
Auto-BI: Automatically Build BI-Models
Leveraging Local Join Prediction and Global Schema Graph

Yiming Lin∗
University of California, Irvine

yiminl18@uci.edu

Yeye He
Microsoft Research

yeyehe@microsoft.com

Surajit Chaudhuri
Microsoft Research

surajitc@microsoft.com

ABSTRACT

Business Intelligence (BI) is crucial in modern enterprises and
billion-dollar business. Traditionally, technical experts like data-
base administrators would manually prepare BI-models (e.g., in
star or snowflake schemas) that join tables in data warehouses, be-
fore less-technical business users can run analytics using end-user
dashboarding tools. However, the popularity of self-service BI (e.g.,
Tableau and Power-BI) in recent years creates a strong demand for
less technical end-users to build BI-models themselves.

We develop an Auto-BI system that can accurately predict BI
models given a set of input tables, using a principled graph-based
optimization problem we propose called k-Min-Cost-Arborescence
(k-MCA), which holistically considers both local join prediction
and global schema-graph structures, leveraging a graph-theoretical
structure called arborescence. While we prove k-MCA is intractable
and inapproximate in general, we develop novel algorithms that can
solve k-MCA optimally, which is shown to be efficient in practice
with sub-second latency and can scale to the largest BI-models we
encounter (with close to 100 tables).

Auto-BI is rigorously evaluated on a unique dataset with over
100K real BI models we harvested, as well as on 4 popular TPC
benchmarks. It is shown to be both efficient and accurate, achieving
over 0.9 F1-score on both real and synthetic benchmarks.

PVLDB Reference Format:

Yiming Lin, Yeye He, and Surajit Chaudhuri. Auto-BI: Automatically Build
BI-Models
Leveraging Local Join Prediction and Global Schema Graph. PVLDB, 16(10):
XXX-XXX, 2023.
doi:XX.XX/XXX.XX

1 INTRODUCTION

Business Intelligence (BI) is increasingly important in modern en-
terprises for data-driven decision making, and has grown into a
multi-billion dollar business [24]. In traditional BI settings, data-
base administrators (DBAs) typically need to manually prepare BI-
models (table schemas and join relationships) in data warehouses,
so that less-technical business users can perform ad-hoc analysis
using tools like dashboards [15].

In recent years, in a growing trend called “self-service BI” [25]
that is popularized by vendors like Tableau [10] and Power-BI [8],
less-technical business users are increasingly expected to set up
∗Work done at Microsoft.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 10 ISSN 2150-8097.
doi:XX.XX/XXX.XX

and perform BI analysis themselves, without relying on DBAs or
central IT. The goal is to democratize BI, so that business users can
make agile data-driven decisions themselves, without depending
on technical users.

Building BI models: still a pain point. At a high level, there
are two main steps in BI project: (1) building BI models, and (2)
performing ad-hoc analysis by querying against BI models. While
querying BI-models was made simple by vendors like Tableau and
Power-BI (through intuitive user interfaces and dashboards) [27, 38],
the first step of building “BI-models”, a prerequisite for ad-hoc
analysis, remains a key pain point for non-technical users.

In the context of self-service BI tools like Tableau and Power-BI,
“BI-modeling” refers to the process of preparing raw data and estab-
lishing relationships between tables, where a central task is to estab-
lish join relationships for a given set of input tables1. This closely
relates to foreign-key (FK) detection [17, 30, 58] but works specifi-
cally in the context of BI, where the resulting schema graphs from
the modeling step frequently correspond to structures known as
star-schema and snowflake-schema studied in data warehouses [15],
like shown in Figure 1.

While self-service BI tools also attempt to improve the usability
of the BI-modeling step through better GUI (e.g., allowing users to
specify join columns using drag-and-drop) [9, 11], building BI mod-
els remains a key pain point. This is because when faced with a large
number of tables, even experienced technical users like DBAs can
find the task of identifying all possible join relationships challeng-
ing and time-consuming. For less-technical enterprise users who
are not familiar with concepts like fact/dimension tables, building
BI models from scratch can be a daunting challenge.

Foreign-key detection: not yet sufficient. It would clearly be
useful, if the join relationships in BI models can be automatically
predicted on given input tables (without requiring users to specify
themmanually). Since joins in BI models are often primary-key (PK)
foreign-key (FK) joins, existing FK detection algorithms [17, 30, 58]
would seem to apply.

To study this systematically, we harvested over 100K real BI
models built using self-service BI tools, from public sources like
GitHub and search engines. For each BI model file, we program-
matically extract the input tables used in the model, as well as the
ground-truth join relationships specified by users, thus creating a
real BI benchmark for large-scale evaluation for the first time (prior
work mostly use synthetic benchmarks for evaluation instead).

Our large-scale evaluation using these real BI datasets suggests
that existing FK-detection algorithms are still insufficient for the

1We note that more advanced BI modeling can involve additional steps such as schema
redesign and performance optimization, which is usually out of scope for non-technical
users in self-service BI tools, and thus not considered in this work.

https://doi.org/XX.XX/XXX.XX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

Fact_Sales

Product

DateStores

Customer

Cust_Segment

Fact_Supplies

Supplier

Warehouse

Cust_Address

Fact_Sales

Product

DateStores

Customer

Cust_Segment

Cust_Address

Fact_Sales

Product

DateStores

Customer

(a) Star Schema (b) Snowflake Schema (c) Constellation (multi-Snowflake)

Figure 1: Types of common BI schemas. (a) Star schema, which can be seen as a simplified version of Snowflake. (b) Snowflake

schema, where dimension tables like “Customers” can connect to additional dimension tables. (c) Constellation schema, which

can be seen as multiple Snowflake schemas.

task, as they frequently produce incorrect results (with ~0.6 pre-
cision for all methods we tested). This is because real BI data in
the wild tend to be considerably more challenging (e.g., column-
headers can often be cryptic with generic names like “name” or
“id”, and column-values can often overlap accidentally). Crucially,
most existing approaches are “local” in nature, that consider two
tables at a time to make greedy local decisions, without a principled
global optimization, thus unable to produce accurate predictions
on challenging real BI test cases (Section 2).

Auto-BI: global optimization using schema graphs. A key
insight we develop in Auto-BI, is that because we know users are
finding join relationships specifically for building BI-models, and
we know the typical structure that schema-graphs in BI-models
should generally follow (e.g., variants of snowflake), this gives us
a unique opportunity to leverage the global graph structure of the
resulting schema-graph, to predict joins much more accurately.

We thus formulate the Auto-BI problem as a global optimization
problem that holistically considers both the local decision of pair-
wise joinability, as well as the global decision of graph structures.

Specifically, we show that the snowflake schema popular in BI-
modeling corresponds to a graph-theoretical concept calledArbores-
cence [47]. Leveraging this structure, we formulate a new graph
problem called k-MCA (k-Minimum-Cost Arborescence), which finds
the most probable 𝑘-snowflakes, by considering both local join-
ability and global graph structures, all using a precise probabilistic
interpretation based on calibrated probabilities.

We prove that the new 𝑘-MCA problem and its variants are
in general intractable (NP-hard) and inapproximable (EXP-APX-
complete). Nevertheless, we develop novel algorithms based on
branch-and-bound principles, which are surprisingly efficient on
real test cases and can scale to the largest BI models we encounter,
while still being provably optimal. Our extensive evaluations using
real BI models and synthetic TPC benchmarks suggest that the
proposed Auto-BI is substantially more accurate when compared
to existing solutions in the literature.

Contributions.We make the following contributions:
• We are the first to harvest and leverage over 100K real BI mod-

els in the wild, for the problem of predicting BI models. This
enables a data-driven algorithm design and makes it possible to
rigorously evaluate different algorithms on real BI data.

• We are the first to exploit the snowflake-like schema structure
in BI settings for our predictions, by mapping snowflakes to a
less-known graph-theoretical concept called arboresence. We
formulate a set of novel graph-based optimization problems that
we call 𝑘-MCA, that have precise probabilistic foundations.
• We study the theoretical hardness of 𝑘-MCA variants, and pro-

pose efficient algorithms that are provably optimal. Extensive

evaluations show that our algorithms are both effective (with
over 0.9 F1 scores), and efficient (scales to the largest BI models
we encounter and runs in a few seconds).

2 RELATEDWORKS

BI and dashboarding tools. There are a wide variety of BI and
dashboarding tools that aim to help users perform ad-hoc data
analysis, with Tableau [10] and Power-BI [8] being the leading
vendors [24]. These tools use visual drag-and-drop interfaces [38]
(without requiring users to write SQL), and are particularly popular
among non-technical users.

Foreign key detection. Foreign key (FK) detection is an impor-
tant problem in database settings, with many influential methods
developed in the literature [17, 30, 48, 58].

MC-FK [58] is a pioneering effort to detect FK using an EMD-
based randomness metric for distribution similarity between two
columns, which is more reliable to predict true relationships when
unrelated key-columns that can frequently have overlapping ranges.

Fast-FK [17] develops an efficient method that selects FKs with
the best pre-defined scores until all input tables are connected.

HoPF [30] improves upon prior work by considering not only
FK-scores but also PK-scores, which are combined using a prede-
fined scoring function, making this also a global method in spirit.
The algorithm enumerates all PK/FK combinations and returns the
combination that has the highest total score.

ML-FK [48] proposes anML-based classifier to predict FK, trained
on known FKs. As we will show analytically and experimentally,
without principled global optimizations, ML classification alone is
still local in nature and not sufficient to achieve high accuracy.

While FK detection methods are clearly related to our problem
(we experimentally compare them with these methods), there are
also a few key distinctions that we would like to highlight.

First, while FK detection targets general database settings, we
focus on predicting joins in BI models, which gives us a unique
opportunity to exploit the likely graph structure (e.g., snowflake)
to make more accurate predictions, which is a unique direction not
considered in prior work.

Second, unlike FK-detection methods that typically consider
the canonical PK/FK (1:N) joins, in Auto-BI the types of joins
we consider are more general, because real BI models in the wild
frequently employ 1:1 joins as well as joins that are not perfectly
1:N, making the prediction problem more challenging.

Lastly, with the exception of [48], most prior FK detection meth-
ods primarily rely on hand-crafted scoring functions to make local
join predictions (pairwise between two tables). In comparison, we
leverage the BI models harvested to first predict local-joinability in
a data-driven way, which is then combined into a principled global

optimization for optimal global decisions (at the graph-level for all
tables). This also makes our technique different from prior work.

Detect inclusion dependency. Inclusion dependency (IND)
is closely related to FK, and there is an influential body of work
focusing on efficiently enumerating inclusion dependency (IND)
in large databases [12, 33, 34, 39, 43, 50, 51, 53]. The focus on effi-
ciency and scalability of this line of work makes them orthogonal
to typical FK-detection methods [17, 30, 58], where the focus is on
accurately predicting meaningful FKs (from a large collection of
IND candidates). And like prior FK-detection methods that employ
efficient IND detection [30, 58], we also use IND-detection as a
pre-processing step to enumerate possible FK candidates efficiently.

Complex non-equi joins. Beyond equi-joins, techniques to
automatically detect and handle complex join relationships have
also been studied, e.g., transformation-based join [42, 55, 60], fuzzy-
join [16, 37, 52], search-join [36], semantic lookup-join [29], etc.,
which is an interesting area of future work in the context of BI.

3 PROBLEM STATEMENT

In this section, we first describe preliminaries and the real BI models
we harvest, before introducing the Auto-BI problem.

3.1 Preliminary: BI models

Business Intelligence is closely related to topics like data warehous-
ing and decision support system, and has been extensively studied.
We provide a brief preliminary here and refer readers to surveys
like [15, 32, 40] for more information.

Fact and dimension tables. In data warehousing and BI ter-
minologies, tables involved in BI modeling can be categorized as
two types: fact tables and dimension tables [32]. A fact table con-
tains key metrics and measurements of business processes that
one intends to analyze (e.g., the revenue of sales transactions). In
addition, a fact table contains foreign keys that can reference multi-
ple dimension tables, where each dimension table contains detailed
information associated with the measurements from a unique facet
(e.g., a “Product” dimension table contains details of products sold,
whereas a “Date” dimension table has detailed day/month/year
info of transactions, etc.). Figure 1 shows a few examples of the BI
schemas, with fact and dimension tables in different colors.

Such a separation of fact/dimension tables has many benefits,
such as storage/query efficiency, ease of maintenance, etc. [15, 32,
40]. The fact/dimension design is a de-facto standard in BI modeling.

Star, snowflake, and constellation schemas. In BI modeling,
fact/dimension tables are frequently organized into what is known
as star/snowflake/constellation schemas [32], like shown in Figure 1.

Star-schema refers to the cases where there is one fact table,
whose foreign-key columns refer to primary-keys from one or more
(non-hierarchical) dimension tables, as illustrated by Figure 1(a).

Snowflake-schema generalizes the star-schema, with dimension
tables referring to each other in a hierarchical manner. For example,
in Figure 1(b), the “Customer” dimension refers to a coarser-grained
dimension “Cust-Segment”. Similarly an “Address” dimension can
refer to a coarser-grained “City”, which in turn refers to “Country”.

While there is only one fact table in star and snowflake schemas,
constellation-schema generalizes to the cases with multiple fact
tables, as shown in Figure 1(c).

We note that these three types of schemas are extensively studied
in the literature [15, 32, 40] and widely adopted in practice.

3.2 Harvest Real BI Models

In order to understand real BI models created in the wild, and
systematically evaluate the effectiveness of Auto-BI, we harvest
over 100K real BI models from public sources that are created using
a popular tool Power BI [8], whose model files have a suffix “.pbix”.

We crawl these “.pbix” model files from two sources. The first
is GitHub, where developers and data analysts upload their Power
BI models for sharing and versioning. We crawl a total of 27K
such model files from GitHub. As a second source, we go through
the URLs crawled by a commercial search engine that can lead to
“.pbix” model files. Most of these URLs are not crawled by the
search engine so we crawl ourselves and obtain 86K model files.

Combining data from the two sources gives us a large collection
of 100K+ real BI models, which cover diverse BI use cases, including
financial reporting, inventory management, among many others.

These real BI models become a valuable dataset for rigorous
evaluation – specifically, from each “.pbix” model file, we pro-
grammatically extract all tables used in the model, as well as the
ground-truth BI model (join relationships) manually specified by
users. This enables us to thoroughly evaluate different algorithms
using real BI models in the wild, which turn out to be more chal-
lenging than synthetic TPC benchmarks used in prior work that
tend to be clean and simple.

3.3 Problem Statement: Auto-BI

We now define the high-level Auto-BI problem as follows.
Definition 1. [Auto-BI]. Given a set of input tables T = {𝑇1,𝑇2,

. . . , 𝑇𝑛} used for BI modeling, where each table 𝑇𝑖 consists of a
list of columns 𝑇𝑖 = (𝑐𝑖1, 𝑐𝑖2, . . . , 𝑐𝑖𝑚). Predict a desired BI model
𝑀 (T) that consists of a set of joins 𝑀 (T) = {𝐽𝑖 𝑗 , 𝐽𝑝𝑞, . . .}, where
each join 𝐽𝑖 𝑗 is a join between 𝑇𝑖 and 𝑇𝑗 , in the form of 𝐽𝑖 𝑗 =(
(𝑐𝑖𝑘 , 𝑐𝑖𝑙 , . . .), (𝑐 𝑗𝑟 , 𝑐 𝑗𝑠 , . . .)

)
.

