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Abstract

This work focuses on sign language retrieval—a recently
proposed task for sign language understanding. Sign lan-
guage retrieval consists of two sub-tasks: text-to-sign-video
(T2V) retrieval and sign-video-to-text (V2T) retrieval. Dif-
ferent from traditional video-text retrieval, sign language
videos, not only contain visual signals but also carry abun-
dant semantic meanings by themselves due to the fact that
sign languages are also natural languages. Considering
this character, we formulate sign language retrieval as a
cross-lingual retrieval problem as well as a video-text re-
trieval task. Concretely, we take into account the linguistic
properties of both sign languages and natural languages,
and simultaneously identify the fine-grained cross-lingual
(i.e., sign-to-word) mappings while contrasting the texts
and the sign videos in a joint embedding space. This pro-
cess is termed as cross-lingual contrastive learning. An-
other challenge is raised by the data scarcity issue—sign
language datasets are orders of magnitude smaller in scale
than that of speech recognition. We alleviate this issue by
adopting a domain-agnostic sign encoder pre-trained on
large-scale sign videos into the target domain via pseudo-
labeling. Our framework, termed as domain-aware sign
language retrieval via Cross-lingual Contrastive learning
or CiCo for short, outperforms the pioneering method
by large margins on various datasets, e.g., +22.4 T2V
and +28.0 V2T R@1 improvements on How2Sign dataset,
and +13.7 T2V and +17.1 V2T R@] improvements on
PHOENIX-2014T dataset. Code and models are available
at: https://github.com/FangyunWei/SLRT.

1. Introduction

Sign languages are the primary means of communication
used by people who are deaf or hard of hearing. Sign lan-
guage understanding [ 1, 10, 12—-15,18,32,33,62,74] is sig-
nificant for overcoming the communication barrier between
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Figure 1. Illustration of: (a) T2V retrieval; (b) V2T retrieval.

the hard-of-hearing and non-signers. Sign language recog-
nition and translation (SLRT) has been extensively studied,
with the goal of recognizing the arbitrary semantic mean-
ings conveyed by sign languages. However, the lack of
available data significantly limits the capability of SLRT.
In this paper, we focus on developing a framework for a
recently proposed sign language retrieval task [18]. Un-
like SLRT, sign language retrieval focuses on retrieving the
meanings that signers express from a closed-set, which can
significantly reduce error rates in realistic deployment.

Sign language retrieval is both similar to and distinct
from the traditional video-text retrieval. On the one hand,
like video-text retrieval, sign language retrieval is also com-
posed of two sub-tasks, i.e., text-to-sign-video (T2V) re-
trieval and sign-video-to-text (V2T) retrieval. Given a free-
form written query and a large collection of sign language
videos, the objective of T2V is to find the video that best
matches the written query (Figure 1a). In contrast, the goal
of V2T is to identify the most relevant text description given
a query of sign language video (Figure 1b).

On the other hand, different from the video-text retrieval,
sign languages, like most natural languages, have their own
grammars and linguistic properties. Therefore, sign lan-
guage videos not only contain visual signals, but also carry
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(a) While contrasting the sign videos and the texts in a joint embedding
space, we simultaneously identify the fine-grained cross-lingual (sign-
to-word) mappings of sign languages and natural languages via the
proposed cross-lingual contrastive learning. Existing datasets do not
annotate the sign-to-word mappings.

(b) We show four instances of the sign “Book™ in How2Sign [19]
dataset, which are identified by our approach. Please refer to the sup-
plementary material for more examples.

Figure 2. Illustration of: (a) cross-lingual (sign-to-word) mapping;
(b) sign-to-word mappings identified by our CiCo.

semantics (i.e., sign'-to-word mappings between sign lan-
guages and natural languages) by themselves, which differ-
entiates them from the general videos that merely contain
visual information. Considering the linguistic characteris-
tics of sign languages, we formulate sign language retrieval
as a cross-lingual retrieval [0, 34,60] problem in addition to
a video-text retrieval [5,24,42-44,58,69] task.

Sign language retrieval is extremely challenging due to
the following reasons: (1) Sign languages are completely
separate and distinct from natural languages since they
have unique linguistic rules, word formation, and word or-
der. The transcription between sign languages and natu-
ral languages is complicated, for instance, the word or-
der is typically not preserved between sign languages and
natural languages. It is necessary to automatically iden-
tify the sign-to-word mapping from the cross-lingual re-
trieval perspective; (2) In contrast to the text-video retrieval
datasets [46, 49] which contain millions of training sam-
ples, sign language datasets are orders of magnitude smaller
in scale—for example, there are only 30K video-text pairs
in How2Sign [19] training set; (3) Sign languages convey
information through the handshape, facial expression, and
body movement, which requires models to distinguish fine-

'We use sign to denote lexical item within a sign language vocabulary.

grained gestures and actions; (4) Sign language videos typ-
ically contain hundreds of frames. It is necessary to build
efficient algorithms to lower the training cost and fit the long
videos as well as the intermediate representations into lim-
ited GPU memory.

