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Input Neutral Smile Laugh
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(b). Free pose and expression editing

Figure 1. Presented herein are representative results showcasing the effectiveness of our proposed method in the tasks of frontalization,
as well as free pose and expression editing. (a) FOMM [46] often produces face distortion issues, while our model PECHead generates
high-fidelity results. (b) Our proposed framework empowers the generation of talking head videos that offer free control over the head pose
and expression. More results can be found in the supplementary materials.

Abstract

Talking head generation is to generate video based on
a given source identity and target motion. However, cur-
rent methods face several challenges that limit the quality
and controllability of the generated videos. First, the gen-
erated face often has unexpected deformation and severe
distortions. Second, the driving image does not explicitly
disentangle movement-relevant information, such as poses
and expressions, which restricts the manipulation of dif-
ferent attributes during generation. Third, the generated
videos tend to have flickering artifacts due to the inconsis-
tency of the extracted landmarks between adjacent frames.
In this paper, we propose a novel model that produces high-
fidelity talking head videos with free control over head pose
and expression. Our method leverages both self-supervised
learned landmarks and 3D face model-based landmarks to

model the motion. We also introduce a novel motion-aware
multi-scale feature alignment module to effectively transfer
the motion without face distortion. Furthermore, we en-
hance the smoothness of the synthesized talking head videos
with a feature context adaptation and propagation module.
We evaluate our model on challenging datasets and demon-
strate its state-of-the-art performance. More information is
available at https://yuegao.me/PECHead.

1. Introduction

Talking head video generation is a process of synthesiz-
ing a talking head video with a given source identity and
target motion. This process is also called face reenactment
when using a driving head to define the relative movement
to the source identity [4]. This generation technique can
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be used in various applications, including video conferenc-
ing [51], movie effects [39], and entertainment [6]. Due
to the rapid development of deep learning [20] and genera-
tive adversarial networks (GAN) [17,27], impressive works
have been conducted on talking head generation [22, 51],
face reenactment [2,24,40,49,57,59,61,65,66], and image
animation [46, 47, 52, 67]. These works focus on animating
objects beyond the face and head [45, 46].

Early works on talking head generation require multi-
ple source and driving images to generate one result [4,13].
Recent works focus on one-shot generation [51, 61, 66],
i.e., using only one source frame to generate the target
by transferring the pose information of one driving frame.
Currently, the mainstream works [45–47] follow a self-
supervised learning pipeline. They mainly utilized the self-
supervised learned landmarks to model the movement of
the identity between the source and driving images. The
learned landmarks pairs are first detected from both source
and driving images, and then the dense flow field is esti-
mated from the two sets of learned landmarks to transform
the source features and guide the reconstruction of the driv-
ing image. To further improve the performance, recent ap-
proaches propose to utilize additional information, such as
3D learned landmarks [51] and depth map [22], or enhance
the model structure, for example, adopting the flexible thin-
plate spline transformation [14, 67], and representing the
motion as a combination of latent vectors [52].

However, there are still many challenges with these
methods. First, the generated face often has unexpected de-
formation and severe distortions. The learned landmarks-
based approaches [46, 51, 67], such as FOMM [46], which
only utilizes the 2D learned landmarks without face shape
constraints, produces frontalization results with apparent
face distortions (see Fig. 1a). The predefined landmarks-
based methods [13,24,59,63] model the movement between
the source and driving images only based on the predefined
facial landmarks, leading to the non-facial parts of the head
(such as the hair and neck) are not well handled. Second,
all the movement information needs to be obtained via one
single driving image. It is rare and difficult to decouple
and manipulate these movement-relevant information, in-
cluding poses and expressions, when generating the new
image. Third, in order to achieve smooth and natural move-
ments in generated videos, prior methods [46, 47, 67] typi-
cally incorporate techniques to smoothen the extracted land-
marks learned between adjacent frames. However, the sen-
sitivity and inconsistency of the extracted landmarks pose
a challenge in achieving smoothness, resulting in generated
videos that are prone to flickering.

