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Abstract

An important goal of self-supervised learning is to enable model pre-training
to benefit from almost unlimited data. However, one method that has recently
become popular, namely masked image modeling (MIM), is suspected to be unable
to benefit from larger data. In this work, we break this misconception through
extensive experiments, with data scales ranging from 10% of ImageNet-1K to
full ImageNet-22K, model sizes ranging from 49 million to 1 billion, and training
lengths ranging from 125K iterations to 500K iterations. Our study reveals that: (i)
Masked image modeling is also demanding on larger data. We observed that very
large models got over-fitted with relatively small data; (ii) The length of training
matters. Large models trained with masked image modeling can benefit from more
data with longer training; (iii) The validation loss in pre-training is a good indicator
to measure how well the model performs for fine-tuning on multiple tasks. This
observation allows us to pre-evaluate pre-trained models in advance without having
to make costly trial-and-error assessments of downstream tasks. We hope that our
findings will advance the understanding of masked image modeling in terms of
scaling ability.

1 Introduction

In natural language processing, scaling model capacity and data size has been an important driving
force for the remarkable improvements of language models over the past few years [17, 26, 27, 23, 2,
13, 24]. Behind the success is a self-supervised pre-training approach, masked language modeling
(MLM) [9], that can take advantage of and benefit from almost unlimited data. As the same time,
the relevant research in the field of computer vision has also been intensifying. However, due to the
lack of effective self-supervision methods, most previous works are based on image classification
tasks [29, 18, 38, 7], where the huge labeling cost and low information contained in the labels limit
broader exploration of scaling visual models, or the models being scaled up further, thus leaving
progress in computer vision largely behind the NLP field.

Recently, a self-supervision visual pre-training method named masked image modeling (MIM) [1,
15, 36] has become popular due to its impressive fine-tuning performance on a variety of downstream
computer vision tasks. Given its high analogy with MLM [9], the dominant pre-training approach
in NLP, we expect masked image modeling to advance the scaling performance of visual models.
Specifically, we are concerned with two aspects of scaling ability: model scaling and data scaling.
While the masked image modeling approach is shown to be good at scaling up model capacity [15, 20],
like NLP models, its ability to benefit from larger data is unclear or even a bit negative. For example,
[11, 30] show that using a small amount of training data in masked image modeling can achieve
comparable performance than that using larger data. The data scaling capability is critical, as an
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Figure 1: The curves of training loss, validation loss of pre-training, and fine-tuning accuracy on
ImageNet-1K of different model sizes, data sizes and training lengths, w.r.t. the relative training cost.
We set the training cost of SwinV2-S for 125K iterations as the value of 1. Bigger circles indicate
larger models. Best viewed in color.

important hallmark of self-supervised learning is the ability to leverage almost unlimited data, and
failure to benefit from larger data may hinder the future potential of the masked image modeling.

In this paper, we systematically investigate the data scaling capability of masked image modeling at
different model sizes and training lengths. We use Swin Transformer V2 [20] as the visual encoder
because of its proven trainability for large models and its applicability to a wide range of vision tasks,
and adopt SimMIM [36] for masked image modeling pre-training because it has no restrictions on
the encoder architectures. With extensive experiments, we find that:

(i) Masked image modeling is demanding for large data. We observed large models overfited with
relatively small data, as reflected by the increased validation losses with longer training when a large
model while relatively small data is used (see Figure 1 center). The overfitting issue will result in
degraded fine-tuning performance, as shown in Figure 1 right.

(ii) Training length matters. Large models trained with masked image modeling can benefit from more
data at a longer training length. When the training length is short, the difference in performance
between using large and small datasets is not significant. However, with sufficient training, more data
shows better performance. In addition, as the data size increases, the fine-tuning performance of large
models saturates more slowly than that of small models.

(iii) The validation loss is a good proxy indicator for fine-tuning performance. We observe a strong
correlation between validation loss and fine-tuning performance on multiple tasks. This finding
suggests that the validation loss can be used as a good indicator of how well the model is trained,
which can reduce the overhead of evaluation by direct fine-tuning on downstream tasks.

These findings suggest that masked image modeling (MIM) is not only a model scalable learner, but
also a data scalable learner. Particularly, our revealing of data scaling capability of masked image
modeling breaks the misconception of previous studies that suspected masked image modeling could
not benefit from more data. We hope these findings will deepen the understanding of masked image
modeling.

