Hyrax: Fail-in-Place Server Operation in Cloud Platforms

2 1

Marisa You! Celine Irvene
Luke Marshall! ~ Savyasachi Samal'

Ashish Raniwala! Brijesh Warrier!
"Microsoft Azure

Jialun Lyu

Abstract

Today’s cloud platforms handle server hardware failures by
shutting down the affected server and only turning it back on-
line once it has been repaired by a technician. At cloud scale,
this all-or-nothing operating model is becoming increasingly
unsustainable. This model is also at odds with technology
trends, such as the need for new cooling technology.

This paper introduces Hyrax, a datacenter stack that en-
ables compute servers with failed components to continue
hosting VMs while hiding the underlying degraded capacity
and performance. A key enabler of Hyrax is a novel model
of changes in memory interleaving when deactivating faulty
memory modules. Experiments on cloud production servers
show that Hyrax overcomes common hardware failures with-
out impacting peak VM performance. In large-scale simu-
lations with production traces, Hyrax reduces server repair
requirements by 50-60% without impacting VM scheduling.

1 Introduction

Server hardware failures are quite frequent in cloud plat-
forms. For example, a typical cloud server relies on at least
24 DIMMs, six SSDs, six fans, and two CPU sockets [48].
Even assuming optimistic annual failure rates' of 0.1% per
DIMM and 0.2% per SSD, 22% of servers will have at least
one failure during the typical 6-year lifetime of a cluster. In
practice, repair rates are typically even higher.

The common approach to dealing with hardware failures
in today’s cloud platforms is to evict all virtual machines
(VM) and stop using the affected server. The server goes
back into production only once a technician has replaced all
faulty components. This maintains server homogeneity, which
simplifies scheduling and operation [4,24,32,41,42,46,61,
64,69]. We call this the “all-or-nothing” operating model.

Recent technology trends make all-or-nothing operations
increasingly unsustainable in cloud platforms. First, server
power consumption increasingly requires liquid cooling,
which offers performance, efficiency, and sustainability ben-
efits [33,63, 72]. Liquid cooling significantly increases the
time and effort required to repair servers. Second, the share

*Formerly at Microsoft Azure
'Prior work reported 0.09% [58,59], 0.12% [12], and 1.6% [57,66] for
DIMMs and 0.22% [43,44] to 1.2% [3,54] for SSDs.

Mark Jung!

Ioannis Manousakis* Lisa Hsu*
Ricardo Bianchini!
2University of Toronto

Tyler Narmore! Jacob Shapiro!

Preetha Subbarayalu!
Bianca Schroeder’? Daniel S. Berger!?
3University of Washington

of total costs that are due to repairs are increasing (§2). This
is in part due to servers staying in datacenters for longer”.
Third, all-or-nothing requires a continuous supply of spare
components, which is increasingly hard to procure. Com-
ponent supply chains have emerged as a barrier to further
extending server lifetimes and reducing carbon emissions [7].
Fourth, the human repair process can cause interruptions to
nearby servers [32], which is becoming an obstacle in cloud

provider’s pursuit to improve the availability of their servers.

This paper advocates that cloud providers should move to-
ward a fail-in-place paradigm where servers with faulted com-
ponents continue to host VMs without requiring repairs. Fail-
in-place operation would significantly reduce repair needs,
improving costs, carbon emissions, and availability. How-
ever, fail-in-place faces multidimensional challenges in prac-
tice. First, it requires a form of graceful degradation where
individual faulty components are deactivated instead of de-
commissioning the entire server. Unfortunately, we find that
mechanisms to deactivate components are largely undocu-
mented. Furthermore, deactivating the right component re-
quires accurate fault diagnostics and it is unclear whether this
can be achieved in practice. Second, deactivating common
components such as DIMMs can significantly impact server
performance due to reduced memory interleaving. This per-
formance loss should not be exposed to VM customers. Third,
the cloud platform must be able to actually use the capacity
on servers with deactivated components. This requires algo-
rithmic changes in VM scheduling and changes to adopt the
cloud control plane to support heterogeneous servers.

We introduce Hyrax— the first implementation of the fail-
in-place paradigm for cloud compute servers. In a multi-year
study of component failures across five server generations,
we find that sufficient redundancy in existing servers can
overcome the most common memory and SSD device fail-
ures. While existing diagnostics can only identify a subset
of component types, we empirically find that they are 95%
accurate. We identify hooks in deployed firmware that enable
deactivating components in ways that overcome many fail-
ure possibilities (e.g., dirty or corroded connectors or chip
failures). Finally, Hyrax adds a degraded server state and cor-
responding scheduling rules to a production control plane to

ZMajor cloud providers have moved to a minimum server lifetime of six
years [7,26,53] for cost and sustainability reasons.

=)
3

Available Cores [% Relative to IR]
< 8
Available Cores [% Relative to IR]

/—I-;rax

All-or-Nothing (AoN)

100

All-or-Nothing (AoN),

©
@

©
3

96

©
a

95

=)
=) o o =)
& 3 3 S

o o =) =)
54 3 5

g
Repair Frequency [% Relative to IR]

(b) EU Region.

¥ e
Repair Frequency [% Relative to IR]

(a) US Region.

Figure 1: Hyrax dominates all-or-nothing (AoN) operations along
the entire trade-off spectrum between available resources (core
hours) and the number of required server repairs (repair tickets).
Different points on the trade-off spectrum are generated by varying
the repair schedule, ranging from immediate repairs (IR) to perform-
ing repairs in batches at periodic intervals ranging from 1-12 months
long. All numbers are normalized to those for AoN with immediate
repairs, which is the common approach in today’s cloud platforms.

support servers with deactivated components.

Hyrax overcomes the reduced performance of degraded
servers by exploiting existing heterogeneity in VM sizes and
configurations. Specifically, we find that the peak performance
expectation of small and old VM types matches the perfor-
mance offered by degraded servers. Further, we find that there
are sufficiently many small and old VM types to effectively
utilize the capacity of degraded servers. Hyrax also introduces
scheduling optimizations for efficiency at scale.

Hyrax has been deployed for a few months on a subset of
Azure clusters and a small set of component types. We report
on its effectiveness on real failures and use microbenchmarks
and large-scale trace-driven simulations to extrapolate a full
deployment over six years. Our experience demonstrates that
the fail-in-place paradigm is practical under real-world plat-
form constraints.

To evaluate the benefits of at-scale deployment, we simu-
late 66 compute clusters from two geographic regions over
a period of six years. Overall, Hyrax reduces the number of
server repairs in a region by 50-60% depending on the region
(Figure 1), while offering the same resource availability and
scheduling the same VMs as today’s all-or-nothing opera-
tion. Figure 1 also shows that Hyrax’s benefits carry over to
different repair schedules, including Azure’s existing repair
schedule (immediate repairs) as well as previously-suggested
batching of repairs [4, 5], where repairs are scheduled at pe-
riodic intervals (e.g. once per year). Furthermore, Hyrax re-
duces replacement rates by 40% for fans, 50% for SSDs, and
75% for memory, which enables extending server lifetimes for
multiple years to amortize server costs and carbon emissions.

We hope that, by sharing our journey towards the fail-in-
place paradigm, we motivate the community to invest in future
cross-stack systems research to make degraded mode and fail-
in-place operation significantly more efficient.

Contributions:
* The first description of design goals and constraints for

]

Diagnostics

i\ Suspect

5 stilll o :

| Reliable~faulty| fault

i = -)
Online | Offline Certification*” &\

Figure 2: At Azure, servers are either online and serving VMs, or
offline and being repaired. Repairs take between 3 and 190 days at
the 50-th and 99-th percentile, respectively.

fail-in-place and feasibility analysis of degraded mode
operation at a large public cloud platform (§3).

* The design and implementation of Hyrax, the first fail-
in-place system at a cloud provider. Hyrax’s implementa-
tion includes novel mechanisms to deactivate component
pathways and a novel model of memory interleaving
when memory modules are deactivated (§4, §5, and § 6).

» Experimental results that show Hyrax’s effectiveness,
performance, and cost impacts (§7).

A discussion of deployment experience, broader impacts,
and research avenues (§9).

Limitations. Hyrax is not applicable to all repair operations.
The following assumptions underpin our work.

* Hyrax focuses on server repairs, which account for the
majority of technician hours in Azure datacenters. Hyrax
does not reduce other technician duties, such as power,
network, and cooling maintenance.

» Hyrax focuses on compute servers, where degraded op-
eration is challenging. Storage servers often already im-
plement variants of degraded mode (§8).

2 Background

This section reviews repair workflows and costs, typical server
configurations, and cloud workloads.

Repair workflow. A software agent called Server Health
Monitor (SHM) checks server error logs and component types,
counts, and capacity for deviations from the expected (homo-
geneous) configuration. If the SHM suspects any kind of fault,
the server is marked as “offline”, which signals the VM sched-
uler to filter out this server (Figure 2). VMs are migrated
away or gracefully evicted. The server is then rebooted into
a diagnostics environment. If diagnostics finds a hardware
problem, it immediately creates a repair ticket [4,32,41,66].

Repair tickets can point to a specific component pathway
(like DIMM #4, Figure 3a) or require a manual diagnosis.
After a technician resolves a ticket, e.g., by reseating connec-
tors or swapping out components, the server is tested again
to certify reliability (certification step). A reliable server is
marked “online” and again becomes a candidate for hosting
VMs.

Impact of all-or-nothing repairs on TCO. Server repairs
are a significant component of total cost of ownership (TCO).
The main components of TCO are CapEx (capital expendi-

CPU Pin Slot DIMM
CoreMem CntrIDDR PHY/H — Im

(a) Memory component pathway.

CPU Pi
CorePCleld

Slot Riser Slot NVMe drive
— T — DT

(b) SSD component pathway.

Figure 3: A component can appear faulty due to other component
faults along the path between a core and the actual component. We
call this a pathway that typically spans the socket and pins, printed
circuit board (PCB), and slots/risers to the actual component like the
NVMe SSD or memory DIMM.

ture for the purchase of servers, networking, cooling, and
power infrastructure) and operational costs due to energy and
power (estimated at 6% of CapEx per year [19,20,62]), and
maintenance (estimated at 5% of CapEx per year for each
server [4, 66]). Maintenance costs are largely made up by
technician salaries and cover maintenance of all datacenter
components. At Azure, server repairs account for about half of
technician work hours in the all-or-nothing operating model.
Server repairs thus account for 9% and 12% of total cost
(TCO) for server lifetimes of 6 and 10 years [7], respectively.?

Repairs are also known to be slow [69]. At Azure, 2%
of servers are waiting for repairs at any given time in the
all-or-nothing operating model.

Server hardware. Figure 4 shows a typical cloud server con-
figuration [48]. Variants of this base architecture include one
or two NICs and 24-32 DIMMs; most servers use a single
NIC. We note that the component count for some compo-
nent types is larger than one (marked in green in Figure 4).
We refer to these as degradable components as they do not
represent a single point of failure.

