160 and 224 achieves a Top-1 accuracy
of 82.16%, outperforming the 224-trained DeiT-S [57] by
2.24% . More importantly, as illustrated in Fig. 1, Res-

Former surpasses DeiT by a large margin on unseen res-
olutions, e.g., ResFormer-S-MR outperforms DeiT-S by
6.67% and 56.04% when tested on 448 and 80 respec-
tively. Furthermore, we also validate the scalability of Res-
Former on dense prediction tasks, e.g., ResFormer-B-MR
achieves 48.30 mIoU on ADE20K [80] and 47.6 APbox on
COCO [39]. We also show that ResFormer can be readily
adapted for video action recognition with different sizes of
inputs via building upon TimeSFormer [3].

2. Related Work

Scaling Vision Models. Many studies in recent literature
[40, 51, 56, 75] discuss how to scale vision models, with
most of them focusing on the capacity of deep neural net-
works. For instance, EfficientNet [56] studies how model
width, depth and input resolution affect convolutional neu-
ral networks. RegNet [47] designs manual designing space
for CNNs and finds simple linear correlation between the
search space (e.g. width) and performance. ResNet-RS [2]
presents how different scaling strategies on depth and input
resolution can affect the model capacity.

Recent approaches have investigated scaling of trans-
formers [40, 75]. For example, V-Moe [51] scales vision
transformers to large model sizes with sparse mixture-of-
experts. Several studies [18, 20, 32, 71] explore the aspect
of data scaling under self-supervised framework, i.e., how
data sizes affect the model performance. In contrast, limited
effort has been made towards the scaling abilities of models
towards input resolutions. Attempts have been made by Liu
et al. [40] to scale up to larger resolutions, while neglect-
ing lower resolutions. Instead, our work takes the initiative
to scale ViTs to various resolutions, both lower and higher,
satisfying the practical needs from varied visual tasks.

Positional embedding. The self-attention architecture is
clueless about spatial relationships among patches. There-
fore, to overcome permutation-invariance, various posi-
tional embedding strategies have been proposed to enable
Transformers to perceive the sequence order of input to-
kens. Absolute positional embeddings (APE) infuse global
spatial information into Transformers, e.g., sine-cosine
APE [60] proposed for NLP tasks and learned APE adopted
in the vanilla Vision Transformer [16]. Meanwhile, efficacy
of relative position embeddings (RPB) is widely validated
in both language [13, 52] and vision tasks [5, 40, 68]. For
instance, Wu et al. replaces APE with the relative strategy
of iRPE [68] for performance gains on classification and
detection. ConViT [17] also suggests that adding gated rel-
ative positional embeddings to self-attention blocks brings
about soft convolutional inductive biases. Moreover, dy-
namic positional embeddings are introduced to model local
information from input tokens, e.g., Twins [9] adopt con-
ditional positional embeddings (CPE) [10] implemented by
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Figure 2. Top-1 accuracy of DeiT-S trained with 5 different reso-
lutions and tested on resolutions varying from 80 to 576. During
testing, we follow the common pre-processing steps (i.e., Resize
and CenterCrop in Pytorch implementation) and set the crop-
ping rate to 0.875.

convolutions. In order to improve performance and scalabil-
ity simultaneously, we propose to inject spatial embeddings
in ResFormer from both from global and local perspectives.

Multi-scale training. In early CNNs, multi-scale data aug-
mentations [53] are employed for image classification by
randomly sampling training images from a certain range of
scales. Later in dense prediction tasks, multi-scale training
and testing become an widely-adopted paradigm [4,33,54].
In addition, the idea has also been explored in action recog-
nition. Wu et al. introduce a multigrid strategy [66], which
enables efficient training by sampling data with different
grids of temporal span, spatial span and temporal stride.
Video ResKD [43] achieves excellent efficiency by employ-
ing high-resolution features from large models as teachers
to improve low-resolution performance.

Most approaches in multi-scale training rely on CNNs,
as convolutions can be readily applied to varying sizes of
inputs. In contrast, vanilla ViTs are equipped with to-
kens of fixed-dimension, other related attempts lay empha-
sis on multi-scale spatial dimension of features instead of
input [19, 21] or perform in an unsupervised way [48], yet
limited effort has been made to explore multi-resolution su-
pervised training for ViTs. In this paper, we make the first
step to investigate such a strategy for ViTs which not only
leads to good performance on training resolutions but can
also generalize towards novel resolutions.

3. Resolution Generalization

In this section, we conduct a set of pilot experiments to
show the scalability of ViTs towards different resolutions.

Generalizing to different resolutions. As revealed by pre-
vious work [59], CNNs suffer from distribution shifts be-
tween training and testing due to different pre-processing
methods, i.e., the de facto “random resizing and cropping”

strategy for training and “center cropping” for testing re-
sult in different distributions of cropped regions in images.
For ViTs, theoretically, the discrepancy persists since the
same pre-processing strategies of training and testing are
employed. However, there lacks a comprehensive study on
how ViTs behave towards input scales varied from the train-
ing process. To this end, we feed pre-trained ViTs with test-
ing samples of varying sizes. In particular, we instantiate
ViT models with DeiT-S [57] and initialize the model with
weights pre-trained on ImageNet-1K. We then fine-tune the
model on a resolution of 96, 128, 224, 288 and 384 respec-
tively. 1 These derived models are then tested on a broad
spectrum of resolutions. Following [41, 57], we simply re-
size the position embeddings with bicubic interpolation on
different testing resolutions. The results are shown in Fig. 2.
We observe the following trends for scaling up or down:
• Scaling down: All models undergo severe performance

drop when directly adapted to small-scale inputs, espe-
cially for ones pre-trained on larger resolutions. For ex-
ample, the Top-1 accuracy of DeiT-S with a training reso-
lution of 384 decreases by 6.18% when tested on 224 and
even plummets below 30% when the testing resolution is
further reduced to 160.