2 Background and Experimental Setup

2.1 Masked Image Modeling

Masked image modeling is used to train the vision model by taking a corrupted image as input and
predicting the content of the masked region as the target. In this study, we use SimMIM [36] as the
default masked image modeling approach because of its simplicity and lack of restrictions on the
architecture of the vision encoder. SimMIM consists of a visual encoder and an extremely lightweight
prediction head of a linear layer for predicting the raw pixels of the corrupted images via `2 regression
loss. To facilitate the implementation of the vision transformer, SimMIM adopts the patch-wise mask
strategy with the masked patch size of 32× 32 and mask ratio of 0.6. To further alleviate the local
dependency of raw pixels, we improved the SimMIM by normalizing the predicted target according
to [12] with a sliding window of 472. As the result, a slight performance improvement is observed.
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Model Base Depth Head Window Size Backbone
Channel pre-train fine-tune Params

SwinV2-S 96 {2, 2, 18, 2} {3, 6, 12, 24} 12 14 49M
SwinV2-B 128 {2, 2, 18, 2} {4, 8, 16, 32} 12 14 87M
SwinV2-L 192 {2, 2, 18, 2} {6, 12, 24, 48} 12 14 195M
SwinV2-H 352 {2, 2, 18, 2} {11, 22, 44, 88} 12 14 655M
SwinV2-g 448 {2, 2, 18, 2} {14, 28, 56, 112} 12 14 1061M

Table 1: Detailed architecture specifications. SwinV2-g (giant) is a new variant to those in [20], with
number of parameters between SwinV2-L and the 3-billion-parameter SwinV2-G (Giant).

IN1K (10%) IN1K (20%) IN1K (50%) IN100 IN1K (100%) IN22K (100%)
# Classes 1× 103 1× 103 1× 103 1× 102 1× 103 2.18× 104

# Images 1.28× 105 2.56× 105 6.41× 105 1.27× 105 1.28× 106 1.42× 107

Table 2: Detailed dataset specifications used in the pre-training of masked image modeling.

2.2 Architecture Specifications

We use Swin Transformer V2 [20] as the vision encoder in this study. Thanks to its generality
and scalability, we evaluate a series of SwinV2 models with a wide range of model sizes (the
number of parameters ranges from ∼50M to ∼1B, and FLOPs range from ∼9G to ∼190G) on
multiple downstream tasks. The detailed model specifications are shown in Table 1. We use a new
variant SwinV2-g (giant), with number of parameters between SwinV2-L and the 3-billion-parameter
SwinV2-G (Giant) used in [20].

2.3 Pre-training Datasets

To study the effect of data size on masked image modeling, we build datasets with different sizes. We
use the training set of ImageNet-1K and ImageNet-22K as two large-scale datasets, and randomly
sample 10%, 20%, 50% of images in the ImageNet-1K training set as smaller datasets. By default,
the images are uniformly sampled from each category. We also consider the sampling strategies
could perform differently. To this end, we randomly sample 100 classes from ImageNet-1K as
ImageNet-100, and compare it with ImageNet-1K (10%) but find their training loss and fine-tuning
performance are almost the same. The details and statistics of all pre-training datasets used in our
study are shown in Table 2.

2.4 Pre-training Details

To better compare the performance of models with different amounts of data under the same pre-
training length, we use training iterations rather than training epochs and adopt the same hyper-
parameters for all models with different sizes during pre-training. The total number of training
iterations is in {125K, 250K, 500K} and the batch size is set as 2048 for all experiments. In
pre-training stage, we use the same hyper-parameters for all models, and the training details and
hyper-parameters of pre-training are summarized in Table 10. Because of the excessive amount of
experiments, we follow SimMIM [36] and also use the following two techniques for reducing the
experimental overheads: First, we use the step learning rate scheduler in pre-training for sharing the
first training step among experiments with different training lengths. The first 7/8 training iterations
are the first step and the last 1/8 training iterations are the second step with the learning rate ratio
of 0.1 (i.e. learning rate is divided by 10 in the second step). Second, we adopt the input image
size of 1922 and set the window size of 12. We improve the SimMIM by normalizing the predicted
target according to [12] with a sliding window of 472 and observe an improvement of 0.3 on top-1
accuracy of ImageNet-1K for the SwinV2-Large model. The same light data augmentation strategy
as SimMIM is used: random resize cropping with a scale range of [0.67, 1], an aspect ratio range of
[3/4, 4/3] and a random flipping with probability 0.5.
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2.5 Fine-tuning Tasks

To extensively and accurately evaluate the performance of pre-trained models under different pre-
training schedulers and datasets, a series of diverse and representative tasks including fine-tuning
on ImageNet-1K, fine-grained image classification, object detection, instance segmentation, and
semantic segmentation are selected for evaluation.