To address the above challenges, we propose the Pose
and Expression Controllable Head model (PECHead),
which can generate high-fidelity video face reenactment re-
sults and enable talking head video generation with full con-

trol over head pose and expression. The proposed method
first incorporates the learned landmarks and the predefined
face landmarks to model the overall head movement and
the detailed facial expression changing in parallel. We uti-
lize the single image-based face reconstruction model [12]
to obtain the face landmarks and project them into 2D im-
age space. This approach constrains the face to a physi-
cally reasonable shape, thereby reducing distortion during
motion transfer, as demonstrated in the last row of Fig. 1a.
In this work, we introduce the use of learned sparse land-
marks for global motion and predefined dense landmarks
for local motion, with the Motion-Aware Multi-Scale Fea-
ture Alignment (MMFA) module serving to align these two
groups of features. Then we use different coefficients as in-
put conditions to control the estimation of both predefined
and learned landmarks, so that we can realize the head pose
and expression manipulation (Fig. 1b). Moreover, inspired
by the recent low-level video processing works [8, 33], we
propose the Context Adaptation and Propagation (CAP)
module to further improve the smoothness of the gener-
ated video. Our proposed method is evaluated on multiple
talking head datasets, and experimental results indicate that
it achieves state-of-the-art performance, generating high-
fidelity face reenactment results and talking head videos
with the ability to control the desired head pose and facial
expression.

Our contributions can be summarized as follows:

• We propose a novel method, PECHead, that generates
high-fidelity face reenactment results and talking head
videos. Our approach leverages head movements to
control the estimation of learned and predefined land-
marks, enabling free control over the head pose and
expression in talking head generation.

• We incorporate the learned and predefined face land-
marks for global and local motion estimation with the
proposed Motion-Aware Multi-Scale Feature Align-
ment module, which substantially enhances the quality
of synthesized images.

• We introduce a video-based pipeline with the Con-
text Adaptation and Propagation module to further im-
prove the smoothness and naturalness of the generated
videos.

• Extensive qualitative and quantitative results across
several datasets demonstrate the superiority of the pro-
posed framework for high-fidelity video face reenact-
ment and freely controllable talking head generation.

2. Related Works
Image Animation. Image animation is to transfer mo-
tion information from one domain to another. Tradi-
tional approaches often rely on strong priors such as face
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meshes [5], human keypoints [6], or action units [15, 42].
In recent years, there has been a growing interest in self-
supervised methods that only require videos. Monkey-
Net [45] uses sparse learned landmarks to estimate optical
flow for animating arbitrary objects. FOMM [46] extends
Monkey-Net [45] by incorporating local affine transforma-
tion. MRAA [47] proposes region-based motion represen-
tations, while LIA [52] represents motion as a set of learned
motion directions. These methods eliminate the require-
ment of explicit structure representations. Zhao et al. [67]
leverage thin-plate spline transformation [14] for motion es-
timation, which is more flexible than traditional approaches.
Talking Head Generation. In recent years, a significant
amount of research has been dedicated to the task of face
reenactment or talking head generation. This is largely ow-
ing to the development of large-scale face data [25, 60], 3D
morphable face model (3DMM) and 3D mesh [16,34], neu-
ral radiance fields (NeRF) [38], and face landmark detec-
tors [36, 56]. We will discuss these methods in details as
follows.

3D face model-based methods. For example, Face2Face
[49] employs a deformation transfer approach to track fa-
cial expressions of both source and driving videos, followed
by re-rendering of the synthesized faces. Ma et al. [37]
reconstructs an individual-specific face model with high-
resolution facial geometry and appearance.