Note that the output 𝑀 (T) is restricted to equi-joins for now,
which can be single-column joins, or multi-column joins in the form
of 𝐽𝑖 𝑗 =

(
(𝑐𝑖𝑘 , 𝑐𝑖𝑙 , . . .), (𝑐 𝑗𝑟 , 𝑐 𝑗𝑠 , . . .)

)
. Also note that we only state

the high-level problem so far, and will defer the exact graph-based
formulation to Section 4.3.

In addition to Definition 1, a more general version of the problem
goes beyond equi-joins to detect and handle more complex forms of
joins, such as transformation-joins [60] and fuzzy-joins [37], which
we will leave as future work.

4 AUTO-BI

We will start with an overview of our Auto-BI architecture, before
discussing how we predict joins holistically on graphs.

4.1 Architecture Overview

Figure 2 shows the overall architecture of our Auto-BI system.
It consists of an offline component and an online component, as
depicted by the two boxes shown in the figure.

In the offline step, using real BI models we harvested and their
ground-truth BI join models, we perform offline training to learn

Input: user tables

Offline training:
Local join prediction

Crawl &
extract

100K+ BI models
on the web

Local join
models Online optimization:

Global join graph

Output:
predicted
BI model

offline online

Figure 2: Architecture overview of Auto-BI

what we call “local join models” that can predict, for a given pair
of table columns, whether the two are likely joinable. We use the
term “local” here, because the predictions are pair-wise between
two columns, which is in contrast to the “global” decision at the
entire graph level (the focus of this work).

Since the problem of predicting local joinability using data has
been studied in other contexts (e.g., [48, 56]), we do not regard this
as our key contribution in Auto-BI, so we will only briefly highlight
the important optimizations we make here (e.g., label transitivity,
and splitting 1:1 and N:1 joins) in Section 4.2.

The online step is the key of Auto-BI. Here, given a set of
tables (modeled as vertices in a graph), we leverage the local-join
prediction models trained offline to “score” the joinability of each
pair of columns/tables, using calibrated probabilities (which are
then modeled as edges in the graph). We formulate Auto-BI on
the resulting graph as a novel graph problem 𝑘-MCA, which finds
the most probable sub-graph that maximizes the joint probability
of all edges, subject to graph-structure constraints. We prove the
hardness of the problem and develop efficient algorithms. We will
describe this online part in Section 4.3.

4.2 Join Prediction: Train Local Classifier

In this step, given two lists of columns 𝐶𝑖 ⊆ 𝑇 , 𝐶 𝑗 ⊆ 𝑇 ′, we need
to predict the probability that (𝐶𝑖 ,𝐶 𝑗) is joinable. (Note that 𝐶𝑖 ,𝐶 𝑗

can be single-columns, but are in general lists of columns for multi-
column joins). This problem of predicting local joins has been stud-
ied in other contexts [48, 56]. We do not regard this as a new con-
tribution, and will only briefly describe the overall process.

The prediction task. At a high-level, given any two candidate
columns (𝐶𝑖 ,𝐶 𝑗), our task is to predict the corresponding “join-
ability” label, denoted by 𝐿𝑖 𝑗 , where 𝐿𝑖 𝑗 = 1 if (𝐶𝑖 ,𝐶 𝑗) joins, and
𝐿𝑖 𝑗 = 0 otherwise. Since we harvested large amounts of real BI
models, each of which contains both data tables and ground-truth
joins (programmed by human users), we can use this rich collection
of data to produce training data of the form {(𝐶𝑖 ,𝐶 𝑗), 𝐿𝑖 𝑗 }, where
𝐿𝑖 𝑗 corresponds to the actual joined vs. not-joined ground-truth
between the two column, which can be programmatically extracted
from the BI models we harvest.

This naturally leads to a supervised ML formulation, where we
featurize (𝐶𝑖 ,𝐶 𝑗) both at the schema-level (e.g., column-header
similarity using standard string distance functions such as Jaccard
and Edit, as well as pre-trained embedding-based similarity such
as SentenceBERT [5]), and at the content-level (e.g., column-value
overlap based on Jaccard and Containment), for a total of 21 features.
In the interest of space, we leave detailed descriptions of these
features, as well as two unique optimizations we develop in this
work: (1) separate N:1/1:1 joins, and (2) apply label transitivity, to
Appendix A and Appendix B.

Calibrate classifier scores into probabilities. After we train
the feature-based model using data extracted from real BI mod-
els, given a new pair of columns (𝐶𝑖 ,𝐶 𝑗), we can use the model
to produce classifier-scores and predict the joinability of (𝐶𝑖 ,𝐶 𝑗).
However, the scores so produced are still heuristic in nature – e.g.,
a 0.5 classifier score does not necessarily corresponds to a true
join-probability of 0.5, or a 50% chance of the join being correct.

In order to make a principled global decision at the graph level,
we “calibrate” the classifier-scores into true probabilities, using cali-
bration techniques from the ML literature [41]. For any column pair
(𝐶𝑖 ,𝐶 𝑗), the calibration step produces 𝑃 (𝐶𝑖 ,𝐶 𝑗) that corresponds
to the probability of the pair being joinable – e.g., 𝑃 (𝐶𝑖 ,𝐶 𝑗) = 0.5
really means that a join prediction between the two columns has
50% chance of being correct. As we will see, this gives a precise
probabilistic interpretation, which is important when we reason
about the most probable global join graph.

4.3 Auto-BI: Exploit Global Join Graph

We are now ready to solve the Auto-BI problem. We first introduce
how we represent tables and candidate joins on a global join graph,
before describing our graph formulation.

4.3.1 Representing relationships in a global graph.
Given a set of tables T and possible joins, we can construct a directed
graph𝐺 = (𝑉 , 𝐸) as follows. We represent each input table 𝑇 ∈ T
as a vertex 𝑣 (𝑇) ∈ 𝑉 , and each possible join candidate between
columns (𝐶𝑖 ,𝐶 𝑗) as a weighted edge 𝑒𝑖 𝑗 ∈ 𝐸, where the edge weight
𝑤 (𝑒𝑖 𝑗) is simply the calibrated join probability 𝑃 (𝐶𝑖 ,𝐶 𝑗), produced
by our local classifier (Section 4.2), which scores every pair of
candidate columns whose containment is over a threshold. We
follow the convention to use a directed edge 𝑒𝑖 𝑗 to represent N:1
joins, which point from N-side (FK) columns 𝐶𝑖 , to the 1-side (PK)
columns 𝐶 𝑗 . We represent 1:1 joins as bi-directional edges.

Example 1. Figure 3 shows a graph representation of the tables
in Figure 1(b), where each vertex corresponds to a table. We mark
the ground-truth joins in Figure 1(b) as solid green edges in Figure 3,
while other candidate joins not in ground-truth as dotted red edges.

For instance, the dotted edge (𝑒5 : 0.8) represents an candidate
join between the column “Customer-ID” (in table “Cust-Details”),
and column “Customer-Segment-ID” (in table “Cust-Segments”).
Note that the column pair (“Customer-ID”, “Customer-Segment-ID”)
should not join because they refer to two semantically different
types of IDs, which however may appear like a plausible join
to Local-Classifier (because of high name-similarity and value-
overlap), which leads to a high Local-Classifier score (0.8). A greedy
method that focuses on promising edges locally can incorrectly pre-
dict this false-positive join, which is a mistake that global methods
like Auto-BI can prevent.

4.3.2 Precision Mode (k-MCA-CC).
We are now introducing our formulation using the graph. At a high
level, we operate in two steps: (1) a “precision-mode” stage where
we focus on finding the salient snowflake-like structures that are
the “backbones” of the underlying schema graph (which ensures
high precision thanks to the graph-structure constraints it imposes);
and (2) a “recall-mode” stage that complements the precision-mode,

e1:0.9

e2:0.7

e7:0.8

e8:0.9

e3:0.6

e4:0.7

e6:0.4e5:0.8 Fact_Sales

Product

DateStores

Customer

Cust_Segment

Cust_Details

Figure 3: Solve 1-MCA on the graph representation of the

tables in Figure 1(b), with join candidates as edges.

Fact_Sales
e1:0.9

e2:0.7

e7:0.8

e8:0.9

e3:0.6

e4:0.7

Product

DateStores

Customer

Cust_Segment

Cust_Details

e9:0.9

e10:0.7

Fact_Supplies

Supplier

Warehouse

e11:0.8

e12:0.8
Artificial

root

Figure 4: Solve 𝑘-MCA on the graph representation of the

tables in Figure 1(c), with join candidates as edges.

known results new results
Problem 1-MCA k-MCA k-MCA-CC

Description find the most
probable 1-snowflake

find the most
probable

k-snowflakes

most probable
k-snowflakes w/

constraints

Hardness Poly-time
solvable [18]

Poly-time solvable
(Theorem 2)

EXP-APX-hard
(Theorem 3)

Algorithm Chu-Liu/Edmond’s
algorithm [18]

ours
(Algorithm 2)

ours
(Algorithm 3)

Table 1: Summary of results for MCA problem variants.

by finding additional joins beyond typical snowflakes. We will
introduce both in turn below.

We first introduce our precision-mode formulation, referred
to as 𝑘-MCA-CC. For ease of exposition, we will illustrate the
thought process of arriving at 𝑘-MCA-CC in 3 steps: (1) We will
start with a simplistic assumption that the schema graph has exactly
one snowflake, which we model with a graph-theoretical problem
called 1-MCA. (2) We then generalize this to arbitrary numbers
of snowflakes, using a formulation we call 𝑘-MCA. (3) Finally, we
generalize 𝑘-MCA to include additional graph-structure constraints
to arrive at our final formulation, which we call 𝑘-MCA-CC. We
summarize our key results in this section in Table 1 for reference.

(1) Exactly one snowflake: 1-MCA. To start with, we discuss
the simplistic case where we know there is exactly one snowflake
in the underlying graph (e.g., Figure 1(b)). Note that this is only for
ease of illustration, and not an actual assumption that we rely on
(we will show how this can be relaxed next).

Given a graph 𝐺 = (𝑉 , 𝐸) where candidate joins are marked
as edges like in Figure 3. Since we know there is one snowflake
schema, intuitively we want to select edges (joins) 𝐽 ⊆ 𝐸, such that:

(a) The graph induced by 𝐽 , 𝐺 ′ = (𝑉 , 𝐽), is a snowflake that
connects all vertices in 𝑉 ;

(b) If more than one such snowflake-structure exists, find the
most probable snowflake, based on the joint-probability of all joins
selected in 𝐽 , 𝑃 (𝐽) = ∏

𝑒𝑖 𝑗 ∈ 𝐽 𝑃 (𝐶𝑖 ,𝐶 𝑗).
These two considerations can be written as the following opti-

mization problem, which we refer to as 1-Most-Probable-Snowflake
(1-MPS):

(1-MPS) max
𝐽 ⊆𝐸

∏
𝑒𝑖 𝑗 ∈ 𝐽

𝑃 (𝐶𝑖 ,𝐶 𝑗) (1)

s.t. 𝐺 ′ = (𝑉 , 𝐽) is a snowflake (2)
Note that the constraint in Equation (2) of 1-MPS corresponds to
requirement (a), while the objective function in Equation (1) maps
to requirement (b).

Since snowflake is used informally in BI, to make it more formal
we map it to a structure in graph theory called arboresence [22].

Definition 2. [Arborescence]. A directed graph 𝐺 = (𝑉 , 𝐸) is
called an arborescence, if there is a unique vertex 𝑟 ∈ 𝑉 known
as the root, such that there is exactly one directed path from 𝑟 to
every other 𝑣 ∈ 𝑉 , 𝑣 ≠ 𝑟 . Equivalently, a directed graph 𝐺 is an
arborescence if all its vertices have in-degree of 1, except a unique
root vertex 𝑟 ∈ 𝑉 that has in-degree of 0 [22].

Intuitively, arborescence is a directed rooted tree where all its
vertices are pointing away from the root. We use an example to
show the relationship between snowflakes and arborescence.

Example 2. Consider the sub-graph𝐺 induced by all green edges
in Figure 3, where each green edge would correspond to a ground-
truth join in the snowflake schema of Figure 1(b). This sub-graph
𝐺 is an arborescence, because if we take the vertex marked as
“Fact_Sales” as the root 𝑟 , then there is exactly one directed path
from 𝑟 to every other vertex in 𝐺 . Equivalently, we can check that
this root 𝑟 has in-degree of 0, while all other vertices in 𝐺 have
in-degree of exactly 1, which also ensures that𝐺 is an arborescence.

Recall that we know there is exactly one snowflake in 1-MPS,
which is equivalent to saying that the sub-graph induced by 𝐽 ⊆ 𝐸

is an arborescence.We rewrite 1-MPS into 1-MPA (1-Most-Probable-
Arborescence), defined as follows.

(1-MPA) max
𝐽 ⊆𝐸

∏
𝑒𝑖 𝑗 ∈ 𝐽

𝑃 (𝐶𝑖 ,𝐶 𝑗) (3)

s.t. 𝐺 ′ = (𝑉 , 𝐽) is an arborescence (4)

Example 3. We revisit the graph in Figure 3. Using the formula-
tion of 1-MPA, the best arborescence with the highest joint proba-
bility (correspondingly, the most probable snowflake), is the set of
solid edges marked in green, denoted by 𝐽 ∗ = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒7, 𝑒8},
whose joint probability is 0.9 ∗ 0.7 ∗ 0.6 ∗ 0.7 ∗ 0.8 ∗ 0.9. It can be
verified that 𝐽 ∗ is the most probable arborescence among all ar-
borescences (that span the entire vertex set), which corresponds to
the ground-truth snowflake schema shown in Figure 1(b).

Consider an alternative arborescence, such as 𝐽 ′ = {𝑒1, 𝑒3, 𝑒5, 𝑒6,
𝑒7, 𝑒8}, which removes 𝑒2, 𝑒4 from 𝐽 ∗ and adds 𝑒5, 𝑒6 (marked in dot-
ted red lines). Observe that this new 𝐽 ′ also forms a 1-arborescence
based on Definition 2. However, 𝐽 ′ has a lower joint probability
than 𝐽 ∗ (because 𝑒5, 𝑒6 in 𝐽 ′ has a joint probability of 0.8 ∗ 0.4=0.32,
while 𝑒2, 𝑒4 in 𝐽 ∗ has a joint probability of 0.7 ∗ 0.7=0.49), which
will thus not be selected based on the 1-MPA formulation above.

We note that in 1-MPA, 𝐽 ∗ is selected based on a global deci-
sion of optimality, which avoids locally-greedy decisions – e.g.,
the incorrect 𝑒5 will not be selected despite its high score like we
mentioned in Example 1.