ImageNet-1K We follow [1] to evaluate the quality of learnt representations by fine-tuning the
pre-trained models on ImageNet-1K [8] image classification task, which is the most commonly used
scenario and evaluation criterion for pre-trained models [15, 36]. The setting details and fine-tuning
hyper-parameters for ImageNet-1K image classification are summarized in Table 11. Different from
pre-training, We adopt the image size with 2242 with window size of 14 in fine-tuning. The AdamW
with batch size of 2048, base learning rate of 5e-3, weight decay of 0.05, β1 of 0.9 and β2 of 0.999
are used, and we adopt cosine learning rate scheduler. As larger models are more prone to overfitting,
we fine-tune SwinV2-S/B/L for 100 epochs with 20 warm-up epochs and SwinV2-H/g for 50 epochs
with 10 warm-up epochs, and decrease the layer decay as the model size increases. In addition,
gradient clipping, stochastic depth, label smoothing and data augmentations (e.g. random crop, rand
erasing [40], rand augment [6], mixup [39], cutmix [37], etc.) are also used by following [36].

iNaturalist-18 iNaturalist [32] 2018 is a long-tailed fine-grained image classification dataset. The
details and fine-tuning hyper-parameters for iNaturalist 2018 are summarized in Table 12. As fine-
tuning in ImageNet-1K, we also use the input image size of 2242, window size of 14 and patch size
of 4 in iNaturalist 2018. We fine-tune all models for 100 epochs with 20 warm-up epochs, and set
layer decay to 0.8, 0.75 and 0.7 for SwinV2-S/B/L, respectively. The AdamW optimizer with cosine
learning rate scheduler, batch size of 2048, base learning rate of 1.6e-2, weight decay of 0.1, β1 of
0.9 and β2 of 0.999 are used. In addition, we also adopt stochastic depth, label smoothing, gradient
clipping and data augmentations in fine-tuning.

COCO Object Detection and Instance Segmentation [19] The details and fine-tuning hyper-
parameters for COCO dataset are summarized in Table 13. We use Mask R-CNN [16]2 for evaluation.
We set the window size to 14 and patch size to 4. The AdamW optimizer with batch size of 32, base
learning rate of 8e-5, weight decay of 0.05, β1 of 0.9, β2 of 0.999 and a step learning rate scheduler
(step learning rate ratio of 0.1, step epochs are 27 and 33) are used. In training, the random cropping
with crop size of [1024, 1024], large scale jittering with a range of [0.1, 2.0], random horizontal flip
with probability 0.5, and stochastic depth regularization are used. In testing, all images are resized to
(800, 1333) and keeping the aspect ratio unchanged.

ADE20K Semantic Segmentation [41] The details and fine-tuning hyper-parameters for ADE20K
dataset are summarized in Table 14. Following [21], we use UPerNet [35] for evaluation. We set
the window size to 20 and the patch size to 4. The AdamW optimizer with with batch size of 32,
base learning rate searched in a range of [1e-4, 3e-4], weight decay of 0.05, β1 of 0.9, β2 of 0.999
and a linear learning rate scheduler with a total of 80K iterations are used. Also, we use the layer
decay of 0.95, 0.95, 0.9 for SwinV2-S/B/L, respectively. In training, the random cropping with crop
size of [640, 640], scale jittering with a range of [0.5, 2.0], random horizontal flip with probability
0.5, random photometric distortion and stochastic depth regularization of 0.1 are used. In testing, all
images are evaluated by sliding window manner, and use the test image size of (2560, 640) and set
sliding window stride to 426, following [21, 36].

3 Results and Findings

3.1 Training Length, Data Size and Model Size

We train numerous models with different training lengths, data sizes, and model sizes, and study how
these factors affect the performance of masked image modeling. Figure 1 and Figure 2 illustrate the
relationship between the training loss, and the validation loss of pre-training3, and the fine-tuning

2Our implementation based on MMDetection [3].
3The validation loss of pre-training is measured on the validation set of ImageNet-1K for all experiments.
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Figure 2: Relationship among training loss, validation loss of pre-training, and fine-tuning per-
formance of ImageNet-1K measured by top-1 accuracy, w.r.t. the training length. Best viewed in
color.