Direct synthesis-based models synthesize target faces
by decoding latent appearance and motion representations.
For instance, Zakharov et al. [63] introduce the first direct
synthesis method for face reenactment. LPD [4] utilizes
head pose augmentation, while DAE-GAN [64] disentan-
gles identity and pose representations using the deforming
autoencoder [44].

3D mesh-based methods utilize neural head models to
synthesize realistic head avatars from videos. Grassal et
al. [18] proposes a neural head model that provides a disen-
tangled shape and appearance representation. ROME [32]
uses a single image to estimate a person-specific head mesh
and texture to synthesize neural head avatars.

NeRF-based methods use NeRF as a novel 3D proxy to
represent the head geometry and appearance. For example,
AD-NeRF [19] proposes using NeRF for audio-driving talk-
ing head video generation. Head-NeRF [23] uses NeRF to
control the pose and various semantic attributes of the gen-
erated images. However, NeRF-based methods are not ef-
fective in generalizing across identities, and the models are
relatively complex compared to the sparse landmark-based
models.

Warping-based methods use learned landmarks/regions
pairs to estimate motion fields [45–47], performs warping
on the feature maps, and generates images. X2Face [55]
uses latent vectors that are learned to be predictable of warp-
ing fields. Bi-layer [62] employs a bi-layer representation

via summing two components, a coarse image directly pre-
dicted by a rendering network and a warped texture im-
age. PIRender [43] controls the face motions directly with
3DMMs. OSFV [51] extracts 3D learned landmarks with
3D convolution nets for better modeling the head, and uti-
lizes the rotation matrix to transform the overall viewpoint
but not for free control of all head poses and expressions.
HeadGAN [13] and Face2Faceρ [59] are two such meth-
ods that estimate motion information from input images us-
ing 3D meshes and landmarks, respectively. DaGAN [22]
presents a self-supervised depth estimator and cross-modal
attention to generate motion fields. While these methods
have shown promising results, there is still room for im-
provement in terms of flexibility, physics-consistency, and
video smoothness. To address these limitations, this pa-
per proposes a novel approach that leverages both self-
supervised learned landmarks and predefined landmarks for
motion transfer while also improving the smoothness of the
resulting videos.

3. Method

3.1. Overview

This section describes the proposed method PECHead,
(see Fig. 2 for illustration), which mainly contains four
parts: Generator G, Face Shape Reconstructor R, Head
Pose-Aware Keypoint Estimator E, and Multi-Scale Dis-
criminator D. Our framework follows the basic pipeline
proposed by Siarohin et al. [45–47]. We first extract the
face coefficients and predefined landmarks through R, and
then estimate the learned landmarks through E with the
head pose and expression as conditions. The generator G
takes the predefined and learned landmarks pairs to esti-
mate the dense flow and generates the results. During train-
ing, our model takes two sequences with the same subject
and number of adjacent frames. We denote the frames in
these two sequences as source frame xs

t ∈ R3×H×W and
driving frame xd

t ∈ R3×H×W , where 1≤t≤T , T is the se-
quence length, and H×W is the spatial size. The model is
learned to reconstruct the driving frame xd

t , and the synthe-
sized frame is denoted as x̂d

t . In the following sections, the
frame index t−1 or t are omitted for brevity, except when
necessary. At test time, we can extract the coefficients from
the driving frames or modify the coefficients of the source
frames, to get different landmarks pairs. This allows us
to transfer the motion from the driving frames or edit the
source frames.
Generator. Generator G mainly contains the encoder, bot-
tleneck module, and decoder. The encoder extracts the raw
feature fr of the current source frame. The bottleneck mod-
ule aligns the raw feature fr to the driving frame and adapts
it to the context information. The details will be discussed
in Sec. 3.2 and Sec. 3.3. The decoder generates the recon-
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Figure 2. The overview of our method, which contains four parts: a) the Generator G; b) the Face Shape Reconstructor R; c) the Head
Pose-Aware Keypoint Estimator E; and d) the Multi-Scale Discriminator D. The light blue dash arrows stand for the feature propagation.

