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ABSTRACT

Data pipelines are widely employed in modern enterprises to power
a variety of Machine-Learning (ML) and Business-Intelligence (BI)
applications. Crucially, these pipelines are recurring (e.g., daily or
hourly) in production settings to keep data updated so that ML
models can be re-trained regularly, and BI dashboards refreshed
frequently. However, data quality (DQ) issues can often creep into
recurring pipelines because of upstream schema and data drift
over time. As modern enterprises operate thousands of recurring
pipelines, today data engineers have to spend substantial efforts to
manually monitor and resolve DQ issues, as part of their DataOps
and MLOps practices.

Given the high human cost of managing large-scale pipeline op-
erations, it is imperative that we can automate as much as possible.
In this work, we propose Auto-Validate-by-History (AVH) that
can automatically detect DQ issues in recurring pipelines, leverag-
ing rich statistics from historical executions. We formalize this as an
optimization problem, and develop constant-factor approximation
algorithms with provable precision guarantees. Extensive evalua-
tions using 2000 production data pipelines at Microsoft demonstrate
the effectiveness and efficiency of AVH.

1 INTRODUCTION

Data pipelines are the crucial infrastructure underpinning the mod-
ern data-driven economy. Today, data pipelines are ubiquitous
in large technology companies such as Amazon, Google and Mi-
crosoft to power data-hungry businesses like search and adver-
tisement [14, 61, 66, 73]. Pipelines are also increasingly used in
traditional enterprises across a variety of ML/BI applications, in a
growing trend to democratize data [7].

Production data pipelines are often inter-dependent, forming
complex “webs”, where input tables used by downstream pipelines
frequently depend on output tables from upstream pipelines.

Furthermore, these pipelines are often configured to recur on a
regular basis (e.g., hourly or daily), to ensure data stay up-to-date
for downstream use cases (e.g., fresh data enables ML models to be
re-trained regularly, and BI dashboards refreshed continuously).
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Recurring Pipelines: Prone to Fail due to DQ. The recurring
and inter-dependent nature of production pipelines make them
vulnerable to failure due to data quality (DQ) issues, because over
time unexpected DQ issues, such as data drift [54] and schema
drift [14, 63], can creep in, causing cascading issues in pipelines.

Although DQ issues in data pipelines are widely documented in
the literature (especially in industry settings [14, 61, 66, 73]), we
describe a few common types of DQ issues from the literature, in
order to make the discussion concrete and self-contained:
• Schema drift: A newly arrived batch of input data may have a
schema change compared to previous input (e.g., missing columns
or extra columns), which can result in incorrect behavior in data
pipelines [14, 63].
• Increasing nulls: There is sometimes a sudden increase of null,
empty strings, or special values (e.g., -1) in a column due to
external factors – for instance, Google reports a DQ incident
where null values in a column increase substantially in a short
period of time, because the module that populates data in this
column encountered an unusual number of RPC time-outs from
a networking outage [54].
• Change of units: The unit of measurement for numeric values
can change over time, when the logic that populates data evolves
– for instance, Google reports a real DQ issue in their search
ranking [54], where the program that populates the “age” field
of web documents previously used the unit of “days” (e.g., a
document that is 30 days old will have an “age” value of 30), which
later got changed to “hours” (making the same document to be
have the “age” value of 720). This leads to orders of magnitude
larger “age” values, and incorrect behaviours downstream.
• Change of value standards: Value standards for string-valued data
can change over time – for instance, Amazon reports a DQ issue
where a “language-locale” column previously used lowercase
values like “en-gb”, which later changed into uppercase “en-GB”,
creating a mixed bag of inconsistent values in the same column,
leading to incorrect behaviours in downstream applications [63].
• Change of data volume: The volume (e.g., row-count) for a new
batch of data in a recurring pipeline can change significantly
from previous batches, which can also be indicative of DQ issues.

This list of DQ issues is clearly not exhaustive as there are many
other types of DQ issues documented in the literature [14, 61, 63].

When DQ issues arise in recurring pipelines, they tend to intro-
duce silent failures (i.e., with no explicit exceptions thrown, or error
messages generated). The silent nature of DQ issues makes them
difficult to catch, but no less damaging. For example, when null
values increase significantly, or the unit of measurement changes,
downstream ML models will continue to operate but will likely
churn out inaccurate predictions (e.g., Google reports a DQ issue
in their production pipelines that causes a recommendation model
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(a) Amazon’s Deequ: each arrow points to a column-level constraint (b) Google’s TFDV: each arrow points to a column-level constraint

Figure 1: Declarative Data-validation using manually-programmed constraints

in Google Store to produce sub-optimal results – fixing this single
DQ issue improves their apps install rate by 2% [14]).

In general, “silent” DQ failures pollute downstream data products,
which makes it more time-consuming for engineers to detect/de-
bug/fix. Silent DQ failures in pipelines are therefore a major pain
point in MLOps and DataOps practices [14, 61, 63, 66].

“Guardrails” for Pipelines: Data Validation. Technology
companies with large-scale data pipeline operations are among the
first to recognize the need for employing data-validation "guardrails"
in recurring pipelines to catch DQ issues early as they arise. A
number of data-validation tools have been developed, including
Google’s TensorFlow Data Validation (TFDV) [20] and Amazon’s
Deequ [60, 61].

These tools develop easy-to-use domain-specific languages (DSLs),
so that engineers can write declarative DQ constraints that describe
how “normal” data should look like in recurring data pipelines, such
that unexpected deviation in the future can be flagged for review.

Figure 1(a) shows an example code snippet from Amazon Deequ.
Using theDSL introduced inDeequ, one could declare the “review_id”
column to be unique, the “marketplace” column to be complete (with
no NULLs), etc.. These constraints are then used to validate future
data arriving in the recurring pipeline.

Figure 1(b) shows a similar example from Google’s TFDV, which
specifies that, when a new batch of input data arrives in a pipeline,
the distributional distance of values in the “payment_type” column
should be similar to the same column from previous batches (the
code snippet therefore specifies that the L-infinity distance of the
two should be no greater than 0.01).

Automate Data Validation: Leveraging History.While these
DSL-based declarative data-validation solutions improve upon low-
level assertions and can improve DQ in production pipelines as
reported in [14, 61, 63], they require data engineers to manually
write data constraints one-column-at-a-time like shown in Figure 1
(with a lone exception in [57], which employs off-the-shelf anomaly
detection algorithms). This is clearly time-consuming and hard to
scale – large organizations today operate thousands of pipelines,
and hundreds of columns in each table, it is impractical for engineers
to manually program DQ for each column.

We emphasize that writing DQ constraints is not just time-
consuming, sometimes it is also genuinely difficult for humans
to program DQ correctly, because users need to (1) have a deep
understanding of the underlying data including how the data may
evolve over time; and (2) be well-versed in complex statistical met-
rics (e.g., L-infinity vs. JS-divergence), before they can program DQ
effectively. Consider the example of online user traffic, such data
can fluctuate quickly over time (e.g., between different hours of the
day and different days of the week), which is hard to anticipate and
even harder to program using appropriate metrics and thresholds.

To address this common pain point, in this work we propose to
“auto-program” DQ, by leveraging “history”. Our insight is that rich
statistical information from past executions of the same pipeline
(e.g., row-counts, unique-values, value-distributions, etc.) is read-
ily available, which can serve as strong signals to reliably predict
whether a new batch of data may have DQ issues or not.

To see why this is the case, consider a simplistic example where
all K past executions of a recurring pipeline produce exactly 50
output rows (one row for each of the 50 US states). This row-count
becomes a “statistical invariant” unique to this particular pipeline,
which can serve as a good predictor for DQ issues in the future
– deviations from the invariant in new executions (e.g. an output
with only 10 rows or 0 row), would likely point to DQ issues.

Obviously, simple row-counts are not the best DQ predictor for
all pipelines, as some pipeline can have row counts that can vary
significantly. In such cases, DQ constraints based on other types of
statistical metrics will likely be more effective.

Table 1 and Table 2 list common statistical metrics used to pro-
gram DQ constraints (details of these metrics can be found in Ap-
pendix A). Tools like TFDV and Deequ already support many of
these metrics today, but it is difficult for humans to manually select
suitable metrics, and then guess what thresholds would work well.
Our proposed AVH aims to automatically program suitable DQ from
this large space of statistical primitives, so that the resulting DQ is
tailored to the underlying pipeline, without human intervention.

Overall, our proposed AVH is designed to have the following
properties that we believe are crucial in recurring pipelines:
• Automated. Instead of requiring humans to manually program
DQ constraints column-at-a-time, AVH can auto-program rich
DQ leveraging statistics from past executions.
• Highly accurate. AVH is specifically designed to achieve high
accuracy, as frequent false-alarms would require constant human
attention that can erode user confidence quickly. In AVH, we aim
for very low False-Positive-Rate or FPR (e.g., 0.01%), which is also
configurable if users so choose. AVH can then auto-program DQ
guaranteed not to exceed that FPR, while still maximizing the
expected “recall” (the number of DQ issues to catch).
• Robust. Unlike traditional ML methods that require a significant
amount of training data, we exploit rich statistical properties
(Chebyshev, Chantelli, CLT, etc.) of the underlying metrics, so
that the predictions are robust even with limited historical data
(e.g. only a few days of histories).
• Explainable. AVH produces explainable DQ constraints using
standard statistical metrics (as opposed to black-box models),
which makes it possible for human engineers to understand,
review, and approve, if human interactions become necessary.

Contributions.We make the following contributions in this work.
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• We propose a novel problem to auto-program pipeline DQ lever-
aging history, formalized as a principled optimization problem
specifically optimizing both precision and recall.
• We develop algorithms that leverage the different statistical prop-
erties of the underlying metrics, to achieve a constant-factor
approximation, while having provable precision guarantees.
• Our extensive evaluation on 2000 real production pipelines sug-
gests that AVH substantially outperforms a variety of commercial
solutions, as well as SOTA methods for anomaly detection from
the machine learning and database literature.

2 RELATEDWORK

Data validation. Data validation for pipelines is an emerging topic
that has attracted significant interest from the industry, includ-
ing recent efforts such as Google’s TensorFlow Data Validation
(TFDV) [20], Amazon’s Deequ [60, 61], and LinkedIn’s Data Sen-
tinel [67]. With the lone exception of [57], most existing work
focuses on developing infrastructures and DSLs so that engineers
can program DQ constraints in a declarative manner.

Anomaly detection. Anomaly detection has been widely stud-
ied in time-series and tabular settings [10–12, 29, 37, 47], and is
clearly related. We compare with an extensive set of over 10 SOTA
methods from the anomaly detection literature, and show AVH is
substantially better in our problem setting of DQ in pipelines, be-
cause AVH uniquely exploits the statistical properties of underlying
metrics, whereas standard anomaly detection methods would treat
each metric as just another “feature dimension”. This enables AVH
to have higher accuracy, and excel with even limited data (e.g., 7
days of historical data), as we will show in our experiments.

Data cleaning. There is a large literature on data cleaning (e.g.,
surveyed in [31, 36, 43, 55, 56]), which we also compare with. Most
existing work focuses on the static single-table setting [24, 26, 36,
38, 56, 66, 71, 72], where data errors need to be detected from one
table snapshot. In comparison, we study how multiple historical
table snapshots from recurring pipelines can be explicitly leveraged
for data quality, which is a setting not traditionally considered in
the data cleaning literature.

3 PRELIMINARY: DQ IN PIPELINES

In this section, we introduce necessary preliminaries for program-
ming Data Quality (DQ) in the context of data pipelines.