• Scaling up: Ideally, increasing testing resolutions results
in improved accuracy, which is also suggested as byprod-
uct of train-test distribution discrepancy in [59]. How-
ever, models yield unsatisfactory performance when gap
enlarges. e.g., DeiT-S with a low training resolution of
128 stops growing in accuracy when the testing resolu-
tion reaches 256. It achieves a Top-1 accuracy of 75.26%
with testing resolution set to 224, which is 4.57% lower
than model trained with a resolution of 224, directly.
Above all, ViTs are vulnerable to resolution discrepan-

cies between training and testing, particularly when evalu-
ated on low-resolution inputs. This motivates us to equip
ViTs with scalability towards a wide range of test resolu-
tions so as to meet the need of versatile applications.

4. Method
Our goal is to train a vision transformer that not only per-

forms well on resolutions the network has seen during train-
ing, but more importantly it is able to adapt to a wide range
of unseen resolutions without significant performance drop
during testing. To this end, we first introduce a resolution
scaling transformer in Sec. 4.1, ResFormer, which oper-
ates on input samples of multiple resolutions in the training
stage. Since the size of objects varies in different scales, we
also introduce a scale consistency loss to fully explore in-
formation from all resolutions for improved accuracy. Fur-
thermore, as mentioned in Sec. 3, directly interpolating po-
sitional embeddings to unseen resolutions during inference

1Please refer to Appendix B.1 for detailed fine-tuning setup.
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Figure 3. Left: The overview of ResFormer framework. Right: The pipeline of generating local positional embedding.

produces unsatisfactory results. To mitigate this issue, Res-
Former builds upon carefully designed global-local posi-
tional embeddings, which are generated conditioned on in-
put resolutions, as will be described in Sec. 4.2.

4.1. ResFormer

Following the vanilla ViT [16], given an input image X
whose height and width are H and W , respectively, we first
split it into NH ×NW patches, where the patch size is set
to t and NH = H/t,NW = W/t. Each image patch is
projected into a D-dimension feature by patch embedding
and is denoted as a “token”. Subsequently, a global class
token cls is concatenated with image tokens before they
are fed into Transformer blocks.

Unlike standard ViTs operating on single-scale images,
ResFormer takes inputs of different resolutions during train-
ing so as to better model objects of varying sizes in different
scales and generalize better during inference. More specifi-
cally, as shown in Fig. 3, we replicate a given training image
for r times, where r denotes the number of resolutions used.
For the i-th data replica, resizing and cropping operations2

are applied to obtain a training sample Xi with a spatial
size of 3 × Hi × Wi. Afterwards, we apply random pre-
processing strategies involved in ViTs training paradigm3

on each scale of inputs separately. As a result, one mini-
batch is composed of groups of multi-resolution inputs shar-
ing identical labels, which is roughly equivalent to extend-
ing the base batch size by r times. In addition, for the input
sample Xi, we feed the global class token output of the last
transformer block as inputs into classification head to com-
pute final predictions Y i. Naturally, the classification losses

2In practice, we realize it with RandomResizedCrop in PyTorch.
3Random pre-processing includes Auto-Augment [11], RandAug-

ment [12], random erasing [79], MixUp [76] and CutMix [74].

can be written as:

L(Θ) = E
(X,T )∼D

r∑
i=1

LCE(Y
i;Xi, T,Θ), (1)

where T denotes the ground-truth label and LCE represents
the cross-entropy loss. In addition, D and Θ denote the
training set and the parameters of the network, respectively.

Scale consistency loss. Given that larger inputs gener-
ally produce better recognition results compared to their
smaller counterparts, we take advantage of knowledge dis-
tillation through enforcing consistencies among different
resolutions. In particular, we use a smooth l1 loss with fea-
ture whitening [65], denoted as LKD, to transfer knowl-
edge from the class token of a higher resolution to that of a
lower resolution. This is achieved by serving clsi as the
teacher of clsi+1 with Hi = Wi, Hi > Hi+1. Combining
with Eq. (1), the loss can be written as:

L(Θ) = E
(X,T )∼D

1

r
[

r∑
i=1

LCE(Y
i;Xi, T,Θ)

+

r−1∑
i=1

LKD(clsi+1,clsi)]. (2)

Especially, teacher class tokens are detached from the gra-
dient computational graph. At last, the loss is divided by r
to ensure stability of training.

4.2. Global-Local Positional Embedding

The commonly-used positional embeddings highly de-
pend on the size of input samples. As a result, when mul-
tiple resolutions are involved in the training process, posi-
tional embeddings need to be carefully adjusted when it-
erating images of different scales, as simple interpolations



incur performance drops. Therefore, we propose to use con-
ditional positional embeddings both globally and locally to
bridge the resolution gap among a broad range of resolu-
tions. Below, we first introduce the global positional em-
bedding and then describe its local counterpart.