We note that hardware components internally contain re-
dundancy, such as spare blocks in SSDs [8, 25, 34,44, 52,
55,67, 68]. Moreover, the operating system and hypervisor
at Azure employ an aggressive policy for offlining memory
pages to mask faulty cachelines. A repair ticket is generated
for a component only when the above mechanisms cannot
resolve the problem.

Cloud workload. All workloads run within virtual machines
(VM) for security and ease of management. Resources for
each VM are typically preallocated at its start time to improve
performance and facilitate the use of virtualization acceler-
ators [2,39,60,70,71]. VMs come in hundreds of different
types with many combinations of the number of virtual cores,
memory capacity, local and remote storage options, NIC and
GPU configurations.

The cloud provider has no introspection into the workloads
that a customer is running inside their VMs and does not know
their performance requirements. Hence, performance goals

3We calculate TCO based on the three dominant cost factors: Deployment
years (y), CapEx (C), Maintenance (y x C x 5%), and Energy/Power (y x C X
6%). This leads to TCO(y) =C+y x 5% xC+yx 6% xC=C(1+0.11 x y).

Count
Power supply units (PSU) = 3
Single-rotor fans (Fan) = 6
Memory modules (DIMM) 24-32
CPU sockets (CPU) = 2
NVMe flash drives (SSD) 6
Motherboard (MB) | 1
Network interfaces (NIC) 1-2
Management controller (BMC) | 1
Network cables (Cable) | 2-3

Figure 4: A typical cloud server configuration and its component
counts. We refer to the component types marked in green as degrad-
able, as their component count is large enough that they are not a
single point of failure.

are defined in terms of peak performance, e.g., bandwidth and
latency for memory and IOPS and bandwidth for SSDs. For
older VM types that are scheduled on newer servers, their
performance goals are defined for the server generation they
were originally introduced on.

Azure’s distributed VM scheduler is called Protean [1,9,
22,37,61]. Protean first forwards VM requests to a compute
cluster within the specified region based on hardware require-
ments and available capacity. At the cluster level, Protean
places VMs following a series of rules that balance tightly
packing resources with spreading workloads across racks for
high availability. Filter rules select which servers are con-
sidered candidates for placing each VM. They ensure that
only servers are considered that can ensure the SLAs asso-
ciated with the requested VM type. Preference rules rank
these candidates to find the best placement. Similar to other
schedulers [4,22,24,32,41,42,46, 61, 64, 69], Protean as-
sumes identical hardware configurations for all servers within
a cluster.

3 Fail in Place

The “all-or-nothing” operating model and the associated high
repair frequency is costly and at odds with multiple server and
data center trends. This paper pursues an alternative paradigm,
which we term Fail-in-Place (FIP). In FIP, servers are allowed
to exist with failed components for prolonged periods of time,
sometimes forever. The main goal of FIP is to reduce repair
tickets while continuing to offer the same user experience to
VMs and minimal impact on cluster capacity and scheduling.

FIP is motivated by our observation that the majority of
hardware repair tickets are due to the failure of degradable
components. Consider Figure 5, which breaks down repair
tickets at Azure into the component type that triggered them.
We see that, for example, in Generation 3 clusters* more than
65% of tickets are due to degradable components. Recall
from Section 2 that degradable components do not represent
a single point of failure as their component count per server
is larger than one.

“4Higher server generations reflect newer server and component architec-
tures. Generation 3 is a currently highly utilized hardware generation.

50
Server Generation

L L]
12/345

. Missing Location
. Complete Location

30

20

ANl Lk

DIMM SSD/HDD Fan CPU

Percentage of Repair Tickets(%)

PSU Any Cable NIC MB Unknown Other
Not Degradable

Degradable

Figure 5: Breakdown of repair tickets at Azure into the component
type responsible for the ticket. The repair tickets were recorded on
dozens of production clusters spanning regions across two conti-
nents and clusters from five different hardware generations, which
have been deployed between 2018 to 2022. Most repair tickets in
server generations later than 2 are for degradable components and
diagnostics indicates a specific pathway.

For degradable component types, Figure 5 further marks in
a darker shade the share of tickets that also identify a specific
pathway, rather than just the component type. For example,
for DIMMs, these tickets would include the specific DIMM
slot (recall Figure 3a). We observe that for generations above
2, almost all repair tickets among degradable components also
indicate the specific pathway.

The key idea behind FIP is to avoid repair tickets by deacti-
vating (rather than repairing) a faulty degradable component
and allowing the server to continue to host customer VMs,
albeit with reduced capacity. We refer to this new server state
as degraded servers.

While Figure 5 illustrates FIP’s potential to reduce repair
tickets, a real FIP implementation must also satisfy the fol-
lowing constraints.

* Cperformance YVMS placed on degraded servers must still be
able to achieve the same peak performance (e.g. memory
bandwidth) expected for this VM type (§2).

* Ckfficiency A FIP system must be able to effectively use
the capacity on degraded servers. For example, it must
not strand one resource (e.g., CPUs) because another
resource is degraded (e.g., memory).

* Ccapacity A FIP system must continue to be able to satisfy
a region’s demand for VM resources. In particular, VMs
must not be turned away from a region because of server
degradation or disrepair.

For cloud platforms, FIP system design can be guided by
the following observations based on real-world cloud work-
loads and failure patterns.

First, a majority of VMs that customers are running belong
to smaller VM types that can be accommodated on a degraded

Requested Cores | Core-hours v3 Core-hours pre-v3
<2 27.7% 26.9%
(2,4] 26.8% 16.9%
(4,8] 21.5% 18.9%
(8,16] 10.6% 16.6%
>16 13.4% 20.7%

Table 1: Core counts for VMs introduced with 3rd-generation
servers (v3) and with previous-generation servers (pre-v3).

mode server without impacting their performance. For exam-
ple, Table 1 shows a breakdown of core hours by VM type
at Azure. VMs with four or fewer cores account for 40-50%
of all core hours and are small enough that they require only
a small fraction of a server’s full capacity to achieve their
expected performance.

Second, our study of server repair tickets at Azure reveals
that the number of component failures per server is typically
small compared to a server’s total component count. For exam-
ple, for servers in Generation 3, 90% of servers that develop
SSD and/or DIMM failures in a one-year period exhibit two
or fewer failures. The most common failure patterns among
those servers are one failed DIMM (36.5%) followed by one
failed SSD (10.3%). Hence for the bulk of servers with fail-
ures, deactivating the affected components would reduce the
server’s capacity by only a small fraction (recall that typi-
cal server configurations include 24-32 DIMMs and 6 SSDs)
and not cause a significant amount of resource fragmentation.
We note however that over long time periods, more than a
few components will fail. To prevent resource stranding, any
FIP system must thus control how many components can be
deactivated in any degraded server.

Third, we find that FIP systems will still have to accommo-
date some repairs (albeit at a greatly reduced frequency) in
order to satisfy capacity requirements. While servers with fail-
ures of degradable components are returned to online status,
the capacity loss due to servers with failures of undegradable
components (which will stay offline in the absence of repairs)
is not acceptable.

The design and implementation of a complete FIP system
pose multiple open challenges not captured in the simple vi-
sion above. For example, FIP requires accurate diagnostics,
mechanisms to deactivate component pathways, a detailed
understanding of how component deactivation impacts perfor-
mance, policies to determine when to degrade (versus repair)
a server, and a control plane that supports FIP (including the
VM scheduler and automated diagnostics).

4 Hyrax System Design

Hyrax is a concrete implementation of the FIP idea and the
first FIP system at a cloud provider. Hyrax implements a new
“degraded” online server state on servers and in the control
plane and changes multiple aspects of the offline workflow at
Azure. Currently, Hyrax supports three degradable component

@ Degradability
=7- Accuracy

%WjDiagnostics]H Hyrax Policy 4-‘Repair
: o

& BIOS Socket0 Chan2 Rank Enable BitMask = 0x3
CoreMem CntrIDDR PHYS [~ M

Still No
faulty fault

@ BIOS Socket0 Chan2 Rank Enable BitMask = 0x0

{¥Deactivation

Certification

Figure 6: Server states in Hyrax.

types: memory, SSDs, and fans.

Figure 6 provides an overview of server states in Hyrax.
After a server is marked as suspect, results from Diagnostics
are used by the Hyrax Policy (&) to decide whether to de-
grade or repair. This policy applies first filters for degradable
component types. Second, it verifies that diagnostics points
to a specific pathway within this component type. Third, it
applies a threshold on how many components of each type can
be degraded. Degraded servers are created by deactivating the
faulty component pathway (£, §5.1). Repairs are scheduled
for undegradable component types, when diagnostics can-
not identify the faulty component pathway, or if deactivation
would cross the policy’s threshold. Degraded and repaired
servers are subject to extensive testing (called Certification in
§2 and Figure 2) before becoming available for hosting VMs
(online).

Hyrax achieves Cgfficiency Via the policy’s thresholds. Cur-
rently, we never deactivate more than two components of any
type. Empirically, we find that this is sufficient to prevent
resource stranding. We provide a detailed sensitivity analysis
in Section 7.4.

Hyrax achieves Cperformance by characterizing how deacti-
vating components affects VM performance for different VM
types. This allows Hyrax to decide whether the remaining
healthy components are sufficient for the server to continue
serving VMs and which VM types it can serve without im-
pacting user experience. Hyrax modifies the VM scheduler
such that only the VM types whose performance requirements
can be met are scheduled on the degraded server.

Hyrax minimizes repair tickets because many servers that
are degraded instead of repaired will not encounter another
fault during their deployed period. If degraded servers en-
counter another fault that cannot be degraded, Hyrax issues
a single repair ticket and technicians repair all faults on the
server at once. We call this technique “mini-batching”. Mini-
batching effectively amortizes technician work like the jour-
ney to the server’s rack, identifying and opening the server,
manual diagnosis, and record keeping.

Hyrax achieves Ceapacity in two ways. First, the capacity an
individual degraded server can lose is limited via the policy’s
thresholds. Second, undegradable servers are not permanently
left offline without repairs. We consider a range of different
repair schedules (§7).

We discuss technical details of the Hyrax server design in
Section 5 and the Hyrax policy and control plane in Section 6.

CoreMem Cntrll
(a) Deactivating a failed memory component pathway.

@ BIOS PCI Express Port Config = 0x0
Corel

(b) Deactivated SSD component pathway.

Figure 7: Component deactivation takes care of entire paths of
error sources, such as memory controller, DDR phy, PCB, connector,
and DIMM itself. This has the potential to improve over repairs
where reseating or exchanging the DIMM often does not resolve the
problem.

S Hyrax Servers

Hyrax seeks to convert an offline server with one or multiple
faulty component pathways into a degraded server that can
host VMs. Hyrax focuses on memory, SSD, and fans as the
most common degradable components (§3). This section de-
scribes how to deactivate these three component pathways
and associated performance implications.

5.1 Component Pathway Deactivation ({})

The key challenge is making component deactivation compre-
hensive enough so that faults are effectively hidden. Hyrax
achieves this by deactivating components using combined
firmware and software mechanisms.