As we discussed, data pipelines are ubiquitous today, yet DQ is-
sues are common in recurring pipelines, giving rise to data-validation
tools such as Google’s TFDV and Amazon’s Deequ. At its core, these
methods validate DQ by checking input/output tables of recurring
pipelines, against pre-specified DQ constraints. Most of these con-
straints are defined over a single column 𝐶 at a time (Figure 1).
Single-column DQ is also the type of DQ we focus in this work.

While TFDV and Deequ use syntactically different DSLs to pro-
gram DQ constraints, the two are very similar in essence, as both
can be described as constraints based on statistical metrics.

DQ constraints by statistical metrics. Most DQ primitives
used for pipeline validation can be expressed as statistics-based
constraints. Table 1 and Table 2 list common statistical metrics used
in DQ (e.g., row-count, L-infinity, etc.). We denote this space of
possible metrics by M. This is obviously a large space that requires
time and expertise from users to navigate and select appropriately.

We now define two types of DQ constraints using metric 𝑀 ∈
M, which we call single-distribution and two-distributions DQ con-

straints, respectively.
Definition 1. A single-distribution DQ constraint, denoted by

a quadruple 𝑄 (𝑀,𝐶, 𝜃𝑙 , 𝜃𝑢 ), is defined using a statistical metric
𝑀 ∈ M, over a target column of data𝐶 , with lower-bound threshold
𝜃𝑙 and upper-bound 𝜃𝑢 . The constraint𝑄 (𝑀,𝐶, 𝜃𝑙 , 𝜃𝑢 ) specifies that
𝐶 has to satisfy the inequality 𝜃𝑙 ≤ 𝑀 (𝐶) ≤ 𝜃𝑢 , or the metric
𝑀 (𝐶) is expected to be between the range [𝜃𝑙 , 𝜃𝑢 ] (otherwise the
constraint Q is deemed as violated).

Single-distribution DQ can be instantiated using example metrics
shown in Table 1 and Table 2. Such DQ constraints rely on a single
data distribution of a column𝐶 , and can be validated using a newly-
arrived batch data alone. We illustrate this using an example below.

Example 1. In the example Deequ snippet shown in Figure 1(a),
the “review_id” column is required to be unique, which can be
expressed as a single-distribution DQ using the𝑢𝑛𝑖𝑞𝑢𝑒_𝑟𝑎𝑡𝑖𝑜 metric
from Table 2, as 𝑄1 (𝑢𝑛𝑖𝑞𝑢𝑒_𝑟𝑎𝑡𝑖𝑜, 𝑟𝑒𝑣𝑖𝑒𝑤_𝑖𝑑, 1, 1), equivalent to
𝑄1 : 1 ≤ unique_ratio(review_id) ≤ 1 (where the upper-bound
𝜃𝑢 and lower-bound 𝜃𝑙 converge to the same value 1). If on the
other hand, uniqueness is required to be high, say at least 95% (but
not 100%), we can write as 𝑄2 (𝑢𝑛𝑖𝑞𝑢𝑒_𝑟𝑎𝑡𝑖𝑜, 𝑟𝑒𝑣𝑖𝑒𝑤_𝑖𝑑, 0.95, 1),
or 𝑄2 : 0.95 ≤ unique_ratio(review_id) ≤ 1. Other examples in
Figure 1(a) can be written as single-distribution DQ similarly.

Next, we introduce two-distribution DQ constraints that require
comparisons between two distributions of a column.

Definition 2. A two-distribution DQ constraint, denoted as𝑄 (𝑀,
𝐶,𝐶′, 𝜃𝑙 , 𝜃𝑢 ), is defined using a statistical metric𝑀 ∈ M, that com-
pares one batch “target” data in a column𝐶 , and a batch of “baseline”
data 𝐶′, using lower-bound threshold 𝜃𝑙 and upper-bound thresh-
old 𝜃𝑢 . Formally we write𝑄 (𝑀,𝐶,𝐶′, 𝜃𝑙 , 𝜃𝑢 ) = 𝜃𝑙 ≤ 𝑀 (𝐶,𝐶′) ≤ 𝜃𝑢 ,
which states that the metric 𝑀 (𝐶,𝐶′) comparing 𝐶 and 𝐶′ is ex-
pected to be in the range [𝜃𝑙 , 𝜃𝑢 ] (or Q is as violated otherwise).

Two-distribution DQ compares a target column against a base-
line column, which can be the same column from two consecutive
executions of the same pipeline, or two batches of training/testing
data, etc. We illustrate this in the example below.

Example 2. In the example TFDV snippet shown in Figure 1(b),
the first constraint specifies that for the “payment_type” column, we
expect two batches of the same data to differ by at most 0.01 using
the L-infinity metric. This can be written as𝑄3 : 0 ≤ 𝐿𝑖𝑛𝑓 (𝐶,𝐶′) ≤
0.01. The second constraint in Figure 1(b) defined on the “company”
column, can be specified using two-distribution DQ similarly.

Conjunctive DQ program. Given a target column𝐶 , it is often
necessary to validate𝐶 using multiple orthogonal metrics inM (e.g.,
both row-counts and distribution-similarity need to be checked,
among other things). In this work, we consider conjunctions of
multiple DQ constraints, which we call a conjunctive DQ program.
Note that the use of conjunction is intuitive, as we want all DQ
to hold at the same time (prior work in TFDV and Deequ also
implicitly employ conjunctions, as the example in Figure 1 shows).

Definition 3. A conjunctive DQ program, defined over a given
set of (single-distribution or two-distribution) DQ constraints S,

3



Type Metrics

Two-distribution Earth Mover’s distance (EMD) [59], Jensen–Shannon divergence (𝐽 𝑆_𝑑𝑖𝑣) [28], Kullback–Leibler divergence
(𝐾𝐿_𝑑𝑖𝑣) [28], Two-sample Kolmogorov–Smirnov test (𝐾𝑆_𝑑𝑖𝑠𝑡 ) [50], Cohen’s d (𝐶𝑜ℎ𝑒𝑛_𝑑) [27]

Single-distribution 𝑚𝑖𝑛,𝑚𝑎𝑥 ,𝑚𝑒𝑎𝑛,𝑚𝑒𝑑𝑖𝑎𝑛, 𝑠𝑢𝑚, 𝑟𝑎𝑛𝑔𝑒 , 𝑟𝑜𝑤_𝑐𝑜𝑢𝑛𝑡 , 𝑢𝑛𝑖𝑞𝑢𝑒_𝑟𝑎𝑡𝑖𝑜 , 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑟𝑎𝑡𝑖𝑜

Table 1: Statistical metrics used to generate DQ constraints for numerical data (details in Appendix A).

Type Metrics

Two-distribution L-1 distance[18], L-infinity distance[18], Cosine distance[34], Chi-squared test[30], Jensen–Shannon divergence
(𝐽 𝑆_𝑑𝑖𝑣) [28], Kullback–Leibler divergence (𝐾𝐿_𝑑𝑖𝑣) [28]

Single-distribution 𝑠𝑡𝑟_𝑙𝑒𝑛, 𝑐ℎ𝑎𝑟_𝑙𝑒𝑛, 𝑑𝑖𝑔𝑖𝑡_𝑙𝑒𝑛, 𝑝𝑢𝑛𝑐_𝑙𝑒𝑛, 𝑟𝑜𝑤_𝑐𝑜𝑢𝑛𝑡 , 𝑢𝑛𝑖𝑞𝑢𝑒_𝑟𝑎𝑡𝑖𝑜 , 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑟𝑎𝑡𝑖𝑜 , 𝑑𝑖𝑠𝑡_𝑣𝑎𝑙_𝑐𝑜𝑢𝑛𝑡

Table 2: Statistical metrics used to generate DQ constraints for categorical data (details in Appendix A).

denoted by 𝑃 (S), is defined as the conjunction of all𝑄𝑖 ∈ S, written
as 𝑃 (S) = ∧

𝑄𝑖 ∈S𝑄𝑖 .

Example 3. Continue with Example 2, let𝐶 denotes the target col-
umn “payment_type”. In addition to the aforementioned constraint
𝑄3 : 0 ≤ 𝐿𝑖𝑛𝑓 (𝐶,𝐶′) ≤ 0.01, one may additionally require that this
column to be at least 95% complete (with less than 5% of nulls),
written as 𝑄4 : 0.95 ≤ 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑟𝑎𝑡𝑖𝑜 (𝐶) ≤ 1. Furthermore, we
expect to see no more than 6 distinct values (with “cash”, “credit”,
etc.) in this column, so we have 𝑄5 : 0 ≤ 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡_𝑐𝑛𝑡 (𝐶) ≤ 6.

Putting these together and let S = {𝑄3, 𝑄4, 𝑄5}, we can write a
conjunctive program 𝑃 (S) = ∧

𝑄𝑖 ∈S𝑄𝑖 (or 𝑄3 ∧𝑄4 ∧𝑄5).

4 AUTO-VALIDATE-BY-HISTORY

While DQ programs are flexible and powerful, they are difficult to
write manually. We now describe our AVH to auto-program DQ.

4.1 Problem Statement

For the scope of this work, we consider auto-generating conjunctive
DQ programs for each column 𝐶 in data pipelines (or only for a
subset of important columns selected by users), using column-level
single-distribution or two-distribution DQ constraints (Section 3).

For a given column 𝐶 , our goal is to program suitable DQ by
selecting from a large space of metrics M in Table 1 and Table 2.
This space ofM is clearly large and hard to program manually. Also
note that while we list commonly-used metrics, the list is not meant
to be exhaustive. In fact, AVH is designed to be extensible, so that
new metrics (e.g., statistical distances relevant to other use cases)
can be added intoM in a way that is transparent to users.

For a given 𝐶 and a set of possible M, this induces a large space
of possible DQ constraints on 𝐶 . We denote this space of possible
single-distribution and two-distribution DQ as Q, defined as:

Q = {𝑄 (𝑀,𝐶, 𝜃𝑙 , 𝜃𝑢 ) |𝑀 ∈ M, 𝜃𝑙 ∈ R, 𝜃𝑢 ∈ R, 𝜃𝑙 ≤ 𝜃𝑢 }
∪ {𝑄 (𝑀,𝐶,𝐶′, 𝜃𝑙 , 𝜃𝑢 ) |𝑀 ∈ M, 𝜃𝑙 ∈ R, 𝜃𝑢 ∈ R, 𝜃𝑙 ≤ 𝜃𝑢 }

(1)

We note that in production settings, it is crucial that auto-generated
DQ programs are of high precision, with very few false-alarms
(false-positive detection of DQ issues). This is because with thou-
sands of recurring pipelines, even a low False-Positive Rate (FPR)

can translate into a large number of false-positives, which is un-
desirable as they usually require human intervention. Because it
is critical to ensure high precision, in AVH we explicitly aim for a
very low level of FPR, which we denote by 𝛿 , e.g., 𝛿 = 0.1%.

Finally, because we are dealing with data from recurring data
pipelines, we assume that the same data from 𝐾 past executions of
this pipeline is available, which we denote as 𝐻 = {𝐶1,𝐶2, . . . ,𝐶𝐾 }.
These 𝐾 previous batches of data are assumed to be free of DQ
issues, which is reasonable because engineers usually manually
check the first few pipeline runs after a pipeline is developed to

ensure it runs properly. DQ issues tend to creep in over time due
to data drift and schema drift [14, 63].

Auto-Validate-by-History (AVH). Given these considera-
tions, we now formally define our problem as follows.