Global position embedding. To incorporate location infor-
mation in patch embeddings, a typical way is to add abso-
lute position embedding (APE). Given the input sample X ,
ximg refers to the output image tokens of the patch embed-
ding, whose spatial dimension equals NH×NW and feature
dimension is D. For simplicity, we denote x as concatena-
tion of class token cls and image tokens ximg, the absolute
positional embedding p can be expressed as,

x = x+ p, p ∈ R1×(NH×NW+1)×D. (3)

The most straightforward way is implementing p with
learned parameters, as widely-adopted in [16, 57, 63]. An-
other common tactic is fulfilled with sinusoidal mapping
Fsine [22,60], through which p is generated on-the-fly by a
fixed function dependent on NH , NW and D. Due to space
limitation, we provide explicit expression in Appendix B.1.
Furthermore, compared with learned APE, the sine-cosine
APE changes more weakly between different input scales,
as displayed in Sec. 5.2 . Therefore, we build our method
upon sine-cosine APE with the assumption that smoother
positional embedding would contribute to better resolution
scalability.

We further improve the sine-cosine positional embed-
ding with conditional computation such that the embed-
dings are tailored to the model during training. As illus-
trated in Fig. 3, a simple yet effective depth-wise convo-
lution is applied so as to generate the final positional em-
bedding conditioned on sinusoidal encoding. Since convo-
lutions should be performed in 2-D dimension, we leave
out the class token by concatenating a zero padding shaped
of R1×1×D with output embeddings of DWconv. In gen-
eral, the strategy introduced above aims at injecting smooth
spatial information of global context into ViT, thereby we
denote it as global positional embedding (GPE).

Local positional embedding. Positional embeddings in-
troduced in [15, 34, 77] share the same design philosophy
since they are both dynamically generated by input tokens
and carry spatial information of local neighbourhood. It
has been unveiled that such strategies can effectively intro-
duce translation invariance into ViTs and hence facilitate
generalizing to various resolutions. We refer to the posi-
tional embedding conditioned on local input feature as lo-
cal positional embedding (LPE) and hypothesize that LPE
is orthogonal with GPE in modelling spatial information of
image tokens. Consequently, the combination of LPE and
GPE may results in best resolution scalability.

To this end, we incorporate local positional embeddings
into attention blocks in a similar fashion to [15]. Given a

multi-head self-attention block, a query Q, a key K and a
value V are obtained through a linear projection, and the
output z can be derived as:

z = Softmax(QKT /
√
D)V. (4)

In particular, local spatial information of V is utilized.
We first set the class token aside and reshape the value ma-
trix to get V ′ ∈ RM×D′×NH×NW , where M denotes the
number of attention heads and D′ satisfies D = D′ ·M . In-
spired by [40, 41], we generate dynamic positional embed-
dings conditioned on V ′ separately for each head. There-
fore, a 3× 3 depth-wise convolution is implemented to ob-
tain the LPE for each head. The above operations can be de-
noted as mapping H conditioned on V . Therefore, Eq. (4)
can be re-written as:

z = Softmax(QKT /
√
D)V +H(V ). (5)

By virtue of convolutions, LPE can be dynamically gen-
erated regardless of input scales. Eventually, in ResFormer,
global and local positional embeddings are combined to en-
sure better generalization to novel resolutions.

5. Experiments

Implementation details. We instantiate ResFormer with
DeiT [57] due to its simplicity. Given an input image, we re-
size it to 128, 160 and 224, respectively, for multi-resolution
training throughout the experiments, unless specified other-
wise. The resulting images are then used as inputs to Res-
Former. For image classification, we use AdamW [31] as
our optimizer and apply a cosine decay learning rate sched-
uler. Small and tiny models are trained with a batch size
of 1024 and a learning rate of 5e−4, yet a learning rate of
8e−4 is used for the base model. We keep all augmentation
and regularization settings in [57] for fair comparisons. For
all experiments, we follow the official training and testing
split as well as the evaluation metrics. More details can be
found in Appendix B.1. For testing, we report results on a
wide range of resolutions. Note that ResFormer only uses a
single scale during testing.

5.1. Main Results

Effectiveness of ResFormer in image classification.
Tab. 1 presents the results of ResFormer and comparisons
with DeiT [57] using various settings. In particular, we use
ResFormer-M-R to denote a variant of ResFormer, where
M represents the model size (i.e., T, S, B for tiny, small
and base models respectively) and R indicates the resolu-
tion used for training (i.e., MR denotes multiple resolution;
if R is a number, it represents the resolution itself).

When evaluated with a testing resolution of 224, Res-
Formers achieve highly competitive results—ResFormer-S-
MR and ResFormer-B-MR offers an accuracy of 82.16%



Table 1. Top-1 Accuracy of DeiT and ResFormer on ImageNet-1K. Columns highlighted with grey background refer to the training
resolutions of given models. Specifically, ResFormer adopts training resolutions of 128, 160 and 224 for multi-resolution training.

