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Abstract

For any video codecs, the coding efficiency highly re-
lies on whether the current signal to be encoded can find
the relevant contexts from the previous reconstructed sig-
nals. Traditional codec has verified more contexts bring
substantial coding gain, but in a time-consuming manner.
However, for the emerging neural video codec (NVC), its
contexts are still limited, leading to low compression ra-
tio. To boost NVC, this paper proposes increasing the
context diversity in both temporal and spatial dimensions.
First, we guide the model to learn hierarchical quality pat-
terns across frames, which enriches long-term and yet high-
quality temporal contexts. Furthermore, to tap the poten-
tial of optical flow-based coding framework, we introduce a
group-based offset diversity where the cross-group interac-
tion is proposed for better context mining. In addition, this
paper also adopts a quadtree-based partition to increase
spatial context diversity when encoding the latent repre-
sentation in parallel. Experiments show that our codec
obtains 23.5% bitrate saving over previous SOTA NVC.
Better yet, our codec has surpassed the under-developing
next generation traditional codec/ECM in both RGB and
YUVA420 colorspaces, in terms of PSNR. The codes are at
https://github.com/microsoft/DCVC.

1. Introduction

The philosophy of video codec is that, for the current
signal to be encoded, the codec will find the relevant con-
texts (e.g., various predictions as the contexts) from previ-
ous reconstructed signals to reduce the spatial-temporal re-
dundancy. The more relevant contexts are, the higher bitrate
saving is achieved.

If looking back the development of traditional codecs
(from H.261 [17] in 1988 to H.266 [7] in 2020), we find
that the coding gain mainly comes from the continuously
expanded coding modes, where each mode uses a specific
manner to extract and utilize context. For example, the
numbers of intra prediction directions [42] in H.264, H.265,
H.266 are 9, 35, and 65, respectively. So many modes can
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Figure 1. Average results on UVG, MCL-JCV, and HEVC
datasets. All traditional codecs use their best compression ratio
configuration. DCVC-HEM [29] is the previous SOTA NVC and
only has released the model for RGB colorspace.

extract diverse contexts to reduce redundancy, but also bring
huge complexity as rate distortion optimization (RDO) is
used to search the best mode. For encoding a 1080p frame,
the under-developing ECM (the prototype of next genera-
tion traditional codec) needs up to half an hour [49]. Al-
though some DL-based methods [24,51,52] proposed accel-
erating traditional codecs, the complexity is still very high.

By contrast, neural video codec (NVC) changes the ex-
traction and utilization of context from hand-crafted de-
sign to automatic-learned manner. Mainstream frame-
works of NVC can be classified into residual coding-based
[1,13,31,32,34,36,47,59,61] and condition coding-based
[21,27-29,33,38,50]. The residual coding explicitly uses
the predicted frame as the context, and the context utiliza-
tion is restricted to use subtraction for redundancy removal.
By comparison, conditional coding implicitly learns feature
domain contexts. The high dimension contexts can carry
richer information to facilitate encoding, decoding, as well
as entropy modelling.

However, for most NVCs, the manners of context extrac-
tion and utilization are still limited, e.g., only using optical
flow to explore temporal correlation. This makes NVC eas-
ily suffer from the uncertainty [12, 16,37] in parameters or
fall into local optimum [25]. One solution is adding tradi-
tional codec-like coding modes into NVC [25]. But it brings
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large computational complexity as RDO is used. So the
question comes up: how to better learn and use the contexts
while yielding low computational cost?

To this end, based on DCVC (deep contextual video
compression) [28] framework and its following work
DCVC-HEM [29], we propose a new model DCVC-DC
which efficiently utilizes the Diverse Contexts to further
boost compression ratio. At first, we guide DCVC-DC to
learn hierarchical quality pattern across frames. With this
guidance during the training, the long-term and yet high-
quality contexts which are vital for the reconstruction of
the following frames are implicitly learned during the fea-
ture propagation. This helps further exploit the long-range
temporal correlation in video and effectively alleviate the
quality degradation problem existed in most NVCs. In ad-
dition, we adopt the offset diversity [8] to strengthen the
optical flow-based codec, where multiple offsets can reduce
the warping errors for complex or large motions. In particu-
lar, inspired by the weighted prediction in traditional codec,
the offsets are divided into groups and the cross-group fu-
sion is proposed to improve the temporal context mining.

Besides from temporal dimension, this paper also pro-
poses increasing the spatial context diversity when encod-
ing the latent representation. Based on recent checkerboard
model [19] and dual spatial model [29, 56], we design a
quadtree-based partition to improve the distribution estima-
tion. When compared with [19,29], the types of correlation
modelling are more diverse hence the model has a larger
chance to find more relevant context.

It is noted that all our designs are parallel-efficient. To
further reduce the computational cost, we also adopt depth-
wise separable convolution [10], and assign unequal chan-
nel numbers for features with different resolutions. Experi-
ments show that our DCVC-DC achieves much higher effi-
ciency over previous SOTA NVC and pushes the compres-
sion ratio to a new height. When compared with DCVC-
HEM [29], 23.5 % bitrate saving is achieved while MACs
(multiply—accumulate operations) are reduced by 19.4%.
Better yet, besides H.266-VTM 17.0, our codec also already
outperforms ECM-5.0 (its best compression ratio config-
uration for low delay coding is used) in both RGB and
YUV420 colorspaces, as shown in Fig. 1. To the best of
our knowledge, this is the first NVC which can achieve such
accomplishment. In summary, our contributions are:

* We propose efficiently increasing context diversity to
boost NVC. Diverse contexts are complementary to
each other and have larger chance to provide good ref-
erence for reducing redundancy.

* From temporal dimension, we guide model to extract
high-quality contexts to alleviate the quality degrada-
tion problem. In addition, the group-based offset di-
versity is designed for better temporal context mining.

* From spatial dimension, we adopt a quadtree-based
partition for latent representation. This provides di-
verse spatial contexts for better entropy coding.

e Our DCVC-DC obtains 23.5% bitrate saving over the
previous SOTA NVC. In particular, our DCVC-DC has
surpassed the best traditional codec ECM in both RGB
and YUV420 colorspaces, which is an important mile-
stone in the development of NVC.