Definition 4. Auto-Validate-by-History. Given a target col-
umn 𝐶 from a pipeline, and the same data from previous 𝐾 execu-
tions 𝐻 = {𝐶1,𝐶2, . . . ,𝐶𝐾 }, a space of possible DQ constraints Q,
and a target false-positive-rate (FPR) 𝛿 . Construct a conjunctive DQ
program 𝑃 (S) with S ⊆ Q, such that the expected FPR of 𝑃 (S) is no
greater than 𝛿 , while 𝑃 (S) can catch as many DQ issues as possible.
We write AVH as the following optimization problem:

(AVH) max R(𝑃 (S)) (2)
s.t. FPR(𝑃 (S)) ≤ 𝛿 (3)

𝑃 (S) =
∧

𝑄𝑖 ∈S, S⊆Q
𝑄𝑖 (4)

Where R(𝑃 (S)) denotes the expected recall of a DQ program
𝑃 (S) that we want to maximize, and FPR(𝑃 (S)) denotes its expected
FPR, which is required to be lower than a target threshold 𝛿 .

4.2 Construct DQ constraints

To solve AVH, in this section we will first describe how to construct
a large space of DQ constrains Q (and estimate their FPR), which
are pre-requisites before we can use Q to generate conjunctive
programs for AVH (in Section 4.3).

Recall that to instantiate constraints like 𝑄𝑖 (𝑀,𝐶, 𝜃𝑙 , 𝜃𝑢 ) (from
Definition 1), we need to pick a metric𝑀 ∈ M, apply𝑀 on the given
column 𝐶 to compute 𝑀 (𝐶), and constrain 𝑀 (𝐶) using suitable
upper/lower-bounds thresholds 𝜃𝑢 /𝜃𝑙 .

Here we leverage the fact that a history 𝐻 = {𝐶1,𝐶2, . . . ,𝐶𝐾 } of
the same column 𝐶 from past executions is available. If we apply
𝑀 on 𝐻 , we obtain 𝑀 (𝐻 ) = {𝑀 (𝐶1), 𝑀 (𝐶2), . . . , 𝑀 (𝐶𝐾 )}, which
forms a statistical distribution1. When we apply the same metric
𝑀 on a newly arrived batch of data 𝐶 , the resulting value 𝑀 (𝐶)
can then be seen as a data point drawn from the distribution𝑀 (𝐻 ).
Let the estimated mean and variance of𝑀 (𝐻 ) be 𝜇 and 𝜎2, respec-
tively. We can construct a DQ constraint 𝑄 (𝑀,𝐶, 𝜃𝑙 , 𝜃𝑢 ), with the
following probabilistic FRP guarantees.

Proposition 1. For any metric 𝑀 ∈ M, and 𝛽 ∈ R+, we can
construct a DQ constraint𝑄 (𝑀,𝐶, 𝜃𝑙 , 𝜃𝑢 ), with 𝜃𝑙 = 𝜇−𝛽, 𝜃𝑢 = 𝜇 +𝛽 .
The expected FPR of the constructed 𝑄 on data without DQ issues,

denoted by E[𝐹𝑃𝑅(𝑄)], satisfy the following inequality:

E[𝐹𝑃𝑅(𝑄)] ≤ (𝜎
𝛽
)2 (5)

1Later, we will discuss exceptions to the assumption (e.g., non-stationary time-series).
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Proof. We prove this proposition using Chebyshev’s inequal-
ity [16]. Chebyshev states that for a random variable𝑋 , 𝑃 ( |𝑋 −𝜇 | ≥
𝑘𝜎) ≤ 1

𝑘2
, ∀𝑘 ∈ R+. For the random variable 𝑀 (𝐶), let 𝑘 =

𝛽
𝜎 .

Replacing 𝑘 with 𝛽
𝜎 above, we get 𝑃 ( |𝑀 (𝐶) − 𝜇 | ≥ 𝛽) ≤ ( 𝜎

𝛽
)2.

Note that this implies 𝑃 ( |𝑀 (𝐶) − 𝜇 | ≤ 𝛽) ≥ 1 − ( 𝜎
𝛽
)2, which

can be rewritten as 𝑃 (−𝛽 ≤ (𝑀 (𝐶) − 𝜇) ≤ 𝛽) ≥ 1 − ( 𝜎
𝛽
)2, or

𝑃 (𝜇 − 𝛽 ≤ 𝑀 (𝐶) ≤ 𝜇 + 𝛽) ≥ 1 − ( 𝜎
𝛽
)2.

Observe that 𝜇−𝛽 ≤ 𝑀 (𝐶) ≤ 𝜇 +𝛽 is exactly our𝑄 (𝐶,𝑀, 𝜃𝑙 , 𝜃𝑢 ),
where 𝜃𝑙 = 𝜇 − 𝛽 , 𝜃𝑢 = 𝜇 + 𝛽 . We thus get 𝑃 (𝑄 holds on 𝐶) ≥
1 − ( 𝜎

𝛽
)2, which is equivalent to saying that the expected FPR of 𝑄

is no greater than ( 𝜎
𝛽
)2, or E[𝐹𝑃𝑅(𝑄)] ≤ ( 𝜎

𝛽
)2. □

We use the following example to illustrate such a constructed
DQ constraint and its estimated FPR.

Example 4. Consider a metric 𝑀 = 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑟𝑎𝑡𝑖𝑜 from Ta-
ble 1 that computes the fraction of values in a column 𝐶 that
are “complete” (not-null), and a history of data from past exe-
cutions 𝐻 = {𝐶1,𝐶2, . . . ,𝐶𝐾 }. Applying 𝑀 on 𝐻 , we obtain the
𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑟𝑎𝑡𝑖𝑜 on historical data as𝑀 (𝐻 ) = {0.92, 0.90, . . . , 0.91}.

From the sample𝑀 (𝐻 ), we estimate its mean 𝜇 = 0.9 and vari-
ance of 𝜎2 = 0.0001, respectively. Using Proposition 1, suppose we
set 𝛽 = 0.05, we get a 𝑄6 (𝐶, 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑟𝑎𝑡𝑖𝑜, 0.85, 0.95) (or equiva-
lently 0.85 ≤ 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑟𝑎𝑡𝑖𝑜 (𝐶) ≤ 0.95), whose expected FPR has
the following inequality: E[𝐹𝑃𝑅(𝑄6)] ≤ ( 0.010.05 )

2 = 0.04.
Note that using different 𝛽 allows us to instantiate different

constraints with different levels of FPR. For example, setting 𝛽 =

0.1 will induce a different 𝑄7 (𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑟𝑎𝑡𝑖𝑜,𝐶, 0.8, 1) (or 0.8 ≤
𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑟𝑎𝑡𝑖𝑜 (𝐶) ≤ 1), whose expected FPR is E[𝐹𝑃𝑅(𝑄7)] ≤
( 0.010.1 )

2 = 0.01. Note that this yields a lower FPR than that of 𝑄6
above, because𝑄7 has awider upper/lower-bound for 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑟𝑎𝑡𝑖𝑜 .

Using Proposition 1 and different 𝛽 values, we can instantiate
an array of DQ constraints using the same𝑀 but different [𝜃𝑙 , 𝜃𝑢 ]
(thus different FPR guarantees). A DQwith a larger 𝛽 allows a larger
range of𝑀 (𝐶) values, which is less sensitive/effective in catching
DQ issues, but is also “safer” with lower expected FPR.

Tighter bounds of FPR leveraging metric properties. The
results in Proposition 1 apply to any metric 𝑀 ∈ M, and the cor-
responding bounds on FRP are loose as a result. We derive two
tighter FRP bounds for specific types of statistical metrics below,
by exploiting unique characteristics of these metrics.

Proposition 2. For any metric 𝑀 ∈ {𝐸𝑀𝐷, 𝐽𝑆_𝑑𝑖𝑣, 𝐾𝐿_𝑑𝑖𝑣,
𝐾𝑆_𝑑𝑖𝑠𝑡,𝐶𝑜ℎ𝑒𝑛_𝑑, 𝐿1, 𝐿𝑖𝑛𝑓 ,𝐶𝑜𝑠𝑖𝑛𝑒, 𝐶ℎ𝑖_𝑠𝑞𝑢𝑎𝑟𝑒𝑑}, and any 𝛽 ∈ R+,
we can construct a DQ constraint 𝑄 (𝑀,𝐶, 𝜃𝑙 , 𝜃𝑢 ), with 𝜃𝑙 = 0, 𝜃𝑢 =

𝜇 + 𝛽 . The expected FPR of the constructed 𝑄 on data without DQ

issues, denoted by E[𝐹𝑃𝑅(𝑄)], satisfy the following inequality:

E[𝐹𝑃𝑅(𝑄)] ≤ 𝜎2

𝛽2 + 𝜎2
(6)

This bound is derived using Cantelli’s inequality [16], a proof of
which can be found in Appendix F.

Proposition 3. For any metric 𝑀 ∈ {𝑐𝑜𝑢𝑛𝑡,𝑚𝑒𝑎𝑛, 𝑠𝑡𝑟_𝑙𝑒𝑛,
𝑐ℎ𝑎𝑟_𝑙𝑒𝑛, 𝑑𝑖𝑔𝑖𝑡_𝑙𝑒𝑛, 𝑝𝑢𝑛𝑐_𝑙𝑒𝑛, 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑟𝑎𝑡𝑖𝑜}, and any 𝛽 ∈ R+,
we can construct a DQ constraint 𝑄 (𝑀,𝐶, 𝜃𝑙 , 𝜃𝑢 ), with 𝜃𝑙 = 𝜇 − 𝛽,

𝜃𝑢 = 𝜇 + 𝛽 . The expected FPR of the constructed 𝑄 on data without

DQ issues, denoted by E[𝐹𝑃𝑅(𝑄)], satisfy the following inequality:

E[𝐹𝑃𝑅(𝑄)] ≤ 1 − 2
√
𝜋

∫ 𝛽√
2𝜎

0
𝑒−𝑡

2
𝑑𝑡 (7)

This bound is derived using Central Limit Theorem [16]. We
show a proof of this in Appendix G.

We omit examples for Proposition 2 and Proposition 3, but DQ
can be constructed similar to Example 4 with tighter bounds.

We note that these tighter bounds allow us to construct DQ
constraints with better FPR guarantees, which help to meet the
constraint in Equation (3) of AVH more effectively. The pseudo-
code of this step can be found in Appendix D.

Time-series Differencing forNon-stationaryData.Our anal-
ysis so far assumes 𝑀 (𝐻 ) to be a well-behaved distribution, gen-
erated from stationary processes [53], defined as processes with
probability distributions that are static and do not change over time.
While this is true for many real cases (e.g., Example 4), there are
cases where𝑀 (𝐻 ) follows non-stationary processes [53], in which
parameters of the underlying probability change over time.

Example 5. Consider a recurring pipeline that processes one-
day’s worth of user traffic data visiting a website. Because overall,
the user traffic will grow over time, the volume of data processed
by the pipeline will increase slightly every day. So for the metric
𝑀 = 𝑟𝑜𝑤_𝑐𝑜𝑢𝑛𝑡 , we get a sequence of row-counts for the past 𝐾
days as 𝑀 (𝐻 ) = {100𝐾, 103𝐾, 105𝐾, 106𝐾, . . . , 151𝐾, 152𝐾}. Note
that 𝑀 (𝐻 ) is non-stationary here, because the parameters of the
underlying distribution (e.g., the mean of𝑀 (𝐶)) change over time.

Modeling non-stationary𝑀 (𝐻 ) like above as stationary using a
static distribution is clearly sub-optimal, which may lead to false-
positives and false-negatives in DQ applications.