While we can now use arborescence to formalize 1-MPA, it still
has a cross-product that is not amenable to optimization. We thus
perform the following transformation: instead of assigning join-
probability 𝑃 (𝐶𝑖 ,𝐶 𝑗) as the edge weight for each edge 𝑒𝑖 𝑗 , we per-
form a logarithmic transformation and set the edge weight of each
𝑒𝑖 𝑗 as:

𝑤 (𝑒𝑖 𝑗) = − log(𝑃 (𝐶𝑖 ,𝐶 𝑗)) (5)

Using the new transformed𝑤 (𝑒𝑖 𝑗), for each instance of the 1-MPA
problem, we construct a new minimization problem below that we

Algorithm 1: Construct graph with edge-weights
input :all input tables T in a BI-model
output :Graph𝐺 = (𝑉 , 𝐸) that represents T

1 𝑉 ← {𝑣𝑇 |𝑇 ∈ T}, with 𝑣𝑇 representing each𝑇 ∈ T
2 𝐸 ← {}
3 foreach (𝐶𝑖 ,𝐶 𝑗) satisfying Inclusion-Dependency in T do

4 𝑃 (𝐶𝑖 ,𝐶 𝑗) ← Local-Classifier(𝐶𝑖 ,𝐶 𝑗)
5 𝑤 (𝑒𝑖 𝑗) ← − log(𝑃 (𝐶𝑖 ,𝐶 𝑗))
6 𝐸 ← 𝐸 ∪ {𝑒𝑖 𝑗 }, with edge-weight 𝑤 (𝑒𝑖 𝑗)
7 return𝐺 (𝑉 , 𝐸)

term 1-MCA, which uses summation in the objective function:
(1-MCA) min

𝐽 ⊆𝐸

∑︁
𝑒𝑖 𝑗 ∈ 𝐽

𝑤 (𝑒𝑖 𝑗) (6)

s.t. 𝐺 ′ = (𝑉 , 𝐽) is arboresence (7)
It can be shown that solving 1-MPA is equivalent to solving the
corresponding 1-MCA.

Lemma 1. A solution 𝐽 ∗ ⊆ 𝐸 is an optimal solution to 1-MPA, if
and only if 𝐽 ∗ is an optimal solution to the corresponding 1-MCA.

Proof. First, observe that 1-MPA and 1-MCA have identical
feasible regions, as they are subject to the same constraints.

Next, we show that an optimal solution 𝐽 ∗ that maximizes the
objective function

∏
𝑒𝑖 𝑗 ∈ 𝐽 ∗ 𝑃 (𝐶𝑖 ,𝐶 𝑗) in Equation (3) of 1-MPA, will

simultaneously minimize the objective function
∑
𝑒𝑖 𝑗 ∈ 𝐽 𝑤 (𝑒𝑖 𝑗) in

Equation (6) of 1-MCA. This is the case because the objective
function of 1-MCA is:

∑
𝑒𝑖 𝑗 ∈ 𝐽 ∗ 𝑤 (𝑒𝑖 𝑗) =

∑
𝑒𝑖 𝑗 ∈ 𝐽 ∗ − log

(
𝑃 (𝐶𝑖 ,𝐶 𝑗)

)
= − log(∏𝑒𝑖 𝑗 ∈ 𝐽 ∗ 𝑃 (𝐶𝑖 ,𝐶 𝑗)), where the term inside − log() is ex-
actly the objective function of 1-MPA, thus ensuring that 1-MCA is
minimized if and only if 1-MPA is maximized, and completes the
proof. □

The reason we construct 1-MCA for each instance of 1-MPA,
is that 1-MCA relates to a known problem in graph theory called
“Minimum-Cost-Arborescence” (abbreviated as MCA2) [20], which
finds a spanning arborescence (covering all vertices) in a directed
graph 𝐺 that has the smallest edge-weights. Note that in the sim-
plistic setting where we know there is exactly 1 snowflake (arbores-
cence), our 1-MCA problem directly translates to the MCA prob-
lem [20]. Since MCA is known in graph theory with polynomial-
time solutions called the Chu–Liu/Edmonds’ algorithm [18, 20], our
construction allows us to solve 1-MPA efficiently by leveraging the
same algorithms.

We use our running example to show the connection between
1-MPA and 1-MCA.

Example 4. Continue with Example 3. To solve the 1-MPA prob-
lem for the graph in Figure 3, we use the transformation in Equa-
tion (5) and construct an instance of 1-MCA on the same graph,
where all edge-weights are now 𝑤 (𝑒𝑖 𝑗) = − log(𝑃 (𝐶𝑖 ,𝐶 𝑗)). It can
be verified that 𝐽 ∗ = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒7, 𝑒8} is the minimizer of Equa-
tion (6) in 1-MCA, with the smallest objective-value −(log(0.9) +
log(0.7) + log(0.6) + log(0.7) + log(0.8) + log(0.9)), which can be

2Although MCA is not a well-known concept, we note that MCA is directly anal-
ogous to a better-known problem in graph theory called “Minimum-Spanning-Tree
(MST)” [31], with the only difference that MST is defined on undirected graphs whereas
MCA is on directed graphs.

efficiently solved using the Chu–Liu/Edmonds algorithm. Note that
𝐽 ∗ is the same optimal solution to 1-MPA, as we see in Example 3.

Algorithm for 1-MCA. Given a set of input tables T (for which
a BI-model needs to be built), the complete pseudo-code to con-
struct a graph 𝐺 for 1-MCA is shown in Algorithm 1. Since we
are given tables T, in Line 3 we enumerate column-pairs (𝐶𝑖 ,𝐶 𝑗)
in T for which Inclusion-Dependencies (IND) [14] hold approxi-
mately, which are possible joins that we should consider (note that
efficient IND-enumeration is a standard step [19], so we invoke
existing techniques here). In Line 4, we “score” each (𝐶𝑖 ,𝐶 𝑗) using
our Local-classifier to obtain calibrated probabilities 𝑃 (𝐶𝑖 ,𝐶 𝑗) (Sec-
tion 4.2), which are transformed in Line 5 to become edge-weights
𝑤 (𝑒𝑖 𝑗) (Equation (5)).

Using the resulting graph 𝐺 constructed from T, we can invoke
the Chu–Liu/Edmonds’ algorithm, which yields the optimal solu-
tion 𝐽 ∗ to 1-MCA (and thus also 1-MPA).

We summarize our main result for 1-MCA in the first column of
Table 1. We note that although we leverage known results from the
graph theory here, to the best of our knowledge, we are the first to
connect the popular concept of snowflakes in BI, with arborescence
in graph theory.

In the following, we will extend 1-MCA to general cases, and
develop new results not known in graph theory or databases.

(2) Arbitrary number of snowflakes: 𝑘-MCA. So far we use
1-MCA to solve the simplistic case where we know there is exactly
1 snowflake. In general, there can be multiple snowflakes, and we
do not know its exact number beforehand (e.g., the ground-truth
schema of Figure 1(c) has 2 snowflakes, which is unknown a priori).

In this section, we extend 1-MCA to the more general 𝑘-MCA,
where the proposed 𝑘-MCA formulation will not only find the
most probable 𝑘 snowflakes like in 1-MCA, but also infer the right
number of snowflakes 𝑘 at the same time.

We first extend the concept of arborescence in graph-theory
(Definition 2), to the more general 𝑘-arboresence below.

Definition 3. [𝑘-arboresence]. A directed graph 𝐺 = (𝑉 , 𝐸) is
an 𝑘-arborescence, if its underlying undirected graph has a total of
𝑘 joint connected-components, written as {𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) |𝑖 ∈ [𝑘]},
such that

⋃
𝑖∈[𝑘] 𝑉𝑖 = 𝑉 ,

⋃
𝑖∈[𝑘] 𝐸𝑖 = 𝐸. Furthermore, each 𝐺𝑖 is

an arborescence, for all 𝑖 ∈ [𝑘].
Note that when 𝑘 = 1, the notion of 1-arborescence degenerates

into arborescence described in Definition 2. We will henceforth
use 1-arborescence and arborescence interchangeably when the
context is clear.

Example 5. Consider the graph in Figure 4, which is the graph
representation of the constellation (multi-snowflake) schema in Fig-
ure 1(c). The sub-graph with green solid edges (ignoring the dotted
edges for now), is a 2-arboresence. It is a 2-arboresence because
both of its two connected-components are arboresences (Defini-
tion 2), rooted at “Fact_Sales” and “Fact_Supplies”, respectively.

Intuitively, we use the 𝑘-arboresence structure to force the 𝑘
underlying snowflakes to emerge, which reveals the most salient
“backbones” of the underlying schema. It should be noted that in the
precision-mode of Auto-BI (this section), because we focus exclu-
sively on finding snowflake/arborescence structures to ensure high
precision, some desired joins may be missing in the 𝑘-arboresence

(e.g., the orange dotted edges in Figure 4), which is something that
we will get to in the recall-mode of Auto-BI next (Section 4.3.3).

Given that we want to use 𝑘-arboresence to let the 𝑘 snowflakes
emerge, the next question is how to find the right 𝑘 . Conceptually,
we can iterate over all possible 𝑘 , and pick the “best” 𝑘 , using a
suitable “goodness” function (e.g., revealing the right number of
snowflakes).

First, recall that a𝑘-arborescence on graph𝐺 = (𝑉 , 𝐸) has exactly
𝑘 connected components, and is bound to have exactly (|𝑉 | − 𝑘)
edges (because every vertex except the root has in-degree of 1, per
Definition 2).

Given these, we can see that while the “sum of edge-weights”
objective function in Equation (6) for 1-MCA is a suitable “goodness”
function to compare two 1-arboresences (both with 𝑘 = 1), it is no
longer suitable to compare a 𝑘1-arboresence and a 𝑘2-arboresence
(with 𝑘1 ≠ 𝑘2), because the two will have different number of
edges, making the comparison using the sum of edge-weights in
Equation (6) “unfair”. In fact, using Equation (6) and a flexible 𝑘
is guaranteed to lead to |𝑉 | disconnected vertices (a trivial |𝑉 |-
arborescence) as the optimal, because it has no edges and thus no
edge-weights.

To make the comparisons “fair” between two 𝑘-arboresences
with different values of 𝑘 , and prevent disconnected components
from having artificial advantages, we modify the objective function
as follows. Since a 𝑘-arboresences has exactly 𝑘 connected compo-
nents and (|𝑉 | −𝑘) edges, we imagine that there are (𝑘 −1) “virtual-
edges”, each with a parameterized edge-weight 𝑝 , that connect the 𝑘
connected components into one, such that a 𝑘-arboresences always
has the same number of edges as 1-arboresences, regardless of 𝑘
(because (|𝑉 | −𝑘) + (𝑘 − 1) = (|𝑉 | − 1)). Accounting for the (𝑘 − 1)
new virtual edges in Equation (6) leads to Equation (8) below, which
is new objective function we use for 𝑘-MCA:

(𝑘-MCA) min
𝐽 ⊆𝐸, 𝑘≤ |𝑉 |

∑︁
𝑒𝑖 𝑗 ∈ 𝐽

𝑤 (𝑒𝑖 𝑗) + (𝑘 − 1) · 𝑝 (8)

s.t. 𝐺 ′ = (𝑉 , 𝐽) is a 𝑘-arboresence (9)
The parameter 𝑝 we introduce effectively controls the number of
snowflakes (e.g., a larger 𝑝 would “penalize” having more discon-
nected snowflakes). The question is how to set 𝑝 appropriately.
Recall that we use calibrated join-probability 𝑃 (𝐶𝑖 ,𝐶 𝑗) to produce
edge weight 𝑤 (𝑒𝑖 𝑗) = − log(𝑃 (𝐶𝑖 ,𝐶 𝑗)), then naturally the virtual
edges should be imagined as edges with a join-probability of ex-
actly 0.5, which means a 50% chance of being joinable and thus a
coin-toss that is ok to either include or exclude (which makes them
“virtual”).

As another way to look at this, consider when we drop a regular
edge 𝑒𝑖 𝑗 from a 𝑘-arboresence to create a (𝑘 + 1)-arboresence –
the objective function of the latter in Equation (8) will have the
edge-weight 𝑤 (𝑒𝑖 𝑗) removed, but incur a penalty cost of 𝑝 from
the additional virtual-edge we introduce. When the penalty-weight
𝑝 on the virtual-edge corresponds to a join-probability of 0.5, it
would discourage 𝑒𝑖 𝑗 from being dropped if its 𝑃 (𝐶𝑖 ,𝐶 𝑗) is over 0.5
(50% chance of being joinable), and encourage 𝑒𝑖 𝑗 to be dropped if
its 𝑃 (𝐶𝑖 ,𝐶 𝑗) is under 0.5, which is exactly the right thing to do.

We, therefore, use 𝑝 = − log(0.5) as our natural choice of penalty
weight in 𝑘-MCA. Our experiments suggest that empirically 0.5 is

Algorithm 2: Solve 𝑘-MCA for constellation schema
input :Graph𝐺 = (𝑉 , 𝐸)
output :optimal k-MCA (k-snowflakes)

1 𝑉 ′ ← 𝑉 ∪ {𝑟 }
2 𝐸′ ← 𝐸 ∪ {𝑒 (𝑟, 𝑣) |𝑣 ∈ 𝑉 }, with 𝑤 (𝑒 (𝑟, 𝑣)) = 𝑝

3 𝐽 ∗1 ← solve 1-MCA on𝐺 ′ = (𝑉 ′, 𝐸′) with Chu-Liu/Edmonds’ algo
4 𝐽 ∗

𝑘
= 𝐽 ∗1 \ {𝑒 (𝑟, 𝑣) |𝑣 ∈ 𝑉 }

5 return 𝐽 ∗
𝑘

indeed the right choice (Section 5), thanks to the fact that we use
true calibrated probabilities (Section 4.2).

Observe that if we know 𝑘 = 1 a priori, our 𝑘-MCA degener-
ates exactly into 1-MCA like before. When 𝑘 is unknown however,
the objective function in Equation (8) would help reveal the best
𝑘-snowflakes, as well as the right number of 𝑘 . We show this intu-
itively using the example below.

Example 6. We revisit Figure 4 where all edges are possible join
candidates, and solve 𝑘-MCA on this example graph.

First, observe that there is no 1-arboresence in this graph. Let
𝐽 ∗ be all the green edges, then the subgraph induced by 𝐽 ∗ is a 2-
arboresence (rooted at the two fact-tables). Since 𝑘 = 2, the penalty
term in this case is (2 − 1) (− log(0.5)) = 1. It can be verified that
𝐽 ∗ has the lowest cost in all 2-arboresences.

It is possible to have 3-arboresences here too – for example if we
remove 𝑒1 from 𝐽 ∗, then the remaining green-edges in 𝐽 ′ = 𝐽 ∗ \{𝑒1}
induce a 3-arboresence. It can be verified that the cost of 𝐽 ′ is higher
than that of 𝐽 ∗, because 𝐽 ′ removes 𝑒1 from 𝐽 ∗ and thus lowers its
cost by𝑤 (𝑒1) = − log(0.9) = 0.13, but incurs a higher penalty-cost
of (3 − 1) (− log(0.5)) = 2, which makes 𝐽 ′ less desirable than 𝐽 ∗.

Algorithm for 𝑘-MCA. A naive way to solve 𝑘-MCA that builds
on top of 1-MCA above, is to enumerate different values of 𝑘 , and
for each 𝑘 , exhaustively enumerate all 𝑘-way partitions of 𝐺 , then
invoke 1-MCA on each resulting graph partition, to find the optimal
𝑘-MCA. This approach is straightforward but inefficient (because
𝑘 can be as large as |𝑉 |, making it exponential in |𝑉 |).

We design an algorithm that solves 𝑘-MCA, using a graph-based
construction that reduces any instance of the new 𝑘-MCA problem
into one instance of 1-MCA (which admits efficient solutions [18]).
Specifically, given a graph 𝐺 = (𝑉 , 𝐸) on which 𝑘-MCA needs to
be solved, we introduce a new vertex 𝑟 that is an “artificial root”,
and connects 𝑟 with all 𝑣 ∈ 𝑉 using edges 𝑒 (𝑟, 𝑣), with edge-weight
𝑤 (𝑒 (𝑟, 𝑣)) = 𝑝 . This leads to a new constructed graph𝐺 ′ = (𝑉 ′, 𝐸′)
where 𝑉 ′ = 𝑉 ∪ {𝑟 }, 𝐸′ = 𝐸 ∪ {𝑒 (𝑟, 𝑣) |𝑣 ∈ 𝑉 }.