Model Testing resolution
96 112 128 160 192 224 288 384 448 512 640

DeiT-T [57] 8.06 34.22 52.16 65.68 70.18 72.14 73.1 71.29 67.43 66.07 59.31
ResFormer-T-MR 61.40 64.93 67.78 71.09 72.97 73.85 74.85 75.04 74.39 73.77 71.65

DeiT-S [57] 17.55 54.34 67.02 75.62 78.60 79.83 80.02 78.10 75.85 72.63 63.86
ResFormer-S-128 70.25 73.91 75.47 77.06 77.48 76.89 74.78 69.55 64.54 58.34 45.25
ResFormer-S-160 67.34 72.26 75.05 78.06 78.94 79.19 78.25 74.86 71.38 66.65 54.77
ResFormer-S-224 57.80 66.36 71.35 76.99 79.63 80.83 81.42 80.65 79.28 77.73 73.26
ResFormer-S-MR 73.59 76.64 78.24 80.39 81.42 82.16 82.70 82.72 82.52 82.00 80.72

DeiT-B [57] 27.86 64.46 73.18 79.05 81.06 81.79 82.19 81.11 79.81 78.23 74.23
ResFormer-B-MR 75.86 78.42 79.74 81.52 82.28 82.72 83.02 83.29 82.9 82.63 81.72

Table 2. Results and comparisons of different backbones on
ADE20K. All backbones are pre-trained on ImageNet-1k, among
which MAE [22] uses unsupervised pre-training.

Backbone #Param Lr schd mIoU ms + flip

DeiT-S [57] 52.1M 80k 42.96 43.79
XCiT-S12/16 [1] 52.4M 160k 45.90 46.72
ResFormer-S-224 51.7M 80k 45.47 46.61
ResFormer-S-MR 51.7M 80k 46.31 47.45

DeiT-B [57] 120.6M 160k 45.36 47.16
XCiT-S24/16 [1] 109.0M 160k 47.69 48.57
ViT-B + MAE [22] 176.5M 160k 48.13 48.70
ResFormer-B-MR 119.8M 160k 48.30 49.28

and 82.72%, respectively, outperforming their DeiT coun-
terparts by 2.33% and 0.93%. We also see from Tab. 1
that ResFormer trained with multi-resolution images out-
performs models trained with single scale inputs with clear
margins on all “seen” resolutions. For instance, ResFormer-
S-MR outperforms ResFormer-S-128, ResFormer-S-160,
ResFormer-S-224 by 2.77%, 2.33% and 1.33% respec-
tively. Similar trends can also be found for ResFormer-
B and ResFormer-T. This highlights the effectiveness of
multi-resolution training.

Furthermore, for “unseen” resolutions, ResFormer
demonstrates clear scaling capabilities. In particular, given
a test resolution of 384, ResFormer-S-224 achieves a Top-
1 accuracy of 80.65%, which is 2.55% higher than its
DeiT-S counterpart (78.10%). This suggests that global-
local positional embeddings can indeed improve general-
ization of different resolutions. ResFormer-S-MR further
boosts the accuracy to 82.72%, demonstrating the benefit
of multi-resolution training. Besides, ResFormer consis-
tently generalize well to lower resolutions. Compared with
DeiT, ResFormer-S-MR and ResFormer-B-MR increase by
56.24% and 48.00% when evaluated on a resolution of 80,

Table 3. Results and comparisons of different backbones on the
mini-val set of COCO2017 using Mask R-CNN [23] and 3× train-
ing schedule. All backbones are pre-trained on ImageNet-1k in the
supervised setting. Part of results are credited to [1, 8].

Backbone #Param APb APb
50 APb

75 APm APm
50 APm

75

PVT-Small [63] 44.1M 43.0 65.3 46.9 39.9 62.5 42.8
XCiT-S12/16 [1] 44.3M 45.3 67.0 49.5 40.8 64.0 43.8
ViT-S [36] 43.8M 44.0 66.9 47.8 39.9 63.4 42.2
ViTDet-S [35] 45.7M 44.5 66.9 48.4 40.1 63.6 42.5
ResFormer-S-MR 45.6M 46.4 68.5 50.4 40.7 64.7 43.4

PVT-Large [63] 81.0M 44.5 66.0 48.3 40.7 63.4 43.7
XCiT-M24/16 [1] 101.1M 46.7 68.2 51.1 42.0 65.6 44.9
ViT-B [36] 113.6M 45.8 68.2 50.1 41.3 65.1 44.4
ViTDet-B [35] 121.3M 46.3 68.6 50.5 41.6 65.3 44.5
ResFormer-B-MR 115.3M 47.6 69.0 52.0 41.9 65.9 44.4

highlighting the effectiveness of ResFormer when dealing
with significant resolution shifts during inference.

Semantic segmentation. To show flexibility of ResFormer,
We evaluate for semantic segmentation on ADE20K [80]
with UperNet [69]. As shown in Tab. 2, ResFormer-S-
224 improves DeiT-S by 2.51 measured by mIoU. Both
ResFormer-S-MR and ResFormer-B-MR, which are pre-
trained with the multi-resolution strategy, achieve better re-
sults. In particular, ResFormer-S-MR reaches up to 47.45
and ResFormer-B-MR hits the peak of 49.28 mIoU. This
suggests that ResFormer effectively models multi-scale and
high-resolution features for pixel-level dense predictions.
Note that ResFormer-B-MR and ResFormer-S-MR are di-
rectly used as pre-trained backbones and we do not perform
multi-resolution fine-tuning on ADE20K, since segmenta-
tion tasks already require images with a size of 512 × 512
as inputs, and multi-resolution training would be computa-
tionally expensive. Nonetheless, results in Tab. 2 demon-



Table 4. Top-1 Accuracy of TimeSformer on Kinetics-400. MR
stands for multi-resolution training.