Memory pathway. Hyrax targets memory errors that cannot
be resolved by existing, fine-grained mitigations [8, 13, 35,
55,67]. Common causes are uncorrectable errors across a
DIMM’s banks/ranks, connector problems, or too many faulty
rows. Hyrax exploits a rarely-documented firmware (BIOS)
feature, called Rank Enable BitMask. On Azure servers,
this setting offers a bitmask for each channel, on each memory
controller (MC), and on each socket. Each bitmask controls
which of the DIMM’s ranks on this channel are included in
memory interleaving. Azure diagnostics currently only pro-
vides DIMM-level information, so Hyrax deactivation always
excludes all ranks on a DIMM. Excluding an entire DIMM
means that this DIMM’s memory is not assigned an address.
Furthermore, the MC will not attempt to control or refresh
any data on that DIMM’s memory chips. Figure 7a shows ex-
amples of deactivating one DIMM (0x3) as well as the whole
memory pathway (0x0).

Hyrax has two ways to set the Rank Enable BitMask. If
the server is able to boot a minimal OS, Hyrax software di-
rectly sets the bitmask in the BIOS configuration flash. If the
server does not boot, Hyrax can set the bitmask via the Base-
board Management Controller (BMC) on the management
network.

120
9 (I DIV
@2 | _ s
g g 90 enabled)
= E Degraded
8 o] 60 DIMM slot
5 % A1 deactivated
22 4l | DIMM slot
g 2 J A2 deactivated
0 _. DIMM slots
T T T y A1,A2
2 4 8 16 32 deactivated

VM Core Count

Figure 8: Peak memory bandwidth of a naive implementation of
Hyrax as measured from VMs on servers with all DIMMs enabled,
one DIMM or two DIMMs deactivated, respectively.

SSD pathway. Server-local storage for VMs is striped across
six NVMe drives. This configuration improves peak perfor-
mance for [O-intensive VM types and facilitates bin packing
hundreds of VM types with server-local storage. We modify
the striping software module to read a list of serial numbers to
include into the stripe. To deactivate an SSD pathway, Hyrax
deletes the drive’s serial number from the striping configu-
ration file. Additionally, we deactivate the SSD component
pathways in the BIOS using an option called PCIe Port
Config (Figure 7b).

Fan pathway. No explicit deactivation is needed for fans.
They are monitored by the BMC which emits frequent error
messages in case of faults (e.g., zero or low RPM). Hyrax
changes BMC firmware to filter out fan error messages for
deactivated fan slots.

5.2 Achieving High Performance on FIP
Servers

We describe performance challenges when deactivating mem-
ory and SSD pathways and how Hyrax overcomes them.

Memory pathway. Cloud servers maximize achievable mem-
ory bandwidth by interleaving cachelines across DIMM ranks
on all memory channels on the same socket. Deactivating a
DIMM limits the processor’s interleaving options and can
significantly reduce VM memory bandwidth. Unfortunately,
the resulting configuration is almost always outside CPU
specifications, known as DIMM population rules [11,31,38].

To understand the performance impact of undocumented
interleaving from deactivating DIMMs, we experiment with
a common production server configuration. This server has
two memory controllers per socket (MCO and MC1), three
memory channels per controller (A-C on MCO and D-F on
MC1), and two DIMMs per channel (e.g., Al, A2).

Figure 8 shows memory bandwidth for this server configu-
ration measured in four scenarios: all DIMMs enabled, only
DIMM Al deactivated, only DIMM A2 deactivated, or DIMM
Al and A2 deactivated. We measure the memory bandwidth
with a Memory Latency Checker (MLC) [30] for VMs rang-
ing from 4-32 cores and show averages across 10 runs for
each VM size. Error bars indicate the worst-performing run

Interleaving across channels defines bandwidth

a) MCQ Channels MC1 Channels
A B C D E
m O
59 EIR1 FiR1
@
§ 3 EIR2| FiR2
Q.
28 114GB/s
=)
® B E2R10 F2R1
o 2
s E2R2| F2R2
< 288
b) Deactivated C1
—_ [CiR1]
L F o B [BEIC D
[T O]
> = 114GB/s
o 8 Color 3
Vg 96
T Q
% < 76GB/:
S
© & Color 2
oL
Qg2 19GB/s
< 256 F1R2 Color 0
C) Deactivated A2 Deaated El
o B D -E F
60 °
22 C2R1EHD2R1EE2R1EETF2R1E A
g 9 A1R1 | B2R2\ | C2R2' [D2R2\ E2R2| F2R2| (HEOlC]
o g 96
76GB/;
% 2 C1R1 D1R1 F1R1 s
© ;160 38 B/?
o L 192+ Color
he] 9GB/!
0 332 L8
<

. Included in interleaving set Excluded from interleaving set

32GB DIMM (X1) | .. RankO (RO)

16GB DIMM (X2) Rank1 (R1) O" channel X

Figure 9: Channel interleaving with deactivated DIMMs. The top
image shows interleaving for a healthy server, the middle image
with DIMM C1 deactivated and the bottom image with two DIMMs
(A2, E1) deactivated. Under degraded mode different regions of
the address space experience different memory bandwidths, ranging
from 19GB/s to 114GB/s.

for each VM size. We observe mean bandwidth loss between
0 to 36% depending on which and how many DIMMs are
deactivated. Additionally, we observe that even for the same
configuration, there is a significant variance between runs with
worst case bandwidth loss up to 82%. Such outliers are not
acceptable for deployment. We next explain the underlying
reasons and then explain our mitigation.

We find that the inflexibility inherent in channel interleav-
ing is the reason for the bandwidth loss. While a server
can have multiple interleaving configurations for different
ranks (called sets), each set must either alternate between
MCs or just focus on a single MC. Consequently, cross-MC-
interleaving requires the same capacity in participating chan-
nels on both MCs. To better understand the subtleties involved
in interleaving we use a custom firmware debug mode that
prints interleaving sets and participating channels. Figure 9
compares the interleaving we observe on healthy versus de-
graded servers for a single CPU socket on a common platform.

Figure 9a shows interleaving for a healthy server, which

contains a 32GB and a 16GB DIMM per channel’. For exam-
ple, channel A on MCO contains the 32GB DIMM A1 with
ranks AIR1 and AIR2 and a 16GB DIMM A2. Cachelines
are interleaved across all six 32GB DIMMs and across all
six 16GB DIMMs. Interleaving across all channels creates a
uniform address space with 114GB/s, i.e., a sixfold increase
over a single channel (19GB/s).

Figure 9b shows a degraded server with C1 (32GB) deac-
tivated. Since symmetry is required within an interleaving
set, both C1 and F1 are removed from the first set and as a
result, the server interleaves only across the four remaining
32 GB DIMMS. On the other hand, since all 6 16GB DIMMs
are still active, the processor continues to interleave across
all 6 DIMMs achieving the full 114 GB/s for their part of
the address space (note that the 16GB DIMMSs now make up
the top part of the address space). As F1 is active, but not
part of any set so far its capacity remains as non-interleaved
(19GB/s). This creates a non-uniform address space with 38%
of pages at 114GB/s, 50% at 76GB/s, and 12% at 19GB/s.

A degraded server with two deactivated DIMMs further
complicates interleaving sets. Figure 9c shows the interleav-
ing that results when A2 (16GB) and E1 (32GB) are deacti-
vated. With deactivated DIMMs having different sizes, the
resulting interleaving sets do not align with full DIMMs and
instead use individual ranks (1/2 of a DIMM). The first inter-
leaving set uses A1’s first rank (A1R1) and five 16GB DIMMs
(B2-F2) achieving the full 114GB/s. The second set uses Al’s
second rank (A1R2) and the first ranks from DIMMs C1, D1,
F1 achieving 76GB/s. The third set uses the second rank from
C1 and F1. Two final sets interleave across only a single chan-
nel using both ranks from B1 and D1’s second rank. This
results in an address space with 40% of pages at 114GB/s,
27% at 76GB/s, 13% at 38GB/s, and 20% at 19GB/s.

The main problem with varying peak bandwidth in differ-
ent address ranges is that it makes VM memory performance
on these servers unpredictable. As the OS and hypervisor are
unaware of bandwidth differences across the address space
the performance of a VM will vary depending on where in
the address space its memory gets allocated. A naive imple-
mentation of Hyrax would allocate VMs with a mix of pages
leading to low-bandwidth outliers as shown in Figure 8.

To mitigate bandwidth variance on a degraded server, we
must know the exact address map that maps address ranges to
their achievable peak bandwidth. Unfortunately, reading the
interleaving configuration usually requires debugging output
that is typically not available. While we can test the memory
bandwidth of the entire address space, we found this to be
slow and inaccurate. Instead, we conceptually group different
deactivation scenarios into equivalence classes, where scenar-

5The combination of 32GB and 16GB DIMM within one channel is
a common configuration to reach target memory-to-core ratios in cloud
compute servers of recent years. We discuss this configuration since our
experiments with custom firmware happened to run on it. Interleaving on a
32GB/32GB server behaves similarly.

ios in the same class result in the same address map, and store
the resulting address map in a distributed database (§6). For
example, deactivating a single DIMM leads to two equiva-
lence classes depending on the DIMM size of the deactivated
DIMM: The first class includes all scenarios where any one
of the 32GB DIMMS fails (and the resulting map would be
the image in Figure 9b) and the second class includes all sce-
narios where one of the 16GB DIMMs fails. Deactivating two
DIMMs leads to ten equivalence classes, in addition to two
DIMM sizes, interleaving changes with the two DIMMs being
on the same channel, within the same MC, in a symmetric or
asymmetric position on another MC.

Note that our discussion above focused on only one socket.
Since interleaving on different (cache-coherent) CPU sockets
happens independently, it is sufficient to characterize one
socket. We validated equivalence classes by testing almost
all 276 possible combinations. Deactivating three DIMMs
leads to 2024 combinations and a multitude of equivalence
classes — Hyrax thus deactivates at most two DIMMs and
repairs three or more DIMM failures. A sensitivity analysis in
§ 7.4 will show that disabling larger numbers of DIMMs does
also not provide significant gains in terms of repair savings.

Once we know the address map, we employ page coloring
in the OS/hypervisor memory manager (MM) to assign the
same color to pages that are in address regions with equal
bandwidth. For example, in Figure 9 we assign colors 0, 1, 2,
3 to pages within a 19, 38, 76, 114 GB/s region, respectively.
Each VM type comes with a preferred page color, which is set
based on core count. Figure 8 shows that color 0 is sufficient
for 2-core VMs. Color 1 is sufficient for 4-6 cores, color 2 for
8-12 cores, and color 3 for above 16 cores. Older generations
of VMs sometimes run on new servers, while originally being
created for servers with a lower per-channel bandwidth and
four (instead of six) channels. Thus, old VM types do not
even require color 3 and often use colors 0 and 1.