2. Related Work
2.1. Neural Image Compression

Most neural image codecs are based on hyperprior [4]
where some bits are first used to provide basic contexts for
entropy coding. Then, the auto-regressive prior [40] pro-
poses using neighbour contexts to capture spatial correla-
tion. Recently works [18, 26, 44, 45] propose extracting
global or long-range contexts to further boost performance.
These show more diverse contexts bring substantial coding
gain for neural image codec.

2.2. Neural Video Compression

Recent years also have witnessed the prosperity of NVC.
The pioneering DVC [34] follows traditional codec. It uses
optical flow network to generate prediction frame, then its
residual with the current frame is coded. Many subsequent
works also adopt this residual coding-based framework and
refine the modules therein. For example, [31,43,47] pro-
posed motion prediction to further reduce redundancy. Op-
tical flow estimation in scale-space [ ] was designed to han-
dle complex motion. Yang et al. [61] utilized recurrent auto-
encoder to improve coding efficiency.

Residual coding explicitly generates predicted frame in
pixel domain as the context and only uses the subtraction to
remove redundancy. By comparison, conditional coding has
stronger extensibility. The definition, learning, and usage
manner of condition can be flexibly designed. In [33, 38],
temporally conditional entropy models were designed. [27]
uses conditional coding to encode the foreground contents.
Li et al. proposed DCVC [28] to learn feature domain con-
texts to increase context capacity. Then DCVC-TCM [50]
adopts feature propagation to boost performance. Recently,
DCVC-HEM [29] designs the hybrid entropy model utiliz-
ing both spatial and temporal contexts.

However, the coding modes in most NVCs are still lim-
ited when compared with traditional codec. For example,
traditional codec adopts translational/affine motion models,
geometric partition, bi-prediction, and so on modes to ex-
tract diverse temporal contexts [7]. By contrast, existing
NVCs usually only relies on single optical flow, which is
easily influenced by epistemic uncertainty [12, 16, 37] in
model parameters. The recent work [25] also shows such
NVCs easily fall into local optimum when coding mode is
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Figure 2. Framework overview of our DCVC-DC. z; and Z; are the input and reconstructed frames. C! is the learned temporal context
as the condition for coding x:. F} is the propagated but unprocessed feature used for next frame. In the loss term, r; means the bit cost
for coding whole frame. dist(-) is distortion function. A and w; are the global and frame-level weights, respectively. The number in the

spatial partition for g represent the coding order index.

limited. So [25] designed many additional modes like tra-
ditional codec, and RDO is used to search the best mode.
Such method inevitably brings large computational cost.
By comparison, our model has no additional inference cost
when exploiting high-quality temporal contexts. Our offset
diversity and quadtree partition are also time-efficient de-
signs in providing diverse contexts.

3. Proposed Method
3.1. Overview

To achieve higher compression ratio, our codec is built
on the more flexible conditional coding rather than the
residual coding. The framework of our DCVC-DC is il-
lustrated in Fig. 2. It is noted our DCVC-DC is designed
for low-delay coding as it can be applied in more scenar-
ios, e.g., real-time communication. As shown in Fig. 2,
for coding each frame x; with frame index ¢, our coding
pipeline contains three core steps: finotion> JTcontexts and
frrame. AtAirst, frorion uses optical flow network to es-
timate the motion vector (MV) v, then v; is encoded and
decoded as v;. Second, based on v, and the propagated fea-
ture F;_; from the previous frame, frcontert €Xtracts the
motion-aligned temporal context feature C;. At last, condi-
tioned on C%, fframe €ncodes x; into quantized latent rep-
resentation ¢;. After entropy coding, the output frame &, is
reconstructed via the decoder and frame generator. At the
same time, F} is also generated and propagated to the next
frame. It is noted that, our DCVC-DC is based on DCVC-
HEM [29]. When compared with DCVC-HEM, this pa-
per redesigns the modules to exploit Diverse Contexts from
both temporal (Section 3.2 and 3.3) and spatial (Section 3.4)

dimensions.

3.2. Hierarchical Quality Structure

Traditional codec widely adopts hierarchical quality
structure, where frames are assigned into different layers
and then use different QPs (quantization parameters). This
design originates from scalable video coding [48] but also
improves the performance for general low delay coding
from two aspects. One is periodically improving the quality
can alleviate the error propagation, as shown in Fig. 3. Dur-
ing the inter prediction, the high-quality reference frames
enable the codec to find the more accurate MV during mo-
tion estimation. Meanwhile, the motion compensated pre-
diction is also high-quality, leading to smaller prediction er-
ror. Another aspect is that, powered by multiple reference
frame selection and weighted prediction mechanisms, the
prediction combinations from the nearest reference frame
and long-range high-quality reference frame are more di-
verse. The work [30] investigates many settings on frame
quality and reference frame selection, and concludes that
the hierarchical quality structure with referencing both the
nearest frame and farther high-quality frame achieves the
best performance.

Inspired by the success in traditional codec, we are think-
ing whether we can equip NVC with the hierarchical quality
structure and let NVC also enjoy the benefits. Considering
the recent neural codecs [ 1 1,29] also support variable bitrate
in single model, one straightforward solution is following
the traditional codec and directly assigning hierarchical QPs
during the inference of NVC. However, not like traditional
codec uses well-defined rules to perform motion estimation
and motion compensation (MEMC), NVC uses neural net-
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Figure 3. Hierarchical quality structure in H.266-VTM 17.0 and
our NVC. This example is from BasketballPass video from HEVC
D dataset. The average bpp (bits per pixel) and PSNR of H.266
are 0.056 and 35.10. Our DCVC-DC is with 0.045 and 36.13.