To account for non-stationary𝑀 (𝐻 ), we first determine whether
a𝑀 (𝐻 ) is already stationary, using the Augmented Dickey–Fuller
(ADF) test from the time-series literature [23]. If we reject the null-
hypothesis in ADF that𝑀 (𝐻 ) is already stationary (e.g., Example 4),
we proceed to construct DQ constraints as before. For cases where
𝑀 (𝐻 ) is not stationary (e.g., Example 5), we repeatedly apply a
technique known as time-series differencing [33] on𝑀 (𝐻 ) until it
reaches stationarity. we illustrate this using a small example below,
and defer details of the time-series differencing step to Appendix E.

Example 6. Continue with Example 5, where 𝑀 (𝐻 ) = {100𝐾,
103𝐾, 105𝐾, 106𝐾, . . . , 151𝐾, 153𝐾}, and the metric𝑀 = 𝑟𝑜𝑤_𝑐𝑜𝑢𝑛𝑡 .
The Augmented Dickey–Fuller (ADF) test will fail to reject the
null hypothesis that𝑀 (𝐻 ) is non-stationary. Applying a first-order
time-differencing step ([53]) with 𝑡 = 1 will produce: 𝑀′

𝑡=1 (𝐻 ) =
{𝑀 (𝐶2)−𝑀 (𝐶1), 𝑀 (𝐶3)−𝑀 (𝐶2), . . . 𝑀 (𝐶𝐾 )−𝑀 (𝐶𝐾−1), } = {3𝐾, 2𝐾,
1𝐾, . . . , 2𝐾}. This resulting𝑀′

𝑡=1 (𝐻 ) passes the ADF test and is then
used as a static distribution to generate Q.

We note that the differencing step also allows us to handle
cyclic time-series𝑀 (𝐻 ) (e.g., weekly or hourly periodic patterns),
by transforming𝑀 (𝐻 ) using first-order differencing with lags [33],
which can then be handled like stationary processes as before.

5



4.3 Construct DQ Programs in AVH

After we construct constraints Q and estimate their FPR bounds,
we are ready solve AVH. Recall that in AVH, in addition to satisfy-
ing the hard constraint on FPR (Equation (3)), our objective (Equa-
tion (2)) is to maximize the expected “recall” of the constructed DQ
program (the number of possible DQ issues to catch). In order to
fully instantiate AVH, we still need to estimate the expected recall
benefit of each DQ constraint 𝑄𝑖 ∈ Q, which can guide us to select
the most “beneficial” DQ program.

Estimate DQ recall using synthetic “training”. Clearly, we
cannot foresee the exact DQ issues that may arise in the future
in a particular pipeline, to precisely quantify the benefit of each
𝑄𝑖 ∈ Q. However, there is a large literature that documents common
types of DQ issues in pipelines (e.g., [14, 54, 61–63, 66, 67]), which
include things like schema change, unit change, increased nulls,
as discussed earlier. Our observation is that although it is hard to
quantify the benefit of 𝑄𝑖 in a specific DQ incident, in the long run
if future DQ issues are drawn from the set of common DQ problems,
then we can still estimate the expected recall of a specific 𝑄𝑖 .

With that goal in mind, we carefully reviewed the DQ literature
and cataloged a list of 10 common types of DQ issues in pipelines
(schema change, unit change, increased nulls, etc.). We then vary
parameters in each type of DQ to systematically capture different
magnitudes of DQ deviations (e.g., different fractions of values are
overwritten with nulls for “increased nulls”, different magnitudes
of changes for “unit changes”, etc.), to construct a total of 60 proce-
dures that can systematically inject DQ issues in a given column
𝐶 by varying 𝐶 . We denote this set of synthetically generated DQ
issues on 𝐶 as D(𝐶). We give a full list of these common types of
DQ issues and their parameters configurations in Appendix B.

Intuitively, this D(𝐶) models a wide variety of data deviations
that may happen in 𝐶 due to DQ issues, which guides us to select
salient 𝑄𝑖 ∈ Q that are unique “statistical invariants” specific to
a pipeline, to best differentiate between the “normal” 𝐻 , and the
“bad cases” in D(𝐶), for this pipeline. This synthetic D(𝐶) in effect
becomes “training data” in ML, by assisting us to estimate the recall
benefit of 𝑄𝑖 in AVH. We give an example below to illustrate this.

Example 7. We revisit the example from the Introduction, where
a recurring pipeline produces exactly 50 output rows, with one
row for each of the 50 US states, over all past 𝐾 executions in the
history. In such a pipeline, for the “state” column in the output,
one distinguishing feature is that the column has exactly 50 distinct
values, or 𝑄8 : 𝑑𝑖𝑠𝑡_𝑣𝑎𝑙_𝑐𝑛𝑡 (state) = 50 (which intuitively, is a
“statistical invariant” only unique to this pipeline).

When we synthetically inject DQ issues into 𝐶 (the “state” col-
umn) to produce D(𝐶), we get variants of 𝐶 , such as 𝐶 with an
increased number of nulls, 𝐶 with values taken from a neigh-
boring column (due to schema-change), etc. This constraint 𝑄8 :
𝑑𝑖𝑠𝑡_𝑣𝑎𝑙_𝑐𝑛𝑡 (state) = 50 will catch most of such variations in
D(𝐶), thus producing a high expected “recall” and making 𝑄8 a
desirable constraint to use. Intuitively, 𝑄8 is a good constraint for
𝐶 in this particular pipeline, because 𝑑𝑖𝑠𝑡_𝑣𝑎𝑙_𝑐𝑛𝑡 = 50 is a unique
“statistical variant” specific to this column and pipeline, which has
more discriminating power than other more generic constraints.

Formally, we define the expected recall of𝑄𝑖 or 𝑅(𝑄𝑖 ), as the set
of issues it can detect in D(𝐶), written as:

𝑅(𝑄𝑖 ) = {𝐶′ |𝐶′ ∈ D(𝐶),𝐶′ fails on 𝑄𝑖 } (8)

Optimizing AVH with guarantees. Given a DQ program with
a conjunction of constraints 𝑃 (S) = ∧

𝑄𝑖 ∈S𝑄𝑖 for some S ⊆ Q,
naturally the recall of two constraints 𝑄𝑖 , 𝑄 𝑗 ∈ S will overlap (with
𝑅(𝑄𝑖 ) ∪ 𝑅(𝑄 𝑗 ) ≠ ∅). This leads to diminishing recall for similar
DQ constraints in the same program, and requires us to leverage
“complementary” constraints when generating DQ programs.

Given a conjunctive program 𝑃 (S) with S ⊆ Q, we model the col-
lective recall of S, as the union of individual 𝑅(𝑄𝑖 ), or

⋃
𝑄𝑖 ∈S R(𝑄𝑖 ).

This becomes a concrete instantiation of the objective function in
Equation (2) of the AVH problem.

Furthermore, recall that we can upper-bound the FPR of each
𝑄𝑖 ∈ S, using Proposition 1-3. Given a program 𝑃 (S), assume a
worst-case where the FRP of each 𝑄𝑖 ∈ S is disjoint, we can then
upper-bound the FPR of 𝑃 (S) (Equation (3)), as the sum of the FRP
bounds of each 𝑄𝑖 , or

∑
𝑄𝑖 ∈S FPR(𝑄𝑖 ).

Together, we rewrite the abstract AVH in Equation (2)-(4) as:

(AVH) max
���� ⋃
𝑄𝑖 ∈S

R(𝑄𝑖 )
���� (9)

s.t.
∑︁
𝑄𝑖 ∈S

FPR(𝑄𝑖 ) ≤ 𝛿 (10)

S ⊆ Q (11)

Intuitively, we want to weigh the “cost” of selecting a constraint
𝑄𝑖 , which is its estimated 𝐹𝑅𝑃 (𝑄𝑖 ), against its “benefit”, which is its
expected recall 𝑅(𝑄𝑖 ). Furthermore, we need to account for the fact
that constraints with overlapping recall benefits yield diminishing
returns that is analogous to submodularity. We prove that AVH is
in general intractable and hard to approximate in Appendix H.

Given that it is unlikely that we can solve AVH optimally in
polynomial time, we propose an efficient algorithm that gives a
constant-factor approximation of the best possible solution in terms
of the objective value in Equation (9), while still guaranteed to
satisfy the FPR requirement in Equation (10) in expectation. The
pseudo-code of the procedure is shown in Algorithm 1.

Algorithm 1 takes as input a set of metricsM, an FPR target 𝛿 , as
well as a column 𝐶 together with its history 𝐻 = {𝐶1,𝐶2, . . . ,𝐶𝐾 }.
We start by constructing a large space of possible DQ constraints
Q (Line 1), using the givenM and 𝐻 (Section 4.2).

Using this Q, we then iterate to find a solution S ⊆ Q, which
is first initialized to empty. In each iteration, we select the best
possible𝑄𝑠 from remaining constraints in Q that have not yet been
selected (Line 4), based on a cost/benefit calculation, where the
“benefit” of adding a constraint 𝑄𝑖 is its increment recall gain on
top of the current solution set S, written as |𝑅(𝑄𝑖 ) \

⋃
𝑄 𝑗 ∈S 𝑅(𝑄 𝑗 ) |,

divided by its additional “cost” of adding𝑄𝑖 , which is the increased
FPR when adding 𝐹𝑃𝑅(𝑄𝑖 ). The selected 𝑄𝑠 is then simply the
constraint that maximizes this benefit-to-cost ratio, as shown in
Line 4. We add this 𝑄𝑠 to the current solution S, update the current
total FPR as well Q, and iterate until we exhaust Q.
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Algorithm 1: Auto-Validate by-History (AVH)
input :Metrics M, a target-FPR 𝛿 , column 𝐶 , and its

history 𝐻 = {𝐶1,𝐶2, . . . ,𝐶𝐾 }
output :Conjunctive DQ Program P(S)

1 Q← Construct-Constraints(M, 𝐻 )
2 𝑆 ← ∅, 𝐹𝑃𝑅 ← 0
3 while 𝐹𝑃𝑅 ≤ 𝛿 do
4 𝑄𝑠 = arg𝑚𝑎𝑥𝑄𝑖 ∈Q (

|𝑅 (𝑄𝑖 )\
⋃
𝑄𝑗 ∈S 𝑅 (𝑄 𝑗 ) |

𝐹𝑅𝑃 (𝑄𝑖 ) )
5 if 𝐹𝑃𝑅(𝑄𝑠 ) + 𝐹𝑃𝑅 ≤ 𝛿 then
6 𝑆 ← 𝑆 ∪𝑄𝑠
7 𝐹𝑃𝑅 ← 𝐹𝑃𝑅 + 𝐹𝑃𝑅(𝑄𝑠 )
8 Q← Q\𝑄𝑠
9 𝑄𝑚 = arg𝑚𝑎𝑥𝑄𝑚∈Q ( |𝑅(𝑄𝑚) |)

10 if |⋃𝑄𝑖 ∈S R(𝑄𝑖 ) | < |𝑅(𝑄𝑚) | then
11 𝑆 ← {𝑄𝑚}
12 return 𝑃 (𝑆)

In the final step (Line 9), we compare the best possible singleton
𝑄𝑚 ∈ Q that maximizes recall without violating the FPR require-
ment, with the current S from above. We pick the best between
{𝑄𝑚} and S based on their recall as our final solution to AVH.

We show that Algorithm 1 has the following properties (a proof
of which can be found in Appendix I).

Proposition 4. Algorithm 1 is a ( 12 −
1
2𝑒 )-approximation algo-

rithm for the AVH problem in Equation (9), meaning that the objective

value produced by Algorithm 1 is at least ( 12 −
1
2𝑒 )OPT, when OPT

is the objective value of the optimal solution to AVH. Furthermore,

Algorithm 1 produces a feasible solution in expectation, meaning that

the expected FPR of its solution is guaranteed to satisfy Equation (10).