One could use this coloring scheme to guarantee perfor-
mance at all times by exposing the amount of available mem-
ory for each color to the scheduler. However, to reduce cou-
pling between control plane services, we do not expose this
level of detail to the VM scheduler. So, large VMs may be
allocated using colors below their bandwidth expectation if
no higher colors are currently available on the server. Thus,
Hyrax offers only a best-effort guarantee. Empirically, we
find that this is sufficient since these cases are exceedingly
rare (§7).

SSD pathway. The SSD pathway is simple compared to mem-
ory. In a fully healthy server, local VM storage is striped
across six NVMe drives. VM types are capacity and rate lim-
ited (IOPS and bandwidth). When deactivating one NVMe
drive, aggregate throughput remains sufficient for even the
largest VM type. Deactivating two NVMe drives leads to suf-
ficient throughput for all except the largest VM type. Hyrax
thus never schedules this VM type on degraded servers with
only four active NVMe drives. Hyrax never deactivates more

than two NVMe drives and this failure case is rare.

Fan pathway. Due to cooling overprovisioning, deactivating
up to two fans leads to no performance loss.

6 Hyrax Control Plane

The Hyrax control plane consists of two new distributed ser-
vices that implement the Hyrax policy and many changes to
existing control plane services, including the VM scheduler.

6.1 Hyrax Policy (&)

The Hyrax Policy has two roles (recall Figure 6). First, it in-
terprets diagnostics and sets constraints on which components
are degradable. Second, it ensures that degraded servers meet
CCapacity-

To perform the first role, the Hyrax Policy specifies for
each server type how many component pathways of each type
can be deactivated at once. While Hyrax can adapt to a wide
range of thresholds, for our purposes we use two DIMMs, two
SSDs, and two fans. These thresholds are guided by common
failure scenarios (Section 3) and performance observations
(Section 5). Hyrax schedules repairs for any server with more
than two faulty component pathways of the same type or any
other failure diagnosis. The Policy also includes an extensive
mapping list of diagnostic results to valid component path-
ways. For example, SSD pathways can appear as 1O errors,
timeouts, and PCle errors. Diagnostics for SSD failures can
sometimes point to PCle ports and slots that have different
(non-SSD) devices or even no device — for these the Hyrax
Policy would just schedule the server for repair.

To ensure Cperformance, the Hyrax Policy maps every de-
graded server configuration to a capacity and performance
profile (CPP). The CPP defines the exact server capacity and
performance equivalence class (§5). Based on the CPP, Hyrax
defines the set of allowable VM types that can run on a de-
graded server and still meet their SLAs. For example, servers
with two DIMMs deactivated on the same channel do not
have any page of color 3. This server thus cannot host latest-
generation VMs with more than 16 cores. A server with two
deactivated SSDs cannot host the largest VM type.

6.2 Control Plane

Deactivating component pathways leads to heterogeneous
server configurations within a cluster. This requires changes
across service and team boundaries. Figure 10 shows a sim-
plified view of Azure’s control plane. We change three and
add two new control plane systems.

Let’s consider a server that starts in healthy state and en-
counters an SSD failure. (1) The Server Health Monitor
(SHM) detects NVMe read errors and follows the offlining
workflow (§2). (2) Diagnostics reports the SSD component

Server Health|(1) :
Monitor i (Z)l Legend:
(G)T E Modified
Hyrax |(4) ! Hyrax [Jexisting
Inventory | = Policy system
&) 1 Lo New
VM Hardware | @ Dcontro/
Scheduler| | Inventory | | plane
] system
Online] Offline

Figure 10: Simplified overview of Hyrax’s control plane.

pathway to the Hyrax Policy (@&,). (3) The policy decides
to start the deactivation workflow and communicates with a
server-local daemon to deactivate that SSD (§). The deac-
tivated SSD’s serial number is also passed to the new Hyrax
Inventory system. (4) After deactivation, the server is tested
in the certification step. In the rare event that diagnostics
leads Hyrax to deactivate the wrong pathway (§3), it would
be detected in this step, e.g., during load testing. After pass-
ing certification, the server is onlined. As multiple control
plane services might cache the server’s capacity, onlining
requires Hyrax to invalidate caches throughout the control
plane including the VM scheduler. (5) The Hyrax Inventory
shares the server’s capacity and performance profile (CPP)
with the VM scheduler (§6.3). Internally, our inventory tracks
server state as a delta to the existing Datacenter Inventory. The
delta consists of the serial numbers and slots of deactivated
components, which remains small enough to fit into a single
inventory server’s memory. (6) The Hyrax Inventory sends
active serial numbers and slots to the SHM. The SHM only
checks for these active components, which prevents the SHM
from triggering warnings over missing components which
have been deactivated.

There are additional changes in downstream services not
shown here. For example, it was previously uncommon for
servers to have multiple concurrent failures, so repair tickets
used to be issued only for a single component type. With
Hyrax, it is common for repair tickets to include multiple dif-
ferent component types. For example, there are no tickets for
a server with two DIMM failures. However, if the two DIMM
failures are later followed by any failures for an undegradable
component (e.g., the NIC) the repair ticket will involve two
different component types. To minimize repair tickets, Hyrax
changed the ticket workflow and retrained technicians to re-
pair multiple different component types at once, with a single
ticket (mini-batching).

6.3 VM scheduling policy

Hyrax requires three changes to VM scheduling and an
optional optimization. First, the VM scheduler consumes
Hyrax Inventory to calculate hardware resources for indi-
vidual servers instead of a single lookup to obtain a cluster’s
homogeneous server type. The overhead of this lookup is
negligible as servers moving from offline to online state is

All Tickets (100%)

Diag says unde-

i 0
gradable (27%) Diag says degradable (73%)

Diag in- Accurate |Diag in- .
accurate Diag accurate AC(EL;rzatleo /D)|ag
(2.7%) (24.3%) [(0.9%) e
Legend IMISSI.ng Diag has location
. ocation o
Possibly unnecessary (2.8%) (69.3%)

[] server repair ticket
(missed opportunity)

0 Server incorrectly restarted in degraded mode
(negative user experience, if not caught by certification testing)

Figure 11: Accuracy of automated fault diagnostics at Azure and
their impact on Hyrax.

rare compared to VM scheduling events.

Second, we extend filter rules (§2) to enforce Hyrax’s CPP,
i.e., which VM types can be placed on every server.

Third, we change the definition of a cluster’s “capacity
reserve”. The capacity reserve exists for multiple reasons,
including to have a target to migrate VMs to when a server
shows signs of failing soon. A key component of the capacity
reserve is to have some healthy empty servers (HES) that are
able to host any kind of VM, including full-server VMs that
use all of a server’s capacity. Degraded servers are not able to
host all full-server VMs. We thus exclude them from being
counted as HES.

Finally, we change a preference rule to optimize scheduling.
Since degraded servers cannot be counted as HES, we prefer
fully-healthy servers to become empty and stay empty. Our
change updates rules to prefer placing VMs on degraded
servers over healthy servers, provided no other rule takes
precedence. By doing this we increase HES counts which
allows placing more VMs into clusters.

6.4 Hyrax Diagnostics

Hyrax builds on an existing automated monitoring and diag-
nostics system. This system’s output is targeted at humans
and includes information on which component type is faulty
and its location. To use this system, we add an interpreter
that maps diagnostic results to valid Hyrax component path-
ways. As part of this design, we analyzed four years of repair
ticket logs at Azure. This analysis shows the accuracy of
the diagnostic system and how Hyrax handles inaccurate or
incomplete diagnoses. Specifically, we rely on notes from
human technicians, who worked on the tickets in our history
of repair logs. These notes indicate whether the diagnosis was
correct, including whether the right component was identified.

At a high level, we find that diagnostic accuracy is high.
For example, across all tickets in 2021, 96.4% accurately
identify the component type at fault. For a more detailed
view, Figure 11 shows a breakdown of all diagnoses made in
2021, outlining the different scenarios that arise and how they

impact Hyrax’s operation.

We make two interesting observations: First, diagnostic
accuracy is lower for diagnoses pointing to an undegradable
component: 10% of tickets labelled with an undegradable
component are inaccurate (accounting for 2.7% of all tickets).
Fortunately, this type of misdiagnosis is relatively benign.
Hyrax will take the server offline (for potential later repair),
which is the intended behavior if the actual faulty component
is indeed undegradable. It is however a missed opportunity to
keep the server running in degraded mode if the true fault is
in a degradable component.

Second, diagnostic accuracy is very high for diagnoses
pointing to a degradable component: 98.8% of tickets labelled
as degradable do accurately identify the component type at
fault. Within these, some diagnoses are incomplete, where the
correct component type is specified, but location information
is missing (e.g. the diagnosis indicates a DIMM problem, but
does not specify a DIMM slot). More precisely, 3.8% of the
accurately diagnosed degradable tickets (corresponding to
2.8% of all tickets) are missing location information which
leads Hyrax to offline the server despite the fact that the faulty
component is degradable. These tickets thus also represent a
missed opportunity for degraded mode operation.

The last scenario we need to consider is the 1.2% of degrad-
able tickets that contain an inaccurate diagnosis pointing to
the wrong component type. These make up only 0.9% of all
tickets, but their impact on Hyrax is less obvious. In the best
case, Hyrax will try to deactivate the specified pathway and
certification testing (recall §4) fails since this is not the faulty
component. Failing certification testing with any degraded
component automatically triggers an investigation both by a
technician and by the Hyrax on-call team. In the worst case,
the server passes certification testing and returns to serve cus-
tomer VMs despite the fact that the true faulty component
has not been degraded or repaired. This can lead to negative
user experience as VMs may be scheduled on the server and
they may get interrupted if the server is offlined again. Such
repeat offlining of the same server also happens for techni-
cian repairs. In fact, our preliminary data indicates that the
rate at which repaired servers are offlined again is compa-
rable to such inaccurate decisions by Hyrax. This is likely
because technicians rely on the same automated diagnostics
and certification process as Hyrax.

We conclude by noting that diagnostic accuracy has con-
tinuously improved over the past years. Figure 12 shows the
breakdown of repair tickets for three different hardware gen-
erations (Gen 2-4) by year since deployment. We observe
that accuracy has improved from generation to generation,
and also that accuracy improves over time within a particular
hardware generation. Both the fraction of tickets with missing
location and tickets with inaccurate fault code have decreased
over the years. The reason is a concerted effort by the diag-
nostic team at Azure to add more coverage of various fault
codes as well as improvements based on technician feedback.

Generation 3

100

75

50 50
0 1 2

Generation 2
100

75

25.. I25
: I

0 1 2 3
Generation 4

Category
. Degradable With Location

Percentage of Tickets

Degradable Without Location

Inaccurate or Unknown FaultCode

) - - . .
0
0 1
Years from Deployment

Figure 12: The progression of the breakdown of repair tickets at
Azure by deployment year for three generations of servers.

7 Evaluation

7.1 Evaluation Setup

We use two types of setups in our evaluation of Hyrax. First,
we evaluate Hyrax on production servers to characterize its
performance and ability to mitigate faulty components. Our
evaluation focuses on 3rd-generation servers which have been
deployed for 2-3 years. Second, to measure cluster-level im-
pacts on repairs and VM scheduling over six years, we use
trace-driven large-scale cluster-level simulations.