In this work, we concentrate on resolving the challenges
listed above:

* We consider the linguistic rules (e.g., word order) of both
sign languages and natural languages. We formulate sign
language retrieval as a cross-lingual retrieval task as well
as a video-text retrieval problem. While contrasting the
sign videos and the texts in a joint embedding space
as achieved in most vision-language pre-training frame-
works [5, 44, 58], we simultaneously identify the fine-
grained cross-lingual (sign-to-word) mappings between
two types of languages via our proposed cross-lingual
contrastive learning as shown in Figure 2.

» Data scarcity typically brings in the over-fitting issue. To
alleviate this issue, we adopt transfer learning and adapt
a recently released domain-agnostic sign encoder [62]
pre-trained on large-scale sign-videos to the target do-
main. Although this encoder is capable of distinguish-
ing the fine-grained signs, direct transferring may be sub-
optimal due to the unavoidable domain gap between the
pre-training dataset and sign language retrieval datasets.
To tackle this problem, we further fine-tune a domain-
aware sign encoder on pseudo-labeled data from target
datasets. The final sign encoder is composed of the well-
optimized domain-aware sign encoder and the powerful
domain-agnostic sign encoder.

¢ In order to effectively model long videos, we decouple
our framework into two disjoint parts: (1) a sign en-
coder which adopts a sliding window on sign-videos to
pre-extract their vision features; (2) a cross-lingual con-
trastive learning module which encodes the extracted vi-
sion features and their corresponding texts in a joint em-
bedding space.

Our framework, called domain-aware sign language re-
trieval via Cross-lingual Contrastive learning or CiCo for
short, outperforms the pioneer SPOT-ALIGN [ 18] by large
margins on various datasets, achieving 56.6 (+22.4) T2V
and 51.6 (+28.0) V2T R@1 accuracy (improvement) on
How2Sign [19] dataset, and 69.5 (+13.7) T2V and 70.2
(+17.1) V2T R@1 accuracy (improvement) on PHOENIX-
2014T [8] dataset. With its simplicity and strong perfor-
mance, we hope our approach can serve as a solid baseline
for future research.

2. Related Work

Sign Language Understanding. Sign language under-
standing aims at interpreting the semantic information con-



veyed within sign videos. Researchers have explored such
capability on various tasks including sign language recog-
nition [13,20,21,30,38,59,74], sign spotting [1, 18,48,62],
sign language translation [8, 9, 12,37, 73] and our focused
sign language retrieval [18].

One of the fundamental tasks of sign language under-
standing is sign language recognition (SLR), which aims
to transcribe a sign video into a gloss sequence. Pre-
vious works on SLR focus on designing carefully engi-
neered features [20, 21, 59] or modeling temporal depen-
dencies [56,57]. Recently, the success of 3D convolutional
neural networks in action related tasks [41,61, 64] is trans-
ferred to SLR. In particular, the I3D [11] architecture has
proven to be effective for this task [1,30,36,38,62]. In this
work, we also adopt this network architecture in our sign
encoder.

Sign spotting is a particular variant of sign language
recognition. It aims to localize all instances of a given
sign within an untrimmed video. Recent works tackle
this task with auxiliary cue of subtitles, introducing auto-
matic annotation systems by using mouthing [I], dictio-
naries [48] and attention maps of Transformer [62]. SPOT-
ALIGN [18] extends existing spotting methods [, 48] with
an iterative training schema, which alternates between re-
peated sign spotting and model fine-tuning. In this work,
pseudo-labeling is served as our sign spotting approach to
localize isolated signs in untrimmed videos from target sign
language retrieval datasets. Compared with above efforts,
our approach only employs a pre-trained sign encoder with-
out utilizing additional auxiliary cue, which is proved to be
simple yet efficient.

Early works of sign language retrieval primarily investi-
gate query-by-example searching [4,71], which queries in-
dividual instances with given sign examples. Our work fo-
cuses on free-form textual retrieval—a recently introduced
task by SPOT-ALIGN [18]. It symbolizes the real-world
scenario of searching sign language videos with natural lan-
guages. The pioneer SPOT-ALIGN [18] purely formulates
sign language retrieval as a video-text retrieval task, where
the cross-modal alignment is modeled upon overall global
embeddings of sign videos and texts. However, the linguis-
tic properties of sign languages are ignored. In contrast,
we formulate sign language retrieval as a joint task of text-
video retrieval and cross-lingual retrieval.
Vision-Language Models. Learning general-purpose rep-
resentations for visual and textual modalities is a long-
standing topic [7, 35]. The idea has been investigated
decades ago [50]. Recently, the prominent success of
CLIP [52], ALIGN [28] and ALBEF [39] has demonstrated
the capability of learning joint cross-modal representations
with large-scale web data using simple image-text con-
trastive learning. Similar idea has also been explored in
video-text retrieval, which is the closest area of our work.