5 EXPERIMENTS

We evaluate the effectiveness and efficiency of AVH, using real
production pipelines. Our code will be shared at [3] after an internal
review.

5.1 Evaluation Benchmarks

Benchmarks. We perform rigorous evaluations, using real and
synthetic benchmarks derived from production pipelines.

- Real. We construct a Real benchmark using production
pipelines from Microsoft’s internal big-data platform [73]. We per-
form a longitudinal study of the pipelines, by sampling 1000 nu-
meric columns and 1000 categorical columns from these recurring
pipelines, and trace them over 60 consecutive executions (which
may recur daily or hourly). For each column 𝐶 , this generates a
sequence of history {𝐶1,𝐶2, . . . ,𝐶60}, for a total of 2000 sequences.

We evaluate the precision/recall of each algorithm A (AVH or
otherwise) on the 2000 sequences, by constructing sliding windows
of sub-sequences for back-in-time tests of A’s precision/recall (fol-
lowing similar practices in other time-series domains [17, 21]):

Precision. Given a sequence of past runs𝐻 = {𝐶1,𝐶2, . . . ,𝐶𝐾 }, if
an algorithmA looks at 𝐻 together with the real𝐶𝐾+1 that arrives
next, and predicts 𝐶𝐾+1 to have data-quality issues, then it is likely
a false-positive detection, because the vast majority of production

pipeline runs are free of DQ issues (if there were anomalous runs,
they would have been caught and fixed by engineers, given the
importance of the production data). To validate that it is indeed
the case in our test data, we manually inspected a sample of our
production pipeline data and did not identify anyDQ issues. (Details
of the process can be found in Appendix L.)

For each full sequence 𝑆 = {𝐶1,𝐶2, . . . ,𝐶60}, we construct a total
of 30 historical sliding windows (each with a length of 30), as 𝐻30 =
{𝐶1,𝐶2, . . . ,𝐶30}, 𝐻31 = {𝐶2,𝐶3, . . . ,𝐶31}, etc. Then at time-step
𝐾 (e.g., 30), and given the history 𝐻𝐾 = {𝐶𝐾−29, 𝐶𝐾−28, . . . ,𝐶𝐾 },
we ask each algorithm A to look at 𝐻𝐾 and predict whether the
next batch of real data 𝐶𝐾+1 has a DQ issue or not, for a total of
(2000 × 30) = 60K precision tests.

Recall. For recall, because there are few documented DQ inci-
dents that we can use to test algorithms at scale, we systematically
construct recall tests as follows. Given a sliding window of prefix
𝐻 = {𝐶1, 𝐶2, . . . ,𝐶30}, we swap out the next batch of real data 𝐶31,
and replace it with a column 𝐶′31 that looks “similar” to 𝐶31 (e.g.,
with a similar set of values).

Specifically, we use 𝐶31 as the “seed query”, to retrieve top-20
columns most similar to 𝐶31 based on content similarity (Cosine),
from the underlying data lake that hosts all production pipelines.
Because 𝐶′31 will likely have subtle differences from the real 𝐶31
(e.g., value-distributions, row-counts, etc.), algorithm A should
ideally detect as many 𝐶′31 as DQ issues as possible (good recall),
without triggering false alarms on the real 𝐶31 (good precision).
Because we retrieve top-20 similar columns, this generates a total
of 2000 × 20 = 40K recall tests.2

-Synthetic. In addition, we create a Synthetic benchmark,
where the precision tests are identical to Real. For recall tests, in-
stead of using real columns that are similar to𝐶31, we synthetically
inject 10 common DQ issues reported in the literature into 𝐶31
(described in Appendix B). This allows us to systematically test
against a range of DQ issues with different levels of deviations.

Evaluation metrics. For each algorithmA, we report standard
precision/recall results on the 60K precision tests and 40K recall
tests described above. We use standard precision and recall, defined
as 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 , 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁 , where TP, FP, and FN are
True-Positive, False-Positive, and False-Negative, respectively.

5.2 Methods Compared

We compare with an extensive set of over 20 methods, including
strong commercial solutions, as well as state-of-the-art algorithms
from the literature of anomaly detection and data cleaning. We
categorize these methods into groups, which we describe below.

Commercial solutions. We compare with the following com-
mercial solutions that aim to automatically validate data pipelines.
Google TFDV. We compare with Google’s Tensorflow Data Valida-
tion (TFDV) [20]. We install the latest version from Python pip, and
use recommended settings in [8].
Amazon Deequ. We compare with Amazon’s Deequ [60, 61], using
configurations suggested in their documentations [4].

2It should be noted that some of the𝐶′31 columns we retrieve may be so similar to𝐶31
that they become indistinguishable, making it impossible for any A to detect such
𝐶′31 as DQ issues. This lowers the best-possible recall, but is fair to all algorithms.
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Azure Anomaly Detector. Azure Anomaly Detector [1] is a cloud-
based anomaly detection service for time-series data, utilizing state-
of-the-art algorithms in the literature [58].
Azure ML Drift Detection. Azure ML has the ability to detect data
drift over time [2]. We use data from the past 𝐾 executions as the
“baseline” and data from a new execution as the “target”.

Time-Series-based anomaly detection. There is a large body
of literature on detecting outliers from time-series data. We use a
recent benchmark study [64] to identify the following four best-
performing methods, and use the same implementations provided
in [9] on our statistical data for comparison purposes.
LSTM-AD [49] employs LSTM networks to learn and reconstruct
time series. It uses the reconstruction error to detect anomalies.
Telemanom [40] also uses LSTM networks to reconstruct time-
series telemetry, identifying anomalies by comparing expected and
actual values and applying unsupervised thresholds.
Health-ESN [22] uses the classical Echo State Network (ESN) and
is trained on normal data. Anomalies are detected when the error
between the input and predicted output exceeds a certain threshold,
which is determined through an information theoretic analysis.
COF [70] is a local density-based method that identifies time-series
outliers, by detecting deviations from spherical density patterns.

Classical anomaly detection.We also compare with the fol-
lowing anomaly detection methods developed in tabular settings.
One-class SVM [65] is a popular ML method for anomaly detection,
where only one class of training data is available. We train one-class
SVM using historical data, and use it to make predictions.
Isolation Forest [46] is also a popular method for anomaly detec-
tion based on decision trees. We again train Isolation Forest using
historical data, and then predict on newly-arrived data.
Local Outlier Factor (LOF) [15] is another one-class method for
anomaly detection based on data density. We configure LOF in
a way similar to other one-class methods above.
K-MeansAD [45] is also a classical anomaly detection method,
which is based on the unsupervised K-Means clustering.
ECOD [44] identifies outliers by estimating the distribution of the
input data and calculating the tail probability for each data point.
Average KNN (Avg-KNN) is another outlier detection method, and
was used to automate data validation in a pipeline setting [57] that
is similar to the scenario considered in our work.

Statistical tests.We compare with the following classical sta-
tistical tests used to detect outliers in distributions.
Kolmogorov–Smirnov (KS) is a classical statistical hypothesis test
for homogeneity between two numeric distributions, and is used in
prior work to detect data drift [54]. We vary its p-value thresholds
to generate PR curves.
Chi-squared is a classical hypothesis test for homogeneity between
two categorical distributions, and also used in prior work [54]. We
vary its p-value thresholds like above.
Median Absolute Deviation (MAD) is a measure of statistical dis-
persion from robust statistics [39], and has been used to detect
quantitative outliers [36]. We use MAD-deviation (Hampel X84,
similar to z-scores) to produce predictions [36].

Database constraints. There is a large literature on using data-
base constraints for data cleaning. We compare with these methods:

Functional Dependency (FD). FD is widely-used to detect data er-
rors in tables [13, 35, 48, 52], by exploiting correlations between
columns (e.g., salary → tax-rate). Since not all columns can be
“covered” by FD, to estimate its best possible recall, we detect all
possible FDs from our 2000 test tables, and mark a test column 𝐶
to be “covered” if there exists a detected FD that has 𝐶 in its RHS.
We report this as FD-UB (Functional Dependency Upper-bound).
Order Dependency (OD) [42, 68, 69].We discover ODusing the same
statistical information by ordering tables with statics in time.
Sequential Dependency (SD) [19, 32] generalizes OD, and we dis-
cover SD using the same statistical information over time.
Denial Constraints (DC). We use the approach in [25] to discover
DC that generalizes FD and OD, and use them for validating data.

Auto-Validate-by-History (AVH). This is our proposed
AVH method as described in Section 4.

5.3 Experiment Results

Overall quality comparisons. Figure 2 and 3 show the average
precision/recall of different methods on the Real and Synthetic
benchmark, respectively. AVH is at the top-right corner with high
precision/recall, outperforming other methods across all cases.

Anomaly detection methods, especially LOF and Health-ESP, are
the best performing baselines. However, these methods use each
statistical attribute just as a regular dimension in a data record,
while our AVH exploits different statistical properties of the under-

lying metrics (Chebyshev, Chantelli, CLT, etc., in Proposition 1-3),
which gives AVH an unique advantage over even the state-of-the-
art anomaly detection methods, underscoring the importance of
our approach in validating data from recurring data pipelines.

Commercial data-validation solutions like Amazon Deequ and
Google TFDV have high precision but low recall, because they
use predefined and static configurations (e.g., JS-Divergence and
L-infinity are the default for TFDV), which lack the ability adapt
to different pipelines, and thus the low recall. Similarly, statistical
tests (KS/Chi-squared/MAD) use fixed predictors that also cannot
adapt to different pipelines, and show sub-optimal performance.

Constraint-based data cleaning methods from the database liter-
ature (e.g., FD, DC, OD, SD, etc.) are not competitive in our tests,
because these methods are designed to handle single table snapshot,
typically using manually designed constraints.

Figure 5 shows breakdown of AVH results in Figure 3 by different
types of DQ issues in the Synthetic benchmark. We can see that
AVH is effective against most types of DQ issues (schema-change,
distribution-change, data-volume-change, etc.). On numerical data,
we see that it is the most difficult to detect “character-level per-
turbation” (randomly perturbing one digit character for another
digit with small probabilities) and “character deletion” (randomly
removing one digit character with small probabilities), which is not
unexpected since such small changes may not always change the
underlying numerical distributions. On categorical data, “character-
level perturbation” is also the most difficult to detect, but AVH is
effective against “character deletion” and “character insertion”.

Sensitivity and ablation studies. We perform extensive ex-
periments to study the sensitivity of AVH (to the length of history,
different types of data-errors, target FPR 𝜏 , etc.). We also perform an
ablation study to understand the importance of AVH components.
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(a) Test on numerical data (b) Test on categorical data

Figure 2: Precision/Recall results on the Real benchmark (2000 real pipelines).

(a) Test on numerical data (b) Test on categorical data

Figure 3: Precision/Recall results on the Synthetic benchmark.

Figure 4: Efficiency analysis of AVH

In the interest of space, we present these additional experimental
results in Appendix J and Appendix K, respectively.

Efficiency. Figure 4 shows the end-to-end latency of AVH to
process a new batch of data. We vary the number of rows in a
column 𝐶 (x-axis), and report latency averaged over 100 runs. Re-
call that AVH can be used offline, since DQ constraints can be

auto-installed on recurring pipelines (without involving humans).
Nevertheless, we want to make sure that the cost of AVH is small.
Figure 4 confirms this is the case – the latency of AVH on 100K
rows is 1.6 seconds on average, making this interactive. The figure
further breaks down the time spends into three components: (1)
computing single-distribution metrics (green), (2) two-distribution
metrics (blue), and (3) DQ programs (red), where computing two-
distribution metrics (blue) takes the most time, which is expected.
Overall, we see that the overall latency grows linearly with an
increasing number of rows, indicating good scalability.