Figure 3: The curves of performances on COCO object detection (a), COCO instance segmentation
(b), iNaturalist-18 (c), and ADE20K semantic segmentation (d) w.r.t. the relative training cost. Note
that the training cost indicates the pre-training cost. We set the training cost of SwinV2-S for 125K
iterations as 1. Bigger circles indicate larger models. Best viewed in color.

top-1 accuracy of ImageNet-1K. Based on these extensive experiments, we make the following
observations:

Masked image modeling remains demanding for large dataset. When with the high masking
rate (e.g., 60% in our work), the masked image modeling is considered a very challenging training
objective and has been found to be data efficient by previous literature [11, 22], i.e., a comparable
performance can be achieved with small datasets as with large datasets. However, Figure 1 shows that
as the training cost increases, the training loss of some models drops significantly, and their validation
loss rises significantly, even on using 50% images of ImageNet-1K (i.e., IN1K (50%)), indicating the
overfitting phenomenon exists. And significant decrease to the fine-tuning performance caused by
overfitting could be observed in Figure 2. Moreover, we measure the best fine-tuning performance
of each model trained by different training schedulers in Table 3. We find the large models perform
even worse than smaller models when small dataset is used for training. For example, the best top-1
accuracy of SwinV2-H with IN1K (20%) is 84.4, worse than the best performance of SwinV2-L by
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Model IN1K (10%) IN1K (20%) IN1K (50%) IN1K (100%) IN22K (100%)
SwinV2-S 83.2 83.7 84.0 84.1 -
SwinV2-B 83.6 84.6 85.0 85.0 85.1
SwinV2-L 83.7 84.7 85.8 85.9 85.8
SwinV2-H - 84.4 85.7 86.3 86.3
SwinV2-g - - 85.8 86.5 86.5

Table 3: The best fine-tuning performance (top-1 accuracy) of each model with different scales of
data on ImageNet-1K image classification.

Model Iter IN1K (10%) IN1K (20%) IN1K (50%) IN1K (100%) IN22K (100%)

SwinV2-S
125K 75.2 75.9 75.3 75.6 -
250K 76.0 76.6 76.6 77.0 -
500K 76.3 77.3 77.3 77.8 -

SwinV2-B
125K 76.4 76.9 77.2 77.4 77.2
250K 77.1 78.3 78.5 78.6 78.9
500K 77.1 79.0 79.4 79.6 79.7

SwinV2-L
125K 77.3 78.6 79.0 79.4 79.1
250K 77.6 79.5 80.7 81.0 80.8
500K 77.2 79.3 81.6 81.8 81.9

Table 4: Results of top-1 accuracy on iNaturalist-18 fine-grained image classification.

0.3. In addition, by comparing the best performance that can be obtained using different sizes of
dataset, we find that using more data results in better performance. These observations suggest that
masked image modeling does not alleviate the demands of large dataset.

The training length matters. Larger models can benefit from more data at a longer training
length. By comparing the performance of models pre-trained by different data sizes (3rd row of
Figure 2), we find that the fine-tuning performance of the large models saturates more slowly with the
increasing data size compared to the smaller models. For example, the SwinV2-S model pre-trained
on IN1K (50%) has a very similar fine-tuning performance to the model pre-trained on IN1K (100%).
In comparison, the performance difference between the SwinV2-H model pre-trained on IN1K (50%)
and IN1K (100%) is near 0.5, which is a significant gap for ImageNet-1K classification.

Furthermore, a comprehensive observation reveals that the improvements from using more data are
not significant under short training lengths. For example, while there is a noticeable performance gap
between SwinV2-H trained on IN1K (50%) and IN1K (100%) at a training length of 500K iterations,
the gap is less than 0.1 at a training length of 125K iterations. This observation suggests that while
larger models can benefit from more data, the training length must also increase at the same time.

Evaluation on more tasks. In addition to ImageNet-1K image classification, we also evaluate
the MIM pre-trained SwinV2-S, SwinV2-B and SwinV2-L on iNaturalist-18 fine-grained image
classification, ADE20K semantic segmentation, and COCO object detection/segmentation. Figure 3
shows a similar pattern with ImageNet-1K (Figure 1 (right)) that as the training cost increases, some

Model Iter IN1K (10%) IN1K (20%) IN1K (50%) IN1K (100%) IN22K (100%)

SwinV2-S
125K 43.4 44.9 45.3 44.2 -
250K 43.5 46.7 46.6 45.8 -
500K 43.5 47.2 47.2 48.3 -

SwinV2-B
125K 44.2 45.4 46.1 46.0 46.8
250K 43.3 46.0 48.5 47.7 47.3
500K 42.1 46.9 49.0 49.3 48.2