7.1.1 Server experiments

We use production server hardware and synthetically inject
failures using a commercial memory error injector (MEI) that
interposes on the DDR memory bus [29]. We also perform
real failure tests by intercepting nodes after Diagnostics flags
a memory fault, but before a repair ticket is issued (§4).

We measure latency and bandwidth with Intel MLC [30]
from inside VMs on healthy and degraded servers. MLC
characterizes worst-case performance as it is more sensitive
to deteriorated latency and bandwidth than any real-world
application we’ve tested. We compare three implementations.

e Hyrax: Coloring approach based on 1GB hypervisor
page table entries (§4)

* Naive: Hypervisor randomly allocates VM memory
among free pages

¢ Interleaving: 4kB-interleaving in hypervisor page tables

Our tests cover Intel servers from generations 3-5 and a
subsequent (not yet deployed) generation. We report measure-
ments from the 3rd generation as results from other gener-
ations are qualitatively the same. A typical 3rd-generation
server uses two Intel Skylake processors (96 threads total).
Each socket is equipped with six DDR4 channels with a
32GB and a 16GB DIMM per channel. Memory interleav-
ing is enabled across all ranks on the same socket; thus, the

OS/hypervisor sees two NUMA nodes. There are six data
SSDs using 960GB NVMe drives. The server runs Azure’s
production-grade hypervisor and software stack. VMs are
allocated with a 1GB page size.

7.1.2 Large-scale simulations

We replay VM, failure and repair ticket traces in a simulated
environment, using the Azure production VM scheduler code
base. The traces span 66 clusters that host general-purpose
VMs from regions in the US and Europe. With only 2-3 years
of real failure traces for 3rd-generation servers, we model
future failures with the help of 1st and 2nd-generation failure
traces. The simulator models Hyrax’s control plane compo-
nents (Figure 10) including Hyrax and all server states (Fig-
ure 6).

We compare two designs.

* Hyrax: Hyrax enables degraded server states and re-
pairs servers with undegradable components and above
thresholds (§4).

* AoN: All-or-Nothing repairs all hardware faults.

We simulate four possible repair schedules: issuing an imme-
diate repair ticket (IR) and scheduling batch repairs every 3,
6, or 12 months (3m, 6m, 12m). For IR, we sample actual
repair delays from Azure production datacenters. For batch
repairs, we assume a hypothetical schedule where repairs are
immediately effective at 3, 6, or 12 months. This batch re-
pair schedule is unlikely how batch repairs would actually
be implemented in practice. Instead, its purpose is to show a
hypothetical and simplified schedule that could also reduce
repair work, to highlight the impact of degraded mode oper-
ation. For each repair schedule, we compare the number of
repair tickets, repair trips, resource availability and impact on
arriving VMs under Hyrax and AoN.

We cross-validate the simulator for AoN relative to real-
world clusters with the same failures and VM workloads. Due
to the inherent randomness in placement decisions, repeated
runs have small deviations. Across runs on 10 clusters, simula-
tion of AoN and real-world metrics are within 0.25%. Overall,
our simulations required more than 80,000 CPU hours.

7.2 Correctness

In this section, we use production server measurements to
demonstrate that Hyrax can correctly deactivate component
paths and thereby avoid future faults on a path. Due to space
constraints, we focus on memory faults and omit qualitatively-
similar SSD experiments.

Synthetic failures. We measure memory error rates with the
MEI placed on a given DIMM slot and either activate all ranks
(no-Hyrax) or deactivate the corresponding slot (Hyrax). We
target the MEI to corrupt bits matching a single row address
and start a VM on the same CPU socket. The VM runs MLC
in the peak bandwidth setting. Under no-Hyrax, we observe

120
2 Healthy
H H
fam) color 3 clior's| | (Al DIMMs
o% 90 1 =1 enabled)
§0,
= Hyrax H
< 60 yrax
3o g2 |(Page coloring
52 Hyrax with A1, A2
7o 30{ Colori deactivated)
e 5 Nl
m [Naive
= 0 Cg\rSrXO (A1,A2
S . T T deactivated
24 8 16 32 ivated)

VM Core Count

Figure 13: Peak memory bandwidth of a healthy server, a Hyrax
server with page coloring, and a naive implementation of degraded
servers with two DIMMs deactivated.

a high rate of correctable memory errors. There are bursts
of uncorrectable errors that lead to both VM and host crash-
ing within minutes. With Hyrax, there are no memory errors
throughout the duration of a 48 hour test; the VMs and the
host run without errors or crashes.

Real-world failures. We identify a server in a test cluster
that was diagnosed with a high rate of uncorrectable memory
errors on one DIMM. Diagnostics is able to boot its minimal
OS and reproduce these memory errors. Hyrax recognizes
that this server can be degraded and deactivates the correct
DIMM. Certification testing does not find any memory errors
and issues a “pass” that qualifies this server for hosting VMs.

7.3 Performance

In this section, we demonstrate that Hyrax can successfully
mitigate any VM performance impact of degraded mode oper-
ation. For space reasons, we focus on the more complex case
of memory performance (memory latency and bandwidth).

Server-level experiments. Figure 13 compares VM mem-
ory bandwidth of Hyrax and Naive on a degraded server to
a healthy server. The degraded server has Al and A2 deacti-
vated. Hyrax allocates the VM using colors 0-3, depending on
VM core count (§4). We find that memory bandwidth under
Hyrax is within 1% of the healthy server. In contrast, Naive’s
performance is highly variable with mean bandwidth up to
36% lower and worst-case bandwidth up to 82% lower than
on the healthy server.

We also tested memory latency. In all three systems, and
across all experiments, the unloaded memory latency reported
by MLC for the degraded server remains within 5% of the
healthy server.

Large-scale page coloring simulations. The previous exper-
iment focused on a single VM in isolation for one particular
failure pattern. For a more complete view of VM performance
under Hyrax we use simulations that are driven by actual
traces of VM arrivals and departures to capture the effect of
VM churn and also simulate component deactivation based
on real failure traces to capture the rich set of failure patterns

VM aggregate bandwidth Bandwidth on worst VM page
4

Memory
Allocation
Policy

w
>50%
>70%

I Hyrax

(Page Coloring)
Page
Interleaving

Percentage of VMs
- [N)

Naive

I
0- T Y ' .
<95% <99% <95% <99%

VM Memory Bandwidth Relative to Healthy Server

Figure 14: Hyrax almost always achieves the same VM memory
bandwidth on degraded nodes as VMs would on healthy servers.

that arises in practice. (The traces come from our cluster simu-
lations in §7.4). We play back these VM events in server-level
simulations of the three memory allocation policies: Hyrax
page coloring, page interleaving, and Naive.

Figure 14 shows the percentage of VMs with less than
95% and 99% of the bandwidth of a healthy server, both for
VM aggregate bandwidth (left) and bandwidth of the VM’s
worst page (right). With Hyrax, fewer than 0.16% of VMs
see bandwidth on their worst page that is lower than 99% of
the worst-page bandwidth achieved on a healthy server. VM
aggregate bandwidth under Hyrax is even closer to that of a
healthy server.

Page interleaving also results in a low percentage of VMs
that achieve less than 95-99% of the aggregate memory band-
width of a healthy server. However, more than half of VMs
include at least one memory page with significantly lower
bandwidth. We also note that page interleaving increases a
VM’s page table by orders of magnitude. This leads to a high
rate of TLB misses and increased memory access latency. In
practice, we know that memory access latency is even more
important than bandwidth — internal production workloads
lose 5-15% of performance for small page sizes. Thus, inter-
leaving is not practical.

Naive is compatible with large page sizes but more than
2% of VMs achieve less than 95% of the aggregate band-
width goal. This grows to 3.5% for a goal of 99% and above
50% when considering the worst page in a VM. While Naive
performs well on average, tail performance matters at scale.

7.4 Large-scale Cluster Simulations

We turn to large-scale cluster simulations to characterize
Hyrax’s impact on repair tickets, repair trips, cluster resource
availability and user impact. We consider four different repair
modes: Azure’s process of immediately scheduling a repair
ticket (IR) and hypothetical repair batching policies with three
different intervals (3 months, 6 months, 12 months).

Repair tickets. We begin by measuring for each repair mode
the percentage of all hardware failures that result in a repair
ticket, i.e. the failures that require a technician to perform

System E@ AoN E3 Hyrax

100 =—y—

T
$ =

System Bl AoN E3 Hyrax

o 100 ——

.

14

~
a

PR
S o
——

Repaired HW Failures (%)
w0
o

i "l
e
=
€ £
el ©

12m

Repair Trips Counts Ratio (%)
o
o

['4 £ £
= © ©

12m

(a) Repair tickets. (b) Repair trips.

System Bl AoN EJ Hyrax
10.0

System Bl AoN EJ Hyrax

o
o

7.5

N
3

5.0

2

Rescheduled VMs (%)
o
o

0.0

2[2
t
B

12m
R

3m

12m

Loss in Available Core-hours (%)

(¢) Lost available core-hours. (d) Rerouted VMs.

Figure 15: Results from a simulated deployment of Hyrax across two regions with 66 compute clusters and four repair schedules: immediate
repair tickets (IR) and batch repairs (3m, 6m, 12m). The figures compare key metrics under Hyrax with all-or-nothing server operation (AoN).

EN
EN

100.2 100.2 100.2

N
N

100.2 100.2 100.2

-

100.2 100.2 100.2

Disabled SSD Count

o

100.1 = 100 100

Disabled SSD Count

0 1 2 4 8 0 1 2 4 8
Disabled DIMM Count Disabled DIMM Count

(a) Available core-hours. (b) Available memory-hours.

EN
EN

- N
- N

o
o

Disabled SSD Count
Disabled SSD Count

0 1 2 4 8 0 1 2 4 8
Disabled DIMM Count Disabled DIMM Count

(c) Repair Tickets. (d) Rerouted VMs.

Figure 16: Ratio between Hyrax and AoN for different threshold settings with fixed batch repair interval (3m). Stranded availability is not

included when computing core-hours and memory-hours availability.

physical examinations and repairs. Figure 15a shows the re-
sults for Hyrax and AoN using boxplots, where each data
point in the distribution represented by the boxplot corre-
sponds to one of the 66 clusters.

We observe that Hyrax reduces the number of repair tickets
by more than a factor of 2 across all repair modes. Both mean
and median are consistently around 55% lower under Hyrax
than under AoN. A significant contributor to Hyrax’s effec-
tiveness is mini-batching. Specifically, under Hyrax, we find
that 56% of repair tickets contain more than one component,
compared to single-digit fractions for AoN.

Repair trips. We compare the number of repair trips required
under Hyrax and AoN, i.e. the number of times when a techni-
cian needs to travel to a cluster. Figure 15b shows the number
of repair trips normalized by the number of hardware failures.

We observe that Hyrax significantly reduces repair trips
under immediate repairs (IR). While under AoN every hard-
ware failure results in a repair trip, under Hyrax, on average
55% of these repair trips can be avoided by deactivating the
affected component.