Model Testing resolution
96 128 160 224 288

TimeSFormer [3] 26.28 61.94 70.60 75.54 75.45
ResFormer-B-224 58.61 68.50 73.09 76.32 76.78
ResFormer-B-160 67.28 71.64 74.56 75.98 75.18
ResFormer-B-128 64.66 72.32 74.13 74.19 72.51
ResFormer-B-MR 70.56 74.33 76.38 77.32 77.56

strate the great potential of transferring models that are pre-
trained with multiple resolutions for dense prediction tasks.

Object detection. We further explore performance of Res-
Former on COCO2017 [39] for object detection and in-
stance segmentation, following the designs of ViTDet [35]
by appending simple feature pyramids on the feature maps
of last-layer outputs and using both non-shifted window at-
tention and global self-attention blocks. In addition, To
adapt from ResFormer pre-trained on ImageNet-1K, we
also adopt global positional embedding and inject local po-
sitional embeddings into all attention blocks. According
to results reported in Tab. 3, ResFormer achieves promis-
ing results, e.g. ResFormer-S-MR outperforms ViTDet-S by
2.0 box AP and 0.6 mask AP and ResFormer-B-MR sur-
passes ViTDet-B by 1.3 box AP and 0.3 mask AP. We be-
lieve that the improved resolution scalability of ResFormer
contributes to better performance on object detection.

Video action recognition. We also evaluate ResFormer for
video action recognition on Kinetics400. For an easy adap-
tion from our pre-trained image models to the video do-
main, we choose the TimeSFormer [3] framework with a
divided spatial and temporal attention design. In particu-
lar, we initialize the backbone with weights of model pre-
trained on ImageNet-1K and conduct multi-resolution train-
ing on Kinetics400 with clip sizes set to 8 × 224 × 224,
8 × 160 × 160 and 8 × 128 × 128 respectively. As Tab. 4
demonstrates, ResFormer-B fine-tuned with single resolu-
tion outweighs vanilla TimeSFormer by 0.78% on a test-
ing resolution of 224 and generalizes better to clips of both
higher and lower resolutions. On top of that, by implement-
ing multi-resolution training on video samples, ResFormer
improves performance on each training resolution by a large
margin, e.g., the Top-1 accuracy on testing resolution of 160
grows from 73.09% to 76.08%.

5.2. Discussion

Training resolutions. We experiment with 3 different set-
tings using a small model, i.e., (128, 160, 224), (160, 224,
288) and (128, 224, 384), which we denoted as (a), (b) and
(c) respectively. The results are summarized in Fig. 4. We
see that ResFormer achieves outstanding performance on a
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Figure 4. Top-1 Accuracy of ResFormer-S-MR with different
training resolutions on ImageNet-1K.
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Figure 5. Results of different positional embedding strategies on a
broader range of resolutions.

wide range of resolutions. More specifically, compared with
(a), (b) adopts higher training resolutions, consequently re-
flecting on performance rise in high-resolution inputs and
incurring a drop on low resolution. Regarding differences
between setting of (b) and (c), the spectrum of training res-
olutions expands in both directions. Despite the wide range
between 128 and 384, we witness a all-around improvement
of (c) over (b), highlighting that ResFormer is able to deal
with significant resolution variations.

Positional embedding. We evaluate the performance of
ResFormer with different positional embedding strategies
using a small model. In particular, we compare with
(1) APE, which stands for vanilla absolute positional em-
bedding in DeiT [57]. In practice, we set the spatial di-
mension of APE according to the highest training resolution
and downsample it for lower resolutions. For inference, the
position embedding can be re-scaled to any test resolution
with bicubic interpolation; (2) APE* which uses an indi-
vidual APE for each training resolution; (3) RPB, which is
introduced in [41] and we use the RPB of highest resolu-
tion for interpolation during inference; (4) CPB, which is
a resolution-agnostic strategy [40] and images of arbitrary
scales can be input into ViTs with CPB directly; (5) GPE,
which is our global positional embedding; (6) GPE†, which
represents the plain sine-cosine absolute positional embed-
ding without convolutional enhancement; (7) LPE, which



Table 5. Results of ResFormer-S-MR with different positional em-
bedding (PE) strategies on ImageNet-1K. The performance gain
compared to single-resolution training is indicated in the bracket.

PE Testing resolution
128 160 224

APE 77.36 (↑3.99) 79.74 (↑2.46) 81.27 (↑1.44)

APE* 77.31 (↑3.93) 79.58 (↑2.21) 81.42 (↑1.59)

RPB 77.90 (↑2.74) 79.92 (↑2.04) 81.84 (↑1.27)

CPB 77.64 (↑1.33) 79.77 (↑1.77) 81.74 (↑1.13)

GPE† 77.73 (↑2.73) 79.83 (↑2.27) 81.47 (↑1.29)

GPE 77.57 (↑2.76) 79.63 (↑2.05) 81.42 (↑1.40)

LPE 78.02 (↑2.62) 80.29 (↑2.29) 81.90 (↑1.28)

GLPE 78.24 (↑2.77) 80.39 (↑2.33) 82.16 (↑1.33)

is our local positional embedding; (8) GLPE, which is the
combination our GPE and LPE.