We solve 1-MCA on the new𝐺 ′, and let 𝐽 ∗1 be the optimal 1-MCA.
Let 𝐽 ∗

𝑘
= 𝐽 ∗1 \ {𝑒 (𝑟, 𝑣) |𝑣 ∈ 𝑉 } be edges in 𝐽 ∗1 not incident with the

artificial-root 𝑟 . We can show that 𝐽 ∗
𝑘
is the optimal solution to

𝑘-MCA on the original 𝐺 . The complete steps of this algorithm are
shown in Algorithm 2.

Theorem 2. Algorithm 2 solves 𝑘-MCA optimally, in time poly-
nomial to the input size.

Proof. Given a graph 𝐺 = (𝑉 , 𝐸), let 𝐽 ∗
𝑘
be the optimal 𝑘-MCA

of𝐺 , with objective function value 𝑐𝑘 (𝐽 ∗𝑘), where 𝑐𝑘 is the objective
function defined in Equation (8). Because 𝐽 ∗

𝑘
is a 𝑘-arboresence, by

Definition 3, 𝐽 ∗
𝑘
has exactly 𝑘 disjoint components {𝐺1,𝐺2, . . . 𝐺𝑘 },

all of which are 1-arboresence, with 𝑅 = {𝑟1, 𝑟2, . . . 𝑟𝑘 } as their
roots.

We show that on our constructed graph𝐺 ′ = (𝑉 ′, 𝐸′), the solu-
tion 𝐽 ∗1 = 𝐽 ∗

𝑘
∪ {(𝑟, 𝑟𝑖) |𝑟𝑖 ∈ [𝑘]} must be an optimal solution to the

1-MCA problem on 𝐺 ′.
We show this by contradiction. Suppose 𝐽 ∗1 is not an optimal

solution to𝐺 ′, which means that there is another 𝐽 ′1 with a smaller
cost as defined in the 1-MCA objective function. Let the objective
function in Equation (6) be 𝑐1, we can write this as

𝑐1 (𝐽 ′1) < 𝑐1 (𝐽 ∗1) (10)
In the solution 𝐽 ′1 , let 𝑅

′ be the set of vertices incident with artificial
root 𝑟 . Removing from 𝐽 ′1 the set of edges incident with 𝑟 produces
𝐽 ′
𝑘
= 𝐽 ′1 \ {𝑒 (𝑟, 𝑟

′) |𝑟 ′ ∈ 𝑅′}. 𝐽 ′
𝑘
is an |𝑅′ |-arboresence, and thus a

feasible solution to 𝑘-MCA on 𝐺 . Similarly, removing from 𝐽 ∗1 the
set of edges incident with 𝑟 produces 𝐽 ∗

𝑘
= 𝐽 ∗1 \ {𝑒 (𝑟, 𝑟

′) |𝑟 ′ ∈ 𝑅},
which is also a feasible solution to 𝑘-MCA on 𝐺 .

Since 𝐽 ∗
𝑘
is an |𝑅 |-arboresence and 𝐽 ′

𝑘
is an |𝑅′ |-arboresence, by

the definition of 𝑐𝑘 in Equation (8), we know
𝑐𝑘 (𝐽 ∗𝑘) =

∑︁
𝑒∈ 𝐽 ∗

𝑘

𝑤 (𝑒) + (|𝑅 | − 1)𝑝 (11)

𝑐𝑘 (𝐽 ′𝑘) =
∑︁
𝑒∈ 𝐽 ′

𝑘

𝑤 (𝑒) + (|𝑅′ | − 1)𝑝 (12)

Because we know 𝐽 ∗
𝑘
is an optimal solution to 𝑘-MCA on 𝐺 , we

know 𝑐𝑘 (𝐽 ∗𝑘) ≤ 𝑐𝑘 (𝐽 ′𝑘). Combining with Equation (11) and (12), we
get: ∑︁

𝑒∈ 𝐽 ∗
𝑘

𝑤 (𝑒) + (|𝑅 | − 1)𝑝 ≤
∑︁
𝑒∈ 𝐽 ′

𝑘

𝑤 (𝑒) + (|𝑅′ | − 1)𝑝 (13)

Adding 𝑝 to both sides of Equation (13), we get
∑
𝑒∈ 𝐽 ∗

𝑘
𝑤 (𝑒) +

(|𝑅 |)𝑝 ≤ ∑
𝑒∈ 𝐽 ′

𝑘
𝑤 (𝑒) + (|𝑅′ |)𝑝 . Note that the left-hand-side is ex-

actly the objective-value of 𝐽 ∗1 on𝐺 ′, or 𝑐1 (𝐽 ∗1), while the right-hand-
side is the objective-value of 𝐽 ′1 on 𝐺

′. This gives 𝑐1 (𝐽 ∗1) ≤ 𝑐1 (𝐽 ′1),
contradicting with our assumption in Equation (10), thus proving
that 𝐽 ∗1 must be an optimal solution to 1-MCA on 𝐺 ′.

Since 𝐽 ∗1 can be solved optimally in Line 3 of Algorithm 2 for
1-MCA in polynomial time (Line 3), and all other steps in Algo-
rithm 2 also take time polynomial in the input size, we conclude that
Algorithm 2 can solve 𝑘-MCA optimally, in polynomial time. □

Example 7. We continue with Example 6. Using Algorithm 2, we
would construct a new graph𝐺 ′ by adding an artificial root 𝑟 (shown
on the right of Figure 4), which connects to all existing vertices
𝑣𝑖 with an edge 𝑒 (𝑟, 𝑣𝑖) with the same penalty weight 𝑤 (𝑒) = 𝑝 .
Using Line 4 of Algorithm 2 to solve the 1-MCA on 𝐺 ′ produces
the optimal solution of 𝐽 ∗1 that consists of all solid green edges, plus
two artificial-edges connecting 𝑟 with the two fact-table, which can
be verified is the optimal 1-MCA. Line 4 of Algorithm 2 would then
produce 𝐽 ∗

𝑘
corresponding to of all green edges (removing the two

artificial-edges connecting fact-tables to the artificial-root). It can
be verified that 𝐽 ∗

𝑘
in this example is the optimal 𝑘-MCA, which is

also the ground-truth schema in Figure 1(c).

(3) Arbitrary number of snowflakes with constraints: k-

MCA-CC. The 𝑘-MCA formulation we considered so far can handle
arbitrary numbers of snowflakes. This however, can be further

improved by adding an additional constraint on the graph that we
call “FK-once”.3

FK-once refers to the property that the same FK column in a
fact-table should likely not refer to two different PK columns in two
dimension tables (a common property known in the database litera-
ture [17, 30]). On a graph, such a structure would correspond to two
edges (𝐶𝑖 ,𝐶 𝑗), (𝐶𝑖 ,𝐶𝑚), pointing from the same𝐶𝑖 , to two separate
𝐶 𝑗 and 𝐶𝑚 , which usually indicates that one of the joins is incor-
rect. For example, the same FK column “Customer-ID” in “Sales”
table may appear joinable with both (1) the PK column “C-ID” of
the “Customers” table, and (2) the PK “Customer-Segment-ID” of
the “Customer-Segments” table (because both have high column-
header similarity and value-overlap). However, we know that an FK
should likely only join one PK (or otherwise we have two redundant
dimension tables).

We add the FK-once constraint as a cardinality-constraint (CC)
to 𝑘-MCA, which leads to 𝑘-MCA-CC below:

(k-MCA-CC) min
𝐽 ⊆𝐸, 𝑘≤ |𝑉 |

∑︁
𝑒𝑖 𝑗 ∈ 𝐽

𝑤 (𝑒𝑖 𝑗) + (𝑘 − 1) · 𝑝 (14)

s.t. 𝐺 ′ = (𝑉 , 𝐽) is 𝑘-arboresence (15)
𝑖 ≠ 𝑙,∀𝑒𝑖 𝑗 ∈ 𝐽 , 𝑒𝑙𝑚 ∈ 𝐽 , 𝑗 ≠𝑚 (16)

Note that Equation (16) is the new FK-once constraint, which
states that no two edges 𝑒𝑖 𝑗 , 𝑒𝑙𝑚 in the selected edge-set 𝐽 should
share the same starting column-index, or (𝑖 ≠ 𝑙).4

Theorem 3. 𝑘-MCA-CC is NP-hard. Furthermore, it is Exp-APX-
complete, making it inapproximable in polynomial time.

We prove Theorem 3 using a reduction from non-metric min-
TSP [21]. Proof of this can be found in Appendix D. It is interesting
to see that adding one constraint in 𝑘-MCA-CC makes it consid-
erably more difficult than 𝑘-MCA (which however is important in
terms of result quality, as we will show in experiments).

Algorithm for 𝑘-MCA-CC. Despite the hardness, we develop a
novel algorithm that solves 𝑘-MCA-CC optimally, leveraging the
branch-and-bound principle [35], and the sparsity of join edges
pointing from the same columns.

Algorithm 3 shows the pseudo-code of this recursive procedure.
We first invoke Algorithm 2 to solve the unconstrained version
𝑘-MCA and obtain 𝐽 (Line 1). We check 𝐽 for constraint violations
(Line 2) – if there is no violation, we are done and 𝐽 is the optimal
solution to 𝑘-MCA-CC. Alternatively, if 𝐽 has constraint violations,
but the cost of the unconstrained version 𝑐 (𝐽) is already higher
than a best solution to 𝑘-MCA-CC found so far (Line 4), we know
adding the constraints will only degrade solution quality so we
return null for this solution space. Otherwise, in Line 7, let 𝐶𝑠 =

{𝑒𝑠 𝑗 , 𝑒𝑠𝑘 , . . .} ⊆ 𝐽 be one set of conflicting edges in 𝐽 from the same
column (thus violating the FK-once constraint). We partition 𝐶𝑠

into |𝐶𝑠 | number of subsets𝐶1
𝑠 ,𝐶2

𝑠 , . . . ,𝐶
|𝐶𝑠 |
𝑠 , each with exactly one

edge in 𝐶𝑠 (Line 8). We then construct |𝐶𝑠 | number of 𝑘-MCA-CC
problem instances, each with a new graph 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖), where
𝑉𝑖 = 𝑉 , 𝐸𝑖 = 𝐸 \ 𝐶𝑠 ∪ 𝐶𝑖

𝑠 . We recursively solve 𝑘-MCA-CC on
each graph 𝐺𝑖 to get 𝐽𝑖 (Line 11). Let 𝑐 (𝐽) be the objective function
3Other possible constraints that can benefit the inference, such as “no-cycles” of join
paths in inferred schema graph, is implicit from the definition of arboresence.
4Note that the constraint is on column-index and at a column-level – one table can still
have multiple different FK columns pointing from the same table/vertex, to different
PK columns of different tables/vertices.

Algorithm 3: Solve 𝑘-MCA-CC
input :Graph𝐺 = (𝑉 , 𝐸)
output :optimal solution to k-MCA-CC (k-snowflakes)

1 𝐽 ← Solve-k-MCA(𝐺) using Algorithm 2
2 if 𝐽 is a feasible solution to 𝑘-MCA-CC(G)) then

3 return 𝐽

4 else if cost 𝑐 (𝐽) is higher than best 𝑘-MCA-CC found so far then

5 return null
6 else

7 𝐶𝑠 ← edges in 𝐽 with the same source column index 𝑠 that
violates FK-once constraint (Equation 16)

8 𝐶1
𝑠 ,𝐶2

𝑠 , . . .𝐶
|𝐶𝑠 |
𝑠 ← disjoint subsets of𝐶𝑠 , each with exactly one

edge from𝐶𝑠

9 𝐸𝑖 = 𝐸 \𝐶𝑠 ∪𝐶𝑖
𝑠 , ∀𝑖 ∈ [|𝐶𝑠 |]

10 𝐺𝑖 = (𝑉 , 𝐸𝑖) ∀𝑖 ∈ [|𝐶𝑠 |]
11 𝐽𝑖 = Call Solve-k-MCA-CC(𝐺𝑖) recursively, ∀𝑖 ∈ [|𝐶𝑠 |]
12 𝐽 ∗ = argmin𝐽𝑖 ,𝑖∈ [|𝐶𝑠 |] 𝑐 (𝐽𝑖)
13 return 𝐽 ∗

in Equation (14), the 𝐽𝑖 that minimizes the cost function, 𝐽 ∗ =

argmin𝐽𝑖 𝑐 (𝐽𝑖), is the optimal solution to the original 𝑘-MCA-cc
problem on 𝐺 (Line 12).

Note that our recursive call (Line 11) partitions and reduces the
solution space into disjoint subsets without losing optimal solutions,
while the pruning step (Line 4) quickly prunes away unpromising
solution spaces leveraging efficient 𝑘-MCA algorithms. This two
steps can conceptually be seen as a form of branch-and-bound used
in the optimization literature [35], but is specifically tailored to
our graph problem (leveraging the mutually-exclusive nature of
conflicting edges based on the FK-once property).

Theorem 4. Algorithm 3 solves 𝑘-MCA-CC optimally.
A proof of the theorem can be found in Appendix E. Intuitively,

this algorithm ensures optimality, because at most one edge in
𝐶𝑠 may appear in the optimal solution to 𝑘-MCA-CC (otherwise
the FK-once constraint is violated), making edges in 𝐶𝑠 mutually
exclusive. This allows us to partition the conflicting edges in 𝐶𝑠 ,
and recursively construct instances of the problem with smaller
feasible regions, without losing the optimal solution in the process.

Given the hardness of 𝑘-MCA-CC, we clearly cannot hope Algo-
rithm 3 to solve 𝑘-MCA-CC in polynomial time. In practice, how-
ever, our branch-and-bound partitioning exploits the sparseness of
edges (there are few edges pointing from the same columns), which
turns out to be highly efficient. In our experiments (Section 5), we
observe the mean and median latency of Algorithm 3 on real-world
BI schemas is 0.11 and 0.02 second, respectively, with the max be-
ing 11 seconds on a case with 88 data-tables (the largest case we
encounter in the 100K+ real BI models harvested). We note that
this is encouraging, and analogous to many classical combinatorial
problems (e.g., Euclidean TSP and Knapsack) that are intractable in
theory but reliably solvable in practice.
4.3.3 Recall Mode (MaxEdge-CC).
At this point, we did with the precision-mode of Auto-BI, which is
precision-oriented as we focus on finding the salient 𝑘-snowflakes
to reveal the “backbone” of the underlying schema. However, not all
desired joins are included in 𝑘-snowflakes/arboresence. For exam-
ple, the green edges in Figure 4 correspond to the optimal solution
to 𝑘-MCA-CC, but we are still missing two joins in the ground truth,

Average 50-th p% 90-th p% 95-th p%
of rows per table 1053.4 50.1 1925.4 13981.2

of columns per table 8.1 4.2 11 17.1
of tables (nodes) per case 3.2 2 6.9 9.1

of relationships (edges) per case 3.9 3 8.2 11.6

Table 2: Characteristics of all BI models harvested.
Average 50-th p% 90-th p% 95-th p%

of rows per table 7730 80 10992 33125
of columns per table 9 5 20 27

of tables (nodes) per case 12.9 9 25 32
of relationships (edges) per case 11.7 8.6 19 29

Table 3: Characteristics of 1000-case Real benchmark.
TPC-C TPC-E TPC-H TPC-DS

average # of rows per table 288590 7850832 1082655 814889
average # of columns per table 10.2 5.8 7.6 17.7

of tables (nodes) 9 32 8 24
of relationships (edges) 10 45 8 107

Table 4: Characteristics of 4 TPC benchmarks.
marked as dotted orange edges (these are joins that reference the
same dimension-table, from the multiple fact tables).