SwinV2-L
125K 43.4 46.4 48.0 48.0 47.4
250K 43.1 47.3 49.6 50.2 50.0
500K 41.9 45.6 50.3 51.1 51.2

Table 5: Results (mIoU) on validation set of ADE20K semantic segmentation.
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Model Iter IN1K (10%) IN1K (20%) IN1K (50%) IN1K (100%) IN22K (100%)
APbox APmask APbox APmask APbox APmask APbox APmask APbox APmask

SwinV2-S
125K 49.1 43.5 49.6 43.8 50.0 44.3 50.1 44.2 - -
250K 49.4 43.8 50.6 44.8 50.7 44.7 50.9 45.0 - -
500K 49.6 43.8 50.9 44.8 51.8 45.7 51.7 45.6 - -

SwinV2-B
125K 50.2 44.3 50.9 45.1 51.2 45.3 51.4 45.4 51.4 45.5
250K 50.3 44.5 51.7 45.6 52.2 46.1 52.1 46.2 52.4 46.1
500K 49.6 43.7 51.7 45.7 52.8 46.7 52.9 46.7 52.7 46.5

SwinV2-L
125K 50.6 44.5 51.9 45.7 52.6 46.3 52.5 46.3 52.4 46.2
250K 49.7 43.7 52.2 45.9 53.3 47.1 53.3 47.0 53.4 47.1
500K 49.5 43.6 51.6 45.5 53.9 47.4 54.0 47.4 53.9 47.5

Table 6: Results of box/mask AP on the validation set of COCO object detection and instance
segmentation.

Figure 4: The correlations between pre-training losses (training and validation losses) and the fine-
tuning performances. (a) ImageNet-1K image classification; (b) iNat 2018 fine-grained classification;
(c) COCO object detection; (d) COCO instance segmentation; (e) ADE20K semantic segmentation.
Pre-training losses are highly correlated with fine-tuning performance on all tasks. Red circles are
the overfitting models and green circles are non-overfitting models. Best viewed in color.

models have significantly performance drop. In addition, as shown in Table 4, 5, and 6, the smaller
models rapidly reach saturation as the amount of data increases, while larger models can continuously
benefit from more data after sufficient training. These results suggest that the conclusions drawn on
ImageNet-1K are broadly applicable to other vision tasks.

3.2 Reconstruction Results of Overfitting and Non-overfitting Models

To better understand the difference between overfitting and non-overfitting models, we visualize
the reconstruction results of SwinV2-L that pre-trained on ImageNet1K (10%) and ImageNet1K
(100%). Figure 5(a) shows the reconstruction results on the training images from ImageNet1K (10%)
dataset, and Figure 5(b) shows the reconstruction results on the images from ImageNet-1K validation
set. Based on the reconstruction results on the training images, we observed the overfitting model
(i.e. SwinV2-L pre-trained on ImageNet1K (10%)) is more like "remembering" the masked regions,
while the non-overfitting model (i.e. SwinV2-L pre-trained on ImageNet1K (100%)) is more like
performing "reasoning" on the masked regions. For example, the results on the left of the first row in
Figure 5(a) show that the overfitting model even predicts the black hair of the dog, but the seen regions
only indicate that the dog is white. And the non-overfitting model only predicts the dog with the
white hair. Furthermore, we observe that the overfitting model seems to lack the "reasoning" ability
and has a poorer prediction quality on the images of the validation set compared to the non-overfitting
model. For example, the results on the left of the first row in Figure 5(b) show the overfitting model
even fails to predict the eyes of the dog.
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Figure 5: We visualize the reconstruction results of overfitting model (SwinV2-L pre-trained on
ImageNet-1K(10%)) and non-overfitting model (SwinV2-L pre-trained on ImageNet-1K(100%)).
(a) shows the reconstruction results on the training images from ImageNet-1K(10%) dataset, which
are jointly contained by the training set of two models. (b) shows the reconstruction results on the
validation images from ImageNet-1K validation set. Each group contains 4 images from left to
right are: the original image, the corrupted images, reconstructed image of overfitting model, and
reconstructed image of non-overfitting model.