works and MEMC is often in feature domain. For NVC, the
advantage of such design is that it is automatic learned and
has larger potential to achieve better performance. The dis-
advantage is that it has wore robustness and generalization
ability for out-of-distribution quality pattern. Thus, if we
directly feed NVC the hierarchical QPs during the testing
like [22], it may not well adapt to the hierarchical quality
pattern, and the MEMC may get sub-optimal performance.
To this end, we propose guiding the NVC to learn the hi-
erarchical quality pattern during the training. Specifically,
we add a weight w; for each frame in the rate-distortion
loss, as shown in Fig. 2. The setting of w; follows the hi-
erarchical structure. Powered by this hierarchical distortion
loss, both high-quality output frame z; and feature F; con-
taining many high-frequency details are periodically gen-
erated. They are very helpful for improving the MEMC
effectiveness and then alleviate the error propagation prob-
lem that many other NVCs suffer from. In addition, via the
cascaded training across multiple frames, the feature prop-
agation chain is formed. The high-quality contexts which
are vital for the reconstruction of the following frames are
automatically learned and kept in long range. Thus, for the
encoding of x;, F}_1 not only contains the short-term con-
texts extracted from x;_1, but also provides long-term and
continually-updated high-quality contexts from many pre-
vious frames. Such diverse F;_; helps further exploit the
temporal correlation across many frames and then boost the
compression ratio. Fig. 3 also shows the quality pattern of
our NVC. We can see that our DCVC-DC achieves better
average quality while with smaller bit cost than H.266.

3.3. Group-Based Offset Diversity

Due to the various motions between frames, directly
using the unprocessed F;_; without motion alignment is
hard for codec to capture temporal correspondence. There-
fore, we follow existing NVCs and use optical flow net-
work to extract motion aligned temporal context C; via
freontext(Fi—1, Ut), where ¥ is the decoded MV. However,

o0
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Figure 4. Cross-group fusion module. In this example, the group
number G is 4 and the offset number N of each group is 2.

in most existing NVCSs, frcontest 1S only the warping oper-
ation with the single MV. Such single motion-based align-
ment is not robust to complex motions or occlusions. The
works [9, 54, 58] show deformable alignment gets better re-
sults for video restoration as each location has multiple off-
sets to capture temporal correspondence. So recently it is
also applied into NVC [23]. However, the training of de-
formable alignment is not stable and the overflow of offsets
degrades the performance [8, 58]. In addition, the number
of offsets is limited to the size of deformable convolutional
kernel. Thus, this paper adopts the more flexible design
called offset diversity [8]. Meanwhile, the decoded MV is
used as the base offset to stabilize the training as [9].

As shown in Fig. 2, our freontest consists of two core
sub-modules: offset prediction and cross-group fusion. At
first, offset prediction uses the decoded MV 9, to predict the
residual offsets d;, where &, and F;_; are also warped
and fed as the auxiliary information. The d; adds the base
offset 0; to obtain the final offsets o;. At the same time, off-
set prediction also generates the modulation mask m; which
can be regarded as an attention that reflects the confidence
of offsets. It is noted that F;_; is divided into G groups
along the channel dimension, and each group has separate
N offsets. Thus, there are a total of G x N offsets learned.
The diverse offsets are complementary to each other, and
help codec cope with complex motion and occlusion.

In addition, motivated by the channel shuffle oper-
ation [62] which improves the information flow in the
CNN backbone, we customize a group-level interaction
mechanism to further tap the potential of offset diver-
sity for NVC. In particular, after warping each group
with multiple offsets and applying the corresponding
masks, we will reorder all groups before the fusion, as
shown in Fig. 4. If using g/ to represent the i-th group
warped with its j-th offset, the features before reordering
are g([))a () gé\/'—l’ g?a "'79{\[_13 T 792,‘_17 ,gg__ll’
where the offset order is primary and group or-
der is secondary. Then we reorder them as
a3, ...,g%il,g%, ...,géil, e ,gév_l, ...,gg__ll, where
the group order is primary instead. The following fusion
operation will fuse every N contiguous groups into one
group. Therefore, during this process, the group reordering
enables more cross-group interactions without increasing
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Figure 5. Entropy coding with quadtree partition. The number
means the coding order index. During the 4 coding steps, the §:—1
from previous frame, hyper prior Z;, and temporal context C; are
also used for entropy modelling.

complexity. This design also enjoys the similar benefit with
the weighted prediction from different reference frames in
traditional codec. Via the cross-group fusion, more diverse
combinations in extracting temporal contexts from different
groups are introduced and further improve the effectiveness
of offset diversity.

3.4. Quadtree Partition-Based Entropy Coding

After obtaining temporal context C; via our offset diver-
sity module, the input frame x; will be encoded and quan-
tized as ¢, conditioned on C}, as shown in Fig. 2. We need
to estimate the probability mass function (PMF) of g, for
its arithmetic coding. In this process, how to build an accu-
rate entropy model to estimate the PMF of ¢, is vital for the
compression efficiency.

Many neural codecs adopt the auto-regressive model
[40] as entropy model. However, it seriously slows down
the coding speed. By contrast, the checkerboard model [19]
proposes coding the even positions of ¢, first, and then use
them to predict the PMF of the odd positions in parallel.
Recently the dual spatial model [29] improves it by utiliz-
ing the correlation along channel dimension. However, the
neighbours used for entropy modelling in [19,29] are still
limited when compared with auto-regressive model. Thus,
inspired from [41,46], this paper proposes a finer-grained
coding manner via the quadtree partition, where diverse
spatial contexts are exploited to improve entropy modelling.

As shown in Fig. 5, we first divide g, into four groups
along the channel dimension. Then each group is parti-
tioned into non-overlapped 2x?2 patches in spatial dimen-
sion. The whole entropy coding is divided into four steps,

and each step codes the different positions associated with
the corresponding indexes in Fig. 5. At Oth step, all posi-
tions with index O of all patches are coded at the same time.
It is noted, for the four groups, the positions with index 0 are
different from each other. Thus, for every spatial position,
there are one fourth channels (i.e., one group) encoded. In
the subsequent 1st, 2nd, and 3rd steps, all positions coded
in previous steps are used for predicting the PMF of the
positions coded in the current step, and different spatial po-
sitions are coded for different groups in each step.