We, therefore, introduce the “recall-mode” of Auto-BI, where
we “grow” additional edges on top of the “backbone” identified in
the precision-mode.

Specifically, given the original graph 𝐺 = (𝑉 , 𝐸), let 𝐽 ∗ be the
optimal solution to 𝑘-MCA-CC. Let 𝑅 = {𝑒𝑖 𝑗 |𝑒𝑖 𝑗 ∈ (𝐸 \ 𝐽 ∗), 𝑃 (𝑒𝑖 𝑗) ≥
𝜏} be the remaining edges that are promising (meeting a precision
threshold 𝜏5) but not yet selected by 𝐽 ∗. For our recall-oriented
solution of Auto-BI, we want to select as many as edges 𝑆 ⊆ 𝑅,
subject to certain graph-structure constraints below. We write this
as EMS (Edge-Maximizing Schema) below:

(EMS) argmax
𝑆⊆𝑅

|𝑆 | (17)

s.t. 𝑖 ≠ 𝑙,∀𝑒𝑖 𝑗 , 𝑒𝑙𝑚 ∈ 𝑆 ∪ 𝐽 ∗, 𝑗 ≠𝑚 (18)
𝑆 ∪ 𝐽 ∗is cycel-free (19)

The new constraint in Equation (19) ensures that there should
be no cycles in the resulting graph induced by 𝑆 ∪ 𝐽 ∗, as circular
joins between columns are uncommon at a schema level.

The EMS problem is NP-hard, and is 1/2-inapproximable using
a reduction from Max-Sub-DAG [26]. However, because this step
operates on top of the optimal solution 𝐽 ∗ to 𝑘-MCA-CC, there is
typically limited flexibility in selecting from 𝑅. We find different
solutions have very similar results (Section 5), and we thus solve
EMS greedily by picking the most confident edges (based on 𝑃 (𝑒𝑖 𝑗)),
without using more expensive solutions.

This now completes the overall Auto-BI. To recap, we first solve
𝑘-MCA-CC optimally using Algorithm 3 in the precision-mode, to
get 𝐽 ∗ (the salient 𝑘-snowflakes). Then in the recall-mode, we solve
EMS using 𝐽 ∗ and obtain 𝑆∗. The sub-graph induced by 𝐽 ∗ ∪ 𝑆∗ is
the final solution of Auto-BI.

5 EXPERIMENTS

We perform large-scale evaluations to test Auto-BI and related
methods in the literature, in both quality and efficiency.

5.1 Evaluation Setup

Benchmarks.We use two benchmarks to evaluate Auto-BI.

5By default, we threshold with 𝜏= 0.5 here, since our 𝑃 (𝑒𝑖 𝑗) are calibrated probability,
and 0.5 is a natural cutoff for joinability.

Real (OLAP) Synthetic (OLAP) Synthetic (OLTP)
Benchmark 1000-case Real benchmark TPC-H TPC-DS TPC-C TPC-E

Method Category Method 𝑃𝑒𝑑𝑔𝑒 𝑅𝑒𝑑𝑔𝑒 𝐹𝑒𝑑𝑔𝑒 𝑃𝑐𝑎𝑠𝑒 𝑃𝑒𝑑𝑔𝑒 𝑅𝑒𝑑𝑔𝑒 𝐹𝑒𝑑𝑔𝑒 𝑃𝑒𝑑𝑔𝑒 𝑅𝑒𝑑𝑔𝑒 𝐹𝑒𝑑𝑔𝑒 𝑃𝑒𝑑𝑔𝑒 𝑅𝑒𝑑𝑔𝑒 𝐹𝑒𝑑𝑔𝑒 𝑃𝑒𝑑𝑔𝑒 𝑅𝑒𝑑𝑔𝑒 𝐹𝑒𝑑𝑔𝑒

Auto-BI
Auto-BI-P 0.98 0.664 0.752 0.92 1 0.88 0.93 0.99 0.28 0.43 1 0.6 0.75 1 0.4 0.58
Auto-BI 0.973 0.879 0.907 0.853 1 1 1 0.96 0.91 0.93 1 0.8 0.89 0.96 0.93 0.95

Auto-BI-S 0.951 0.848 0.861 0.779 1 1 1 0.92 0.89 0.91 1 0.7 0.82 0.93 0.94 0.94

Commercial System-X 0.916 0.584 0.66 0.754 0 0 0 0 0 0 0 0 0 0 0 0

Baselines

MC-FK 0.604 0.616 0.503 0.289 1 1 1 0.73 0.65 0.68 0.46 0.8 0.63 0.57 0.79 0.48
Fast-FK 0.647 0.585 0.594 0.259 0.71 0.88 0.79 0.62 0.35 0.44 0.62 0.57 0.6 0.73 0.84 0.78
HoPF 0.684 0.714 0.67 0.301 0.86 0.75 0.8 0.87 0.51 0.65 0.75 0.7 0.72 0.71 0.91 0.81
ML-FK 0.846 0.77 0.773 0.557 0.6 0.75 0.667 0.369 0.589 0.454 0.273 0.3 0.286 0.694 0.756 0.723

Language model GPT-3.5 0.73 0.64 0.67 0.43 0.75 0.75 0.75 0 0 0 0.16 0.2 0.15 0.78 0.56 0.65

Table 5: Quality comparison on the 1000-case Real benchmark and 4 TPC benchmarks.

Denormalized (OLAP-like) Normalized (OLTP-like)
Benchmark Foodmart Northwind AdventureWork WorldWideImporters Foodmart Northwind AdventureWork WorldWideImporters

Method Category Method 𝑃𝑒 𝑅𝑒 𝐹𝑒 𝑃𝑒 𝑅𝑒 𝐹𝑒 𝑃𝑒 𝑅𝑒 𝐹𝑒 𝑃𝑒 𝑅𝑒 𝐹𝑒 𝑃𝑒 𝑅𝑒 𝐹𝑒 𝑃𝑒 𝑅𝑒 𝐹𝑒 𝑃𝑒 𝑅𝑒 𝐹𝑒 𝑃𝑒 𝑅𝑒 𝐹𝑒

Auto-BI
Auto-BI-P 1 0.5 0.67 1 1 1 1 0.34 0.51 1 0.31 0.47 1 0.63 0.77 1 1 1 1 0.44 0.62 1 0.25 0.4
Auto-BI 0.75 1 0.86 1 1 1 0.98 0.93 0.97 1 0.83 0.91 0.8 1 0.89 1 1 1 0.97 0.82 0.89 0.97 0.86 0.91

Auto-BI-S 0.68 1 0.81 0.9 1 0.95 0.94 0.91 0.92 1 0.79 0.88 0.8 1 0.88 1 1 1 0.93 0.8 0.86 0.92 0.84 0.88
Commercial System-X 0.75 0.6 0.67 0.85 0.79 0.82 0.97 0.66 0.78 1 0.59 0.74 0.75 0.6 0.67 0.9 1 0.95 0.9 0.34 0.5 1 0.09 0.17

Baselines

MC-FK 0.42 0.9 0.57 0.28 1 0.44 0.33 0.71 0.45 0.21 0.86 0.34 0.54 0.88 0.67 0.43 0.8 0.56 0.2 0.87 0.33 0.2 0.52 0.3
Fast-FK 0.38 0.6 0.46 0.53 0.64 0.65 0.33 0.34 0.34 0.27 0.47 0.35 0.55 0.75 0.63 0.55 0.6 0.57 0.43 0.69 0.53 0.45 0.14 0.2
HoPF 0.44 0.4 0.42 0.53 0.5 0.52 0.78 0.73 0.75 0.89 0.72 0.8 0.43 0.38 0.4 0.8 0.8 0.8 0.55 0.71 0.62 0.75 0.51 0.61
ML-FK 0.43 0.8 0.56 0.35 0.86 0.5 0.84 0.8 0.82 0.89 0.75 0.81 0.57 0.88 0.69 0.5 0.9 0.64 0.95 0.83 0.89 0.9 0.5 0.64

Language model GPT-3.5 1 0.6 0.75 1 0.71 0.83 1 0.32 0.48 0.77 0.69 0.73 1 0.75 0.86 1 1 1 0.87 0.54 0.67 0.88 0.61 0.72

Table 6: Quality comparison on FoodMart, NorthWind, AdventureWork and WorldWideImporters . (𝑃𝑒 , 𝑅𝑒 , 𝐹𝑒) = (𝑃𝑒𝑑𝑔𝑒 , 𝑅𝑒𝑑𝑔𝑒 , 𝐹𝑒𝑑𝑔𝑒).

of tables 4 5 6 7 8 9 10 [11,15] [16,20] 21+
Case-type statistics (ST,SN,C,O) (50,18,31,1) (49,12,37,2) (36,14,48,2) (19,23,49,9) (10,22,57,11) (7,25,50,18) (2,39,40,19) (7,14,60,19) (1,7,72,20) (9,5,62,24)

Auto-BI
Auto-BI 0.97 (0.99,0.95) 0.97 (0.98,0.96) 0.96 (0.99,0.94) 0.95 (0.98,0.91) 0.95 (0.99,0.92) 0.96 (1.00,0.93) 0.94 (0.98,0.90) 0.90 (0.97,0.85) 0.84 (0.95,0.75) 0.79 (0.94,0.69)
Auto-BI-P 0.91 (1.00,0.84) 0.91 (0.99,0.85) 0.88 (1.00,0.79) 0.81 (0.98,0.69) 0.83 (0.98,0.71) 0.83 (1.00,0.70) 0.81 (0.99,0.69) 0.71 (0.98,0.56) 0.60 (0.96,0.44) 0.55 (0.95,0.39)
Auto-BI-S 0.95 (0.98,0.93) 0.95 (0.96,0.94) 0.94 (0.97,0.92) 0.94 (0.97,0.90) 0.95 (0.98,0.91) 0.93 (0.97,0.89) 0.92 (0.96,0.88) 0.85 (0.92,0.79) 0.78 (0.90,0.70) 0.74 (0.89,0.63)

Commercial System-X 0.76 (0.94,0.66) 0.67 (0.91,0.55) 0.76 (0.94,0.66) 0.76 (0.93,0.66) 0.75 (0.91,0.65) 0.78 (0.91,0.70) 0.77 (0.92,0.67) 0.74 (0.90,0.65) 0.65 (0.80,0.56) 0.66 (0.88,0.54)

Baselines

MC-FK 0.69 (0.88,0.57) 0.65 (0.93,0.49) 0.63 (0.70,0.58) 0.65 (0.67,0.63) 0.62 (0.70,0.56) 0.56 (0.46,0.72) 0.54 (0.48,0.63) 0.54 (0.49,0.61) 0.52 (0.42,0.69) 0.42 (0.30,0.68)
Fast-FK 0.76 (0.79,0.72) 0.76 (0.79,0.74) 0.68 (0.69,0.66) 0.53 (0.53,0.52) 0.65 (0.67,0.63) 0.47 (0.46,0.47) 0.45 (0.48,0.42) 0.49 (0.53,0.46) 0.47 (0.49,0.46) 0.42 (0.40,0.44)
HoPF 0.83 (0.86,0.81) 0.77 (0.77,0.76) 0.72 (0.73,0.71) 0.63 (0.58,0.70) 0.68 (0.67,0.70) 0.55 (0.49,0.64) 0.62 (0.55,0.70) 0.61 (0.58,0.64) 0.57 (0.55,0.60) 0.49 (0.44,0.56)
ML-FK 0.87(0.91,0.84) 0.86 (0.91,0.85) 0.8 (0.94,0.79) 0.83 (0.88,0.83) 0.84 (0.89,0.84) 0.8 (0.84,0.81) 0.8 (0.88,0.79) 0.72 (0.84,0.71) 0.64 (0.69,0.65) 0.56 (0.65,0.6)

Language model GPT-3.5 0.79 (0.86,0.76) 0.75 (0.83,0.7) 0.8 (0.83,0.78) 0.74 (0.78,0.74) 0.72 (0.77,0.69) 0.69 (0.76,0.66) 0.69 (0.76,0.66) 0.56 (0.62,0.54) 0.49 (0.56,0.46) 0.39 (0.46,0.36)

Table 7: Edge-level quality reported as “F-1 (precision, recall)”, by number of input tables in Real benchmark. In the first row, we report “case

type statistics”, denoted as (𝑆𝑇 , 𝑆𝑁,𝐶,𝑂), which stand for the number of cases in (Star, Snowflake, Constellation, Others), respectively.

- Real. We sample 1000 real BI models crawled in the wild
(Section 3.2) as our first benchmark, henceforth referred to as Real.
In order to account for different levels of difficulty in predicting BI
models, we perform stratified sampling as follows – we bucketize
models into 10 groups based on the number of input tables as {4, 5,
6, 7, 8, 9, 10, [11-15], [16-20], 21+}, and randomly select 100 cases
in each group, to create this 1000-case benchmark that covers the
entire spectrum in terms of levels of difficulty, from easy (with only
a few tables) to hard (with over 20 tables). Table 3 summarizes the
characteristics of the 1000-case Real benchmark. Note that these
test cases are held out and never used when training of our local
classifier, which is consistent with the standard practice of machine
learning to avoid data leakage.

In comparison, Table 2 shows the characteristics of all BI models
harvested in the entire collection, which are substantially simpler
(e.g., with a small number of tables). This is not entirely surprising,
when these BI models are programmed by non-technical business
users using GUI tools, which is why we perform stratified sampling
described above to create a more balanced and challenging test set.

- Synthetic. In addition to evaluation on real BI models, we
perform tests on 4 TPC benchmarks, henceforth referred to as Syn-
thetic. Specifically, TPC-H and TPC-DS are two popular bench-
marks for BI/OLAP workloads. We evaluate predicted joins with
the ground-truth relationships in TPC specifications. We further
perform tests on TPC-C and TPC-E, two popular OLTP benchmarks.
While Auto-BI is not designed for general OLTP databases, we
perform the tests nevertheless, in order to understand Auto-BI’s
ability to detect foreign-keys in general (beyond the snowflake-like
schemas that Auto-BI was initially designed for).

of tables 4 5 6 7 8 9 10 [11,15] [16,20] 21+

Auto-BI
Auto-BI 1.00 0.96 0.95 0.89 0.95 0.97 0.85 0.78 0.64 0.55
Auto-BI-P 1.00 0.98 0.99 0.94 0.96 0.99 0.95 0.89 0.83 0.67

Auto-BI-S 0.99 0.95 0.93 0.93 0.95 0.80 0.76 0.69 0.49 0.31
Commercial System-X 0.91 0.87 0.81 0.85 0.77 0.78 0.74 0.75 0.52 0.54

Baselines

MC-FK 0.76 0.68 0.41 0.34 0.19 0.14 0.1 0.13 0.09 0.05
Fast-FK 0.68 0.65 0.39 0.14 0.32 0.08 0.09 0.12 0.09 0.03
HoPF 0.78 0.57 0.42 0.21 0.32 0.06 0.18 0.19 0.18 0.11
ML-FK 0.87 0.86 0.68 0.65 0.7 0.55 0.53 0.42 0.18 0.12

Language model GPT-3.5 0.67 0.61 0.61 0.6 0.44 0.42 0.42 0.21 0.1 0.05

Table 8: Case-level precision, by number of tables.