The common practice in image-text retrieval [23,25,29,52]
and video-text retrieval [5,24,42-44,58,69] is to encode the
images/videos and texts into the overall representations. It
is reasonable since the visual signals of typical image-text
and video-text retrieval datasets mainly describe the cer-
tain objects or describable events. In contrast, sign videos,
as the carriers of sign languages, convey abundant seman-
tics by themselves. There exist fine-grained mappings be-
tween sign videos and natural languages. We find that iden-
tifying such cross-lingual (sign-to-word) mappings signifi-
cantly boosts the performance of sign language retrieval.
Cross-Lingual Information Retrieval. In this work, we
also formulate sign-language retrieval as a cross-lingual
task. In natural language processing community, cross-
lingual information retrieval (CLIR) [34, 60, 66] refers
to the task of retrieving documents between different lan-
guages. One of the most common approaches of CLIR is
to learn sentence-level embedding alignment by mapping
pre-acquired monolingual embeddings [47, 51, 70] of dif-
ferent languages into a shared space. Recently, researchers
have exploited fine-grained word-level mappings with self-
training [2, 3, 60]. They find that mappings can be learned
by initiating with a seed dictionary and alternating between
alignment modeling and dictionary mining. Our work also
exploits fine-grained word-level mappings, called sign-to-
word mappings, in the context of sign language retrieval.
Identifying sign-to-word mappings is challenging since sign
languages are expressed in visual modality. The proposed
cross-lingual contrastive learning tackles this challenge by
exploiting the fine-grained cross-modal interactions.

3. Methodology

In this section, we first formulate the task of sign lan-
guage retrieval in Section 3.1. Next, we introduce our
framework which is composed of two parts: 1) a sign
encoder which extracts discriminative and domain-aligned
features of sign videos (Section 3.2); 2) a cross-lingual con-
trastive learning framework, which contrasts sign-video-
text pairs while concurrently identifying the fine-grained
sign-to-word mappings (Section 3.3). At last, we explore
text augmentations in Section 3.4.

3.1. Task Formulation

Let V and 7 denote a set of sign videos and their corre-
sponding texts (transcriptions), respectively. Sign language
retrieval consists of two tasks namely text-to-sign-video re-
trieval (T2V), and sign-video-to-text retrieval (V2T), re-
spectively. The objective of T2V is to find the sign video
v € V whose signing content best matches the text query. In
contrast, the reverse task V2T requires the model to identify
the most relevant text (transcription) ¢ € 7 given a query of
sign video. We resolve sign language retrieval by learning
a joint embedding space of sign videos and texts.
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Figure 3. Overview of our framework. (a) Sign encoder is composed of a powerful domain-agnostic sign encoder pre-trained on large-scale
sign videos, and a domain-aware sign encoder fine-tuned on pseudo-labeled data from target datasets. We adopt a sliding window manner
to extract a discriminative and domain-aligned feature per clip. (b) Cross-lingual contrastive learning takes /N sign-video-text pairs as
inputs and contrasts paired data in a shared embedding space while implicitly identifying the fine-grained sign-to-word mappings during

training.

3.2. Sign Encoder

Process Sign Videos with Sliding Window. Sign videos
from sign language retrieval datasets typically contain hun-
dreds of frames. To efficiently train our model and lower
the usage of GPU memory, given a sign video, we adopt a
sliding window manner with stride of 1 and window size
of 16 to produce M temporally overlapped clips. Next, we
separately feed each clip into a sign encoder to extract its
feature. The final sign-video feature is yielded by stacking
features coming out of M clips along temporal dimension.
A powerful sign encoder is crucial.

Overview of Sign Encoder. Recent advances in sign spot-
ting [48, 62] greatly facilitate the collection of large-scale

sign language datasets, enabling powerful representation
learning abilities of convolutional neural networks on the
sign classification task. Previous methods [16, 18] have
demonstrated the feasibility of transferring a sign encoder
pre-trained on large-scale sign-spotting data into down-
stream tasks. We follow this practice and use an I3D
network pre-trained on BSL-1K [62], a sign classification
dataset collected via sign spotting, as our primary sign en-
coder. Due to its favorable transfer performance, we term
this model as a domain-agnostic sign encoder. Neverthe-
less, the domain gap between BSL-1K and sign language
retrieval datasets is non-negligible. To tackle this problem,
we further fine-tune a domain-aware sign encoder, which
has an identical architecture to the domain-agnostic sign en-



coder, on target datasets through pseudo-labeling. The final
sign encoder is composed of the well-optimized domain-
aware sign encoder and the powerful domain-agnostic sign
encoder, as illustrated in Figure 3a.

Pseudo-Labeling on Target Datasets. Now we describe
the details of pseudo-labeling. Given a sign video from a
target dataset, we adopt a sliding window with the stride
of 1 and the window size of 16 to generate a set of tempo-
rally overlapped clips. For each clip, we first utilize the pre-
trained domain-agnostic sign encoder to produce its predic-
tion. Then we binarize the prediction with a pre-defined
threshold A to generate the corresponding pseudo label. The
invalid samples, whose maximum score is lower than )\, are
filtered. We repeat the above process for all sign videos and
eventually build a pseudo-labeled set. Our domain-aware
sign encoder, which is initialized by the domain-agnostic
sign encoder, is fine-tuned on the pseudo-labeled set via a
standard cross-entropy loss for classification training.
Feature Extraction with Sign Encoder. So far, we ac-
quire a domain-aware sign encoder approximately aligned
in target domain. Nevertheless, its capability is restricted
by the unavoidable noises in pseudo-labels and the limited
amount of pseudo-labeled samples. Recall that we already
have a powerful domain-agnostic sign encoder pre-trained
on large-scale dataset in hand, inspiring us to make use of
both domain-agnostic sign encoder A (-) and domain-aware
sign encoder hg(-) to extract discriminative and domain-
aligned features. Our final sign encoder H(-), as shown
in Figure 3a, is a weighted combination of h¢ () and hg(-)
with a trade-off hyper-parameter .. As described above,
H () encodes sign videos in a sliding window manner. For
simplicity, we use H (v) to denote feature extraction on sign
video v, which is formulated as:

H(v) = ahe(v) + (1 — a)hy(v). (1)

3.3. Cross-Lingual Contrastive Learning

The objective of cross-lingual contrastive learning
(CLCL) is to learn a joint embedding space of sign videos
and texts while concurrently identifying the fine-grained
sign-to-word mappings during training. An overview
is shown in Figure 3b. CLCL takes a mini-batch
{(vp,tn)}_, containing N sign-video-text pairs as input,
and contrasts paired data in a shared embedding space for
sign language retrieval.