structed frames x̂d based on the adapted feature f c.
Face Shape Reconstructor. As mentioned in Sec. 1, ex-
isting self-supervised learned landmarks-based models can
not freely control the head poses and facial expressions. To
solve this problem, we incorporate the predefined face land-
marks [3] with the learned landmarks. Specifically, a single
image-based Face Shape Reconstructor R is adopted to ex-
tract the landmarks ls, ld, head pose ps, pd and expression
es, ed from the source and driving frames, respectively,

lz, pz, ez = R(xz); z ∈ {s, d}. (1)

Our Reconstructor R is derived from the state-of-the-art
face reconstruction model [12], which uses a ResNet [20]
to obtain a set of coefficients and fits a Basel Face Model
(BFM) [1, 16]. We can further compute the 3D landmarks
and project them to the 2D space. When calculating the
driving landmarks ld, the other coefficients (i.e., identity,
texture, and lighting) extracted from the source frame are
used to preserve the identity.
Head Pose-Aware Keypoint Estimator. Existing keypoint-
based models [22, 46, 51, 67] directly feed the source and
driving frames to keypoint detector to obtain the learned
landmarks pairs. Instead, we use the source frame xs con-
ditioned with corresponding head pose p and expression e
to obtain source learned landmarks ks and driving learned
landmarks kd, facilitating manually specified head pose and
expression editing. This process is formulated as,

kz = E(xs, pz, ez); z ∈ {s, d}, k ∈ RK×2, (2)

where K is the number of learned landmarks, we set K=10.
The E is trained to detect the learned landmarks based on
the appearance provided from the source frame xs obeying
the head pose p and expression e. The head pose p and
expression e are injected with AdaIN [26] module. As the
coefficients of the face model are decoupled by definition,
the different learned and predefined landmarks k′, l′ can be
obtained by modifying the head pose p or expression e, and
manipulated frame x̂′ can be generated correspondingly.
Multi-Scale Discriminator. Following the existing gener-

predefined
landmarks local deformation

learned
landmarks

global deformation

aligned

feature    

raw
feature    

raw
feature

Downsample

Upsample

Warp

Deformable Alignment

Deformable Alignment

Warp

Local Motion
Estimator

Global Motion
Estimator

X

X

X

X Concatenate and convolution

intermediate

aligned

feature        

Figure 3. Motion-Aware Multi-Scale Feature Alignment module.

ative models [22, 27, 29, 30, 41, 46, 51], we utilize a Multi-
scale Patch Discriminator D to encourage the generator G
produce more realistic frames.

3.2. Motion-Aware Multi-Scale Feature Alignment

Although both the learned and predefined landmarks are
represented in 2D image space, our experimental results
demonstrate that directly merging these points in series does
not give satisfactory results. As the learned ones are freely
learned by the model, while the predefined ones are artifi-
cially defined, their physical meanings of them are different.
Therefore, we propose the Motion-Aware Multi-Scale Fea-
ture Alignment (MMFA) module to incorporate the learned
sparse and predefined dense landmarks.

As shown in Fig. 3, the MMFA correlates the prede-
fined landmarks ls, ld and the learned landmarks ks, kd for
deforming the raw feature extracted by the encoder. The
sparse learned landmarks detected from the whole frame
can provide more global motion information, i.e., the over-
all head movement. And the landmarks can be used for
modeling more details of the motion, such as expression
changing, as they are estimated from the face shape model.
We use two motion estimators Φ to estimate the global and
local motion information based on the learned and prede-
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fined landmarks, respectively. Following FOMM [46], the
Gaussian heatmap-based motion estimators are employed.
The global motion is applied on the downsampled raw fea-
ture fr

low ∈ RC1×h/2×w/2, which contains higher level in-
formation. And the local motion is applied on the raw fea-
ture fr ∈ RC2×h×w for more details, where C1 and C2

are the channel dimension, h×w is the spatial size of the
feature map. The motion information contains two parts,
deformation ws→d ∈ R2×h×w, and occlusion os→d∈Rh×w

(omitted in Fig. 3 for brevity). With the deformation and
occlusion map, the raw feature can be warped as fw =
W(fr, ws→d) · os→d + (1 − os→d) · fr, where W is the
warping operation.