During this process, more diverse neighbours are uti-
lized. If considering the 8 spatial neighbours for a position,
the auto-regressive model [40] uses 4 (left, top-left, top, top-
right) neighbours for every position if not considering the
boundary region. The checkerboard and dual spatial mod-
els [19,29] uses 0 and 4 (left, top, right, bottom) neighbours
for the Oth and 1st steps, respectively. By contrast, as shown
in Fig. 5, our DCVC-DC uses 0, 4, 4, and 8 neighbours for
the four steps, respectively. On average, the neighbour num-
ber in DCVC-DC is 2 times of that of [19,29] and is same
with that of auto-regressive model. However, our model is
much more time-efficient than auto-regressive model as all
positions in each step can be coded in parallel. In addition,
our model also exploits the cross-channel correlation, which
is like [29] but in a refined way. For example, at the 3rd step,
for one specific position of a group, the other channels at the
same position are already coded from different groups in
previous steps, and they can be used as the contexts for the
entropy modelling in this step. This helps further squeeze
the redundancy. Overall, our quadtree partition-based solu-
tion makes the entropy coding benefit from the finer-grained
and diverse contexts, which fully mines the correlation from
both spatial and channel dimensions.

3.5. Implementation

Our DCVC-DC is based on DCVC-HEM [29] but fo-
cuses on exploiting Diverse Contexts to further boost per-
formance. In addition, we also make the following im-
provements to obtain better tradeoff between performance
and complexity. The first is that, considering depthwise
separable convolution [10] can reduce the computation cost
while alleviating over-fitting, we widely use it to replace
the normal convolution in the basic block design. The sec-
ond is that we use the unequal channel number settings for
features with different resolutions, where the higher reso-
lution feature is assigned with smaller channel number for
acceleration. The third is that we move partial quantization
operations to higher resolution in the encoder, which helps
achieve more precise bit allocation. The harmonization of
encoding and quantization also brings some compression
ratio improvements. The section 4.3 verifies the effective-
ness of these structure optimizations, and the detailed net-
work structures can be found in supplementary materials.
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Figure 6. Rate and distortion curves. The comparison is in RGB colorspace measured with PSNR. More results including the corresponding
MS-SSIM curves and the comparison in YUV420 colorsapce are in supplementary materials.

Table 1. BD-Rate (%) comparison in RGB colorspace measured with PSNR. The anchor is VTM-17.0.

UVG MCL-JCV HEVCB HEVCC HEVCD HEVCE HEVCRGB Average

VTM-17.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HM-16.25 36.4 41.5 38.8 36.0 33.7 44.0 394 385
ECM-5.0 -10.0 -12.2 -11.5 -13.4 -13.5 -10.9 -11.1 -11.8
CANF-VC [21] 73.0 70.8 64.4 76.2 63.1 118.0 79.9 719
DCVC [28] 166.1 121.6 123.2 143.2 98.0 266.1 113.4 147.4
DCVC-TCM [50]  44.1 51.0 40.2 66.3 37.0 82.7 24.4 49.4

DCVC-HEM [29] 1.1 8.6 5.1 222 24 20.5 -9.9 7.1
Our DCVC-DC  -19.1 -11.3 -12.0 -10.3 —26.1 -18.0 -27.6 -17.8

In particular, our DCVC-DC also already outperforms
ECM in YUV420 colorspace. Not like traditional codec
needs many hand-crafted changes in designing coding tools
for different colorspaces, DCVC-DC only just needs sim-
ple adaptions based on a existing model trained for RGB.
Without changing the network structure, we only up-sample
the UV to use the unified input interface with RGB. Cor-
respondingly, after obtaining the reconstructed frame, it is
down-sampled on UV. In addition, our model for YUV420
just needs a simple finetune training based on the model
trained for RGB.

4. Experimental Results
4.1. Experimental Settings

Datasets. For training, we follow most existing NVCs
and use Vimeo-90k [60]. For testing YUV420 videos,
HEVC B~E [6], UVG [39], and MCL-JCV [57] are used.
Their raw format is YUV420, so there is no any change
before feeding them to NVC. For testing RGB videos, as
these testsets have no RGB format, most existing NVCs use
BT.601 (default in FFmpeg) to convert them from YUV420
to RGB. Actually, JPEG Al [2,3] adopts BT.709 because us-
ing BT.709 obtains higher compression ratio under similar
visual quality. Thus, this paper follows JPEG AI and uses
BT.709 for all codecs during testing RGB. It is noted that
the relative bitrate comparisons between different codecs
are similar in BT.601 and BT.709. The supplementary ma-

terials show the results using BT.601. In addition, we fol-
low [29, 50] and also test HEVC RGB dataset [15] when
testing RGB videos, and there is no format change as HEVC
RGB dataset itself is in RGB format.

Test Conditions. We follow [29, 50] and test 96 frames
for each video, and the intra period is set as 32. The low
delay encoding setting is used, as the same with most exist-
ing works [1, 28, 34]. BD-Rate [5] is used to measure the
compression ratio, where negative numbers indicate bitrate
saving and positive numbers indicate bitrate increase.

Our benchmarks include HM [20] and VTM [55] which
represent the best H.265 and H.266 encoder, respectively.
In particular, we also compare with ECM [14] which is
the prototype of next generation traditional codec. For the
codec setting, we follow [29, 50] and further use 10-bit as
the intermediate representation when testing RGB, which
leads to better compression ratio for the three traditional
codecs. The detailed settings are shown in supplementary
materials. As for the NVC benchmarks, we compare with
the recent SOTA models including CANF-VC [21], DCVC
[28], DCVC-TCM [50], and DCVC-HEM [29].

Model Training. We adopt the multi-stage training strat-
egy as [29,50]. Our model also supports variable bitrate in
single model [29], so different A values are used in differ-
ent optimization steps. We follow [29] and use 4 \ values
(85, 170, 380, 840). But different from [29] using constant
distortion weight in the loss, this paper propose using hi-
erarchical weight setting on w; for the distortion term (the



Table 2. BD-Rate (%) comparison in RGB colorspace measured with MS-SSIM. The anchor is VTM-17.0.