We further perform tests on 4 commonly-used synthetic databases:
FoodMart [3], Northwind [4], AdventureWorks [2] and WorldWide-
Importers [6]. We use both of their OLAP and OLTP versions to
stress test our algorithms, for a total of 8 additional test databases.

Metrics.We compare the predicted joins of different methods,
against the ground truth (which in the case of Real, are human-
specified relationships that we programmatically extract from BI
models we crawled). We evaluate prediction quality of algorithms
both at the edge-level and case-level, defined as below:

Edge-level quality. For each BI test case 𝐶 , we evaluate the frac-
tion of predicted join relationships (edges on the graph) that is
identical to ground-truth relationships. We use standard preci-
sion/recall/F metrics for the edge-level evaluation, defined as pre-
cision 𝑃𝑒𝑑𝑔𝑒 (𝐶) =

num-of-correctly-predicted-edges
num-of-total-predicted-edges , recall 𝑅𝑒𝑑𝑔𝑒 (𝐶) =

num-of-correctly-predicted-edges
num-of-total-ground-truth-edges . The F-1 score, denoted by 𝐹𝑒𝑑𝑔𝑒 (𝐶), is

then the harmonicmean of precision and recall, or 2𝑃𝑒𝑑𝑔𝑒 (𝐶)𝑅𝑒𝑑𝑔𝑒 (𝐶)
𝑃𝑒𝑑𝑔𝑒 (𝐶)+𝑅𝑒𝑑𝑔𝑒 (𝐶) .

We report precision/recall/F-1 for the entire Real benchmark,
as the average across all 1000 test cases.

Case-level quality. Since it is difficult for non-technical users
to identify incorrectly-predicted relationships, high precision is
crucial for Auto-BI (Section 4.3.2). We report case-level precision

for each test case 𝐶 , denoted by 𝑃𝑐𝑎𝑠𝑒 (𝐶), defined as:

𝑃𝑐𝑎𝑠𝑒 (𝐶) =
{
1, if P𝑒𝑑𝑔𝑒 (𝐶) = 1
0, otherwise

(20)

In other words, 𝑃𝑐𝑎𝑠𝑒 (𝐶) is 1 only if no incorrect edge is predicted;
and 0 even if a single false-positive edge is predicted (for it is un-
likely that non-technical users can identify and correct the incorrect
predictions, making us to “fail” in such a situation). The case-level
precision on the entire benchmark is also the average across all
1000 cases. 6

Latency. We report the latency of all methods using wall-clock
time. All methods are implemented using Python 3.8 and tested on a
Windows 11 machine with 64-core Intel CPU and 128 GB memory.
5.2 Methods compared

We compare Auto-BI with the following methods in the literature.
Our code and data are available for reproducibility [1].

MC-FK [58]. MC-FK pioneered a method to accurately detect
multi-column FKs, using an EMD-based randomness metric that
measures the distribution similarity of two columns.

Fast-FK [17]. Fast-FK makes FK predictions based on a scoring
function that combines column-value and column-name similar-
ity. This method employs fast pruning and focuses on ensuring
interactive predictions.

HoPF [30]. HoPF is a recent method that detects FKs and PKs
together, in order to ensure better prediction accuracy. It employs
hand-tuned scoring functions as well as structural constraints (e.g.,
no cycles) to improve accuracy.

ML-FK [48]. ML-FK is an ML-based approach to predict FK,
which is similar in spirit to our local-classifiers, and we feed ML-FK
with the same training data used by our local-classifiers.

System-X. System-X is a commercial system from a leading
BI vendor that has a feature to detect joins. We anonymize the
name of the system, in keeping with benchmarking traditions in
the database literature [7, 23, 44, 49].

GPT-3.5. GPT is a family of language models [13] capable of
performing many downstream tasks such as NL-to-SQL [45, 54]
and schema-matching [59]. We use GPT as a baseline with few-shot
learning [13], where we provide few-shot demonstrations of the
join task in the prompt, and then ask the model to predict for new
test cases. We use the latest publicly available version of GPT (GPT-
3.5-turbo), 7 and in the prompt we provide both the table-schema
(column names) as well as sample data rows. Note that because
synthetic benchmarks (e.g., TPC) are heavily represented on the
web, it is likely that GPT has seen such cases in its pre-training (e.g.,
TPC queries on the web), causing data leakage and inflated results.
We report these numbers nevertheless, for reference purposes.

Auto-BI. This is our proposed method using global 𝑘-MCA
optimization. We evaluate three variants of our method: (1): Auto-
BI-Precision (Auto-BI-P) is the precision-mode of Auto-BI (Sec-
tion 4.3.2) that focuses on high precision (by finding snowflake-like
“backbones” from the schema). (2): Auto-BI is our full approach

6We note that it is possible that a predicted join graph may differ syntactically from
the ground truth when the two are semantically equivalent. For example, the ground
truth may have a fact-table 𝐹 join a dimension-table𝐴 (N:1), which in turn 1:1 join
with another dimension-table 𝐵. If it is predicted that 𝐹 joins with 𝐵 (N:1), and then
𝐵 joins with𝐴 (1:1), while the ground truth is F-(N:1)-A-(1:1)-B, then the are in fact
identical (except that the join order is different). We account for semantic equivalence
in our evaluation and mark both as correct, which is fair for all methods tested.
7https://platform.openai.com/docs/models/gpt-3-5

with both precision and recall modes (Section 4.3.3). (3): Further-
more, we test a light-weight version of Auto-BI called Auto-

BI-Schema-Only (Auto-BI-S), which uses only schema-level
metadata (table/column names) for local-classifiers (without us-
ing column-values). This method is thus efficient, with sub-second
latency in most cases, while still being surprisingly accurate.

5.3 Quality comparisons

Overall comparison. Table 5 compares the overall quality of all
methods, on both the 1000-case Real benchmark and 4 Synthetic
TPC benchmarks. As we can see, Auto-BI-based methods consis-
tently outperform alternatives, with Auto-BI-P always being the
best in precision (very close to 1), while the full Auto-BI being the
best overall in F-scores.

On the 1000-case Real benchmark, we note that the difference
between Auto-BI and the best baselines is significant – the differ-
ence is 13 percentage points for edge-level precision (0.98 vs. 0.846),
and over 10 percentage points for edge-level recall (0.879 vs. 0.77).
The difference is even more pronounced at the case-level, which
is over 35 percentage points (0.92 vs. 0.557), showing the strong
benefit on quality when using a principled global optimization in
our 𝑘-MCA.

Even the light-weight Auto-BI-S (with the same 𝑘-MCA but
using schema-only features) is surprisingly accurate (losing only
2-3 percentage points in precision/recall). As we will see, it is much
more efficient, however, making it a strong contender for practical
use when latency becomes important.

For the Synthetic TPC benchmarks, we observe similar trends
consistent with the Real benchmark. It is interesting to note that,
not only is Auto-BI the best on OLAP benchmarks (TPC-H/TPC-
DS), it turns out to be the best on OLTP benchmarks too (TPC-
C/TPC-E). This is somewhat surprising, because OLTP databases
do not usually follow snowflake-like schema, and are not the use
cases that Auto-BI is originally designed for. We inspected TPC-C
and TPC-E carefully to understand why Auto-BI is effective. It
turns out that while these OLTP databases do not have snowflake
designs, they nevertheless have clusters of tables (e.g., a cluster of
tables on “Customers”, and another cluster on “Market”, etc., for
TPC-E), where each cluster loosely follows a hub-and-spoke pattern
with related tables joining through a few “central” tables (e.g., a clus-
ter of tables relating to customers, such as “Customers-Account”
and “Customers-Tax-Rate”, all join through a central “Customers”
table in TPC-E, like very nicely depicted in Figure 2 of prior work
on schema summarization [57]). Similar results are also observed in
additional synthetic benchmarks as shown in Table 6. Exploring the
applicability of Auto-BI-like global optimization in FK-detection
for general OLTP databases is an interesting area for future work.

Among all baselines, the commercial System-X produces high
precision at the cost of a low recall. Among the four FK methods
from the literature, ML-FK produces the best quality (since we feed
it with the same training data harvested from real BI models), while
the remaining three have comparable precision/recall.

Detailed breakdown. Table 7 and Table 8 show a more detailed
comparison of edge-level and case-level quality, respectively, buck-
etized by the number of input tables. The overall trend is consistent
with Table 5 – Auto-BI has the best F-1, while Auto-BI-P has the

50% 90% 95%
0

5

10

15

20

A
v
g

 R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

Auto-BI-P

Auto-BI

Auto-BI-S

MC-FK

Fast-FK

HoPF

(a) 50/90/95-th Percentiles
Auto-BI-P Auto-BI Auto-BI-S MC-FK Fast-FK HoPF

0

0.5

1

1.5

2

2.5

3

3.5

A
v
g
 R

u
n
ti
m

e
 B

re
a
k
d
o
w

n
 (

s
e
c
o
n
d
s
) UCC

IND

Local-Inference

Global-Predict

(b) Breakdown by components

Figure 5: Comparison of end-to-end latency.

0 5 10 15 20 25 30 35 40 45 50

Number of Input Tables

0

1

2

3

4

5

6

R
u

n
 t

im
e

 (
s
e

c
o

n
d

s
)

Figure 6: Latency distribution of k-MCA-CC on 1000-case Real.

The 50/90/95-th p-tiles are 0.02/0.06/0.17 seconds, respectively.

best precision across the board. We note that Auto-BI works rea-
sonably well on the most challenging slice of the test cases (with
21+ tables), maintaining high precision (0.94) and reasonable recall.

We report additional experiments and analysis (comparing with
baselines enhanced using components from Auto-BI to better un-
derstand its component-wise benefits) in Appendix C.
5.4 Efficiency comparison

Overall comparison. We show the 50/90/95-th percentile latency
of all methods in Figure 5(a), on the 1000-case Real benchmark.
Overall, Auto-BI-S and Fast-FK are the fastest, taking 2-3 seconds
even in the largest cases. Auto-BI is 2-3x slower but the latency is
still acceptable. HoPF takes the most time in comparison.

We also report the latency breakdown of all methods in Fig-
ure 5(b). Overall, there are 4 main components for all methods:
(1) UCC: generate unique column combinations; (2) IND: gener-
ate inclusion dependencies; (3) Local-Inference: generate features
and perform local-classifier inference for joins in Auto-BI (while
baselines use predefined scoring functions here); (4) Global-Predict:
Auto-BI uses 𝑘-MCA, whereas baselines use various other algo-
rithms. For Auto-BI, the most expensive part is Local-Inference
(specifically, feature generation for inference). Auto-BI-S is effec-
tive in reducing the latency of this part (by using metadata-only
features), thus achieving significant speedup. IND-generation is
also expensive for all methods, but it is a standard step and the
latency is comparable across all methods. In Global-Predict, we see
that Auto-BI (using the 𝑘-MCA algorithm) is highly efficient here.
In comparison, baselines like MC-FK and HoPF are very expensive.

Efficiency of k-MCA-CC. Our key innovation in Auto-BI is
the 𝑘-MCA-CC formulation and its efficient solutions. Despite the
hardness of the problem, we solve it optimally (Algorithm 3), which
is efficient as shown by the purple Global-Predict component in
Figure 5(b). It is interesting to drill down and study the latency of
this key step in detail.

Figure 6 shows the distribution of latency when we solve k-MCA-
CC on the 1000-case Real. We can see that the latency for the vast
majority of cases is sub-second. In fact, the 50-th, 90-th and 95-th

percentile latency are 0.02, 0.06, and 0.17 seconds, respectively. This
confirms that our Algorithm 3 is not only optimal but also real-time
and practical. There are a few cases where the latency is over 1
second, which are mostly cases with more than 40 input tables,
which we argue is acceptable considering the size of the data. We
also report that the largest case we encounter among all 10K+ BI
models has 88 input tables, which k-MCA-CC still solves optimally
in about 11 seconds (not shown in the figure as it is not sampled in
the 1000-case Real). This confirms that our algorithm is practical
in solving large real-world BI cases both optimally and efficiently.

Figure 7 shows the benefit of the two key optimization techniques
we used in solving k-MCA-CC: (1) artificial root in 𝑘-MCA (Algo-
rithm 2) and (2) branch-and-bound in 𝑘-MCA-CC (Algorithm 3).
We compare the number of 1-MCA calls with and without the opti-
mizations. (Note that we use the number of 1-MCA calls instead
of wall-clock time, because the algorithm can timeout without our
optimizations). We can see that the two optimization techniques
give 5 and 4 orders of magnitude improvement in efficiency, re-
spectively (the y-axis is in log-scale). Compared to a brute-force
approach that solves k-MCA without optimization, the combined
benefit is a staggering 10 orders of magnitude, again showing the
importance of our algorithms.

5.5 Ablation Studies

We perform an ablation study to analyze the benefits of various
ideas developed in Auto-BI, using the 1000-case Real benchmark.
Our results are summarized in Figure 8.
The effect of FK-once constraint. The bar marked as “no-FK-
once-constraint” in Figure 8 shows the result quality that removes
the FK-once constraint (or using k-MCA instead of k-MCA-CC).
There is a noticeable drop in precision/recall, showing the impor-
tance of this constraint in k-MCA-CC.
The effect of precision-mode.The “no-precision-mode” bar shows
the result quality if we omit the precision-mode step (Section 4.3.2)
and use the recall-mode directly (Section 4.3.3). We see a substantial
drop in precision (6 and 13 percentage points at edge-level and case-
level, respectively), again showing the importance of k-MCA-CC.
The effect of N-1/1-1 separation in local classifier. The “no-
N-1/1-1-seperation” bar shows the results when we use one local
classifier, instead of splitting N-1 and 1-1 joins into two prediction
tasks (Section 4.2). The drop in quality is again evident.
The effect of label transitivity in local classifier. The bar for
“no-label-transitivity” shows the drop in quality when we do not
apply label transitivity in local classification (Section 4.2). The effect
is noticeable but diluted across 1000 cases, as the benefit is more
pronounced in large cases and less obvious in smaller ones.
The effect of no data-value features in local classifier. The “no-
data-features” bar shows the effect of removing features relating

4 5 6 7 8 9 10 [11-15] [16-20] >=21

Number of Input Tables

10
0

10
2

10
4

10
6

10
8

10
10

N
u
m

b
e
r

o
f
M

C
A

 c
a
lls

Auto-BI

no-branch-and-bound

no-synthetic-root

Brute Force

Figure 7: Effect of our efficiency optimization techniques, as

measured by the number of 1-MCA invocations.

Edge Precision Edge Recall Edge F-1 Case Precision
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Auto-BI

no-FK-once-constraint

no-precision-mode

no-N-1/1-1-seperation

no-label-transitivity

no-data-features

LC-only

Figure 8: Ablation study on the effect of Auto-BI components

on result quality (average of 1000-case Real).