According to Chan et al. [7, 8], the deformable align-
ment [31] demonstrates significant improvements over the
flow-based alignment. As shown in Fig. 4, the deformable
alignment takes the last feature map fm in the motion esti-
mator and deformation map ws→d to compute offsets δs→d

and masks ϵs→d of the deformable convolution (DCN) [11],
and then a DCN is applied,

δs→d = ws→d + Co(c(fm, ws→d)),

ϵs→d = σ(Cm(c(fm, ws→d)),

fd = D(fr; δs→d, ϵs→d),

(3)

where c is the concatenation operation, C{o,m} denotes con-
volution blocks, σ is the sigmoid and D stands for the DCN.
We apply the alignment on both global and local levels.

3.3. Context Adaptation and Propagation

We introduce the Context Adaptation and Propagation
(CAP) module to make the model produce smooth videos.
The illustration of CAP is shown in Fig. 5. First, the raw
feature fr

t−1 of the previous source frame is sequentially
warped with the frame flow wt−1→t and the current lo-
cal deformation ws→d

local (Two-Step Warping). The frame
flow is computed on xs

t−1 and xs
t using image-based flow

estimator [48]. Second, the warped previous raw feature
f̃r
t−1, hidden feature ht−1, adapted feature f c

t−1 and the cur-
rent aligned feature fa

t are concatenated. We further feed
the concatenated feature to the Context Adaptation module,
which is composed of several convolution blocks, to get the
feature in the same spatial and channel size with fa

t . Then,
the feature is further refined with the Feature Refinement

aligned

feature     

adapted

feature      

�

�
Feature

Refinement

ConvGRU

hidden
feature    

Context
Adaptaion

Concatenate
raw

feature      

Two-Step

Warping

Figure 5. Context Adaptation and Propagation module.

module. After that, we get the adapted feature f c
t for the

current frame, and the hidden feature is updated with the
adapted feature f c

t using a ConvGRU block [9]. The pro-
posed CAP module can be formed as,

ht = ConvGRU(f c
t−1, ht−1),

f̃r
t−1 = W(W(fr

t−1, wt−1→t), w
s→d
local ),

f c
t = FR(CA(c(fa

t , f̃
r
t−1, f

c
t−1, ht−1))),

(4)

where CA,FR represent the Context Adaptation and Fea-
ture Refinement submodules, respectively. The hidden fea-
ture h and the previous adapted feature f c are initialized to
zeros for the first frame.

3.4. Objective Function

Following existing works [46, 47], our model is trained
with the reconstruction task. We briefly discuss these losses
and leave the details in the supplementary material.
Pixel-wise Loss Lp. The pixel-wise loss is employed to en-
sure the synthesis frames are similar to the driving frames.
Perceptual Loss Lv . Similar to existing methods [46, 47,
51,67], we use a pre-trained VGG [28] to guarantee consis-
tency of high level characteristics between driving frame xd

and generated frame x̂d.
Learned Landmarks Loss Lk. The learned landmarks
loss [51] is used to encourage the estimated learned land-
marks k to spread out across the whole frame.
Equivariance Loss Le. The equivariance loss [46, 47] is
applied to constrain the consistency of Head Pose-Aware
Keypoint Estimator E.
Warping Loss Lw. This loss is designed to ensure the mo-
tion estimators to predict the deformations reasonably, mak-
ing the warped source frame closer to the driving frame.
GAN Loss LG,LD. We adopt the hinge loss as our adver-
sarial loss [35], and two different scale patch discriminator
is used for better performance [27].
Full Objective Function. The total loss of the generation
step is formulated as,