Tab. 5 shows the results of different positional embed-
dings on training resolutions. We see that interpolating APE
makes no differences compared with maintaining multiple
APEs (i.e., APE*), which suggests that ViTs can be trained
to deal with different scales of inputs with shared spatial
information. Furthermore, all positional embeddings cou-
pled with multi-resolution training demonstrate better re-
sults compared to their counterparts trained with single res-
olutions, i.e., steady gains are made by all positional embed-
dings when testing on 128, 160 and 224, (gains are shown in
the bracket in Tab. 5). Fig. 5 further presents the results of
generalizing to more resolutions. Clear performance drops
can also be observed in Fig. 5 when APE, RPB and CPB
are scaled up to unseen large resolutions, especially RPB. In
contrast, LPE and GPE decreases slowly towards extremely
large resolutions. GLPE, the combination of LPE and GPE,
offers the best results.

Knowledge distillation. To strengthen the interaction be-
tween different resolutions, we use a smooth-L1 loss to dis-
till information from class tokens. We also experiment with
a L2 loss (i.e., Mean squared error). Further, as inputs of
different resolutions output features with different scales,
we additionally follow the practice in DeiT [57] by distilling
logits with a Kullback-Leibler divergence loss. The exper-
iments are conducted on ResFormer-S-MR for 100 epochs
for efficiency purposes. Tab. 6 shows the ablation results.
We observe the efficacy of distilling with class tokens com-
pared to logits. In addition, the smooth L1 loss have similar
performance with L2 loss with slightly better results on high
resolutions (i.e., 224).

Training strategies. We also explore a widely-used multi-
resolution training strategy [23,25] without cross-scale con-
sistency loss, where one iteration consists of randomly sam-
pled images of one certain resolution. In particular, we
feed samples of different scales (i.e., 128, 160, 224) iter-

Table 6. Results of ResFormer-S-MR with different distillation
strategies on ImageNet-1K for 100ep. Performance gains over re-
sult of training without distillation are shown in the bracket.

Distillation Testing resolution
Target Loss 128 160 224

logit KL 73.50 (↔0.0) 76.45 (↑0.07) 78.82 (↑0.26)

cls L2 74.71 (↑1.21) 77.27 (↑0.89) 79.33 (↑0.77)

cls smooth L1 74.71 (↑1.21) 77.39 (↑1.01) 79.68 (↑1.12)

Table 7. Results of ResFormer-S-MR with different training
strategies on ImageNet-1K. We append performance gain/drop
compared with single-resolution training in the bracket.

Training Testing resolution
Strategy 128 160 224

MR (iter) 75.70 (↑0.23) 78.31 (↑0.25) 80.32 (↓0.51)

MR (epoch) 75.18 (↓0.29) 78.05 (↓0.01) 80.26 (↑0.16)

MR w/o KD 77.72 (↑2.25) 79.66 (↑1.60) 81.77 (↑0.94)

MR 78.24 (↑2.77) 80.39 (↑2.33) 82.16 (↑1.33)

atively based on two settings: (1) iteration-based, where
each mini-batch uses one resolution and resolutions vary for
different training iterations; (2) epoch-based, where a fixed
resolution is used for each epoch and the change of resolu-
tions only occur at the epoch-level. As Tab. 7 shows, both
iteration-based and epoch-based multi-resolution training
generate worse results compared to single resolution train-
ing. In contrast, our strategy demonstrates strong advan-
tages on all training resolutions by clear margins, even with-
out the scale-consistency loss, highlighting the importance
of enforcing consistencies of all resolutions in a mini-batch.

Qualitative visualizations. We visualize two positional
embeddings on resolutions of 128, 160, 224 and 384, re-
spectively. As shown in Fig. 6, compared with APEs shifted
by interpolation, our GPEs that are generated with convolu-
tions demonstrate a smoother variations among input scales.
In addition, Fig. 5 suggests that GPE generalizes better to
higher resolutions unseen in training.

<latexit sha1_base64="OUYIfE3h3cAb1ZUY2puBeN5B4OI="></latexit>

(a)

<latexit sha1_base64="0QHfWfdQHyWzuFaC57VqMT+LMhY="></latexit>

(b)

<latexit sha1_base64="znMHFTjMxVByQdQcpz3dH+vqGOo="></latexit>

128
<latexit sha1_base64="bXdkhSAERFtCsgb1wu0d+vYVGtM="></latexit>

160
<latexit sha1_base64="kACj0CycWd4a2H/njpMNF5tFBms="></latexit>

224
<latexit sha1_base64="5qTFuGk108CIE94daUGCfuAJMXc="></latexit>

384

Figure 6. Heatmaps of different PE averaged on each token. (a):
Absolute Positional Embeddings (APE), (b): Global Positional
Embeddings (GPE).