Under batch repairs, the number of repair trips to a cluster
is upper-bounded to once every x months, where x is the repair
interval. Interestingly, Hyrax still provides improvements over
AoN, albeit smaller than for IR. For example, for a batch repair
interval of 3 months Hyrax reduces repair trips by around 20%
(mean and median across clusters). Every saved repair trip
results from a 3 month interval in which Hyrax was able to

handle all failures with component deactivation.

Lost available core-hours. This metric quantifies the impact
of the repair operating model on the availability of cluster
hardware resources. In particular, we consider the percentage
of a cluster’s total core-hours (i.e. number of cores in the
cluster multiplied by cluster lifetime) that are lost, i.e., a core
physically exists in the cluster, but is not available to run VMs
due to one of two reasons: (1) A server is offline for repairs;
(2) Due to resource fragmentation some of a server’s cores
cannot be allocated to VMs because of limited availability
of another resource (DIMMs or SSDs) [40]. Hyrax might
exacerbate resource fragmentation as it might deactivate mul-
tiple components of one type, making it harder to utilize the
remaining components.

Figure 15¢ shows that under a batch repair schedule Hyrax
significantly reduces the loss of available core-hours. Hyrax
keeps servers running (albeit with reduced capacity) after
degradable component failures, rather than taking the entire
server offline until the next scheduled batch repair. The im-
provement in the median lost core-hours of Hyrax over AoN
ranges from 38% for a 3m interval to 55% for a 12m interval.

Interestingly, we observe that Hyrax improves loss in avail-
able core-hours even in the IR repair schedule. The median
loss in core-hours is 9% lower under Hyrax than AoN. The
reason is that immediate repairs are not truly immediate - typ-
ical repair times are on the order of days, but can sometimes
take much longer, depending on component availability. In

contrast, deactivating components is consistently fast.

Rerouting of VMs. When a cluster’s available resources are
insufficient to host an arriving VM, the VM is rerouted to
a different cluster. Rerouting of VMs can negatively impact
user experience as it increases the time until a VM gets started.
Figure 15d shows the percentage of arriving VMs that are
being rerouted under Hyrax versus AoN.

Under IR, the fraction of VMs that get rerouted is very
small for both Hyrax and AoN. While it is identical (zero) in
the median for both policies, the mean is slightly lower (4%
reduction) under Hyrax as it decreases lost core hours in some
clusters with many failures.

When moving to batch repair schedules, Hyrax provides
clear improvements over AoN, ranging from an average 38%
reduction in rerouted VMs for 3 month batch repairs to an
average 64% reduction for 12 month batch repairs. These
improvements are a direct consequence of the reduced loss in
system capacity (core-hours) under Hyrax compared to AoN.

TCO impacts. Server repairs account for 9 to 12% of TCO
(§2), and Hyrax reduces repair tickets by an average of 55%
across the simulated clusters (§7.4). However, repairs fre-
quently involve multiple components as well as undiagnosed
failures, which extends repair times by about 15%. Thus,
Hyrax reduces technician time by about 48%, which trans-
lates to a 4.5 to 6% reduction in TCO.

Sensitivity to Hyrax’s deactivation thresholds. Our imple-
mentation of Hyrax chooses its deactivation threshold of two
per component type to reduce complexity. Figure 16 shows
how different choices of thresholds impact available core
hours, available memory hours, repair tickets and rerouted
VMs. The numbers in the figure represent the ratio of Hyrax
to AoN for a batch interval of 3m. Darker color shading cor-
responds to better results.

We observe that available system capacity (core-hours as
well as memory hours) does not improve/change significantly
beyond a threshold of one DIMM and one SSD. The reduction
in number of repair tickets and rerouted VMs under Hyrax
continues to increase as thresholds increase, however, returns
are diminishing past a threshold of two DIMMs and two SSDs.
One of the reasons is that it is very rare that more than two
DIMMs and/or more than two SSDs fail in the same server,
so these scenarios have little impact on key metrics.

In conclusion, increasing the thresholds beyond two per
component type provides very limited gains while increasing
system complexity, e.g. in handling servers with very low
performance due to a large number of degraded components.

Sensitivity to different regions. Figure 1 shows that Hyrax
performs similarly across the US and EU region.

Sensitivity to server generation. We also simulated a full
deployment of Hyrax on 4th-generation servers. Figure 12
shows that this generation has an overall lower percentage of
degradable components. Hyrax’s benefits are thus slightly less
pronounced on this server generation. However, as diagnostics

has improved over time for 2nd and 3rd-generation servers,
4th-generation servers may also improve in the future.

8 Related Work

Our work is the first work to explore degraded mode operation
in the context of VM compute servers and at the scale of a
cloud platform.

Datacenters that fail-in-place. Related to our work are the
general efforts toward lights-out data centers such as con-
tainerized datacenters [23, 65], underwater datacenters [10],
and zero-maintenance storage systems [49,50]. In our evalu-
ation, AoN with high batch repair intervals (12m) represents
these approaches. Unfortunately, the loss in availability or
cost (hardware, power, space) to make up for this loss is pro-
hibitive without degraded mode.

Mechanisms to implement fail-in-place. We borrowed the
term degraded mode from RAID systems [51], where upon
failure of a drive, the system seamlessly continues to operate
until the failed drive is replaced, however at reduced capacity
and reduced performance.

There are many existing fault-tolerance approaches that use
component-internal redundancy [8,25,34,44,52,55,67,68].
Hyrax targets the left-over failures not already covered by
these approaches. It can be viewed as taking degraded mode to
the extreme and applied to even combinations across different
devices. As such, Hyrax has different requirements that raises
novel challenges (§4).

Improving repairs and redundancy. Recent efforts for re-
ducing the reliance on human technicians in lights-out dat-
acenters explore the use of robots to replace hardware com-
ponents [56]. Currently, this technology is not sufficiently
capable, versatile and economical to be employed at scale.
Our work presents a solution that can be deployed immedi-
ately in today’s systems.

Finally, systems that require no or minimal repairs through-
out their lifetime are common in the context of embedded
systems, for example, as part of autonomous vehicles, air-
planes or satellites [6, 14,47,73]. However, these are special
purpose systems with specialized components and significant
redundancy. In contrast, we are exploring whether a cluster
based on commodity data center components can operate with
no or minimal repair throughout its lifetime through the use
of fail-in-place.

9 Deployment Experience and Discussion

Hyrax reduces repair tickets while maintaining cluster ca-
pacity, VM scheduling, and VM performance. We discuss
deployment experience and broader issues.

Deploying incrementally. Hyrax requires changes across
teams that have not previously interfaced, including hypervi-

sor software engineers, hardware validation teams, and data-
center staffing. Such a large project requires years to achieve
visibility and alignment. During this process, we developed
variants of Hyrax that could be deployed incrementally and
fly largely under the radar. Our first increment focused on
deactivating a single SSD in clusters without impacts on VM
scheduling due to spare capacity and bandwidth. Further, we
shortcut offline state changes as we could pinpoint some SSD
failures without diagnostics. Our shortcut quickly migrated
VMs away, rebooted the server, and deactivated the faulty
SSD without leaving the online server state. Building in in-
crements increased visibility and buy-in across Azure which
facilitated far-reaching changes to VM scheduling and offline
server workflows. Overall, Hyrax demonstrates the feasibility
of overcoming ossification in large software stacks.

Reduced benefits due to non-optimized software paths.
The server state diagram in Figure 6 and the control plane
overview in Figure 10 are vastly simplified. In principle, a
degradable server should be able to return online within half
an hour (after a reboot). However, before Hyrax, repairs took
multiple days and sometimes even weeks, e.g., due to supply
chain issues. Thus, the duration of offline states and transitions
did not matter. Under Hyrax, returning to online has to wait
for these states, which takes multiple hours in production.
An early variant shortcuts the offline state and returned
servers to online within minutes. Unfortunately, the deploy-
ment scale of this variant is limited as few faults can be recog-
nized as degradable without deep diagnosis. The limited scale
of the shortcut variant and the slowness of Hyrax’s offline
implementation currently limits Hyrax’s ability to improve
cluster capacity. This is reflected in our simulations (§7).

The usefulness of simulations and quantitative data. We
tested significant parts of the production code for inventory
and state management in a mocked-up environment driven by
simulated failures. Our large-scale simulations also helped
convince engineering teams to help with large-scale changes.
For example, we initially faced significant skepticism towards
mini-batching. This was partly due to multiple past efforts
that had tried and failed to implement mini-batching. These
past efforts had cemented the idea that multiple components
failing at once is a very rare occurrence. Simulations showed
that Hyrax led to a high occurrence of mini-batched tickets.

Tailoring automated diagnostics for FIP. While our work
shows that FIP can work with existing diagnostics systems,
there is still room for improvement, including fine-grained
diagnostics to find individual faulty cores and to improve
locating other component paths (§6.4). We also find subtle
shortcomings in diagnostics systems due to their focus on
technician repairs. For example, current diagnostics systems
prefer not to issue a ticket when they cannot reproduce a fail-
ure and pinpoint a specific repair action. This is required due
to the high cost of false positives, i.e., calling a technician
and replacing a component when the underlying component

was not actually faulty. The flip side is a higher rate of false
negatives, which we observe as repeated failures on the same
server. Hyrax’s automation may open up a path towards im-
proving cloud reliability and availability. Specifically, a FIP
system could tolerate a higher rate of false positives (as they
lead to a negligible capacity impact), and in exchange achieve
lower false negative rates.

Interaction with class failures. An early practical concern
at Azure was how Hyrax interacts with the occurrence of
class failures, which is a recall of a large set of components of
similar types from the same manufacturing period. Over three
years, we found class failures affecting multiple PSU, DIMM,
and CPU models, and one SSD model. Class failures often
lead to an expectation of increased failure rates which may
affect availability. Thus, associated components are typically
proactively swapped out for new components. While class
failures cause only about 5% of repair tickets, they often
affect a large percentage of servers in the same cluster at
once. If the number of affected components in a server is
below Hyrax’s thresholds, degraded mode can be an effective
mitigation. However, deactivating many components at once
may negatively affect VM scheduling. Thus, when we look
back at three years of class failures, Hyrax would have only
been effective in mitigating one out of about a dozen of class
failures.

Implications for new datacenter environments. Our find-
ings affect how one might design a future datacenter. In short,
Hyrax reduces repair needs but does not obviate the need
for repairs entirely. Specifically, the capacity loss after 6 to
10 years of deployment without repairs exceeds the cost sav-
ings of most new datacenter designs. We thus expect to see
continued need for individual component replacement.

Hyrax’s reduction in the number of repairs may be suffi-
cient to offset the additional repair time introduced by some
designs, such as new cooling techniques [33,72]. Specifically,
we find that Hyrax enables datacenter designs that result in
repairs that take about twice as long. When repair times take
much longer, TCO will increase even with Hyrax. This might
be the case for some server and datacenter designs including
extremely dense servers [15-18,21,27,28,36], connector-less
server designs with soldered-on components [45], or datacen-
ters in hard-to-reach locations, such as sealed containers on
the ocean floor [10].