LG = λpLp+λvLv+λkLk+λeLe+λwLw+λGLG, (5)

where λp, λv, λk, λe, λw and λG are the weights of loss
functions. And the loss of the discrimination step is for-
mulated as LD = LD. We follow the standard GAN prac-
tice [27] to train the model.
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Source Driving FOMM [46] MRAA [47] OSFV [51] TPSMM [67] LIA [52] DaGAN [22] Face2Faceρ [59] PECHead

Figure 6. Comparison of same-identity video reconstruction results obtained by the proposed method and other state-of-the-art approaches.

Table 1. Quantitative results of different methods on four datasets for the same-identity video reconstruction.

Methods VoxCeleb2 TalkHead-1KH CelebV-HQ VFHQ
L1 MS-SSIM PSNR FID AKD L1 MS-SSIM PSNR FID AKD L1 MS-SSIM PSNR FID AKD L1 MS-SSIM PSNR FID AKD

FOMM [46] 0.0481 0.838 23.02 25.90 1.219 0.0431 0.821 23.28 33.22 2.905 0.0602 0.769 21.85 62.84 3.453 0.0526 0.780 21.76 47.82 2.868
MRAA [47] 0.0353 0.881 25.94 26.23 0.929 0.0361 0.882 25.50 32.57 1.057 0.0568 0.777 22.33 64.23 2.863 0.0454 0.812 22.60 40.17 2.123
OSFV [51] 0.0403 0.865 25.66 30.21 1.279 0.0432 0.837 23.59 35.12 3.100 0.0589 0.746 21.56 67.40 2.432 0.0491 0.804 21.79 41.95 1.730
TPSMM [67] 0.0318 0.902 26.88 24.39 0.709 0.0359 0.886 25.53 32.77 0.983 0.0615 0.757 22.05 64.89 3.714 0.0516 0.780 22.10 40.84 2.254
LIA [52] 0.0538 0.846 22.29 30.23 1.049 0.0477 0.879 24.43 38.89 0.932 0.0654 0.754 20.75 65.15 2.287 0.0537 0.815 21.47 42.27 1.502
DaGAN [22] 0.0359 0.881 25.64 24.92 0.844 0.0413 0.846 23.95 34.35 2.405 0.0637 0.739 21.32 68.04 4.800 0.0453 0.826 22.56 37.36 1.523
Face2Faceρ [59] 0.0507 0.816 20.83 31.71 1.332 0.0466 0.832 22.45 37.64 1.772 0.0709 0.710 19.94 71.87 3.754 0.0649 0.764 19.55 84.57 1.863
PECHead 0.0304 0.905 26.96 23.05 0.626 0.0357 0.903 26.76 30.10 0.746 0.0552 0.803 24.29 56.68 1.215 0.0435 0.859 23.03 31.20 0.839

4. Experiments

Datasets. We evaluate our model on VoxCeleb2 [10],
TalkingHead-1KH [51], CelebV-HQ [68], and VFHQ [58].
Implementation Details. In the generator G, the encoder
and decoder are composed of two downsample and upsam-
ple ResBlocks [20]. The Estimator E consists of four down-
sample and upsample AdaIN [26] based ResBlocks. The
Reconstructor R is separately trained and the landmarks
obtained by the widely used framework [3]. More details
about the datasets, network structures, and settings are pro-
vided in the supplementary material.
Baselines. We compare our approach with the recently pro-
posed representative methods, FOMM [46], MRAA [47],
OSFV [51], TPSMM [67], LIA [52], Face2Faceρ [59] and
DaGAN [22]. Our re-implementation of OSFV [51] is used
with all settings followed by the original paper, while all
other methods use the official implementation.
Metrics. We use L1, MS-SSIM [53,54], and PSNR to eval-
uate the low-level similarity between the synthesis and the
driving images. We also leverage FID [21] and FVD [50]
to assess the image and video quality. The average keypoint
distance (AKD) [45, 46] is adopted to measure the seman-

Table 2. Quantitative results for the cross-identity reenactment.