6. Conclusion
We introduced ResFormer, a ViT framework to encour-

age excellent all-round performance on a wide range of res-
olutions. In particular, ResFormer was motivated by train-
ing on sample of different scales and aided by a scale-
consistency loss. A global-local positional embedding strat-
egy was also introduced to facilitate better generalization
on unseen resolutions. Extensive experiments demonstrated
promising scalabilities of ResFormer in a broad range of
resolutions. We also observe that ResFormer can be readily
adapted to downstream tasks, e.g., semantic segmentation,
object detection and video action recognition.
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A. More Experiments
A.1. More about Resolution Scalability

Scalability of vanilla ViTs. As displayed in Fig. 7 and
Fig. 8, in order to provide more comprehensive insights into
resolution scalability, we further test tiny and base models
of DeiT [57] which are pre-trained on training resolutions
of 196,128, 224, 288 and 384, respectively. The evaluation
is conducted by generalizing models to different testing res-
olutions ranging from 80 to 576. We can observe that the
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Figure 7. Top-1 accuracy of DeiT-T trained with 5 different reso-
lutions and tested on resolutions varying from 80 to 576.
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Figure 8. Top-1 accuracy of DeiT-B trained with 5 different reso-
lutions and tested on resolutions varying from 80 to 576.



Table 8. Comparison of Top-1 accuracy between DeiT and Res-
Former on ImageNet-1K with high testing resolutions.

Model Testing resolution
512 640 800 1024

DeiT-S-224 72.63 63.86 49.31 31.45
ResFormer-S-MR (224) 82.00 80.72 78.12 72.49

DeiT-S-384 81.09 79.35 75.67 67.61
ResFormer-S-MR (384) 83.86 83.71 83.37 82.58

trends towards scaling up and scaling down testing resolu-
tions are consistent with ones on DeiT-S.
Extending the range of testing resolutions. To further ex-
plore the potential for ResFormer, we extend the range of
testing resolutions to 1024. As shown in Tab. 8, compared
with DeiT, ResFormer achieves much more decent perfor-
mance on fairly testing resolutions.

A.2. Evaluation on Robustness Datasets

We also evaluate our models on ImageNet-related ro-
bustness datasets, i.e., ImageNet-Rendition (IN-R) [26],
ImageNet-A (IN-A) [28], ImageNet-Sketch (IN-SK) [61],
ImageNet-C (IN-C) [27] and ImageNetv2 (IN-v2) [50]. As
reported in Tab. 9, we observe that ResFormer achieves
promising performance on robustness as well. For ex-
ample, ResFormer-S-224 is superior to DeiT-S on each
dataset while ResFormer-S-MR makes further improve-
ments. In particular, on IN-A, ResFormer-S-MR surpasses
ResFormer-S-224 by 7.88 % and DeiT-S by 10.07%. This
suggests that training with multi-scale inputs facilitates
ViTs to cope with hard as well as out-of-distribution inputs.

Table 9. Performance on ImageNet-based robustness benchmarks.
mCE [27] is employed for IN-C while Top-1 accuracy is used for
IN-R, IN-A and IN-SK.

Model IN-R↑ IN-A↑ IN-SK↑ IN-C↓ INv2↑

DeiT-S [57] 41.93 19.84 29.09 54.60 68.47
ResFormer-S-224 43.95 22.03 30.91 52.31 69.81
ResFormer-S-MR 45.08 29.91 31.47 51.03 71.68

DeiT-B [57] 44.66 28.15 31.96 48.52 70.91
ResFormer-B-MR 45.38 33.89 33.06 48.83 71.88

A.3. Training Efficiency

During the training of ResFormer, each input sample is
replicated by r times, and thus this increases the training
time. For efficiency, we reduce the total number of train-
ing epochs to 200, 150 and 100 respectively while keeping
other hyperparameters unchanged. As shown in Fig. 9, Res-
Former demonstrates competitive performance on training
efficiency. For instance, ResFormer-S-MR with 200-epoch

training surpasses the 300-epoch counterparts ResFormer-
S-224 and DeiT-S by 0.83% and 1.83% in Top-1 accuracy
despite that they share similar training time.

As depicted in Fig. 10, training with a single lower res-
olution (i.e., 160) significantly saves time. Nevertheless,
ResFormer-S-MR still has an edge on time-performance
trade-off, e.g., ResFormer-S-160 with 450-epoch training
is more time-consuming than ResFormer-S-MR with 200-
epoch training while the accuracy is 0.61% lower.

B. Implementation Details

B.1. Image Classification

Sine-Cosine positional embedding. We demonstrate the
explicit mapping function Fsine for sine-cosine positional
embedding p as follows. Firstly, image tokens are placed
in a 2D spatial dimension as ximg ∈ RNH×NW×D. We
denote the positional embedding for the token coordinated
at (m,n) as pm,n ∈ R1×D. Particularly, d-th dimension of
pm,n can be mapped with Fsine(m,n, d) as below,
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Figure 9. Trade-off between training time and Top-1 Accuracy on
ImageNet-1K with a testing resolution of 224. Same hardware and
software settings are adopted for all experiments, i.e., we utilize
8× V100-32GB GPUs and set the per-GPU batch size to 128.
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Figure 10. Trade-off between training time and Top-1 Accuracy
on ImageNet-1K with a testing resolution of 160. Same hardware
and software settings are adopted for all experiments.