Acknowledgments

We thank our shepherd, Daniel Peek, and the anonymous
OSDI °23 reviewers for their great comments. We thank our
many partner teams within Microsoft including Dirk Hof-
mann, Saptadeep Chanda, and Tom Harpel for their continued
support on understanding technician training, workflows, and
staffing; Rama Bhimanadhuni for his help on firmware; and
Manish Dalal for early feedback on interpreting diagnostics.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

Pradeep Ambati, fiiigo Goiri, Felipe Frujeri, Alper Gun,
Ke Wang, Brian Dolan, Brian Corell, Sekhar Pasupuleti,
Thomas Moscibroda, Sameh Elnikety, Marcus Fontoura,
and Ricardo Bianchini. Providing slos for resource-
harvesting vms in cloud platforms. In /4th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 735-751, 2020. 2

Nadav Amit, Muli Ben-Yehuda, IBM Research, Dan
Tsafrir, and Assaf Schuster. viommu: Efficient iommu
emulation. In 2011 USENIX Annual Technical Confer-
ence (USENIXATC 11). 2

Backblaze. Hard drive data and stats. https://www.
backblaze.com/b2/hard-drive-test-data.html
accessed 6/26/2022, June 2022. 1

Luiz André Barroso, Jimmy Clidaras, and Urs Holzle.
The datacenter as a computer: An introduction to the
design of warehouse-scale machines. Synthesis lectures
on computer architecture, 8(3):1-154, 2013. 1, 1, 2, 2

Luiz André Barroso, Jeffrey Dean, and Urs Holzle. Web
search for a planet: The google cluster architecture.
IEEE Micro, 23(2):22-28, 2003. 1

John W Bennett, Glynn J Atkinson, Barrie C Mecrow,
and David J Atkinson. Fault-tolerant design considera-
tions and control strategies for aerospace drives. I[EEE
Transactions on Industrial Electronics, 59(5):2049—
2058, 2011. 8

Daniel S. Berger, Fiodar Kazhamiaka, Esha Choukse,
fﬁigo Goiri, Celine Irvene, Pulkit A. Misra, Alok Kumb-
hare, Rodrigo Fonseca, and Ricardo Bianchini. Research
avenues towards net-zero cloud platforms. Workshop
on NetZero Carbon Computing, 2 2023. 1, 2,2

Stuart Allen Berke and Vadhiraj Sankaranarayanan. Sys-
tem and method for post-package repair across dram
banks and bank groups, August 2019. US Patent
10,395,750. 2, 5.1, 8

Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. Borg, omega, and kubernetes.
Communications of the ACM, 59(5):50-57, 2016. 2

Ben Cutler, Spencer Fowers, Eric Peterson, and
Mike Shepperd. Project natick. = OpenCompute
OCPREG19 track on Rack & Power / Advanced Cool-
ing https://natick.research.microsoft.com/
accessed 6/26/2022, October 2020. 8, 9

Dell. Memory population rules for 3rd genera-
tion intel xeon scalable processors on poweredge
Servers. https://www.delltechnologies.com/

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

asset/en-us/products/servers/industry-
market/whitepaper-memory-population-rules—
for-3rd-generation-intel-xeon-scalable-
processors-on-poweredge-servers.pdf accessed
11/26/2022, 2022. 5.2

Catello Di Martino, Zbigniew Kalbarczyk, Ravis-
hankar K Iyer, Fabio Baccanico, Joseph Fullop, and
William Kramer. Lessons learned from the analysis of
system failures at petascale: The case of blue waters. In
2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 610-621,
2014. 1

Xiaoming Du and Cong Li. Combining error statistics
with failure prediction in memory page offlining. In
International Symposium on Memory Systems, pages
127-132,2019. 5.1

Elena Dubrova. Fault-tolerant design. Springer, 2013.
8

E3NV. Ots immersion servers. https://www.e3nv.
com/immersion-servers accessed 6/26/2022,2022. 9

Wesley M Felter, Tom W Keller, Michael D Kistler,
Charles Lefurgy, Karthick Rajamani, Ramakrishnan Ra-
jamony, Freeman L Rawson, Bruce A Smith, and Eric
Van Hensbergen. On the performance and use of dense

servers. IBM Journal of Research and Development,
47(5.6):671-688, 2003. 9

Gigabyte. Coolit liquid-cooled ready servers.
https://www.gigabyte.com/Industry-
Solutions/coolit-liquid-cooled-ready-
servers accessed 6/26/2022, 2022. 9

GRC. Servers designed for immersion (sdi).
https://www.grcooling.com/servers—-for-
immersion-cooling/ accessed 6/26/2022, 2022. 9

Albert Greenberg, James Hamilton, David A Maltz, and
Parveen Patel. The cost of a cloud: research problems
in data center networks, 2008. 2

Albert Greenberg and Dave Maltz. What goes into a
data center. SIGMETRICS 2009 Tutorial, 2009. 2

Anthony Gutierrez, Michael Cieslak, Bharan Giridhar,
Ronald G Dreslinski, Luis Ceze, and Trevor Mudge. In-
tegrated 3d-stacked server designs for increasing physi-
cal density of key-value stores. In ACM ASPLOS, pages
485-498,2014. 9

Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan,
David Dion, Esaias E Greeff, Star Dorminey, Shailesh
Joshi, Yang Chen, Mark Russinovich, and Thomas
Moscibroda. Protean:vm allocation service at scale.
In USENIX OSDI, pages 845-861, 2020. 2

https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.backblaze.com/b2/hard-drive-test-data.html
https://natick.research.microsoft.com/
https://www.delltechnologies.com/asset/en-us/products/servers/industry-market/whitepaper-memory-population-rules-for-3rd-generation-intel-xeon-scalable-processors-on-poweredge-servers.pdf
https://www.delltechnologies.com/asset/en-us/products/servers/industry-market/whitepaper-memory-population-rules-for-3rd-generation-intel-xeon-scalable-processors-on-poweredge-servers.pdf
https://www.delltechnologies.com/asset/en-us/products/servers/industry-market/whitepaper-memory-population-rules-for-3rd-generation-intel-xeon-scalable-processors-on-poweredge-servers.pdf
https://www.delltechnologies.com/asset/en-us/products/servers/industry-market/whitepaper-memory-population-rules-for-3rd-generation-intel-xeon-scalable-processors-on-poweredge-servers.pdf
https://www.delltechnologies.com/asset/en-us/products/servers/industry-market/whitepaper-memory-population-rules-for-3rd-generation-intel-xeon-scalable-processors-on-poweredge-servers.pdf
https://www.e3nv.com/immersion-servers
https://www.e3nv.com/immersion-servers
https://www.gigabyte.com/Industry-Solutions/coolit-liquid-cooled-ready-servers
https://www.gigabyte.com/Industry-Solutions/coolit-liquid-cooled-ready-servers
https://www.gigabyte.com/Industry-Solutions/coolit-liquid-cooled-ready-servers
https://www.grcooling.com/servers-for-immersion-cooling/
https://www.grcooling.com/servers-for-immersion-cooling/

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

James R. Hamilton. An architecture for modular data
centers. In Third Biennial Conference on Innovative
Data Systems Research, CIDR 2007, Asilomar, CA, USA,
January 7-10, 2007, Online Proceedings, pages 306-313.
www.cidrdb.org, 2007. 8

Peter H Hochschild, Paul Turner, Jeffrey C Mogul, Rama
Govindaraju, Parthasarathy Ranganathan, David E
Culler, and Amin Vahdat. Cores that don’t count. In Pro-
ceedings of the Workshop on Hot Topics in Operating
Systems, pages 9-16, 2021. 1,2

Duwon Hong, Myungsuk Kim, Geonhee Cho, Dusol
Lee, and Jihong Kim. Guardederase: Extending ssd
lifetimes by protecting weak wordlines. In 20th USENIX
Conference on File and Storage Technologies (FAST 22),
pages 133-146, 2022. 2, 8

Amy Hood. Microsoft earnings release fy22 g4.
https://www.microsoft.com/en-us/Investor/
earnings/FY-2022-Q4/press-release-webcast

accessed 11/26/2022, 2022. 2

Hypertec. Trident immersion servers. https:
//hypertec.com/ciara/immersion-servers/

accessed 6/26/2022, 2022. 9

AVNET Integrated. Integrated rack with immersed,
liquid-cooled it. https://www.avnet.com/wps/
portal/integrated/resources/liquid-cooling/

accessed 6/26/2022, 2022. 9

Intel. Memory error injection mei test card
and utility. https://designintools.intel.com/
MEI_Test_Card_and_Utility_p/stlgrn6l.htm ac-
cessed 6/26/2022,2017. 7.1.1

Intel. Memory latency checker v3.9a.
https://www.intel.com/content/www/us/en/
developer/articles/tool/intelr-memory—
latency-checker.html accessed 6/26/2022, 2022.
5.2,7.1.1

Intel. Supported memory and memory popu-
lation rules for the intel server board family.
https://www.intel.com/content/www/us/
en/support/articles/000055509/server-
products/server-boards.html accessed
11/26/2022, 2022. 5.2

Michael Isard. Autopilot: automatic data center man-
agement. ACM SIGOPS Operating Systems Review,
41(2):60-67, 2007. 1, 2,2

Majid Jalili, Ioannis Manousakis, fﬁigo Goiri, Pulkit A
Misra, Ashish Raniwala, Husam Alissa, Bharath Ra-
makrishnan, Phillip Tuma, Christian Belady, Marcus
Fontoura, et al. Cost-efficient overclocking in

[34]

(35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

immersion-cooled datacenters. In ACM/IEEE 48th An-
nual International Symposium on Computer Architec-
ture (ISCA), pages 623-636, 2021. 1,9

Dae-Hyun Kim and Linda S Milor. Ecc-aspirin: An ecc-
assisted post-package repair scheme for aging errors in
drams. In IEEE VLSI Test Symposium, pages 1-6, 2016.
2,8

Andi Kleen. Mcelog bad page offlining. http://www.
mcelog.org/badpageofflining.html, 2021. 5.1

Ravi Kollipara, Ming Li, Chuck Yuan, Hideki
Kusamitsu, and Toshiyasu Ito. Evaluation of high
density liquid crystal polymer based flex interconnect
for supporting greater than 1 tb/s of memory bandwidth.
In 2008 58th Electronic Components and Technology
Conference, pages 1132-1138, 2008. 9

Alok Kumbhare, Reza Azimi, loannis Manousakis,
Anand Bonde, Felipe Vieira Frujeri, Nithish Ma-
halingam, Pulkit Misra, Seyyed Ahmad Javadi, Bianca
Schroeder, Marcus Fontoura, and Ricardo Bianchini.
Prediction-based power oversubscription in cloud plat-
forms. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 473-487, 2021. 2