Methods CelebV-HQ VFHQ
CSIM ARD AUH FVD CSIM ARD AUH FVD

FOMM [46] 0.687 2.76 0.174 202.5 0.675 2.18 0.174 211.7
MRAA [47] 0.670 2.65 0.145 219.1 0.662 2.07 0.159 205.9
OSFV [51] 0.706 3.21 0.171 207.3 0.754 4.11 0.205 213.4
TPSMM [67] 0.673 1.85 0.125 220.2 0.674 1.84 0.143 207.8
LIA [52] 0.713 2.68 0.143 199.5 0.712 2.48 0.170 213.8
DaGAN [22] 0.716 2.66 0.154 205.9 0.684 1.91 0.143 217.6
Face2Faceρ [59] 0.535 9.91 0.251 232.5 0.673 2.13 0.170 206.4
PECHead 0.733 0.85 0.118 192.2 0.789 0.81 0.104 201.6

tic consistency. The cross-identity similarity (CSIM) [51] is
used to evaluate the identity preservation for cross-identity
video face reenactment. The average rotation distance
(ARD) [13] and the facial action unit hamming distance
(AUH) [13] are to measure errors of head pose angles and
facial expressions. For MS-SSIM, PSNR, and CSIM, larger
values indicate better results, others the opposite.

4.1. Same-identity Video Reconstruction

We compare our models with state-of-the-art techniques
for self-reenactment, where the source and driving frames
depict the same individual. Quantitative results are pre-
sented in Tab. 1, and qualitative results are shown in Fig. 6.
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Source Driving FOMM [46] MRAA [47] OSFV [51] TPSMM [67] LIA [52] DaGAN [22] Face2Faceρ [59] PECHead

Figure 7. Comparison of cross-identity face reenactment results obtained by the proposed method and other approaches.

Table 3. Quantitative results of pose and expression editing.

Methods TalkHead-1KH VFHQ
ARE FID AUH ARE FID AUH

OSFV [51] 4.89 40.96 0.136 3.46 53.21 0.158
Face2Faceρ [59] 2.44 88.71 0.121 2.11 125.72 0.141
PECHead 1.15 42.04 0.075 0.93 56.16 0.080

Our models demonstrate significant improvements across
all metrics. Most existing methods can generate satis-
factory results for small pose movements, but for scenar-
ios with significant pose variations, keypoint-based meth-
ods (FOMM [46], MRAA [47], TPSMM [67]) may pro-
duce distorted faces due to a lack of 3D facial constraints.
The OSFV method [51], which uses 3D keypoints, can
produce consistent facial shapes, but the image quality is
still unsatisfactory. The depth-based method DaGAN [22]
has face distortion issues, indicating that self-supervised
depth estimation is insufficient. Latent vector-based mod-
els (LIA [52]) perform poorly in capturing facial details
and may entangle appearance information in the latent code.
The Face2Faceρ method [59] performs poorly due to inac-
curate motion estimation. Our method excels in preserving
facial shape while accurately transferring facial expressions
compared to existing techniques.

4.2. Cross-identity Video Face Reenactment

We conducted experiments on the TalkingHead-
1KH [51] and VFHQ [58] datasets to explore cross-identity
motion transfer, where the source and driving frames depict
different individuals. As shown in Fig. 7, our method
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Figure 8. Head pose and expression editing results.

can produce convincing cross-identity face reenactment
results that are more realistic, particularly in terms of facial
expressions, compared to other techniques. Keypoint-
based methods (FOMM [46], MRAA [47], TPSMM [67])
struggle to produce convincing results with noticeable
face distortion for samples with large pose variations.
Face2Faceρ [59] performs poorly since the landmarks only
represent facial parts, making it challenging to handle
non-facial characteristics like hair. Quantitative results
are presented in Tab. 2. Our method outperforms other
techniques with the highest identity preservation ability
and video quality, as well as the lowest pose angle and ex-
pression error. Supplementary materials provide additional
results, as well as subsequent experiments.
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Figure 10. Ablation studies of our proposed model.