0 0.2 0.4 0.6 0.8 1

p

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Auto-BI edge precision

Auto-BI edge recall

Auto-BI edge F-1

Auto-BI case precision

(a) Sensitivity to 𝑝 in 𝑘-MCA-CC

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

Auto-BI edge precision

Auto-BI edge recall

Auto-BI edge F-1

Auto-BI case precision

(b) Sensitivity to 𝜏 in EMS

Figure 9: Sensitivity study on Real benchmark.

to data-value in our local classifier (we use meta-data features only
instead). This directly corresponds to our lightweight Auto-BI-S
(Section 5.3). The drop in quality is apparent but not too significant,
which gives us a useful trade-off between quality and latency.
The effect of using local classifier only. Lastly, we perform an im-
portant ablation study, to understand the benefit of our graph-based
k-MCA algorithm on top of local classifier results. The “LC-only”
bar shows the performance if we employ the same local classifier at
the edge-level (keeping edges that have calibrated probability over
0.5), without using a holistic k-MCA optimization. The difference in
performance is significant (25 percentage points in case-precision),
underscoring the importance of our graph-based k-MCA.

5.6 Sensitivity Analysis

Figure 9 shows a sensitivity analysis of the two parameters in
Auto-BI, the penalty-term 𝑝 in 𝑘-MCA (Section 4.3.2), and the
edge-weight threshold 𝜏 in EMS (Section 4.3.3). Recall that because
we use calibrated true probabilities, 0.5 is the natural choice in both
cases. This is confirmed in our study. Figure 9(a) shows that when
varying 𝑝 from 0 to 1, the region around 0.5 indeed gives the best
result. Figure 9(b) shows the sensitivity to 𝜏 , which is used to prune
unpromising edges, where a lower 𝜏 naturally leads to better recall
at the cost of precision. We see that 𝜏 = 0.5 strikes a reasonable
balance between precision/recall and produces high F-1, which is
also our default setting in Auto-BI.

6 CONCLUSIONS AND FUTUREWORK

In this work we develop an Auto-BI system that can accurately pre-
dict join relationships in BI models, leveraging a novel graph-based
formulation called k-MCA that exploits snowflake-like structures
common in BI models.

Future directions include improving the end-to-end efficiency of
Auto-BI, and extending the system to synthesize transformation
steps, in order to automate BI model building end-to-end.

REFERENCES

[1] [n.d.]. Benchmark data will be released after an internal review:. https://github.
com/yiminl18/Auto-BI.

[2] 2022. AdventureWorks Database. https://github.com/Microsoft/sql-server-
samples/releases/tag/adventureworks.

[3] 2022. FoodMart Database. https://begincodingnow.com/microsofts-foodmart-
database/.

[4] 2022. NorthWind Database. https://github.com/Microsoft/sql-server-samples/
tree/master/samples/databases/northwind-pubs.

[5] 2022. SentenceTransformers. https://www.sbert.net/.
[6] 2022. WorldWide-Importers Database. https://github.com/Microsoft/sql-server-

samples/releases/tag/wide-world-importers-v1.0.
[7] Retrieved in 2023-01. DeWitt Clause (retrieved 2022-09). https://en.wikipedia.

org/wiki/David_DeWitt#DeWitt_Clause.
[8] Retrieved in 2023-01. Power BI. https://powerbi.microsoft.com/en-us/.
[9] Retrieved in 2023-01. Power BI: Create and manage relationships.

https://learn.microsoft.com/en-us/power-bi/transform-model/desktop-
create-and-manage-relationships.

[10] Retrieved in 2023-01. Tableau. https://www.tableau.com/.
[11] Retrieved in 2023-01. Tableau: Relate your data by drag-and-drop. https://help.

tableau.com/current/pro/desktop/en-us/relate_tables.htm.
[12] Jana Bauckmann, Ulf Leser, Felix Naumann, and Véronique Tietz. 2007. Efficiently

detecting inclusion dependencies. In 2007 IEEE 23rd International Conference on
Data Engineering. IEEE, 1448–1450.

[13] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[14] Marco A Casanova, Ronald Fagin, and Christos H Papadimitriou. 1982. Inclusion
dependencies and their interaction with functional dependencies. In Proceedings
of the 1st ACM SIGACT-SIGMOD symposium on Principles of database systems.
171–176.

[15] Surajit Chaudhuri, Umeshwar Dayal, and Vivek Narasayya. 2011. An overview
of business intelligence technology. Commun. ACM 54, 8 (2011), 88–98.

[16] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. 2006. A primitive
operator for similarity joins in data cleaning. In 22nd International Conference on
Data Engineering (ICDE’06). IEEE, 5–5.

[17] Zhimin Chen, Vivek Narasayya, and Surajit Chaudhuri. 2014. Fast foreign-key
detection in Microsoft SQL server PowerPivot for Excel. Proceedings of the VLDB
Endowment 7, 13 (2014), 1417–1428.

[18] Yoeng-Jin Chu. 1965. On the shortest arborescence of a directed graph. Scientia
Sinica 14 (1965), 1396–1400.

[19] Fabien De Marchi, Stéphane Lopes, and Jean-Marc Petit. 2002. Efficient al-
gorithms for mining inclusion dependencies. In International Conference on
Extending Database Technology. Springer, 464–476.

[20] Jack Edmonds et al. 1967. Optimum branchings. Journal of Research of the
national Bureau of Standards B 71, 4 (1967), 233–240.

[21] Bruno Escoffier and Vangelis Th Paschos. 2006. Completeness in approximation
classes beyond apx. Theoretical computer science 359, 1-3 (2006), 369–377.

[22] Jean-Claude Fournier. 2013. Graphs theory and applications: with exercises and
problems. John Wiley & Sons.

[23] Florian Funke, Alfons Kemper, and Thomas Neumann. 2011. Benchmarking
hybrid oltp&olap database systems. Datenbanksysteme für Business, Technologie
und Web (BTW) (2011).

[24] Gartner. [n.d.]. The Gartner 2022 Analytics BI Platforms Magic Quadrant
Highlights. ([n. d.]).

[25] Gartner. [n.d.]. How to Enable Self-Service Analytics. ([n. d.]).
[26] Venkatesan Guruswami, Johan Håstad, Rajsekar Manokaran, Prasad Raghaven-

dra, and Moses Charikar. 2011. Beating the random ordering is hard: Every
ordering CSP is approximation resistant. SIAM J. Comput. 40, 3 (2011), 878–914.

[27] Pat Hanrahan. 2006. Vizql: a language for query, analysis and visualization. In
Proceedings of the 2006 ACM SIGMOD international conference on Management of
data. 721–721.

[28] Juris Hartmanis. 1982. Computers and intractability: a guide to the theory of
np-completeness (michael r. garey and david s. johnson). Siam Review 24, 1
(1982), 90.

[29] Yeye He, Kris Ganjam, and Xu Chu. 2015. Sema-join: joining semantically-related
tables using big table corpora. Proceedings of the VLDB Endowment 8, 12 (2015),
1358–1369.

[30] Lan Jiang and Felix Naumann. 2020. Holistic primary key and foreign key
detection. Journal of Intelligent Information Systems 54, 3 (2020), 439–461.

[31] David R Karger, Philip N Klein, and Robert E Tarjan. 1995. A randomized linear-
time algorithm to find minimum spanning trees. Journal of the ACM (JACM) 42,
2 (1995), 321–328.

[32] Ralph Kimball and Margy Ross. 2011. The data warehouse toolkit: the complete
guide to dimensional modeling. John Wiley & Sons.

[33] Sebastian Kruse, Thorsten Papenbrock, Christian Dullweber, Moritz Finke,
Manuel Hegner, Martin Zabel, Christian Zollner, and Felix Naumann. 2017.
Fast approximate discovery of inclusion dependencies. Datenbanksysteme für
Business, Technologie und Web (BTW 2017) (2017).

[34] Sebastian Kruse, Thorsten Papenbrock, and Felix Naumann. 2015. Scaling out the
discovery of inclusion dependencies. Datenbanksysteme für Business, Technologie
und Web (BTW 2015) (2015).

[35] Ailsa H Land and Alison G Doig. 2010. An automatic method for solving discrete
programming problems. In 50 Years of Integer Programming 1958-2008. Springer,
105–132.

[36] Oliver Lehmberg, Dominique Ritze, Petar Ristoski, Robert Meusel, Heiko Paul-
heim, and Christian Bizer. 2015. The mannheim search join engine. Journal of
Web Semantics 35 (2015), 159–166.

[37] Peng Li, Xiang Cheng, Xu Chu, Yeye He, and Surajit Chaudhuri. 2021. Auto-
FuzzyJoin: Auto-Program Fuzzy Similarity Joins Without Labeled Examples. In
Proceedings of the 2021 International Conference on Management of Data. 1064–
1076.

[38] Jock Mackinlay, Pat Hanrahan, and Chris Stolte. 2007. Show me: Automatic
presentation for visual analysis. IEEE transactions on visualization and computer
graphics 13, 6 (2007), 1137–1144.

[39] Fabien De Marchi, Stéphane Lopes, and Jean-Marc Petit. 2009. Unary and n-ary
inclusion dependency discovery in relational databases. Journal of Intelligent
Information Systems 32, 1 (2009), 53–73.

[40] Solomon Negash and Paul Gray. 2008. Business intelligence. In Handbook on
decision support systems 2. Springer, 175–193.

[41] Alexandru Niculescu-Mizil and Rich Caruana. 2005. Predicting good probabilities
with supervised learning. In Proceedings of the 22nd international conference on
Machine learning. 625–632.

[42] Arash Dargahi Nobari and Davood Rafiei. 2022. Efficiently transforming tables
for joinability. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE). IEEE, 1649–1661.

[43] Thorsten Papenbrock, Sebastian Kruse, Jorge-Arnulfo Quiané-Ruiz, and Felix
Naumann. 2015. Divide & conquer-based inclusion dependency discovery. Pro-
ceedings of the VLDB Endowment 8, 7 (2015), 774–785.

[44] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J Abadi, David J DeWitt,
Samuel Madden, and Michael Stonebraker. 2009. A comparison of approaches to
large-scale data analysis. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data. 165–178.

[45] Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. 2022. Evaluating the
text-to-sql capabilities of large language models. arXiv preprint arXiv:2204.00498
(2022).

[46] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).

[47] Kenneth H Rosen. 2008. ITS APPLICATIONS. (2008).
[48] Alexandra Rostin, Oliver Albrecht, Jana Bauckmann, Felix Naumann, and Ulf

Leser. 2009. A machine learning approach to foreign key discovery.. In WebDB.
[49] Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J Carey, Ioana

Manolescu, and Ralph Busse. 2002. XMark: A benchmark for XML data manage-
ment. In VLDB’02: Proceedings of the 28th International Conference on Very Large
Databases. Elsevier, 974–985.

[50] Nuhad Shaabani and Christoph Meinel. 2015. Scalable inclusion dependency dis-
covery. In International Conference on Database Systems for Advanced Applications.
Springer, 425–440.

[51] Nuhad Shaabani and Christoph Meinel. 2018. Improving the efficiency of in-
clusion dependency detection. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management. 207–216.

[52] Yasin N Silva, Walid G Aref, and Mohamed H Ali. 2010. The similarity join
database operator. In 2010 IEEE 26th International Conference on Data Engineering
(ICDE 2010). IEEE, 892–903.

[53] Fabian Tschirschnitz, Thorsten Papenbrock, and Felix Naumann. 2017. Detecting
inclusion dependencies on very many tables. ACM Transactions on Database
Systems (TODS) 42, 3 (2017), 1–29.

[54] LihanWang, Bowen Qin, Binyuan Hui, Bowen Li, Min Yang, BailinWang, Binhua
Li, Jian Sun, Fei Huang, Luo Si, et al. 2022. Proton: Probing schema linking infor-
mation from pre-trained language models for text-to-sql parsing. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
1889–1898.

[55] Robert HWarren and Frank Wm Tompa. 2006. Multi-column substring matching
for database schema translation. In Proceedings of the 32nd international conference
on Very large data bases. 331–342.

[56] Cong Yan and Yeye He. 2020. Auto-suggest: Learning-to-recommend data prepa-
ration steps using data science notebooks. In Proceedings of the 2020 ACM SIG-
MOD International Conference on Management of Data. 1539–1554.

[57] Xiaoyan Yang, Cecilia M Procopiuc, and Divesh Srivastava. 2009. Summarizing
relational databases. Proceedings of the VLDB Endowment 2, 1 (2009), 634–645.

[58] Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M Procopiuc,
and Divesh Srivastava. 2010. On multi-column foreign key discovery. Proceedings
of the VLDB Endowment 3, 1-2 (2010), 805–814.

https://github.com/yiminl18/Auto-BI
https://github.com/yiminl18/Auto-BI
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://github.com/Microsoft/sql-server-samples/releases/tag/adventureworks
https://begincodingnow.com/microsofts-foodmart-database/
https://begincodingnow.com/microsofts-foodmart-database/
https://github.com/Microsoft/sql-server-samples/tree/master/samples/databases/northwind-pubs
https://github.com/Microsoft/sql-server-samples/tree/master/samples/databases/northwind-pubs
https://www.sbert.net/
https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0
https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-importers-v1.0
https://en.wikipedia.org/wiki/David_DeWitt##DeWitt_Clause
https://en.wikipedia.org/wiki/David_DeWitt##DeWitt_Clause
https://powerbi.microsoft.com/en-us/
https://learn.microsoft.com/en-us/power-bi/transform-model/desktop-create-and-manage-relationships
https://learn.microsoft.com/en-us/power-bi/transform-model/desktop-create-and-manage-relationships
https://www.tableau.com/
https://help.tableau.com/current/pro/desktop/en-us/relate_tables.htm
https://help.tableau.com/current/pro/desktop/en-us/relate_tables.htm

[59] Yunjia Zhang, Avrilia Floratou, Joyce Cahoon, Subru Krishnan, Andreas Mueller,
Dalitso Banda, Fotis Psallidas, and Jignesh Patel. 2023. Schema Matching using
Pre-Trained Language Models. In ICDE 2023.

[60] Erkang Zhu, Yeye He, and Surajit Chaudhuri. 2017. Auto-join: Joining tables by
leveraging transformations. Proceedings of the VLDB Endowment 10, 10 (2017),
1034–1045.

A LOCAL JOIN: TWO OPTIMIZATIONS

Separate N-1 and 1-1 classifiers. Unlike key/foreign-key that are
typically N-1 joins, joins in real BI models can also be 1-1 joins, espe-
cially between related dimension tables describing the same logical
entity (e.g., “employee-salaries” and “employee-details”).

Initially, we use one generic classifier to predict joinability be-
tween (𝐶𝑖 ,𝐶 𝑗) regardless of 1:1 or N:1. While performing an error
analysis on incorrect predictions, we realized that while both 1:1
or N:1 are joins, they represent conceptually different relation-
ships with disparate characteristics. For example, 1:1 joins tend
to be between the primary-keys of two dimension tables on the
same logical entity (e.g. “employees”), often with the same number
of rows from both tables, producing perfect 1-to-1 matches (N:1
joins are, on the other hand, very different). Furthermore, because
1:1 joins tend to be between tables about the same logical entity
with complementary information, the column-headers for both
tables that do not join will also have high overlap (e.g., with the
prefix ”employees_” in the example of “employee-salaries” and
“employee-details”).

We thus treat N:1 and 1:1 as two separate classification tasks.
This separation of is unique in Auto-BI and we will show the effect
of this in our ablation studies.

Enhance labels with transitivity. Given that we deal with
entire BI models that have multiple tables, using the pair-wise
join/not-join labels is no longer sufficient, because joinability can
be “transitive”.