Fsin(m,n, d) =

{
fsin(m, d,NH , D) if d < D/2

fsin(n, d,NW , D) otherwise
,

fsin(pos, d,N,D) =

{
sin( pos

N+ϵ/T
2d/D) if d%2 = 0

cos( pos
N+ϵ/T

2(d−1)/D) otherwise
,

where the temperature T and ϵ is set to 10000 and 1e−6

respectively, and a normalization is also used to ensure bet-
ter continuity among varying resolutions. For simplicity,
NH

i , NW
i , D are omitted from function parameters.

Detailed hyperparameters. For experiments of image
classification on ImageNet-1K, we set the hyperparame-
ters for training ResFormer-T, ResFormer-S, ResFormer-B
froom scratch and fine-tuning on DeiT according to Tab. 11.

Augmentation strategy. Motivated by unsupervised learn-
ing, we apply separate random augmentation on different
scales of inputs. In particular, to ensure the consistency of
class tokens between different scales, as an exception, we
apply MixUp [76] and CutMix [74] across different scales
with same variables. As shown in Tab. 10, separate aug-
mentation slightly outperform its counterpart, especially on
the lowest testing resolution.

Table 10. Ablation study of augmentation strategies.

Model Sep Testing resolution
Aug 128 160 224

ResFormer-S-MR 77.50 80.14 81.93
ResFormer-S-MR ✓ 78.24 80.39 82.16

B.2. Semantic Segmentation

We follow the common practice on ADE20K [80]
by training on 512 × 512 inputs for 80k iterations for
ResFormer-S and for 160k iterations for ResFormer-B, re-
spectively. In addition, we employ the AdamW optimizer
with a learning rate of 6e−5, a weight decay of 0.01 and a
batch-size of 16. We base our implementation on MMSeg-
mentation [45] and adopt the corresponding augmentations,
i.e., random resizing with the ratio range set to (0.5, 2.0),
random horizontal flipping with probability of 0.5 and ran-
dom photometric distortion. Despite that ResFormer em-
ploys a columnar structure, we simply extract features from
different layers (i.e. the 2nd, 5th, 8th and 11th layers) as
inputs of UperNet [69] without FPN-like necks. We report
results in two different testing settings. For the first one, in-
puts are scaled to having a shorter side of 512. In addition,
we apply flipping on inputs of multiple scales that are varied
in (0.5, 0.75, 1.0, 1.25, 1.5 1.75) × of training resolutions.

Table 11. Hyperparameters for training on ImageNet-1K.

Hyperparameters Tiny / Base Fine-
Small tune

Epochs 300 200 30
Base learning rate 5e-4 8e-4 5e-5
Warmup epochs 5 20 5
Stoch. depth 0.1 0.2 0.1
Gradient clipping ✗ 5.0 ✗

Batch size 1024
Weight decay 0.05
Optimizer AdamW
Learning rate schedule Cosine

Repeated augmentation ✓
Random erasing 0.25
Random augmentation 9/0.5
Mixup 0.8
Cutmix 1.0
Color jitter 0.4

B.3. Object Detection

To further validate the efficacy of ResFormer on
dense prediction tasks, we evaluate ResFormer on COCO
2017 [39] for object detection and instance segmentation.
In particular, we adopt Mask R-CNN [23] as our framework
based on MMDetection [6] and train with the 3× schedule.
Furthermore, we utilize AdamW optimizer with a learning
rate of 1e−4, weight decay of 0.05 and a batch size of 16.
It is worth noting that we follow the common multi-scale
training for object detection instead of fine-tuning with the
multi-resolution strategy. Therefore, training samples are
resized randomly so that the shorter sizes vary from 480 to
800 with step of 32 and the longer sides are within 1333.

B.4. Video Action Recognition

Similar to the implementation for images, we train Res-
Former on videos by replicating video clips to get multi-
scale copies. Specifically, given a certain sampling rate s of
1/32, a clip X of F = 8 frames is sampled and replicated
into r copies. Different cropping sizes are applied on each
sequence of frames. Consequently the i-th training copy Xi

is sized in RF×Hi×Wi , i ∈ {1, · · · , r}. We also keep the
augmentation strategy used for images by applying separate
random augmentations [3] on each clip.

We follow the divided attention design adopted in
TimeSFormer [3], in which attention computation is con-
ducted along spatial dimension and temporal dimension
separately. In order to align with image models, we only in-
corporate global and local positional embeddings into into
spatial dimensions. For training on Kinetics-400 [30], we



adopt the same strategy with TimeSFormer [3]. In partic-
ular, the training epoch is set to 15 and the initial learning
rate is set to 5e−3. In addition, we employ a SGD optimizer
and a multi-step scheduler which divides the learning rate
by 10 times at the 11th and the 14th epoch respectively.

In particular, we observe that ResFormer achieves bet-
ter performance on videos with L2 scale consistency loss.
In order to improve performance by ensuring coherence in
pre-training and fine-tuning. We adapt ResFormer-B-MR
for L2 loss for an extended fine-tuning of 100 epochs which
matches the common 300-epoch pre-training. For fair com-
parison, we initiate all ResFormers in Kinetics-400 down-
stream tasks with same pre-trained weights.