3.3 Correlation between Pre-training Losses and the Fine-tuning Performance

Evaluating a pre-trained model by its fine-tuned performance on downstream tasks is costly. In
supervised pre-training, the validation accuracy is used as the proxy metric to evaluate the quality of
the pre-trained models. While in previous studies [5] on other self-supervised learning approaches
(e.g., contrastive learning), such a proxy metric is lacking. In this study, we would like to explore
whether the pre-training loss in the training of masked image modeling is a good indicator of its
fine-tuning performance. We collect all pre-trained models and plot their training and validation loss
curves on Figure 4. Interestingly, the correlations between pre-training losses and the fine-tuning
performance on multiple tasks could be observed with a phase transition around overfitting.

Specifically, the correlation between training loss and fine-tuning performance is negative for the
overfitting model (green circles) and positive for the non-overfitting model (red circles). The
correlation between validation loss and fine-tuning performance is always negative, but the slope of
their linear fit lines 4 is significantly different.

In addition, we further analyze the Pearson correlation coefficient between training loss and fine-
tuning performance (Table 7), and find the validation loss has stronger linear correlation with
fine-tuned performance than train loss for all cases, especially for non-overfitting models.

3.4 Effects of Different Sizes of Decoders

We have studied the effects of encoder size from the data scaling perspective. Here, the effects of
decoder size are further studied. We pre-train SwinV2-B models with decoder heads of different
sizes on IN1K (20%), and Table 8 shows the results. Interestingly, although we find that the heavier
decoder has lower training loss and higher validation loss than the linear decoder, indicating a more
severe overfitting issue. But there is no decrease in its fine-tuning performance on ImageNet-1K than
the linear decoder. This experiment shows that the decoder behaves very differently from the encoder,
and we speculate that this is because the decoder "blocks" the damage to the encoder from overfitting.

3.5 Impact of Different Dataset Sampling Strategies

We study different dataset sampling strategies by comparing the training behavior and fine-tuned
performance of models pre-trained on IN1K (10%) and IN100. In IN1K (10%), the images are

4The least squares method is used for linear fit.
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w/ train loss w/ val loss
overfit +0.26 -0.79

non-overfit -0.64 -0.90

(a) ImageNet-1K

w/ train loss w/ val loss
overfit +0.17 -0.54

non-overfit -0.46 -0.78

(b) iNaturalist 2018

w/ train loss w/ val loss
overfit +0.54 -0.81

non-overfit -0.35 -0.83

(c) COCO Object Detection

w/ train loss w/ val loss
overfit +0.62 -0.86

non-overfit -0.31 -0.85

(d) COCO Instance Segmentation

w/ train loss w/ val loss
overfit +0.75 -0.91

non-overfit -0.14 -0.90

(e) ADE-20K Semantic Segmentation

Table 7: Pearson correlation coefficients between pre-training losses (training and validation losses)
and fine-tuning performances on five downstream tasks.

Encoder Decoder # Params Training loss Validation loss Top-1 accuracy
SwinV2-B linear 90.0M 0.46 0.47 84.4
SwinV2-B 4-blocks 140.4M 0.44 0.48 84.4
SwinV2-B 8-blocks 190.8M 0.41 0.50 84.5

Table 8: Results of different decoders, including converged training and validation losses of MIM
pre-training, and fine-tuning performance (top-1 accuracy) on ImageNet-1K image classification.

uniformly sampled from each category, and we randomly sample 100 categories from ImageNet-1K
as IN100. Experiments are conducted on SwinV2-L with 500K training iterations. Table 9 shows the
training loss, validation loss and fine-tuning top-1 accuracy of ImageNet-1K. For the two models
pre-trained on IN1K (10%) and IN100, all three metrics are very similar. Figure 6 further illustrates
the training dynamics of the two models, and we find both their training loss curves and validation
loss curves are almost overlapping. These results show the disparity caused by different dataset
sampling strategies is minor.

4 Related Work

Masked Image Modeling Masked Image Modeling learns representations by reconstructing the
masked content of images, and its early exploration can be traced back to context encoder [25] and
denoising autoencoder [34]. Recently, iGPT [4], BEiT [1], MAE [15] and SimMIM [36] recall this
approach on training vision transformer. iGPT [4] sequentially predicted the pixels by auto-regressive
manner. BEiT [1] proposed to predict the discrete visual tokens. MAE [15] and SimMIM [36]
concurrently find predicting the raw pixels with a high masking ratio can work well. In this work,
we use SimMIM as the default masked image modeling approach, because of its simplicity and no
restrictions on the architecture of vision encoder like MAE.