Sign Features and Word Features. Given a sign video
v € {v,}_;, we first adopt our sign encoder H (-) de-
scribed in Section 3.2 to extract its intermediate feature.
Note H(-) encodes sign videos in a sliding window man-
ner, and thus there are no interactions among different
clips. To facilitate information exchange, we further ap-
pend a 12-layer Transformer [63] F'(-) onto H(-) to ex-
tract sign features S of sign video v, which is formulated

as S = F(H(v)) € RM*D where M denotes the num-
ber of clips, and D is the hidden dimension. Given a text
t € {t,})_,, we convert ¢ into a lower-cased byte pair
encoding (BPE) representation [54], which is subsequently
fed into another 12-layer Transformer G(-) to generate the
word features W = G(t) € RL*P, where L represents
word number.

Since CLIP [52] shows excellent transfer capability in
various downstream tasks [17,22, 27,55, 67, 68], we ini-
tialize F'(-) and G(-) with CLIP’s image encoder (ViT-B)
and text encoder, respectively, to ease the learning. Though
CLIP’s vision encoder takes image patches as inputs, we
experimentally find that it generalizes well in our scenario
where input data is in a different modality.

Cross-Lingual Similarity. There exist inherent sign-to-
word mappings between sign languages and natural lan-
guages. To incorporate this prior knowledge into learning,
we introduce cross-lingual similarity—an indicator to iden-
tify sign-to-word mappings between i-th sign video v; and
j-th text ;. Concretely, given sign features S; € RM*P of
v; , and word features W; € REXP of ¢;, we calculate a
cross-lingual similarity matrix E; ;) = S;- W € RM*L,
Each element in E; ;) represents the similarity of a sign
clip in v; and a word in ;.

Cross-Lingual Contrastive Learning. Directly apply su-
pervisions on token-wise similarity matrix E; ;) is infea-
sible due to the absence of fine-grained sign-to-word anno-
tations. Inspired by the recent progress of vision-language
contrastive learning [23,25,29, 39,40, 52], we turn to con-
trast the global representations of sign videos and texts. The
underlying idea is to calculate a global similarity z of v; and
t; based on E; ;) € RM*E,

Sign-Video-to-Text Contrast. We first introduce sign-
video-to-text contrast as shown in Figure 3b. To be spe-
cific, we utilize a Softmax operation to each row of E(i,j),
and multiply the resulting matrix with E; ;) to generate a
sign-to-word similarity matrix E/; ;) € RY**, where each
row represents the re-weighted similarities between a sign
clip in v; and all words in ¢;. After that, we adopt a row-
wise addition operation on E/(z} ;) to yield the sign-to-text

similarity vector e, € RM | where each element denotes
a similarity of a sign clip in v; and whole text ¢;. At last,
we average all elements in e(; ;) to produce the global sim-
ilarity z of sign video v; and text ¢;.

In the same way, we can calculate the similarities
for both positive pairs {(v;,¢;)}Y; and negative pairs
{(vi, )} j—1.42; in a mini-batch, yielding a video-
to-text similarity matrix Zyor € , where Z%%
denotes the global similarity of v; and t;. Following
CLIP [52], we adopt InfoNCE loss [26] to pull the embed-
dings of matched image-text pairs together while pushing
those of non-matched pairs apart, which is formulated as

RNXN
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where 7 is a trainable temperature parameter.
Text-to-Sign-Video Contrast. Up to now, we have intro-
duced sign-video-to-text contrast. A symmetrical version,
termed text-to-sign-video contrast, shares the similar spirit
as shown in Figure 3b. The implementation of text-to-sign-
video contrast is extremely simple: we replace the row-wise
operations (i.e., Softmax and addition) in sign-video-to-text
contrast with column-wise ones and keep the remaining
processes unchanged. We use L2y to denote the loss func-
tion of text-to-sign-video contrast. In our implementation,
we reuse the loss defined in Eq 2 but substitute the input
with the text-to-video similarity matrix Z oy .

Loss Function. The overall loss for cross-lingual con-
trastive learning is a weighted sum of Ly o7 and L79y with
a trade-off hyper-parameter 3:

L=pBLyor +(1—B)Lrav. 3)

3.4. Text Augmentation

Considering that the datasets of sign language retrieval
are typically small-scale, we explore text augmentations to
improve the generalization of our approach. EDA [65] in-
troduces three simple yet efficient data augmentations in
text classification task: random delete randomly removes
words in a sentence; synonym replacement randomly se-
lects words from a sentence that are not stop words and
replaces them with synonyms; random swap randomly
chooses two words in a sentence and swaps their positions.
The first two augmentations have been proven effective in
text classification task. However, we experimentally find
that our focused sign language retrieval is sensitive to ran-
dom delete and synonym replacement augmentations. To
guarantee that the augmented texts preserve the original se-
mantic meanings, we only adopt the random swap augmen-
tation in our approach. We suppose there are two reasons:
1) the word order of sign languages and natural languages
are constitutionally distinct, and reordering does not af-
fect semantic meanings; 2) the proposed cross-lingual con-
trastive learning is insensitive to word order.