6 CONCLUSIONS

In this work, we develop an Auto-Validate-by-History (AVH)
framework to automate data-validation in recurring pipelines. AVH
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can automatically generate explainable DQ programs that are prov-
ably accurate, by leveraging the statistical properties of the under-
lying metrics. Extensive evaluations on production pipelines show
the efficiency and effectiveness of AVH.
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Type Metric Description

Two-distribution

𝐸𝑀𝐷 Earth Mover’s distance (Wasserstein metric) [59] between two numeric distributions
𝐽 𝑆_𝑑𝑖𝑣 Jensen–Shannon divergence [28] between two numeric distributions
𝐾𝐿_𝑑𝑖𝑣 Kullback–Leibler divergence (relative entropy) [28] between two numeric distributions
𝐾𝑆_𝑑𝑖𝑠𝑡 Two-sample Kolmogorov–Smirnov test [50] between two numeric distribution (using p-value)
𝐶𝑜ℎ𝑒𝑛_𝑑 Cohen’s d [27] that quantify the effect size between two numeric distributions

Single-distribution

𝑚𝑖𝑛 the minimum value observed from a numeric column
𝑚𝑎𝑥 the maximum value observed from a numeric column
𝑚𝑒𝑎𝑛 the arithmetic mean observed from a numeric column
𝑚𝑒𝑑𝑖𝑎𝑛 the median value observed from a numeric column
𝑠𝑢𝑚 the sum of values observed from a numeric column
𝑟𝑎𝑛𝑔𝑒 the difference between max and min observed from a numeric column

𝑟𝑜𝑤_𝑐𝑜𝑢𝑛𝑡 the number of rows observed from a numeric column
𝑢𝑛𝑖𝑞𝑢𝑒_𝑟𝑎𝑡𝑖𝑜 the fraction of unique values observed from a numeric column
𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑟𝑎𝑡𝑖𝑜 the fraction of complete (non-null) values observed from a numeric column

Table 3: Statistical metrics used to generate DQ constraints for numerical data

Metric Type Metric Description

Two-distribution

𝐿1 L-1 distance [18] between two categorical distribution
𝐿𝑖𝑛𝑓 L-infinity distance [18] between two categorical distributions
𝐶𝑜𝑠𝑖𝑛𝑒 Cosine distance [34] between two categorical distributions

𝐶ℎ𝑖𝑠𝑞𝑢𝑎𝑟𝑒𝑑 Chi-squared test [30] using p-value between two categorical distributions
𝐽 𝑆_𝑑𝑖𝑣 Jensen–Shannon divergence [28] between two categorical distributions
𝐾𝐿_𝑑𝑖𝑣 Kullback–Leibler divergence (relative entropy) [28] between two categorical distribution
𝑃𝑎𝑡_𝐿1 L-1 distance between the pattern profiles extracted from two categorical distributions
𝑃𝑎𝑡_𝐿𝑖𝑛𝑓 L-infinity distance between the pattern profiles extracted from two categorical distributions
𝑃𝑎𝑡_𝐶𝑜𝑠𝑖𝑛𝑒 Cosine distance between the pattern profiles extracted from two categorical distributions

𝑃𝑎𝑡_𝐶ℎ𝑖𝑠𝑞𝑢𝑎𝑟𝑒 Chi-squared p-value between the pattern profiles extracted from two categorical distributions
𝑃𝑎𝑡_𝐽 𝑆_𝑑𝑖𝑣 Jensen–Shannon divergence of the pattern profiles extracted from two categorical distributions
𝑃𝑎𝑡_𝑘𝑙_𝑑𝑖𝑣 Kullback–Leibler divergence of the pattern profiles extracted from two categorical distributions

Single-distribution

𝑠𝑡𝑟_𝑙𝑒𝑛 the average length of strings observed in a categorical column
𝑐ℎ𝑎𝑟_𝑙𝑒𝑛 the average string length for values observed in a categorical column
𝑑𝑖𝑔𝑖𝑡_𝑙𝑒𝑛 the average number of digits in values observed from a categorical column
𝑝𝑢𝑛𝑐_𝑙𝑒𝑛 the average number of punctuation in values observed from a categorical column
𝑟𝑜𝑤_𝑐𝑜𝑢𝑛𝑡 the number of rows observed from a categorical column
𝑢𝑛𝑖𝑞𝑢𝑒_𝑟𝑎𝑡𝑖𝑜 the fraction of unique values observed from a categorical column
𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑟𝑎𝑡𝑖𝑜 the fraction of complete (non-null) values observed from a categorical column
𝑑𝑖𝑠𝑡_𝑣𝑎𝑙_𝑐𝑜𝑢𝑛𝑡 the number of distinct values observed from a categorical column

Table 4: Statistical metrics used to generate DQ constraints for categorical data.

A DETAILS OF STATISTICAL METRICS

Table 3 and Table 4 give detailed descriptions of the statistical
metrics used in AVH, which corresponds to simplified versions in
Table 1 and Table 2, respectively.

B SYNTHETIC “TRAINING” DATA

We carefully reviewed the DQ literature and cataloged a list of 10
common types of DQ issues in pipelines, so that we can systemati-
cally synthesize data deviations that are due to DQ issues, which
would help us to select the most salient “features” or DQ constraints
that are sensitive in detecting common DQ deviations.

We enumerate the list of 10 different types of DQ issues below, as
well as the parameters we use (to control deviations with different
magnitudes). By injecting varying amounts of DQ issues into a
given column𝐶 , we generates a total of 60 variations𝐶′ for each𝐶
(e.g., different fractions of values in 𝐶 are replaced with nulls for
the type of DQ issue “increased nulls”). Collectively, we denote this
set of synthetically generated DQ issues on 𝐶 as D(𝐶).

DQ Issue Type 1: Schema change. We replace 𝑝% (with
𝑝 = 1, 10, 100) of values in a target column 𝐶 for which we want to
inject DQ variation, using values randomly sampled from a neigh-
boring column of the same type. This is to simulate a “schema
change”, where some fraction of values in a different column are
either partially mis-aligned (e.g., due to a missing delimiter or bad
parsing logic), or completely mis-aligned (e.g., due to extra or miss-
ing columns upstream introduced over time). Note that 𝑝 = 100
corresponds to a complete schema-change, otherwise it is a partial
schema change.

DQ Issue Type 2: Change of unit. To simulate a change in the
unit of measurement, which is a common DQ issue (e.g., reported by
Google in [14, 54] like discussed earlier), we synthetically multiply
values in a numeric column 𝐶 by x10, x100 and x1000.

DQ Issue Type 3: Casing change. To simulate possible change
of code-standards (e.g., lowercase country-code to uppercase, as
reported by Amazon [61]), we synthetically change 𝑝% fraction of
values (with 𝑝 = 1, 10, 100) in 𝐶 , from lowercase to uppercase, and
vice versa.
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DQ Issue Type 4: Increased nulls. Since it is a sudden increase
of null values such as NULL/empty-string/0 is common DQ issue,
we sample 𝑝% values in a 𝐶 (with 𝑝 = 1, 50, 100), and replace them
with empty-strings in the case of categorical attribute, and 0s in
the case of numerical attribute.

DQ Issue Type 5: Change of data volume. Since a sudden
increase/decrease of row counts can also be indicative of DQ is-
sues [54], we up-sample values in𝐶 by a factor of x2, x10, or down-
sample 𝐶 with only 50%, 10% of the values.

DQ Issue Type 6: Change of data distributions. To simulate
a sudden change of data distributions [14], we sorted all values in
𝐶 first, then pick the first or last 𝑝% values as a biased sample and
replace 𝐶 , with 𝑝 = 10, 50.

DQ Issue Type 7: Misspelled values by character pertur-

bation. Typos and misspellings is another type of common DQ
issue (e.g., “Missisipii” and “Mississippi”), frequently introduced by
humans when manually entering data. To simulate this type of DQ
issue, we randomly perturb 𝑝% of characters in𝐶 to a different char-
acter of the same type (e.g., [0−9] → [0−9], and [𝑎−𝑧] → [𝑎−𝑧]),
with 𝑝 = 1, 10, 100.

DQ Issue Type 8: Extraneous values by character insertion.

Sometimes certain values in a column𝐶 may be associated with ex-
traneous characters that are not expected in clean data. To simulate
this, for each value in 𝐶 , we insert randomly generated characters
with probability 𝑝%, where 𝑝 = 10, 50.

DQ Issue Type 9: Partially missing values by character

deletion. Sometimes certain values in a column𝐶 may get partially
truncated, due to issues in upstream logic. We simulate this by
deleting characters for values in 𝐶 with probability 𝑝%, where
𝑝 = 10, 50.

DQ Issue Type 10: Extra white-spaces by padding. We ran-
domly insert leading or tailing whitespace for 𝑝% of values, where
𝑝 = 10, 50, 100.

While we are clearly not the first people to report these afore-
mentioned DQ issues, we are the first to systematically catalog
them and synthetically generate such DQ variations, and are the
first to use them as “training data” that guides a DQ algorithm to
select the most salient DQ features specific to the characteristics
of a column 𝐶 . We release our generation procedures in [5], which
can be used for future research.

C PATTERN GENERATION

In addition to use raw values from columns and compare their
distributional similarity (e.g., using 𝐿1, 𝐿𝑖𝑛𝑓 , 𝐶𝑜𝑠𝑖𝑛𝑒 , etc.), some-
times values in a column follows a specific pattern, for example,
timestamp values like "2022-03-01 (Monday)", currency values like
“$19.99”, zip-codes like “98052-1202”, etc. For such values, comparing
distributions for raw values that are drawn from a large underly-
ing domain induced by patterns (e.g., time-stamp), typically yields
very small overlap/similarity because of the large space of possi-
ble values in the underlying domain. (This is in contrast to small
categorical domains with a small number of possible values, where
distributional similarity is usually high and more meaningful).