Vision Transformer Transformer [33] was first applied to natural language processing and became
the dominant architecture, and has recently attracted a lot of attention in computer vision. The pio-
neering work ViT [10] first shows that the transformer architecture works well in image classification
when trained on large amounts of data. DeiT [31] proposed a better training recipe based on ViT and
demonstrated that vision Transformer has promising performance when only using ImageNet-1K
dataset. Swin Transformer [21] improves plain ViT by inducing the hierarchical architecture and
non-overlapping local attention and successfully demonstrates the effectiveness of vision transformer
on a wide range of vision tasks. Swin Transformer V2 [20] further addresses the training stability
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Figure 6: The training loss and validation loss of MIM pre-training with different dataset sampling
strategies, ImageNet-1K (10%) and ImageNet-100. Best viewed in color.

Dataset # Images # Classes Training loss Validation loss Top-1 Accuracy
IN1K (10%) 1.28× 105 1000 0.351 0.515 83.5

IN100 1.27× 105 100 0.352 0.511 83.4

Table 9: Results on different dataset sampling strategies (ImageNet-1K (10%) and ImageNet-100),
include converged training and validation losses of MIM pre-training, and fine-tuning performance
(top-1 accuracy) on ImageNet-1K image classification.

issue of [21] in model scaling and illustrates better performance than the original Swin Transformer,
and thus we use it as the default vision encoder in this work.

Scaling Vision Models Many works [29, 28, 38, 20] examine how to scale vision models, but
most are more concerned with exploring the perspective of model architecture designs. For example,
EfficientNet [29] extensively studied how model width, model depth and input resolution affect the
convolutional neural networks; [28] proposed to scale vision model with sparse mixture-of-expert;
[38] and [20] studied how to scale ViT and Swin Transformer, respectively.

Only a few works explored the perspective of data scaling under the pre-training fine-tuning paradigm.
BiT [18] revisited the supervised pre-training on a wide range of data scales up to 1M images.
SEER [14] studied the effectiveness of data scaling in the contrastive learning framework with up to
one billion images. Recently, SplitMask [11] find that masked image modeling is robust to the size of
pre-training data and challenges the data scaling capability of masked image modeling, which is most
relevant to our work.

5 Conclusion

In our work, we systematically study the data scaling capability of masked image modeling at
different model sizes and training lengths. Based on the extensive experiments, we demonstrate
that masked image modeling is not only a model scalable learner but also a data scalable learner,
which challenges the conclusion of previous literature that a large dataset may not be necessary in
masked image modeling. The reason behind this is that they overlooked a key factor, namely training
length. In addition, a strong correlation between the validation loss of masked image modeling
and the fine-tuning performance is observed. This observation suggests that validation loss can be
considered as a good proxy metric for evaluating pre-trained models, and makes it possible to reduce
the experimental overhead of measuring models by fine-tuning.

While these findings deepen our understanding of masked image modeling in data scaling angles and
can facilitate future research, our study still has limitations. First, the maximum model size used in
our study reaches only one billion parameters, which we speculate leaves the overfitting phenomenon
on the ImageNet-1K dataset unobserved; Second, there is a lack of research on the effect of encoder
specifications (e.g., depth and width) on data scaling. Third, our study does not involve the study
angle of data augmentation which is a common technique to alleviate data scarcity and overfitting.
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A Hyper-parameters and training details

We illustrate the training details of pre-training and fine-tuning for different tasks and different models.
Table 10 presents pre-training details. Table 11 presents the fine-tuning details on ImageNet-1K
image classification. Table 12 presents the fine-tuning details on iNaturalist 2018. Table 13 presents
the fine-tuning details on COCO dataset. Table 14 presents the fine-tuning details on ADE20K
dataset.

B Training dynamics of masked image modeling

We show the training curves and validation curves of different models trained by masked image
modeling to better illustrate the training dynamics. In Figure 7, each row presents the training and
validation loss curves for training with the same model but different dataset. The training loss is
computed on its corresponding training dataset and the validation loss is computed on the ImageNet-
1K validation set. We make the following observations: First, all models have the overfitting issues
when using small datasets. Second, for the non-overfitting cases, the training and validation losses are
similar using different sizes of datasets for training. In Figure 8, the training/validation loss curves of
different models but using the same training dataset are presented at each row. We make the following
observations: First, larger models have lower training losses than smaller models for all datasets.
Second, the validation loss of the larger model is lower than the smaller model in the non-overfitting
cases but higher than the smaller model in the over-fitting cases.