4. Experiment
4.1. Datasets and Implementation Details

Datasets. We primarily focus on How2Sign [19] dataset.
Our model is also evaluated on PHOENIX-2014T [8] and

CSL-Daily [72], which are primarily used for sign language
recognition and translation in previous works.

How2Sign is a large-scale continuous American sign lan-
guage (ASL) dataset consisting of a parallel corpus of about
80 hours of sign videos with subtitle annotations. It covers a
wide range of instructional videos corresponding to various
categories. There are 31164, 1740 and 2356 sign-video-
text pairs in training, validation and test sets, respectively.
Following SPOT-ALIGN [ 18], we remove the invalid pairs
where the subtitle alignment is detected to exceed the video
duration, remaining 31085, 1739 and 2348 available pairs in
training, validation and test sets, respectively. The resolu-
tion of sign videos is 1280x 720, we crop the human bodies
of signers with Faster R-CNN [53] to generate valid videos.

PHOENIX-2014T is a German sign language (Deutsche
Gebirdensprache, DGS) dataset collected in the domain of
weather forecast from TV broadcast, consisting of 7096,
519 and 642 video-text pairs in training, validation and test
sets, respectively.

CSL-Daily is a recently released Chinese sign language
(CSL) dataset. The topic of CSL-Daily revolves around
people’s daily lives, including 18401, 1077, 1176 parallel
samples in training, validation and test set, respectively.

Evaluation Metric. Following previous works [18,43,52,
], retrieval performance is evaluated by recall at rank K
(R@K, higher is better) and median rank (MedR, lower
is better). We evaluate our approach on both text-to-sign-
video (T2V) retrieval and sign-video-to-text (V2T) retrieval
tasks. We report R@1, R@5, and R@10 in all experiments,
and additionally report MedR when comparing with state-
of-the-art approaches.
Implementation Details. The sign encoder takes videos of
resolution of 256256 as input. The domain-agnostic sign
encoder is a I3D [ ! ] network pre-trained on BSL-1K [62].
In pseudo label generation, we set the threshold A to 0.6
to filter samples with low-confidence. Non-maximum sup-
pression (NMS) with a temporal window of 24 frames is
utilized to remove the duplicates among the pseudo-labeled
samples. A collection of approximate 64K pseudo-labeled
samples covering a vocabulary of 1220 words is eventually
generated. The domain-aware sign encoder is initialized
with the domain-agnostic one and fine-tuned with a learn-
ing rate of 1 x 1072 and batch size of 4 for 15 epochs.
In the training of cross-lingual contrastive learning, the vi-
sion transformer and text transformer are initialized by the
image encoder and text encoder in CLIP (ViT-B/32) [52].
The maximum length of sign clip features and text features
are set to 64 and 32, respectively. The model is fine-tuned
with Adam optimizer [3 1] with batch size of 512. The ini-
tial learning rate is set to 1 X 10~5, which is decreased
with a cosine schedule following the CLIP [52]. We set
a = 0.81in Eq. 1 and 8 = 0.5 in Eq.3. The languages of
PHOENIX-2014T and CSL-Daily are German and Chinese



T2V V2T

Model ‘R@IT R@51 R@10} MedR}|[R@11 R@51 R@10} MedR,
SASSRIS] | 189 321 365 620 | 11.6 274 325 690
SA-CM[IS] | 243 407 465 160 | 179 401 469 140

SA-COMB [18]| 342 480 526 80 | 236 470 530 75

Ours | 566 699 747 10 |56 648 701 10

Table 1. Comparison with the different variants of the pioneer
SPOT-ALIGN (SA) [18] on How2Sign [19] dataset.

Model T2V V2T
R@I1 R@51 R@101 MedR||R@11 R@51 R@101 MedR /.
Translation [10]| 302 53.1 634 45 | 288 520 608 561
SA-CM[18] | 486 765 846 20 |503 784 844 10
SA-COMB[I8]| 55.8 796 872 1.0 | 531 794 861 1.0
Ours | 695 8.6 921 10 | 702 880 928 10

Table 2. Comparison with the different variants of the pioneer
SPOT-ALIGN (SA) [18] on PHOENIX2014T [8] dataset.

T2V V2T
R@I11 R@51 R@101 MedR||R@11 R@5T R@101 MedR/,

1.0 | 747 894 922 1.0

Model

Ours | 753 882 919

Table 3. We additionally provide a baseline for CSL-Daily [72]
dataset.

respectively. Since CLIP is trained on English corpus, to
reuse CLIP’s text encoder, we utilize Google translation to
translate the texts of these two datasets into English.

4.2. Comparison with State-of-the-art Methods

We compare our method with different variants of the
pioneer, called SPOT-ALIGN [18], on How2Sign and
PHOENIX-2014T. We also provide the results on CSL-
Daily as a baseline.