UVG MCL-JCV HEVCB HEVCC HEVCD HEVCE HEVCRGB Average

VTM-17.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HM-16.25 31.1 38.8 36.6 352 33.0 41.1 36.6 36.1
ECM-5.0 -9.1 -11.1 -10.2 -11.7 -11.0 -9.9 -9.8 -10.4
CANF-VC [21] 46.5 26.0 43.5 30.9 17.9 173.0 57.7 56.5
DCVC [28] 64.9 27.5 544 39.7 15.2 2104 513 66.2
DCVC-TCM [50] 1.0 -10.8 -11.7 -15.2 -29.0 16.7 -22.2 -10.2
DCVC-HEM [29] -25.2 -36.3 -38.0 -38.3 —48.1 -25.8 -43.6 -36.5
Our DCVC-DC  -32.6 —44.8 -47.8 -49.8 -58.2 —45.8 -54.4 —47.6

Table 3. BD-Rate (%) comparison in YUV420 colorspace measured with PSNR. The anchor is VTM-17.0.

UVG MCL-JCV HEVCB HEVCC HEVCD HEVCE Average

VTM-17.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

HM-16.25 36.7 42.5 39.2 333 30.0 40.7 37.1

ECM-5.0 -10.6 -13.7 -12.6 -14.7 -14.9 -12.1 -13.1
Our DCVC-DC -17.8 -12.0 -10.8 -12.4 —28.5 -20.4 -17.0

whole loss is defined in Fig. 2). Considering our training
set Vimeo-90k only has 7 frames for each video, we refer
traditional codec setting and set the pattern size as 4. The
wy settings for 4 consecutive frames are (0.5, 1.2, 0.5, 0.9).

4.2. Comparisons with Previous SOTA Methods

RGB colorspace. Table 1 and 2 show the BR-rate com-
parison using RGB videos in terms of PSNR and MS-SSIM,
respectively. From Table 1, we find our codec achieves sig-
nificant compression ratio improvement over VIM on every
dataset, and there is an average of 17.8% bitrate saving. By
contrast, the other neural codecs are still worse than VTM.
If using DCVC-HEM as anchor, our average bitrate saving
is 23.5%. In addition, our DCVC-DC also outperform ECM
from Table 1. If using ECM as anchor, an average of 6.4%
bitrate saving is achieved.

Fig. 6 shows the rate-distortion curves. From the curves,
we can see our DCVC-DC achieves the SOTA compres-
sion ratio in wide bitrate range. When using MS-SSIM as
quality metric, our DCVC-DC shows larger improvement.
As shown in Table 2, DCVC-DC has an average of 47.6%
bitrate saving over VIM. By contrast, the corresponding
number of ECM over VIM is only 10.4%.

It is noted that Table | and 2 use the RGB video with
BT.709 conversion. If with BT.601 conversion, the relative
bitrate saving is similar with that in BT.709. For example,
with BT.601 conversion, DCVC-DC over VTM has an aver-
age of 18.0% bitrate saving in terms of PSNR. More results
with BT.601 can be seen in supplementary materials.

YUV420 colorspace. Actually traditional codecs are
mainly optimized in YUV420. Thus, the comparison in

YUV420 is also very important for evaluating the progress
of NVC over traditional codec. The corresponding results
are shown in Table 3. The numbers in this table are cal-
culated using the weighted PSNR for the three compo-
nents of YUV. The weights are (6,1,1)/8, which are con-
sisted with that in standard committee [53]. As most NVCs
have no corresponding released models for YUV420, Ta-
ble 3 only reports the numbers of our NVC. We can see
that DCVC-DC has an average of 17.0% bitrate saving over
VTM. If only considering the Y component, an average
15.3% bitrate saving is achieved over VTM. Better yet, our
DCVC-DC also outperforms ECM in YUV420 on average,
as shown in Table 3. This is an important milestone in the
development of NVC. It is noted our codec uses the same
network structure for both RGB and YUV420 colorspaces,
where only different finetunings are used during training.
This shows the simplicity and strong extensibility of our
codec on the optimization for different input colorspaces.

4.3. Ablation Study

To verify the effectiveness of each component, we con-
duct comprehensive ablation studies. For simplification, the
HEVC datasets in RGB colorspace are used here. The aver-
age BD-Rate in terms of PSNR is shown.

Diverse Contexts. Table 4 shows the study on the ef-
fectiveness of diverse contexts. First, from the comparison
between M, and M, we can see that the BD-rate is reduced
from 21.3% to 14.7%. This large difference shows the sub-
stantial coding gain of our qaudtree partition-based entropy
coding, and verifies the advantages of diverse spatial and
channel contexts via finer-grained partition.



Table 4. Ablation Study on Diverse Contexts.

M, M, M. Mg M.
v

Hierarchical quality
structure
Offset diversity
w/ cross-group
Offset diversity
w/o cross-group [8]
Quadtree partition
based model

v v v v

Dual spatial v
model [29]
BD-Rate(%) 00 84 121 147 213

From temporal dimension, we also design hierarchical
quality structure and offset diversity with cross-group inter-
action. In Table 4, based on M, we first test the original
offset diversity [8] without cross-group interaction, i.e., re-
moving the reorder operation in Fig. 4. However, it (M,)
only brings 2.6% BD-rate difference. By contrast, powered
by our cross-group interaction, the potential of offset diver-
sion is fully tapped, and M}, reduces the BD-rate number by
6.3% over M,. At last, based on M;, we evaluate the hi-
erarchical quality structure, i.e., M,. The 8.4% gap shows
learning high-quality contexts brings large benefits to the
mining of temporal correlation across many frames.

Structure optimization. Although our codec learns uti-
lizing diverse contexts in efficient manner, we still purse
better tradeoff between compression ratio and computa-
tional cost. Therefore, we further optimize our model in net-
work structure. Table 5 shows the study. Based on the M,
(same with that in Table 4), we first implement the depth-
wise separable convolution into codec. M}, shows widely
using depthwise separable convolution to replace the nor-
mal convolution not only significantly reduces the MACs,
but also brings some compression ratio improvements.