Pre-training setting of all models
Input size 1922

Window size 12
Patch size 4

Mask patch size 32
Mask ratio 0.6

Training iterations 125,000 / 250,000 / 500,000
Batch size 2048
Optimizer AdamW

Init. learning rate 4e-4
Weight decay 0.05

Adam ε 1e-8
Adam β (0.9, 0.999)

Learning rate scheduler Step
Step learning rate ratio 0.1

Step iterations 109,375 / 218,750 / 437,500
Warm-up iterations 6250
Gradient clipping 5.0
Stochastic depth 0.1
Rand crop scale [0.67, 1]
Rand resize ratio [3/4, 4/3]

Rand horizontal flip 0.5
Reconstruction target Norm. with sliding window [12]

Norm. patch size 47

Table 10: Details and hyper-parameters for SimMIM pre-training.
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Hyperparameters SwinV2
Small(S) Base(B) Large(L) Huge(H) giant(g)

Input size 2242

Window size 14
Patch size 4

Training epochs 100 100 100 50 50
Warm-up epochs 20 20 20 10 10

Layer decay 0.8 0.75 0.7 0.65 0.65
Batch size 2048
Optimizer AdamW

Base learning rate 5e-3
Weight decay 0.05

Adam ε 1e-8
Adam β (0.9, 0.999)

Learning rate scheduler cosine
Gradient clipping 5.0
Stochastic depth 0.2
Label smoothing 0.1
Rand crop scale [0.08, 1]
Rand resize ratio [3/4, 4/3]

Rand horizontal flip 0.5
Color jitter 0.4

Rand augment 9 / 0.5
Rand erasing prob. 0.25

Mixup prob. 0.8
Cutmix prob. 1.0

Table 11: Details and hyper-parameters for ImageNet-1K fine-tuning.

Hyperparameters SwinV2
Small(S) Base(B) Large(L)

Input size 2242

Window size 14
Patch size 4

Training epochs 100
Warm-up epochs 20

Layer decay 0.8 0.75 0.7
Batch size 2048
Optimizer AdamW

Base learning rate 1.6e-2
Weight decay 0.1

Adam ε 1e-8
Adam β (0.9, 0.999)

Learning rate scheduler cosine
Gradient clipping 5.0
Stochastic depth 0.2
Label smoothing 0.1
Rand crop scale [0.08, 1]
Rand resize ratio [3/4, 4/3]

Rand horizontal flip 0.5
Color jitter 0.4

Rand augment 9 / 0.5
Rand erasing prob. 0.25

Mixup prob. 0.8
Cutmix prob. 1.0

Table 12: Details and hyper-parameters for iNaturalist 2018 fine-tuning.
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Hyperparameters SwinV2
Small(S) Base(B) Large(L)

Detector Mask R-CNN
Window size 14

Patch size 4
Training input size (1024, 1024)
Testing input size (800, 1333)
Training epochs 36

Warm-up iterations 500
Batch size 32
Optimizer AdamW

Base learning rate 8e-5
Weight decay 0.05

Adam ε 1e-8
Adam β (0.9, 0.999)

Learning rate scheduler Step
Step learning rate ratio 0.1

Step epochs (27, 33)
Stochastic depth 0.1 0.1 0.2

Rand horizontal flip 0.5
Scale Jittering [0.1, 2.0]

Table 13: Details and hyper-parameters for fine-tuning on the COCO dataset.

Hyperparameters SwinV2
Small(S) Base(B) Large(L)

Architecture UPerNet
Window size 20

Patch size 4
Training input size (640, 640)

Test input size (640, 2560)
Slide test stride (426, 426)

Training iterations 80,000
Warm-up iterations 750

Layer decay 0.95 0.95 0.9
Batch size 32
Optimizer AdamW

Base learning rate [1e-4, 3e-4]
Weight decay 0.05

Adam ε 1e-8
Adam β (0.9, 0.999)

Learning rate scheduler Linear
Stochastic depth 0.1

Rand horizontal flip 0.5
Scaling Jittering [0.5, 2.0]

Photo Metric Distortion 3

Table 14: Details and hyper-parameters for fine-tuning on the ADE20K dataset.
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Figure 7: Each row presents the training and the validation loss curves for training with the same
model (e.g., SwinV2 giant at the last row) but different datasets. The training loss is computed on its
corresponding training dataset, and the validation loss is computed on the ImageNet-1K validation
set. Best viewed in color.
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Figure 8: Each row presents the training and the validation loss curves for training with the same
dataset (e.g., ImageNet22K at the last row) but different models. The training loss is computed on its
corresponding training dataset, and the validation loss is computed on the ImageNet-1K validation
set. Best viewed in color.
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