Table 1 and Table 2 show the comparisons between
our approach and SPOT-ALIGN [18] on How2Sign and
PHOENIX-2014T, respectively. SPOT-ALIGN builds the
final combination (COMB) model by integrating its primary
cross-modal (CM) model with an auxiliary retrieval model
(sign recognition (SR) model for How2Sign and Transla-
tion [10] for PHOENIX-2014T). Our method outperforms
the COMB model, which achieves best results in SPOT-
ALIGN, by large margins, achieving +22.4 T2V and +28.0
V2T R@1 improvements on How2Sign, +13.7 T2V and
+17.1 V2T R@1 improvements on PHOENIX-2014T. It
is worth mentioning that the SPOT-ALIGN conducts three
rounds of sign spotting [1,48] and encoder training. In con-
trast, we simplify the training of sign encoder and only per-
form a single round of training on pseudo-labeled data. We
also provide a baseline on CSL-Daily dataset as shown in
Table 3, demonstrating that our model can be generalized to
various sign languages.

T2V Vot
Method ‘ R@l R@5 R@I0 ‘ R@I R@5 R@I0
Baseline | 315 496 579 | 264 444 528
+SE 333 519 598 | 309 488 564
+SE+CLCL | 540 671 719 | 500 632 681
+SE+CLCLATA | 56.6 699 747 | 516 648  70.1

Table 4. Ablation study of each proposed component. SE: sign
encoder; CLCL: cross-lingual contrastive learning; TA: text aug-
mentation.

Encode T2V V2T

coder R@l R@5 R@I10 |R@1 R@5 R@I10
Single-Ag [62] 531 680 734 | 473 629 670
Single-Aw 541 675 731 | 491 618 674

Fusion-Average 547 68.7 738 49.6 637 69.0
Fusion-Weighted Sum | 56.6 69.9 74.7 | 51.6 64.8 70.1

Table 5. Results of domain-agnostic sign encoder (Single-Ag) and
domain-aware sign encoder (Single-Aw). We also study different
ways to integrate the features extracted by Single-Ag and Single-
Aw, including average and weighted sum.

4.3. Ablation Study

We conduct all ablation studies on the most challenging
How2Sign dataset.
The Effectiveness of Each Proposed Component. Table 4
shows the ablation of each component. We first build a
baseline where the sign encoder is the domain-agnostic one
and contrastive learning is trained with the standard con-
trastive loss [52]. Then we add the proposed sign encoder
(SE), cross-lingual contrastive learning (CLCL) and text
augmentation (TA) to the baseline step by step. SE encodes
domain-relevant and discriminative features, yielding +1.8
T2V and +4.5 V2T R@1 gains. The proposed CLCL sig-
nificantly boosts the performance by +20.7 T2V and +19.1
V2T R@]1 improvements, demonstrating that identifying
fine-grained sign-to-word mappings is essential for sign lan-
guage retrieval. The introduction of TA further promotes
the retrieval task, achieving 56.6 R@1 on V2T and 51.6
R@1 on T2V, respectively.
Various Sign Encoders. As described in Section 3.2, our
sign encoder is composed of a domain-agnostic sign en-
coder (Single-Ag) [62] and a domain-aware sign encoder
(Single-Aw). We first report the results of each individual
encoder in Table 5. Next, we study the different ways to
integrate the features extracted by these two encoders, in-
cluding average and weighted sum as defined in Eq. 1. The
results are also shown in Table 5. We experimentally find
that the weighted sum strategy yields best results.
Variants of Cross-Lingual Contrastive Learning. As de-
scribed in Section 3.3 and illustrated in Figure 3b, through
the use of a combination of softmax, multiplication, sum,
and average operations, we convert the fine-grained cross-
lingual (sign-to-word) similarity to the coarse-grained sign-
video-to-text similarity to enable contrastive learning. We



Strate T2V V2T

8Y |R@1 R@5 R@I10 |R@1 R@5 R@10
Mean 331 525 597 | 298 478 553
Max 422 597 660 | 385 551 620
Softmax | 56.6 699 747 | 5.6 648 70.1

Table 6. Study on different strategies to identify the fine-grained
sign-to-word mappings in cross-lingual contrastive learning.

Text T2V V2T
Augmentation | R@1 R@5 R@10 | R@l R@5 R@I10
None 540 671 719 | 500 632 68.1
RD 527 663 71.6 | 47.6 62.1 67.4
SR 539 687 730 | 475 612 659
RS 56.6 699 747 | 51.6 648 70.1

Table 7. Ablation study on different text augmentations. RD: ran-
dom delete; SR: synonym replacement; RS: random swap.