The second acceleration is that we use the unequal chan-
nel number settings. Not like many existing NVCs use
the same channel number for features with different resolu-
tions, we propose assigning the larger number for low reso-
lution feature to increase the latent representation capacity
while using the smaller number for the high resolution fea-
ture to accelerate model. The performance of M, verifies
the effectiveness of our improvement. In addition, many ex-
isting NVCs perform the quantization at the low-resolution
latent representation after encoding. To achieve more pre-
cise rate adjustment, this paper moves partial quantization
operations to the higher resolution in the encoder. My
shows the integration of encoding and quantization brings
some BD-rate improvements with negligible MAC change.

4.4. Complexity

The complexity comparison is shown in Table 6. We find
the MACs of our DCVC-DC are reduced by 19.4% when

Table 5. Ablation Study on Structure Optimization.

My M, My, M,
Quant at high resolution v
Unequal channel setting v v
Depthwise separable conv v v v
MACs 2642G  2642G  2939G  3456G
BD-Rate (%) 0.0 1.1 2.4 35

Table 6. Complexity comparison.

MACs Encoding Time Decoding Time
DCVC-HEM [29] 3279G 890ms 652ms
Our DCVC-DC  2642G 1005ms 765ms

Note: Tested on NVIDIA 2080T1I with using 1080p as input.

compared with DCVC-HEM [29]. However, the actual en-
coding and decoding time is higher. This is because cur-
rently the computational density of depthwise convolution
is not as high as normal convolution under the same MAC
condition. But through the customized optimization [35],
it can be further accelerated in the future. From another
perspective, considering that our DCVC-DC has 23.5% bi-
trate saving over previous SOTA DCVC-HEM [29], such
increase degree in running time is a price worth paying. By
contrast, ECM brings 13.1% (Table 3) improvement over
its predecessor VTM, but the encoding complexity is more
than 4 times [49] of VTM.

5. Conclusion and Limitation

In this paper, we have presented how to utilize diverse
contexts to further boost NVC. From temporal dimension,
the model is guided to extract long-term and yet high-
quality contexts to alleviate error propagation and exploit
long range correlation. The offset diversity with cross-
group interaction provides complementary motion align-
ments to handle complex motion. From spatial dimension,
the fine-grained quadtree-based partition is proposed to in-
crease spatial context diversity. Powered by our techniques,
the compression ratio of NVC has been pushed to new
height. Our DCVC-DC has surpassed ECM in both RGB
and YUV420 colorspaces, which is an important milestone
in the development of NVC.

During the training, to learn the hierarchical quality pat-
tern, we still use the fixed distortion weights which are sim-
ilar with those in traditional codec. This may not be the
best choice for NVC. Actually, reinforcement learning is
good at solving such kind of time series weight decision
problem. In the future, we will investigate utilizing rein-
forcement learning to help NVC make better weight deci-
sion with considering the temporal dependency.
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Appendices

Appendices provide the supplementary material to our pro-
posed neural video compression (NVC) with diverse con-
texts, i.e., DCVC-DC model.

A. Network Structure

Our DCVC-DC is based on DCVC-HEM [29], but fo-
cuses more on exploiting Diverse Contexts to further boost
compression efficiency. The learning of hierarchical quality
pattern is mainly performed in training phase via adjusting
the distortion weight in the loss. Here we describe other
implementation details in network structure.

Group-based offset diversity. In this process, we will
predict a total of G x N offsets d;, where G is the group
number and NV is offset number for each group. In the im-
plementation, the channel dimension of propagated feature
F,_ is 48. It is divided into 16 groups and each group
has 2 offsets, i.e., G=16 and N=2. The detailed network
structure of offset prediction is shown in Fig. 7. For convo-
lution layer, the (K, Cin, Cout, S) indicate the kernel size,
input channel number, output channel number, and stride,
respectively The inputs include the decoded motion vector
(MV) 9. In addition, the previous reconstructed frame &
and propagated F;_; are also warped and fed as the aux-
iliary information. The outputs include the residual offsets
ds. dy adds the 0, to get the final offsets o;. In addition,
the corresponding masks m; are also generated. It is noted
that, the first convolution layer will reduce the resolution by
2x for acceleration. After the last convolution layer, we use
bilinear to upsample them back to original resolution.

Quadtree partition-based entropy coding. The pro-
posed entropy coding can be classified into 4 steps. The
network structure is shown in Fig. 8. As shown in this fig-
ure, the quantized latent representation ¢, from the previ-
ous frame, hyper prior Z;, and temporal context C; are also
used for predicting the distribution parameters for all ¢; in
the 4 steps. In addition, all positions coded in previous steps
will also be used for predicting the distribution parameters
of the positions coded in the current steps. In this process, to
reduce the model parameters, most network blocks therein
use the shared weights, as shown in Fig. 8.

Structure optimization. As mentioned in the main pa-
per, to reduce the computation cost, we widely adopt the
depthwise separable convolution. As shown in Fig. 8, the
basic block in our entropy model is DepthConvBlock which
contains depthwise separable convolution. The structure of
DepthConvBlock is shown Fig. 9. In the DepthConvBlock,
except that the depthwise convolution layer is with 3x3 ker-
nel, all regular convolution layers use 1x1 kernel to further
reduce the computation cost.

In addition, we use the unequal channel number settings

decoded MV ¥,

Leaky ReLU
Leaky ReLU
Conv
(3,64,96,1)

warp([Fe—1, Xe—1],00) —|

Bilinear upsample

Figure 7. The network structure of offset prediction.

decoded temporal
hyper prior 9., context prior

DepthConvBlock
DepthConvBlock
[ pepthconvbiock |

9t
instep 0

Shared weights

Figure 8. The network structure of entropy model.