In AVH, we observe that the pattern strings for such pattern-
induced domains is an orthogonal representation of values in a
column, which gives another way to “describe” the column and

Algorithm 2: Pattern Generation
Input :A categorical column𝐶
Output :The column pattern𝐶′

1 foreach 𝑣𝑎𝑙𝑢𝑒 ∈ 𝐶 do

2 foreach same pattern of consecutive 𝑐ℎ𝑎𝑟𝑠 ∈ 𝑣𝑎𝑙𝑢𝑒 do
3 if 𝑐ℎ𝑎𝑟 ∈ [0 − 9] then
4 Replace consecutive chars with a symbol \𝒅
5 if 𝑐ℎ𝑎𝑟 ∈ [𝐴 − 𝑍 ] 𝑜𝑟 [𝑎 − 𝑧 ] then
6 Replace consecutive chars with a symbol \𝒍
7 if 𝑐ℎ𝑎𝑟 ∈ [𝑝𝑢𝑛𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛] then
8 Replace consecutive chars with a symbol −
9 𝐶′ ← 𝐶

10 return𝐶′

Algorithm 3: Construct DQ constraints Q
Input :Metrics M, history 𝐻 = {𝐶1,𝐶2, . . .} of col 𝐶
Output :Constructed DQ constraints Q

1 Q← ∅
2 foreach𝑀 ∈ M do

3 𝑀 (𝐻 ) ← {𝑀 (𝐶1), 𝑀 (𝐶2), . . . , 𝑀 (𝐶𝐾 )}
4 𝑀 (𝐻 ) ← process-stationary(𝑀 (𝐻 )) // Algorithm 4

5 𝜇 ← mean of𝑀 (𝐻 ), 𝜎2 ← variance of𝑀 (𝐻 )
6 foreach 𝛽 ∈ [𝜎, 𝑛𝜎], increasing with a step-size 𝑠 , do

7 𝑄𝑖 ← 𝑄 (𝑀,𝐶, 𝜇 − 𝛽, 𝜇 + 𝛽)
8 𝐹𝑃𝑅(𝑄𝑖 ) ← calc-FPR(𝑀, 𝛽) // Equation (5)-(7)
9 Q← Q ∪𝑄𝑖

10 return Q

detect possible DQ deviations. For example, timestamp values like
"2022-03-01 (Monday)" can be generalized to a pattern "\𝑑\𝑑\𝑑\𝑑-
\𝑑\𝑑-\𝑑\𝑑 (\𝑙\𝑙\𝑙\𝑙\𝑙\𝑙 )", currency values like “$19.99” can be gen-
eralized to “$\𝑑\𝑑 .\𝑑\𝑑”, etc. Assuming that the format of the data
is changed due to upstream DQ issue, e.g., currency values become
mixed where some values have no currency-signs, or time-stamps
becomes mixed with multiple formats of time-stamps, a distribu-
tional similarity of the pattern strings above provides a powerful
way to “describe” the expected pattern distribution in a column,
which makes it possible to catch DQ issues in columns whose un-
derlying domains are pattern-related.

For the metrics that have a prefix “Pat_” in Table 2, we first
generate pattern-strings for each value 𝑣 ∈ 𝐶 , by converting each
character in 𝑣 to a wildcard character following a standard [0-9]
→ \𝑑 (for digits), [a-zA-Z]→ \𝑙 (for letters), and replace all punc-
tuation as “-”. We then compute the same distributional similarity
(e.g., 𝐿1, 𝐿𝑖𝑛𝑓 , 𝐶𝑜𝑠𝑖𝑛𝑒 , etc.), just as regular distributional similarity
metrics for raw string values. (Note that AVH is robust to a large
space of DQ constraints, and can intelligently select the most salient
features, such that for columns where pattern-based DQ is not a
good DQ description, such pattern-based DQ constraints will not
be selected automatically.)

D CONSTRUCT CONSTRAINTS: PSEUDOCODE

We show the pseudo code to construct DQ constraints in Algo-
rithm 3. This procedure directly corresponds to Section 4.2
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Algorithm 4: Time-series differencing for stationary
Input :𝑀 (𝐻 ) = {𝑀 (𝐶1), 𝑀 (𝐶2), . . . , 𝑀 (𝐶𝐾 )}
Output :Processed𝑀′ (𝐻 ) that is stationary

1 𝑖𝑠_𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 ← 𝐴𝐷𝐹 (𝑀 (𝐻 )) ; // Perform ADF test

2 if 𝑖𝑠_𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 then

3 return𝑀 (𝐻 )
4 else

5 𝑀′ (𝐻 ) ← time-series-differencing(𝑀 (𝐻 )) // using

first-order and seasonal differencing

6 return𝑀′ (𝐻 )

E TIME-SERIES DIFFERENCING

Algorithm 4 gives an overview of the time-series differencing step,
which we will expand and explain in this section. Details of this
step can be found in Algorithm 5.

Algorithm 5: Time-series differencing for stationary (De-
tails)
Input :𝑀 (𝐻 ) = {𝑀 (𝐶1 ), 𝑀 (𝐶2 ), . . . , 𝑀 (𝐶𝐾 ) }
Output :Processed stationary𝑀 ′ (𝐻 )

1 𝑖𝑠_𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 ← 𝐴𝐷𝐹 (𝑀 (𝐻 ) ) ; // Perform ADF test

2 if 𝑖𝑠_𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 then

3 return𝑀 (𝐻 )
4 else

5 // Perform lag transformation without log transformation
foreach 𝑙𝑎𝑔 ∈ [1, 𝐾 − 1] do

6 𝑀 ′ (𝐻 ) ← 𝑙𝑎𝑔_𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚 (𝑀 (𝐻 ), 𝑙𝑎𝑔)
7 𝑖𝑠_𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 ← 𝐴𝐷𝐹 (𝑀 ′ (𝐻 ) )
8 if 𝑖𝑠_𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 then

9 return𝑀 ′ (𝐻 )
10 // Perform lag transformation with log transformation

foreach 𝑙𝑎𝑔 ∈ [1, 𝐾 − 1] do
11 𝑀 ′ (𝐻 ) ← 𝑙𝑎𝑔_𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚_𝑤𝑖𝑡ℎ_𝑙𝑜𝑔 (𝑀 (𝐻 ), 𝑙𝑎𝑔)
12 𝑖𝑠_𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 ← 𝐴𝐷𝐹 (𝑀 ′ (𝐻 ) )
13 if 𝑖𝑠_𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 then

14 return𝑀 ′ (𝐻 )
15 return 𝑁𝑜𝑛𝑒

Recall that time-series differencing aims to make time series
stationary with static underlying parameters. We start by per-
forming the ADF test to determine the stationarity of𝑀 (𝐻 ), and
return 𝑀 (𝐻 ) if it is already stationary. If it is not, we then per-
form lag-based transforms [33]. Given a sequence of 𝑀 (𝐻 ) =

{𝑀 (𝐶1), 𝑀 (𝐶2), . . . , 𝑀 (𝐶𝐾 )}, a lag-based transform with 𝑙𝑎𝑔 = 𝑙 is
defined as
𝑀 (𝐻 )𝑙𝑎𝑔=𝑙 = {𝑀 (𝐶𝑙+1 )−𝑀 (𝐶1 ), 𝑀 (𝐶𝑙+2 )−𝑀 (𝐶2 ), . . . , 𝑀 (𝐶𝑙+𝐾−𝑀 (𝐶𝑙 ) ) }

Which performs a difference step for two events that are 𝑙 time-
steps away. Observe that such a differencing step handles cyclic
data with periodic patterns (e.g., weekly user traffic data can be
differenced away with 𝑙𝑎𝑔 = 7), as shown in Example 6 earlier.

For each 𝑙𝑎𝑔 ∈ [1, 𝐾 − 1], if the resulting𝑀 (𝐻 )𝑙𝑎𝑔 is already sta-
tionary (passes the ADF test), we return the corresponding𝑀 (𝐻 )𝑙𝑎𝑔
for the next stage for AVH to auto-program DQ (and remember the
𝑙𝑎𝑔 parameter to pre-process data arriving in the future).

If none of the 𝑙𝑎𝑔 parameter leads to a stationary time-series,
we additionally perform a log transform on𝑀 (𝐻 ), which can bet-
ter handle time-series with values that are orders of magnitude
different. We repeat the same process as lag-only transforms like
above, until we find a stationary time-series or we return None (in
which case, the sequence𝑀 (𝐻 ) associated with this metric𝑀 will
be ignored by downstream AVH due to its non-stationary nature.
Also note that it is possible to perform additional second-order or
third-order differencing, which we omit here).

F PROOF OF PROPOSITION 2

Proof Sketch: We prove this proposition using Cantelli’s in-
equality [16]. Cantelli’s inequality states that for a random vari-
able 𝑋 , there is a class of one-sided inequality in the form of
𝑃 (𝑋 − 𝜇 ≥ 𝑘𝜎) ≤ 1

1+𝑘2 , ∀𝑘 ∈ R
+.

For metrics 𝑀 ∈ {𝐸𝑀𝐷, 𝐽𝑆_𝑑𝑖𝑣, 𝐾𝐿_𝑑𝑖𝑣, 𝐾𝑆_𝑑𝑖𝑠𝑡, 𝐶𝑜ℎ𝑒𝑛_𝑑, 𝐿1,
𝐿𝑖𝑛𝑓 , 𝐶𝑜𝑠𝑖𝑛𝑒, 𝐶ℎ𝑖𝑠𝑞𝑢𝑎𝑟𝑒𝑑}, which are “distance-like” metrics, DQ
constraints can be one-sided only, to guard against deviations with
distances larger than usual, e.g., newly-arrived data whose distance
from previous batches of data are substantially larger than is typi-
cally expected. (On the other hand, if the distance of new data and
previous batches of data are smaller than usual, this shows more
homogeneity and is typically not a source of concern).

For this reason, we can apply Cantelli’s inequality for metrics
𝑀 ∈ {𝐸𝑀𝐷, 𝐽𝑆_𝑑𝑖𝑣, 𝐾𝐿_𝑑𝑖𝑣, 𝐾𝑆_𝑑𝑖𝑠𝑡,𝐶𝑜ℎ𝑒𝑛_𝑑, 𝐿1, 𝐿𝑖𝑛𝑓 , 𝐶𝑜𝑠𝑖𝑛𝑒,
𝐶ℎ𝑖𝑠𝑞𝑢𝑎𝑟𝑒𝑑}, with one-sided DQ. For such a metric𝑀 , let𝑀 (𝐶) be
our random variable. Let 𝑘 =

𝛽
𝜎 . Replacing 𝑘 with 𝛽

𝜎 above, we get
𝑃 (𝑀 (𝐶) − 𝜇 ≥ 𝛽) ≤ 𝜎2

𝜎2+𝛽2 . Note that 𝑃 (𝑀 (𝐶) − 𝜇 ≤ 𝛽) is exactly
our one-sided DQ for metrics with distance-like properties. We thus
get 𝑃 (𝑄 violated on 𝐶) ≤ 𝜎2

𝜎2+𝛽2 , which is equivalent to saying that

the expected FPR of 𝑄 is no greater than 𝜎2

𝜎2+𝛽2 . □

G PROOF OF PROPOSITION 3

Proof Sketch: We prove this proposition using Central Limit The-
orem (CLT) [16]. Recall CLT states that when independent random
variables are summed up and normalized, it tends toward normal
distribution.Metrics𝑀 ∈ {𝑐𝑜𝑢𝑛𝑡,𝑚𝑒𝑎𝑛, 𝑠𝑡𝑟_𝑙𝑒𝑛, 𝑐ℎ𝑎𝑟_𝑙𝑒𝑛, 𝑑𝑖𝑔𝑖𝑡_𝑙𝑒𝑛,
𝑝𝑢𝑛𝑐_𝑙𝑒𝑛, 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑟𝑎𝑡𝑖𝑜}, can all be viewed as the sum of indepen-
dent random variables (for example, 𝑠𝑡𝑟_𝑙𝑒𝑛, 𝑐ℎ𝑎𝑟_𝑙𝑒𝑛, 𝑑𝑖𝑔𝑖𝑡_𝑙𝑒𝑛
etc. are straightforward sum of these functions applied on individ-
ual cells; 𝑐𝑜𝑢𝑛𝑡 are the 0/1 sum for a random variable indicating
tuple presence/not-presence, etc.). Such sums are then averaged
over all cells in the same column 𝐶 , which would tend to normal
distributions per CLT. We can thus apply the tail bound of normal
distributions, making it possible to apply tail bounds of normal
distributions.