refer to this process as “Softmax”. Here we study two vari-
ants termed “Mean” and “Max”. The “Mean” and “Max’
strategies simply replace the combination of softmax, multi-
plication and sum operations with a simple mean operation
and a max operation, respectively. The results are shown
in Table 6. We observe that the “Mean” strategy performs
worst since it merely evaluates the overall similarity of a
text and a sign video and ignores the fine-grained sign-to-
word mappings during training. The “Max” strategy identi-
fies hard sign-to-word mappings, i.e., one sign is associated
with the most similar word, and vice versa. Nevertheless,
since we do not have the ground-truth of sign-to-word map-
pings, it is challenging for models to identify the confident
one-to-one mappings in a weakly supervised manner, as dis-
cussed in previous works on multiple instance learning [48].
In contrast, our default “Softmax” strategy localizes the soft
sign-to-word mappings and achieves the best results.
Study of Text Augmentations. In Table 7, we study three
text augmentations described in Section 3.4: random delete
(RD), synonym replacement (SR) and random swap (RS).
We observe a slight performance drop when introducing RD
and SR into training. Sign language retrieval is not only a
video-text retrieval task, but also a cross-lingual retrieval
challenge, deletion and replacement may break the intrinsic
sign-to-word mappings. In contrast, RS augmentation pre-
serves the semantics of texts and we observe a +2.6 T2V
and a +1.6 V2T R@1 improvements over the counterpart
without any text augmentations.

The Effects of CLIP Initialization. In our framework, the
vision and text Transformer are initialized with the CLIP’s
vision encoder and text encoder. Note that the input modal-
ity of our vision Transformer and that of CLIP’s vision en-
coder are different. Ours takes a feature sequence as in-
put while the input of CLIP’s image encoder is a set of
image patches. In Table 8, we compare a randomly ini-
tialized baseline with the one initialized by CLIP. We find
that CLIP-initialization significantly improves the perfor-

T2V V2T
R@l R@5 R@l0 | R@l R@5 R@I0

Random 452 603 675 | 40.6 545 597
CLIP 56.6 699 747 | 51.6 648 70.1

Initialization

Table 8. Comparison between CLIP initialization and random ini-
tialization.

T2V V2T

Frozen layers R@1 R@5 R@IO‘R@I R@5 R@I10

None | 56.6 69.9 747 | 51.6 648 70.1
1 544 682 734 | 497 635 688
2 53.8 686 733 | 485 628 679
6 517 66.6  71.1 462 609  66.6
12 495 652 714 | 447 597 652

Table 9. Study of freezing different layers of text Transformer.

mance, yielding +11.4 T2V and +11.0 V2T R@1 improve-
ments though the input originates from a completely distinct
modality.

Study on Text Transformer. The text Transformer in our
model is initialized with the CLIP’s text encoder. Consid-
ering the generalization capability of the pre-trained CLIP,
we attempt to freeze the shallow layers of our text trans-
former. As shown in Table 9, the performance gradually de-
creases as the number of the frozen layers increases. CLIP
is trained on large-scale image-text pairs, however, the do-
main gap between image-text data and sign-video-text data
is non-negligible. Though CLIP shows promising transfer
capacity, it is optimal to fine-tune the whole model on target
datasets.

5. Conclusion

In this paper, we propose a novel framework named
Cross-lingual Contrastive learning (CiCo) for recently in-
troduced sign language retrieval task. We formulate sign
language retrieval as a cross-lingual retrieval task as well
as a video-text retrieval problem. CiCo models the fine-
grained cross-lingual mappings between sign videos and
texts via the proposed cross-lingual contrastive learning.
We also introduce a sign encoder, which is composed of
a domain-agnostic encoder and a domain-aware one, to ex-
tract discriminative and domain-aligned features. Our Cico
outperforms the pioneer SPOT-ALIGN by large margins on
How2Sign and PHOENIX-2014T benchmarks. We also
provide a baseline on CSL-Daily. We hope our approach
could serve as a solid baseline for future research.
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A. More Experiments

CiCo vs CLIP. We compare our approach CiCo with

CLIP [

], which is one of the most representative vision-

language models. CLIP can be easily generalized to sign
language retrieval by replacing our cross-lingual contrastive
learning with CLIP. The other settings including sign en-
coder and text augmentation still remain unchanged. As
shown in Table 10, CiCo surpasses CLIP by +21.2 T2V

and

+20.9 V2T R@1 scores. The reason is that CLIP

contrasts the overall features of two modalities, while our
cross-lingual contrastive learning concentrates on identify-
ing the fine-grained sign-to-word mappings during model-
ing global similarities of texts and sign videos.



T2V V2T
R@1 R@5 R@10|R@]1 R@5 R@10

CLIP [52] | 354 534 609 | 307 49.1 57.1
CiCo 56.6 699 747 | 51.6 64.8 70.1

Model ‘

Table 10. Comparison between Cico and CLIP.

T2V V2T
R@l1 R@5 R@10|R@]1 R@5 R@10

Max 21.1 380 464 | 17.8 349 429
Softmax | 32.6 503 582 | 29.0 466 54.0
Mean 56.6 699 747 | 51.6 648 70.1

Strategy ‘

Table 11. Study on different strategies of global similarity calcu-
lation in cross-lingual contrastive learning.

Stride T2v V2T
R@1 R@5 R@I10|R@1 R@5 R@10
1 56.6 699 747 | 51.6 648 70.1
2 448 60.5 68.1 | 39.7 555 63.0
4 243 423 498 | 144 302 374
8 23.6 40.8 49.1 | 153 315 396

Table 12. Study on different sliding window strides used in sign
encoder.