Leaky RelU

b2

Figure 10. The network structure of contextual encoder and de-
coder. The frame generator follows the decoder.

for the encoder and decoder. The network structure of our
contextual encoder and decoder for frame coding is shown
in Fig. 10. From this figure, we can see that the propagated
feature I} and the motion-aligned C; with high resolution
are with 48 channel number. They are smaller than 64 used
in [29]. It can help us reduce the computation cost. At
the same time, the quantized latent representation g uses
128 channel number, and it is larger than 96 used in [29].
This can bring some compression ratio improvements as
the latent representation has larger capacity. By adjusting
the channel number for features with different resolutions,
a better trade-off between compression ratio and computa-
tion cost can be achieved. In Fig. 10, we follow [29,50] and
also adopt the multi-scale contexts C? and C}, which are
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Figure 11. Smooth rate adjustment in single model.

2x and 4x down-sampled temporal contexts. Their genera-
tion details can be found in [29,50]. The bottleneck residual
block and frame generator in Fig. 10 are similar with those
in [29].

Our codec supports variable bitrates in single model.
For more precise rate adjustment, this paper proposes mov-
ing partial quantization operations to higher resolution. As
shown in Fig. 10, the quantization parameter ¢p is used for
controlling the bitrate via the user input. According to the
qp, the global quantization step ¢s?'°"*! is queried via the
learnable quantization parameter-to-quantization step table.
Then the learnable channel-wise ¢s¢% ., is used to mod-
ulate the quantization step for each channel. For y; at 16x
down-sampled resolution, the spatial-channel-wise quanti-
zation step gs;¢ is applied before the rounding operation,
where the ¢s;¢ for each frame is generated by the entropy
model, like [29]. During the decoding, the corresponding
inverse operations are applied. This multi-granularity quan-
tization mechanism originates from [29]. However, in [29],
global, channel-wise, and spatial-channel-wise quantization
steps are all applied in the 16x down-sampled resolution.
By contrast, we propose moving the global and channel-
wise to the 2x down-sampled resolution for finer-grained
adjustment. In addition, in our codec, the encoder and de-
coder have separate learnable global quantization step table
and channel-wise quantization step, which further enlarges
the flexibility. As shown in Fig. 11, we test 64 gs values
for our codec. From the curve, we can see that our codec
achieves very smooth rate adjustment in single model.

B. Test Settings

To conduct comprehensive comparisons, we compare the
NVCs and traditional codecs in both YUV420 and RGB
colorspaces. The test pipeline is shown in Fig. 12.

YUV420. When testing YUV420 video, there is
no any colorspace conversion, as shown in Fig. 12.
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Figure 12. Test pipeline in YUV420 and RGB colorspace, respec-
tively. The red line indicates the colorspace conversion.

BT.709
YUv444

-

For traditional codec, our benchmarks include HM [20],
VIM [55], and ECM [14]. The three codecs use
encoder_lowdelay_mainl0.cfg, encoder_lowdelay_vtm.cfg,
and encoder_lowdelay_ecm.cfg config files, respectively.
The parameters for each video are as:

o -c {config file name}
--InputFile={input video name}
--InputBitDepth=8
--OutputBitDepth=8
--OutputBitDepthC=8
--FrameRate={frame rate}
--DecodingRefreshType=2
--FramesToBeEncoded={frame number}
--SourceWidth={widrh}
--SourceHeight={height}
--IntraPeriod=32
-QP={gp}

--Level=6.2
--BitstreamFile={bitstream file name}

RGB. Except that HEVC RGB testset is in RGB format,
the raw formats of all other testsets are YUV420. Thus, to
test RGB video, we need to convert them from YUV420 to
RGB colorspace. Many existing NVC works use BT.601
(the default choice in FFmpeg) to conduct the conversion.
Actually, JPEG Al [2, 3] uses BT.709 for the colorspace
conversion. Thus, in the main paper, we follow JPEG

and also use BT.709 to convert the raw YUV420 video to
RGB colorspace when testing RGB video. In addition, it is
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Figure 13. Comparison of different input colorspaces for tradi-
tional codec when testing RGB videos. For the bitrate comparison,
VTM-17.0 is used and tested on HEVC B dataset.

also noted that the raw YUV420 videos of HEVC datasets
[63-65] themselves are generated from RGB source using
BT.709. However, it is unfortunate that currently we cannot
access their raw RGB videos, and only have their YUV420
videos. Therefore, when testing RGB video, we should use
the same conversion manner (i.e., BT.709) to convert them
back from YUV420 to RGB.

It is noted that, when traditional codecs test RGB videos,
using YUV444 as the internal colorspace achieves better
compression ratio than directly using RGB, although the fi-
nal distortion is measured in RGB. Fig. 12 shows that the
RGB videos will be converted to YUV444 for higher com-
pression ratio when testing traditional codecs. The recon-
structed YUV444 videos will converted back to RGB for
distortion calculation.

Fig. 13 compares different test pipelines for tradi-
tional codec in testing RGB videos. From this figure,
we can see that using YUV444 as the internal colorspace
(i.e., setting 1) achieves the best performance, and other
settings have non-trivial bitrate increase. Many existing
works use setting 5 in Fig. 13. However, we can see
that there is 21.2% bitrate increase when compared with
the setting 1 we used. Thus, to configure the best tradi-
tional codecs, we use YUV444 as the internal colorspace.
For HM, VTM, and ECM, encoder_lowdelay_main _rext.cfg,
encoder_lowdelay_vtm.cfg, and encoder_lowdelay_ecm.cfg
config files are used, respectively. The parameters for each
video are as:

* -c {config file name}
--InputFile={input file name}
--InputBitDepth=10

--OutputBitDepth=10
--OutputBitDepthC=10
--InputChromaFormat=444
--FrameRate={frame rate}
--DecodingRefreshType=2
--FramesToBeEncoded={frame number}
--SourceWidth={width}
--SourceHeight={height}
--IntraPeriod=32

~-QP={gp}
--Level=6.2

--BitstreamFile={bitstream file name}

In addition, it is noted that ECM is still under develop-
ment. As it is mainly optimized for YUV420, currently
ECM-5.0 has several bugs on supporting YUV444 when us-
ing it to test RGB videos. We fixed them and verified the
encoding and decoding match. After the bug fix, ECM-5.0
performs better than VIM-17.0, and the bitrate saving over
VTM-17.0 is similar with that in YUV420. Thus, we be-
lieve the fix is reasonable for ECM-5.0 to support YUV444
coding.