For 𝑀 ∈ {𝑐𝑜𝑢𝑛𝑡,𝑚𝑒𝑎𝑛, 𝑠𝑡𝑟_𝑙𝑒𝑛, 𝑐ℎ𝑎𝑟_𝑙𝑒𝑛, 𝑑𝑖𝑔𝑖𝑡_𝑙𝑒𝑛, 𝑝𝑢𝑛𝑐_𝑙𝑒𝑛,
𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑟𝑎𝑡𝑖𝑜}, let𝑀 (𝐶) be our randomvariable. From tail bounds
of normal distributions, we know 𝑃 (−𝑘𝜎 ≤ 𝑀 (𝐶) − 𝜇 ≤ 𝑘𝜎) =
𝑒𝑟 𝑓 ( 𝑘√

2
) [6], where 𝑒𝑟 𝑓 (𝑥) is the Gauss error function. Let 𝑘 =

𝛽
𝜎 .

Replacing 𝑘 with 𝛽
𝜎 above, we get 𝑃 (−𝛽 ≤ 𝑀 (𝐶) − 𝜇 ≤ 𝛽) =

𝑒𝑟 𝑓 ( 𝛽√
2𝜎
) = 2√

𝜋

∫ 𝛽√
2𝜎

0 𝑒−𝑡
2
𝑑𝑡 . Note that 𝑃 (−𝛽 ≤ 𝑀 (𝐶) − 𝜇 ≤
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𝛽) is exactly 𝑃 (𝑄 satisified on C), thus we get E[𝐹𝑃𝑅(𝑄)] = 1 −
2√
𝜋

∫ 𝛽√
2𝜎

0 𝑒−𝑡
2
𝑑𝑡 . □

H HARDNESS OF THE AVH PROBLEM

Proposition 5. The AVH problem in Equation (9)-Equation (11) is
NP-hard. Furthermore, it cannot be approximated within a factor of

(1 − 1
𝑒 ) under standard assumptions.

Proof Sketch: We show the hardness using a reduction from
the Maximum Coverage problem [51]. Recall that in Maximum
Coverage, we are given a set of sets 𝑆 , and the objective is to find
a subset 𝑆 ′ ⊆ 𝑆 such that the union of the elements covered by
𝑆 ′, |⋃𝑆𝑖 ∈𝑆 ′ 𝑆𝑖 |, is maximized, subject to a cardinality constraint
|𝑆 ′ | ≤ 𝐾 .

We show a polynomial time reduction from Maximum Coverage
to AVH as follows. For any instance of Maximum Coverage with
𝑆 = {𝑆𝑖 }, we construct the an AVH problem by converting each 𝑆𝑖
into a DQ constraint 𝑄𝑖 , whose 𝐹𝑃𝑅(𝑄𝑖 ) is unit cost 1, and recall
𝑅(𝑄𝑖 ) is exactly the set of elements in 𝑆𝑖 . If we could solve the
corresponding AVH problem in polynomial-time, we would have
solved the Maximum Coverage, thus contracting the hardness of
Maximum Coverage.

Also note that through the construction above, the objective
value of Maximum Coverage is identical to that of AVH. Thus we
can use the inapproximation results from Maximum Coverage [51],
to show that AVH cannot be approximated within a factor of (1− 1

𝑒 ).
□

I PROOF OF PROPOSITION 4

Proof Sketch: We show that Algorithm 1 is a ( 12 −
1
2𝑒 ) approx-

imation algorithm for the AVH problem, which follows from the
BudgetedMaximumCoverage problem [41]. Recall that in Budgeted
Maximum Coverage problem, we are given a set of sets 𝑆 = {𝑆𝑖 },
where each set 𝑆𝑖 has a cost 𝑐 (𝑆𝑖 ), and each element in sets has
a weight 𝑤 (𝑒 𝑗 ), the objective is to find a subset 𝑆 ′ ⊆ 𝑆 such that
the weight of all elements covered by 𝑆 ′ is maximized, subject to a
budget constraint

∑
𝑆𝑖 ∈𝑆 ′ 𝑐 (𝑆𝑖 ) ≤ 𝐵. We show that for any instance

of our AVH problem, it can be converted to Budgeted Maximum
Coverage as follows. We convert each 𝑄𝑖 into a set 𝑆𝑖 , and let the
cost 𝑐 (𝑆𝑖 ) be 𝐹𝑃𝑅(𝑄𝑖 ). Furthermore, we convert the set of recall
items into elements in Budgeted Maximum Coverage, and set the
weight of each element to unit weight. Finally, we let the elements
covered by 𝑆𝑖 in Budgeted Maximum Coverage to be exactly the
𝑅(𝑄𝑖 ) in AVH. The approximation ratio in Proposition 4 follows
directly from the Theorem 3 of [41] now.

We note that there are an alternative algorithm with better ap-
proximation ratio (1 − 1

𝑒 ) [41], which however is of complexity
|Q|3, where |Q| is the number of DQ constraints constructed from
Algorithm 3. Because |Q| is at least in the hundreds, making the
alternative very expensive in practice and not used in our system.

We also show that the solution 𝑆 from our Algorithm 1 is a
feasible solution of AVH, whose expected FPR is lower than 𝛿 . In
order to see this, recall that we construct DQ 𝑄𝑖 ∈ Q and esti-
mate each 𝑄𝑖 ’s worst case 𝐹𝑃𝑅(𝑄𝑖 ) following Proposition 1, 2, 3.
Algorithm 1 ensures that

∑
𝑄𝑖 ∈𝑆 𝐹𝑃𝑅(𝑄𝑖 ) ≤ 𝛿 . For the conjunctive

program 𝑃 (𝑆) induced by 𝑆 , the FPR of 𝑃 (𝑆) follows the inequal-
ity 𝐹𝑃𝑅(𝑃 (𝑆)) ≤ ∑

𝑄𝑖 ∈𝑆 𝐹𝑃𝑅(𝑄𝑖 ), because the false-positives from
𝑃 (𝑆), is produced by a union of the false-positives from each𝑄𝑖 ∈ 𝑆 .
Combining this with

∑
𝑄𝑖 ∈𝑆 𝐹𝑃𝑅(𝑄𝑖 ) ≤ 𝛿 , we get 𝐹𝑃𝑅(𝑃 (𝑆)) ≤ 𝛿 .

□

J SENSITIVITY ANALYSIS

We perform extensive experiments to understand the sensitivity of
our method.

Sensitivity to history length. Since AVH leverages a history of
past pipeline executions, where the number of past executions likely
has an impact on accuracy. Figure 6 shows the accuracy results for
numerical and categorical data respectively, when {7, 14, 21, 28} days
of historical data are available. Overall, having 28-day history leads
to the best precision, though with 14 and 7-day histories AVH also
produces competitive results. We highlight that unlike traditional
ML methods that typically require more than tens of data points
(Figure 2 suggests that even 30-day history is not sufficient for
ML methods), AVH exploits the unique statistical properties of the
underlying metrics (e.g., Chebyshev and CLT), and can work well
even with limited data, which is a unique characteristic of AVH.

Sensitivity to target precision 𝛿 . Figure 7 shows the relationship
between the target FPR 𝛿 parameter used in AVH (Equation (3)),
and the real FPR observed on AVH results (we note that 1-FPR corre-
sponds to the precision metric). On both numerical and categorical
data, the real FPR increases slightly when a larger target FPR 𝛿 is
used, showing the effectiveness of this knob 𝛿 in AVH. Also note
that the real FPR is consistently lower than the target-FPR, likely
due to the conservative nature of the statistical guarantees we lever-
age (Chebyshev and Cantelli’s inequalities we use in Proposition 1
and 2 give worst-case guarantees).

K ABLATION STUDIES

We perform additional ablation studies, to understand the impor-
tance of different components used in AVH.

Effect of using single/two-distribution metrics. Recall that in AVH,
we exploit both single-distribution and two-distribution metrics (in
Table 1 and Table 2) to construct DQ programs. A key difference
of the two types of metrics, is that computing two-distribution
metrics (e.g., 𝐿𝑖𝑛𝑓 and 𝐿1) would require both the current column
𝐶𝐾 and its previous snapshot 𝐶𝐾−1 (e.g., in 𝐿1 (𝐶𝐾 ,𝐶𝐾−1)). This
requires raw data from the previous run 𝐶𝐾−1 to be kept around,
which can be costly in production big-data systems. In contrast,
single-distribution metrics (e.g., 𝑟𝑜𝑤_𝑐𝑜𝑢𝑛𝑡 and 𝑢𝑛𝑖𝑞𝑢𝑒_𝑟𝑎𝑡𝑖𝑜) can
be computed on𝐶𝐾 and𝐶𝐾−1 separately, and we only need to keep
the corresponding metrics from 𝐶𝐾−1 without needing to keep
the raw 𝐶𝐾−1, which makes single-distribution metrics a lot more
efficient and inexpensive to use in AVH.

In Figure 8, we compare the full AVH (with both single- and
two-distribution metrics), with AVH using only single-distribution
metrics. Encouragingly, the latter variant produces comparable
quality with the full AVH, likely because the large space of single-
distribution metrics is already rich and expressive enough. This
suggests that we can deploy AVH inexpensively without using
two-distribution metrics, while still reaping most of the benefits.
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Figure 5: Results by DQ types Figure 6: Sensitivity to history length Figure 7: Sensitivity to target FPR 𝛿

Figure 8: Effect of two-dist. metrics Figure 9: Effect of clause count limit Figure 10: Using stationary processing

Effect of limiting the number of DQ clauses. We also study the
number of DQ clauses that AVH generates, because intuitively, the
more clauses it generates, the more expressive the DQ programs
become, at the cost of human explainability/interpretability (there
is a setting in AVH that engineers can review and approve auto-
suggested DQ programs). We report that on numerical data in
the Real benchmark, the median/mean of the number of clauses
AVH generates is 3 and 2.62, respectively; on categorical data the
median/mean is 2 and 2.15, respectively. We believe this shows
that the programs AVH generates are not only effective but also
simple/understandable. In Figure 9 we impose an artificial limit
on the number of clauses that AVH can generate (in case better
readability is required). We observe a drop in performance when
only 1 or 2 clauses are allowed, but the performance hit becomes
less significant if we allow 3 clauses.

Effect of stationary processing. Since we use stationarity test
and stationary processing for statistics that are time-series (Sec-
tion 4.2), in Figure 10 we study its effect on overall quality. We
can see that for numerical data, stationary processing produces
a noticeable improvement, which however is less significant on
categorical data.

L MANUAL REVIEW OF PIPELINE DATA

Based on our conversations with data engineers and data owners,
the data tables collected from production data pipelines used in our
Real benchmark (describe in Section 5.1) are production-quality
and likely free of DQ issues, because these files are of high business
impact with many downstream dependencies, such that if they had
any DQ issues they would have already been flagged and fixed by
data engineers.

In order to be sure, we randomly sampled 50 categorical and 50
numerical data columns, and manually inspected these sample data

in the context of their original data tables, across 60 snapshots, to
confirm the quality of the benchmark data. We did not find any
DQ issues based on our manual inspection. We also perform a
hypothesis test based on the manual analysis, with 𝐻0 stating that
over 3% of data has DQ issues. Our inspection above rejects the
null hypothesis (p-level=0.05), indicating that it is highly unlikely
that the benchmark data has DQ issues, which is consistent with
the assessment from data owners, and confirms the quality of the
data used in the Real benchmark.

During our conversations with data engineers, we were pointed
to three known DQ incidents, which we collect and use as test
cases to study AVH’s coverage. AVH was able to detect all such
known DQ cases based on historical data. Figure 11 shows such an
example that is intuitive to see. Here each file is an output table
(in csv format) produced by a daily recurring pipeline. As can be
seen in the figure, for the file produced on “2019-01-19”, the file size
(and thus row-count) is much larger than the days before and after
“2019-01-19” (21KB vs. 4KB). While small in scale, we believe this
study on user-provided data further confirms the effectiveness of
AVH.

Figure 11: Example of a real DQ issue flagged by AVH.
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