4.3. Head Pose and Expression Editing

For head pose editing, we compare the performance of
frontalization. The metric average rotation error (ARE) [13]
is adopted to measure the ability to control head pose, and
FID is used to measure image quality. For expression edit-
ing, we compare the performance of expression transfer,
and AUH is used to measure the expression error. Among
the baselines, only the OSFV [51] and Face2Faceρ can ma-
nipulate the source frame without an explicit driving frame.
The results are shown in Tab. 3 and Fig. 8. Although the
OSFV [51] has slightly better FID scores, it can not manip-
ulate the pose and expression well. The Face2Faceρ [51]
fails to estimate the flow field, causing poor results.

4.4. Free Editing on Wild Identities

Finally, we demonstrate the strong capability of PEC-
Head by editing wild face images downloaded from the In-
ternet. The results are shown in Fig. 9. Our method can
generate the face with desired head poses and expressions
by changing the values of head pose p and expression e.

4.5. Ablation Studies

To validate the effectiveness of each component, we
first evaluate the performance of using both self-supervised
learned and predefined facial landmarks. We then assess
the performance of the proposed MMFA module. Finally,
we evaluate the performance of the proposed video-based

Table 4. Quantitative results for ablation studies.

Settings TalkHead-1KH VFHQ
L1 FID CSIM ARD FVD L1 FID CSIM ARD FVD

KP 0.0446 35.82 0.726 1.41 215.8 0.0491 37.8 0.712 1.40 218.5
LMK 0.0426 37.30 0.717 1.29 213.9 0.0485 36.6 0.709 1.37 217.9
Direct 0.0439 35.58 0.730 1.37 212.7 0.0474 32.9 0.724 1.33 217.8
FeatCat 0.0430 34.96 0.732 1.34 208.2 0.0462 32.0 0.733 1.09 213.9
MMFA 0.0375 31.27 0.764 0.81 206.8 0.0448 31.0 0.782 0.85 209.9
Full 0.0357 30.10 0.779 0.79 199.6 0.0435 31.2 0.789 0.84 201.6

framework involving the CAP module. Hence, we have
the following settings: (1) Self-supervised learned land-
marks only (KP); (2) Predefined landmarks only (LMK);
(3) Directly merge the learned and predefined landmarks
(Direct); (4) Concatenate the feature maps at a single
level (FeatCat); (5) The Motion-Aware Multi-Scale Fea-
ture Alignment (MMFA); (6) The Full model. The re-
sults in Fig. 10 and Tab. 4 reveal three important conclu-
sions. Firstly, utilizing both self-supervised learned land-
marks and predefined landmarks is crucial to avoid face
distortion and obtain high-quality results. Secondly, the
motion-aware multi-scale feature alignment (MMFA) mod-
ule effectively aligns features from different scales, result-
ing in high-quality outcomes. Lastly, the context adaptation
and propagation (CAP) module propagates context infor-
mation across frames, improving the smoothness of video
synthesis. Notably, only our full model produces high-
fidelity results.

5. Conclusion
In this work, we present a novel method called PEC-

Head, which generates high-fidelity talking head videos
with free control over head pose and expression. Leverag-
ing both learned and predefined landmarks, we introduce
a motion-aware multi-scale feature alignment module to
model global and local movements simultaneously. Further-
more, to improve the smoothness and naturalness of video
synthesis, we introduce a context adaptation and propaga-
tion module that adapts the context of previous frames. Our
method outperforms existing approaches in face reenact-
ment and controllable talking head generation, achieving
state-of-the-art results.
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