C. Results in RGB colorspace with BT.601

Actually, when testing RGB videos, most existing NVC
methods ignore the conversion manner and directly use
BT.601 to conduct the conversion, because BT.601 is the
default choice of FFmpeg. To make comparison with more
existing NVCs, we also test our DCVC-DC under BT.601.
It is noted that our DCVC-DC does not need any retraining
for testing RGB videos with BT.601. Table 7 and 8 show
the BD-rate comparisons in terms of PSNR and MS-SSIM,
respectively.

In this two tables, we use a newer version of VTM, i.e.,
VTM-17.0 as the anchor, when compared with the VTM-
13.2 used in [29]. At the same time, we use the 10 bit inter-
mediate representation for YUV444 rather than 8 bit used
in [29]. These two modifications brings a more powerful
baseline. As shown in Table 7, the VIM-13.2 used in [29]
has an average 5.0% bitrate increase than VTM-17.0 used
in this paper.

When using the stronger VTM-17.0 as anchor, we can
see that our DCVC-DC also achieves significant bitrate sav-
ing for RGB videos converted using BT.601. For example,
Table 7 shows that our DCVC-DC can achieve an average
of 18.0% bitrate saving over VIM-17.0. By contrast, other
NVCs still cannot surpass VIM-17.0. These results verify
the effectiveness of our DCVC-DC.



Table 7. BD-Rate (%) comparison for RGB colorspace with BT.601. Quality is measured with PSNR. The anchor is VTM-17.0.

UVG MCL-JCV HEVCB HEVCC HEVCD HEVCE HEVCRGB Average

VTM-17.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
VTM-13.2 (from [29] ) 8.8 6.3 32 1.9 0.5 8.6 55 5.0
HM-16.20 (from [29] )  48.8 51.2 43.5 40.9 35.8 59.3 51.1 47.2
DVCPro [36] 238.1 176.1 194.8 204.5 157.9 455.1 179.2 229.4
MLVC [31] 137.6 140.0 126.0 216.7 165.7 262.2 163.5 173.1
RLVC [61] 244.0 221.3 205.1 202.7 141.8 398.2 199.4 230.4
CANF-VC [21] 61.4 60.5 56.4 70.5 52.8 119.7 79.9 71.6
DCVC [28] 140.3 107.2 117.9 151.5 106.7 269.5 111.9 143.6
DCVC-TCM [50] 29.9 394 32.7 62.4 27.8 80.4 244 42.4

DCVC-HEM [29] 1.7 1.1 -1.1 16.9 -8.4 20.8 -9.9 1.7
Our DCVC-DC -21.0 -13.3 -13.7 -8.2 279 -14.4 -27.6 -18.0

Table 8. BD-Rate (%) comparison for RGB colorspace with BT.601. Quality is measured with MS-SSIM. The anchor is VITM-17.0.

UVG MCL-JCV HEVCB HEVCC HEVCD HEVCE HEVCRGB Average

VIM-17.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
VTM-13.2 (from [29] ) 34 4.6 2.6 1.8 0.5 13.1 39 4.3
HM-16.20 (from [29] )  37.2 46.3 40.2 394 36.0 59.3 44.7 433

DVCPro [36] 72.3 43.5 64.5 61.6 24.3 248.1 67.8 83.2

RLVC [61] 86.2 77.6 68.5 79.5 35.0 311.8 68.0 103.8

CANF-VC [21] 31.2 142 30.7 26.3 11.4 160.8 57.7 47.5
DCVC [28] 37.1 10.2 33.8 25.5 2.2 158.4 384 43.7
DCVC-TCM [50] 1.5 -19.3 -21.5 -21.1 -36.2 12.6 -22.2 -16.5
DCVC-HEM [29] -32.6 —42.7 —45.7 —42.5 -54.5 -28.2 -43.6 —41.4
Our DCVC-DC =375 —49.4 -53.4 -54.0 —63.1 —49.7 —54.4 -51.6

D. Rate-Distortion Curves

In this document, we show the rate-distortion (RD)
curves of all datasets, which correspond to the results in
the main paper. Fig. 14 and 15 show the RD curves for
videos in RGB colorspace with BT.709. Fig. 16 shows the
RD curves for videos in YUV420 colorspace without any
conversion. From these figures, we can see that our DCVC-
DC can achieve SOTA compression ratio in a wide bitrate
range.

E. Visual Comparison

Here we also provide some visual comparisons to
demonstrate the advantage of our codec. Fig. 17 shows
four examples. From these examples, we can see that our
DCVC-DC can reconstruct clearer textures without increas-
ing the bitrate cost, when compared with VIM-17.0 and
ECM-5.0. In addition, it is also noted that, despite we learn
the hierarchical quality pattern, there is no visual flicker in

the decoded video. As shown in the PSNR curve in the main
paper, we can see that our DCVC-DC actually has smaller
PSNR variance than VITM-17.0. The standard community
has verified the hierarchical quality pattern can improve the
compression ratio with negligible visual degradation.
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Figure 14. RD curves of UVG, MCL-JCV, HEVC RGB and B. The comparison is in RGB colorspace with BT.709. The left column is
with PSNR and right column is with MS-SSIM.
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Figure 15. RD curves of HEVC C, D, and E. The comparison is in RGB colorspace with BT.709. The left column is with PSNR and right
column is with MS-SSIM.
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Original VTM-17.0 ECM-5.0 Our DCVC-DC

BPP/PSNR 0.057/34.03 0.054/34.24 0.052/35.34
BPP/PSNR 0.033/35.70 0.030/35.85 0.030/37.08
BPP/PSNR 0.080/31.36 0.076/31.58 0.075/32.39
BPP/PSNR 0.030/36.30 0.029/36.40 0.029/37.03

Figure 17. Visual comparison.
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