Different Strategies of Global Similarity Calculation in
Cross-Lingual Contrastive Learning. As described in
Section 3.3 and illustrated in Figure 3b, we adopt “Mean”
strategy which averages sign-to-text similarities and word-
to-video similarities to obtain the global video-to-text sim-
ilarity and text-to-video similarity, respectively. In Section
4.3 of the main paper, we study different strategies to iden-
tify the fine-grained sign-to-word mappings, now we inves-
tigate different ways of global similarity calculation. Ta-
ble 11 shows the results of two variants termed “Max” and
“Softmax” besides the default “Mean” strategy. “Max” as-
signs global similarity with the maximum score of sign-to-
text similarities (or word-to-video similarities). “Softmax”
stands for a combination of Softmax, multiplication and
sum (refer to Section 4.3 for details). The default “Mean”
strategy achieves the best result.

Sliding Window Stride in Sign Encoder. Our sign en-
coder adopts a sliding window manner to extract features of
continuous sign videos. The default sliding window stride is
set as 1. We vary the stride and show the results in Table 12.
Setting stride as 1 yields the best performance.
Fine-Tuning Hyper-Parameters. Recall that in the train-
ing of cross-lingual contrastive learning, our vision trans-
former and text transformer are initialized by the image en-
coder and text encoder in CLIP (ViT-B/32) [52]. Here we
study the fine-tuning hyper-parameters, i.e., learning rate in

T2V V2T
R@l R@5 R@l10|R@]1 R@5 R@10

02530 675 725 | 476 627 672
041|554 687 740 | 499 625 68.6
06| 551 685 734 | 496 639 689
08| 56.6 699 747 | 51.6 648 70.1

«

Table 13. Study of « defined in Eq.(1).

3 T2V V2T
R@]l R@5 R@l10|R@] R@5 R@I10

00] 390 563 63.1 | 266 499 578
02] 448 621 68.1 | 398 555 625
041|458 624 687 |40.6 577 641
05| 566 699 747 | 51.6 648 70.1
06| 549 696 745 | 496 635 68.6
081|541 687 733 | 483 621 678
10| 525 671 721 | 488 628 674

Table 14. Study of 5 defined in Eq.(3).

T2V V2T
R@]l R@5 R@l10|R@]1 R@5 R@I0

7e-04 | 413 589 655 | 382 544 613
7e-03 | 426 596 655 | 395 547 619
7e-02 | 56.6 699 747 | 51.6 648 70.1
7e-01 | 319 499 578 | 28,6 458 539

(e

Table 15. Study of the temperature o used in row-wise and
column-wise Softmax.

Figure 5a and batch size in Figure 5b. A learning rate of
le-5 yields best result. The increase of batch size sustain-
ably promotes the performance. In our experiment, we set
the batch size to 512 due to the limited GPU memory.
Other Hyper-Parameters. There are four remaining
hyper-parameters in CiCo: 1) « defined in Eq.(1) controls
the weights of features extracted by domain-agnostic sign
encoder and domain-aware sign encoder; 2) 3 defined in
Eq.(3) controls the weights of sign-video-to-text contrast
and text-to-sign-video contrast; 3) the temperature o of row-
wise and column-wise Softmax; 4) the maximum length of
sign clip feature L. The studies are shown in Table 13, Ta-
ble 14, Table 15 and Table 16, respectively.

B. Qualitative Results

Visualization of the Identified Sign-to-Word Mappings.
Recall that in cross-lingual contrastive learning, we implic-
itly identify the sign-to-word mappings by calculating the
fine-grained cross-lingual similarities (see Figure 3b of the
main paper). Once the model is well optimized, we could
infer the input texts and sign videos to produce a cross-



o one

o way

o thing

o time

o two

« hand
hair

«  people
color

o water

(a) Top-10 Nouns.

(b) Top-10 Verbs.

o like
o little

o back

o sure

+ good

o really
right

« different
nice

o important

(c) Top-10 Adjective/Adverbs.

Figure 4. Feature visualization of sign video clips. We map features extracted by our sign encoder to 2D space with UMAP [45].

T2V V2T
R@l R@5 R@l10|R@1 R@5 R@I10

41173 312 38.6 | 143 268 341
8 | 382 554 623 | 341 502 564
16 | 509 66.6 72.0 | 459 603 66.7
32536 673 735 | 489 617 678
64| 566 699 747 | 51.6 648 70.1

Table 16. Study of maximum length of sign clip feature L.
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Figure 5. Study on fine-tinning hyper-parameters in contrastive
learning.

lingual similarity matrix, which approximately reflects the
sign-to-word mappings. For each word, we could identify
its corresponding sign which has the maximal activation
value. After that, the sign-to-word mapping is established.
In Figure 4, we utilize UMAP [45] to visualize the features
of the identified sign video clips for top-10 nouns, verbs
and adjectives/adverbs within the How2Sign [19] vocabu-
lary. The features of sign video clips associated with the
same word form a compact cluster, demonstrating that our
approach could identify the sign-to-word mappings during
training.

More Examples of Sign-to-Word Mappings. We visual-
ize a collection of signs associated with the words {“Big”,
“Different”, “Hard”, “Understand”, ‘““Vegetable”, “Vehicle”,
“Water”, “Baby”} in Figure 6. The mappings are automati-
cally identified by our CiCo.



(h) “Baby”.

Figure 6. More examples of cross-lingual (sign-to-word) mappings identified by our approach on How2Sign [19] dataset.
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