Lenovo. Balanced memory configurations with second-
generation intel xeon scalable processors. https:
//lenovopress.lenovo.com/1pl089.pdf accessed
11/26/2022, 2022. 5.2

Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy
Shapiro, Sagi Grimberg, Liran Liss, Muli Ben-Yehuda,
Nadav Amit, and Dan Tsafrir. Page fault support for
network controllers. In ASPLOS, pages 449-466, 2017.
2

Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst,
Pantea Zardoshti, Stanko Novakovic, Monish Shah,
Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D.
Hill, Marcus Fontoura, and Ricardo Bianchini. Pond:
Cxl-based memory pooling systems for cloud platforms.
In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2, pages 574—
587,2023. 7.4

Fan Lin, Matt Beadon, Harish Dattatraya Dixit, Gautham
Vunnam, Amol Desai, and Sriram Sankar. Hardware
remediation at scale. In 2018 48th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Net-
works Workshops (DSN-W), pages 14—17. IEEE, 2018.
1,2,2

Zitao Liu and Sangyeun Cho. Characterizing machines
and workloads on a google cluster. In International

https://www.microsoft.com/en-us/Investor/earnings/FY-2022-Q4/press-release-webcast
https://www.microsoft.com/en-us/Investor/earnings/FY-2022-Q4/press-release-webcast
https://hypertec.com/ciara/immersion-servers/
https://hypertec.com/ciara/immersion-servers/
https://www.avnet.com/wps/portal/integrated/resources/liquid-cooling/
https://www.avnet.com/wps/portal/integrated/resources/liquid-cooling/
https://designintools.intel.com/MEI_Test_Card_and_Utility_p/stlgrn61.htm
https://designintools.intel.com/MEI_Test_Card_and_Utility_p/stlgrn61.htm
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/support/articles/000055509/server-products/server-boards.html
https://www.intel.com/content/www/us/en/support/articles/000055509/server-products/server-boards.html
https://www.intel.com/content/www/us/en/support/articles/000055509/server-products/server-boards.html
http://www.mcelog.org/badpageofflining.html
http://www.mcelog.org/badpageofflining.html
https://lenovopress.lenovo.com/lp1089.pdf
https://lenovopress.lenovo.com/lp1089.pdf

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Conference on Parallel Processing Workshops, pages
397-403, 2012. 1,2

Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and
Bianca Schroeder. A study of SSD reliability in large
scale enterprise storage deployments. In /8th USENIX
Conference on File and Storage Technologies (FAST
20), pages 137-149, Santa Clara, CA, February 2020.
USENIX Association. 1

Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and
Bianca Schroeder. Reliability of ssds in enterprise stor-
age systems: A large-scale field study. ACM Transac-
tions on Storage (TOS), 17(1):1-27,2021. 1, 2, 8

Toannis Manousakis, Sriram Sankar, Gregg McKnight,
Thu D Nguyen, and Ricardo Bianchini. Environmental
conditions and disk reliability in free-cooled datacen-
ters. In /4th USENIX conference on file and storage
technologies (FAST 16), pages 53-65, 2016. 9

Pascale Minet, Eric Renault, Ines Khoufi, and Selma
Boumerdassi. Analyzing traces from a google data
center. In International Wireless Communications &
Mobile Computing Conference, pages 1167-1172, 2018.
1,2

Victor P. Nelson. Fault-tolerant computing: Fundamen-
tal concepts. Computer, 23(7):19-25, 1990. 8

OpenCompute. Server/projectolympus. https://www.
opencompute.org/wiki/Server/ProjectOlympus
accessed 6/26/2022, November 2017. 1, 2

Jehan-Frangois Paris, Ahmed Amer, Darrell D. E. Long,
and Thomas J. E. Schwarz. Self-repairing disk arrays.
arXiv cs.DC 1501.00513, 2015. 8

Jehan-Frangois Paris, Darrell D.E. Long, and
S.J. Thomas Schwarz. Zero-maintenance disk arrays. In
2013 IEEE 19th Pacific Rim International Symposium
on Dependable Computing, pages 140-141, 2013. 8

David A. Patterson, Garth Gibson, and Randy H. Katz.
A case for redundant arrays of inexpensive disks (raid).
In Proceedings of the 1988 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD
’88, page 109-116, New York, NY, USA, 1988. Associ-
ation for Computing Machinery. 8

Borja Peleato, Haleh Tabrizi, Rajiv Agarwal, and Jef-
frey Ferreira. Ber-based wear leveling and bad block
management for nand flash. In 2015 IEEE International
Conference on Communications (ICC), pages 295-300,
2015. 2,8

Sundar Pichai and Ruth Porati. Alphabet an-
nounces fourth quarter and fiscal year 2022 results.

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

[62]

[63]

[64]

https://abc.xyz/investor/static/pdf/2022Q4_
alphabet_earnings_release.pdf?cache=9delatb
accessed 2/15/23, 2 2023. 2

Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André
Barroso. Failure trends in a large disk drive population.
In USENIX FAST, 2007. 1

Eric L Pope and Scott P Faasse. Post package repair for
mapping to a memory failure pattern, January 2020. US
Patent 10,546,649. 2, 5.1, 8

Meghan Rimol. Gartner predicts half of cloud data
centers will deploy robots with ai capabilities by 2025.
https://www.gartner.com/en/newsroom/press—
releases/2021-11-01-gartner-predicts-half-
of-cloud-data-centers-will-deploy-robots-
with-ai-capabilties-by-2025 accessed 2/15/23,
2021. 8

Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich
Weber. Dram errors in the wild: A large-scale field study.
Commun. ACM, 54(2):100-107, feb 2011. 1

Fumiyoshi Shoji, Shuji Matsui, Mitsuo Okamoto, Fu-
michika Sueyasu, Toshiyuki Tsukamoto, Atsuya Uno,
and Keiji Yamamoto. Long term failure analysis of
10 peta-scale supercomputer. HPC in Asia Poster, ISC,
2015. 1

Vilas Sridharan and Dean Liberty. A study of dram
failures in the field. In IEEE SC, pages 1-11, 2012. 1

Kun Tian, Yu Zhang, Luwei Kang, Yan Zhao, and Yaozu
Dong. coiommu: A virtual iommu with cooperative dma
buffer tracking for efficient memory management in di-
rect i/o. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 479-492, 2020. 2

Muhammad Tirmazi, Adam Barker, Nan Deng, Md E
Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-
Balter, and John Wilkes. Borg: the next generation. In
Proceedings of the fifteenth European conference on
computer systems, pages 1-14, 2020. 1, 2

Kushagra Vaid. Datacenter power efficiency: Separating
fact from fiction. In Invited talk at the 2010 Workshop on
Power Aware Computing and Systems, volume 1, 2010.
2

Remco Van Erp, Reza Soleimanzadeh, Luca Nela, Geor-
gios Kampitsis, and Elison Matioli. Co-designing elec-
tronics with microfluidics for more sustainable cooling.
Nature, 585(7824):211-216, 2020. 1

Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at google with borg. In ACM
EuroSys, pages 1-17,2015. 1, 2

https://www.opencompute.org/wiki/Server/ProjectOlympus
https://www.opencompute.org/wiki/Server/ProjectOlympus
https://abc.xyz/investor/static/pdf/2022Q4_alphabet_earnings_release.pdf?cache=9de1a6b
https://abc.xyz/investor/static/pdf/2022Q4_alphabet_earnings_release.pdf?cache=9de1a6b
https://www.gartner.com/en/newsroom/press-releases/2021-11-01-gartner-predicts-half-of-cloud-data-centers-will-deploy-robots-with-ai-capabilties-by-2025
https://www.gartner.com/en/newsroom/press-releases/2021-11-01-gartner-predicts-half-of-cloud-data-centers-will-deploy-robots-with-ai-capabilties-by-2025
https://www.gartner.com/en/newsroom/press-releases/2021-11-01-gartner-predicts-half-of-cloud-data-centers-will-deploy-robots-with-ai-capabilties-by-2025
https://www.gartner.com/en/newsroom/press-releases/2021-11-01-gartner-predicts-half-of-cloud-data-centers-will-deploy-robots-with-ai-capabilties-by-2025

[65]

[66]

[67]

[68]

[69]

Kashi Venkatesh Vishwanath, Albert Greenberg, and
Daniel A. Reed. Modular data centers: How to de-
sign them? In Proceedings of the 1st ACM Workshop
on Large-Scale System and Application Performance,
LSAP ’09, page 3—10, New York, NY, USA, 2009. As-
sociation for Computing Machinery. 8

Kashi Venkatesh Vishwanath and Nachiappan Nagap-
pan. Characterizing cloud computing hardware reliabil-
ity. In Proceedings of the 1st ACM symposium on Cloud
computing, pages 193-204, 2010. 1, 2

Osamu Wada, Toshimasa Namekawa, Hiroshi Ito, At-
sushi Nakayama, and Shuso Fujii. Post-packaging auto
repair techniques for fast row cycle embedded dram. In
2004 International Conferce on Test, pages 1016—1023.
IEEE, 2004. 2,5.1, 8

Chundong Wang and Weng-Fai Wong. Extending the
lifetime of nand flash memory by salvaging bad blocks.
In 2012 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), pages 260-263, 2012. 2,
8

Guosai Wang, Lifei Zhang, and Wei Xu. What can we
learn from four years of data center hardware failures?

[70]

(71]

[72]

(73]

In 2017 47th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks, pages 25—
36,2017. 1,2,2

Paul Willmann, Scott Rixner, and Alan L Cox. Pro-
tection strategies for direct access to virtualized i/o de-
vices. In 2008 USENIX Annual Technical Conference
(USENIX ATC 08), 2008. 2

Ben-Ami Yassour, Muli Ben-Yehuda, and Orit Wasser-
man. On the dma mapping problem in direct device
assignment. In Proceedings of the 3rd Annual Haifa
Experimental Systems Conference, pages 1-12, 2010. 2

Yangfan Zhong. Experiences with immersion cooling
in alibaba datacenter. OpenCompute 2019 track
on Rack & Power / Advanced Cooling https://
www . youtube.com/watch?v=GMSLjr7Wlis&t=1067s
accessed 6/26/2022, October 2019. 1, 9

Ali Zolghadri. A redundancy-based strategy for safety
management in a modern civil aircraft. Control Engi-
neering Practice, 8(5):545-554, 2000. 8

https://www.youtube.com/watch?v=GMSLjr7Wlis&t=1067s
https://www.youtube.com/watch?v=GMSLjr7Wlis&t=1067s

	Introduction
	Background
	Fail in Place
	Hyrax System Design
	Hyrax Servers
	Component Pathway Deactivation ([height=1.1em]SystemFigs/deactivateicon)
	Achieving High Performance on FIP Servers

	Hyrax Control Plane
	Hyrax Policy ([height=1.1em]SystemFigs/policyicon)
	Control Plane
	VM scheduling policy
	Hyrax Diagnostics

	Evaluation
	Evaluation Setup
	Server experiments
	Large-scale simulations

	Correctness
	Performance
	Large-scale Cluster Simulations

	Related Work
	Deployment Experience and Discussion