Consider, for instance, a table “Fact_Sales” has a FK column
called “sales_emp_id”, that N:1 joins with table “Dim_Employee”
on its PK column “emp_id”, which in turn 1:1 joins with table
“Dim_Employee_Salaries” also on its PK “emp_id”. In such cases,
even though “Fact_Sales.sales_emp_id” does not directly join
with “Dim_Employee_Salaries.emp_id”, and the pair would ordi-
narily be considered a negative example (should not join), the two
actually refer to the same semantic concept (employee_ids) and are
logically joinable. Formally, given the joinability label 𝐿𝑖 𝑗 = 1 for
(𝐶𝑖 ,𝐶 𝑗) and 𝐿𝑗𝑘 = 1 for (𝐶 𝑗 ,𝐶𝑘), we mark 𝐿𝑖𝑘 = 1 for (𝐶𝑖 ,𝐶𝑘) in
training, even if there is no explicit join between (𝐶𝑖 ,𝐶𝑘). Applying
label transitivity overcomes incomplete ground-truth and makes it
easier for ML models to fit the ground-truth, which leads to better
quality end-to-end.

We note that the transitivity-based optimization is unique when
we deal with general types of joins on a large graph, which is not
needed when only pair-wise joins are considered, or when only
PK-FK (N:1) joins are used as they are typically not transitive.

B LOCAL JOIN CLASSIFIER: DETAILS

We give details on the Local Classifier (LC) in Section 4.2, which
takes two columns (𝐶𝑖 ,𝐶 𝑗) and predicts the joinability label 𝐿𝑖 𝑗 .

As discussed in Section 4.2, we separate the prediction problem
for N:1 and 1:1 joins, since the two types of joins are different at a
conceptual level. For each classifier, we featurize each column pair
(𝐶𝑖 ,𝐶 𝑗), which can be categorized as metadata-features (column-
names, table-names) as well as actual data-features (e.g., data value
overlap). In the following, we will describe the features of both the
N:1 and 1:1 classifiers.

N:1 classifier. We design the following features for the N:1
classifier. We list the name of each feature, as well as its description.

Metadata-features. These are features relating to column-names
and table-names. We pre-process all column/table names, by first
standardizing all names into tokens, based on camel-casing and
delimiters (e.g., dash or underscores).
• Jaccard_similarity, Jaccard_containment, Edit_distance,

Jaro_winkler : These are standard string similarity between names.
We compute these similarities between two column names (𝐶𝑖 ,𝐶 𝑗).
In addition, assuming 𝐶𝑖 is the “1” side, we also compute the
similarities between (𝑇𝑖 + 𝐶𝑖 ,𝐶 𝑗), where 𝑇𝑖 is the name of the
table from the “1” side, where the observation is that while
column-names from fact-tables are often fully descriptive (e.g.,
“Employee-ID”), sometimes column-names from dimension ta-
bles are simplified (e.g., “ID” and ‘Name”), with the central entity
(e.g., “Employees”) only mentioned in table-names, thus making
it necessary to piece together table-names and column-names to
recover complete metadata. We use𝑚𝑎𝑥 (𝑠𝑖𝑚(𝐶𝑖 ,𝐶 𝑗), 𝑠𝑖𝑚(𝑇𝑖 +
𝐶𝑖 ,𝐶 𝑗)) as features for metadata similarity (where 𝑠𝑖𝑚 can be
different forms of similarity functions mentioned above, for a
total of 4 features).

• Embedding_similarity: In addition to string similarity, we also use
embedding similarity, specifically SentenceBERT [5, 46] trained
on top of all-mpnet-base-v2), to compute the column name simi-
larity, using a setup similar to above.

• Token_count, Char_count: the number of tokens and characters in
column names, for both 𝐶𝑖 ,𝐶 𝑗 . These serve as auxiliary features
on top of similarity scores above (e.g., longer column-names
with high similarity may be a more reliable indicator of match,
compared to shorter ones with the same similarity scores).

• Col_frequency: the frequency of the column name 𝐶𝑖 (and 𝐶 𝑗) in
all BI-models we collect in the training set. Intuitively, matches
of common names (e.g., Code and Index) are less reliable, so this
feature works similarly to Inverse-Document-Frequency (IDF)
in TF-IDF.

• Col_position: This feature keeps the positional index of 𝐶𝑖 and
𝐶 𝑗 , counting from left (e.g., the 2nd column from left). This is
based on the observation that columns on the left are more likely
to join.

• Col_relative_position: This is the same feature as Col_position
above, except that it is measured in relative terms, defined as:

Col_position
Num_of_total_columns .

• Unique_col_position: Similar toCol_position, except herewe count
unique columns, where the observation is that the first few
unique column from the left of a table is more likely to be PK for
join.
Data-features. These features relate to the actual data content

in columns, such as value overlap. Data-features provide comple-
mentary signals to metadata-features above, but are generally more
expensive to process.
• Left_containment, Right_containment, Max_containment: value

containment is an important signal for PK/FK joins [17, 30, 58].
we compute containment in both directions (left and right), and
also the max of the two, for a total of three features.

• Value_distinct_ratio: This feature calculates the distinctness of
columns, or the fraction of values in 𝐶𝑖 and 𝐶 𝑗 that are distinct.

• Range_overlap: computes the overlap of themin/max value ranges,
if both 𝐶𝑖 and 𝐶 𝑗 are of numeric types.

• EMD_score: This is a feature based on distributional-similarity
and proposed in [58], we use this to complement the overlap-
based features above.

• Value_length: we cast all values in 𝐶𝑖 and 𝐶 𝑗 to string type, and
compute the average value length (longer values tend to produce
more reliable matches).

• Value_type: We one-hot encode column value types, such as
integer, float, string.

• Row_cnt:We use the number of rows in both tables as an auxiliary
feature, where the observation is that fact table tends to have
more rows compared to dimension tables.

• Row_ratio, Col_ratio, Cell_ratio: These use similar intuition as
Row_cnt above, except that we featurize the ratio of the number
of rows/cols/cells explicitly between two tables.
Feature importance. Our results suggest that, for the N:1 classi-

fier, the following features are the most important (in that order,
based on sklearn output): Max_containment, Jaccard_similarity,
Col_relative_position, Edit_distance, Jaro_winkler, Range_overlap,
EMD_score, Embedding_similarity, Col_frequency.

1:1 classifier. Our 1:1 classifier share many of the same features
as the N:1 classifier (except the Row_ratio, Col_ratio, Cell_ratio
features, which are applicable to N:1 fact-dimension joins, butwould
be as useful for 1:1 joins). We omit these identical features, and only
describe features that are unique to the 1:1 classifier below.

Metadata-features. These are features based only on column-
names and table-names, like in the N:1 classifier.
• Table_embedding: We measure the SentenceBERT embedding

similarity of table names where 𝑇𝑖 and 𝑇𝑗 , based on the intuition
that two tables with 1-1 join should likely refer to the same
entity (e.g., Employees and Employee-Details, or Country and
Country-Code, etc.), making high table-name similarity a useful
signal.

• Header_jaccard: measures the jaccard similarity between all column-
names of 𝑇𝑖 and 𝑇𝑗 . This is based on our observation that two
overlapping fact tables with highly similar column names do not
1:1 join in BI models, since such joins produce mostly redundant
information. Higher Header_jaccard is thus inversely correlated
to joinability.
Data-features. These are features relating to column-values.

• Min_containment: Instead of using Max_containment between
the Left_containment and Right_containment as in the N:1 clas-
sifer above, we useMin_containment for as the feature 1:1, based
on the observation that 1:1 joins tend to join tuple-for-tuple
between two tables, unlikely PK/FK joins.
Feature importance. Our results suggest that for the 1:1 classifier,

the following feature are the most important (in that order, based on
sklearn output): Min_containment, Col_position, Jaccard_similarity,
Col_relative_position, EMD_score, Header_jaccard, Col_frequency
and Embedding_similarity.

C ADDITIONAL EXPERIMENTS

We present additional experimental results in this section, mainly
focusing on understanding the reason behind the quality advantage
of Auto-BI over baselines.

Methods Average 50%tile 90%tile 95%tile

Auto-BI
Auto-BI-P 2.21 0.61 4.91 10.36
Auto-BI 2.23 0.61 4.92 10.38
Auto-BI-S 0.45 0.09 2.02 2.65

Original
Baselines

MC-FK 1.21 0.33 2.79 3.59
Fast-FK 0.56 0.08 1.84 2.93
HoPF 4.31 0.25 6.74 18.72

Enhanced
Baselines

MC-FK+LC 2.13 0.60 4.91 10.34
Fast-FK+LC 2.15 0.61 4.92 10.36
HoPF+LC 6.41 1.13 11.88 27.23

Table 9: Comparison of end-to-end latency. Enhanced base-

lines (+LC) pay the cost of classifiers, which have latency

comparable to Auto-BI methods.

At a high level, the advantage of Auto-BI main comes from
two sources: (1) the local-classifier step (Section 4.2), that uses
data-driven ML scoring together with principled probability cali-
bration, and (2) the graph-based k-MCA step for global optimization
(Section 4). In order to understand the contributions of these two
sources, we “enhance” existing baselines, by injecting our local-
classifier scores from step (1) into their algorithm as follows.

Enhanced baselines: MC-FK+LC, Fast-FK+LC, HoPF+LC.
Since MC-FK, Fast-FK and HoPF are not competitive on the Real
benchmark, we inject our Local-Classifier (LC) scores for join-
likelihood into these baselines, replacing their heuristic scores with
our calibrated classifier scores. This leads to stronger baselines,
and allows us to see the benefit attributable to better local clas-
sifer scores, vs. the global k-MCA algorithm. To differentiate from
the original baselines, we use a "+LC" suffix for these enhanced
baselines, which become MC-FK+LC, Fast-FK+LC, and HoPF+LC,
respectively.
Quality Comparisons. Table 10 shows the additional compari-
son with MC-FK+LC, Fast-FK+LC, HoPF+LC, on top of the results
reported in Table 5. As we can see, on the Real benchmark, the
enhanced baselines improve substantially over the original base-
lines. However, all baselines still lag behind Auto-BI, especially
in terms of precision: the edge-level error rate of Auto-BI is 5x
smaller than the best baseline (2% vs. 10%), while the case-level
error rate of Auto-BI is 4x smaller (8% vs. 34%). Because all the
enhanced baselines use the same LC classifiers as Auto-BI, the
precision benefit can be attributable to the global optimization in
the k-MCA step, underscoring the importance of our graph-based
formulation. On the Synthetic TPC benchmarks, we have similar
observations consistent with the Real benchmark. With the help
of the better scores from the local classifier, the enhanced baselines
improve over the original baselines on both OLAP benchmarks
(TPC-H and TPC-DS) and OLTP benchmarks. (TPC-C and TPC-E)
But overall, Auto-BI still gains the best performance.

Table 11 and Table 12 report more detailed numbers, bucketized
based on the number of input tables. Similar trends are observed
here, as we see Auto-BI is still the best method overall in terms
of quality, across the spectrum of large and small test cases. The
advantage is the most significant in precision, especially on larger
test cases, which tend to be more difficult to predict correctly.

Latency comparisons. As we can see from Table 9, introducing
the LC classifier step into baselines increases their latency, though
not substantially. The enhanced baselines have latency comparable
to Auto-BI methods, with the exception of HoPF+LC, which is
more expensive in terms of latency.

Real (OLAP) Synthetic (OLAP) Synthetic (OLTP)
Benchmark 1000-case Real benchmark TPC-H TPC-DS TPC-C TPC-E
Metric 𝑃𝑒𝑑𝑔𝑒 𝑅𝑒𝑑𝑔𝑒 𝐹𝑒𝑑𝑔𝑒 𝑃𝑐𝑎𝑠𝑒 𝑃𝑒𝑑𝑔𝑒 𝑅𝑒𝑑𝑔𝑒 𝐹𝑒𝑑𝑔𝑒 𝑃𝑒𝑑𝑔𝑒 𝑅𝑒𝑑𝑔𝑒 𝐹𝑒𝑑𝑔𝑒 𝑃𝑒𝑑𝑔𝑒 𝑅𝑒𝑑𝑔𝑒 𝐹𝑒𝑑𝑔𝑒 𝑃𝑒𝑑𝑔𝑒 𝑅𝑒𝑑𝑔𝑒 𝐹𝑒𝑑𝑔𝑒

Auto-BI
Auto-BI-P 0.98 0.664 0.752 0.92 1 0.88 0.93 0.99 0.28 0.43 1 0.6 0.75 1 0.4 0.58
Auto-BI 0.973 0.879 0.907 0.853 1 1 1 0.96 0.91 0.93 1 0.8 0.89 0.96 0.93 0.95

Auto-BI-S 0.951 0.848 0.861 0.779 1 1 1 0.92 0.89 0.91 1 0.7 0.82 0.93 0.94 0.94

Commercial System-X 0.916 0.584 0.66 0.754 0 0 0 0 0 0 0 0 0 0 0 0

Original
Baselines

MC-FK 0.604 0.616 0.503 0.289 1 1 1 0.73 0.65 0.68 0.46 0.8 0.63 0.57 0.79 0.48
Fast-FK 0.647 0.585 0.594 0.259 0.71 0.88 0.79 0.62 0.35 0.44 0.62 0.57 0.6 0.73 0.84 0.78
HoPF 0.684 0.714 0.67 0.301 0.86 0.75 0.8 0.87 0.51 0.65 0.75 0.7 0.72 0.71 0.91 0.81

Enhanced
Baselines

MC-FK+LC 0.903 0.872 0.887 0.636 1 1 1 0.89 0.87 0.88 0.56 1 0.57 0.92 0.83 0.88
Fast-FK+LC 0.898 0.879 0.883 0.631 1 0.88 0.93 0.94 0.5 0.6 1 0.7 0.82 0.94 0.87 0.91
HoPF+LC 0.738 0.765 0.726 0.524 1 0.88 0.93 0.93 0.53 0.68 1 0.7 0.82 0.91 0.88 0.9
LC 0.885 0.864 0.87 0.631 1 0.88 0.93 0.85 0.91 0.88 1 0.6 0.75 1 0.6 0.75

Table 10: Quality comparison on the 1000-case Real benchmark and 4 TPC benchmarks.

of tables 4 5 6 7 8 9 10 [11,15] [16,20] 21+

Auto-BI
Auto-BI 0.97 (0.99,0.95) 0.97 (0.98,0.96) 0.96 (0.99,0.94) 0.95 (0.98,0.91) 0.95 (0.99,0.92) 0.96 (1.00,0.93) 0.94 (0.98,0.90) 0.90 (0.97,0.85) 0.84 (0.95,0.75) 0.79 (0.94,0.69)
Auto-BI-P 0.91 (1.00,0.84) 0.91 (0.99,0.85) 0.88 (1.00,0.79) 0.81 (0.98,0.69) 0.83 (0.98,0.71) 0.83 (1.00,0.70) 0.81 (0.99,0.69) 0.71 (0.98,0.56) 0.60 (0.96,0.44) 0.55 (0.95,0.39)
Auto-BI-S 0.95 (0.98,0.93) 0.95 (0.96,0.94) 0.94 (0.97,0.92) 0.94 (0.97,0.90) 0.95 (0.98,0.91) 0.93 (0.97,0.89) 0.92 (0.96,0.88) 0.85 (0.92,0.79) 0.78 (0.90,0.70) 0.74 (0.89,0.63)

Commercial System-X 0.76 (0.94,0.66) 0.67 (0.91,0.55) 0.76 (0.94,0.66) 0.76 (0.93,0.66) 0.75 (0.91,0.65) 0.78 (0.91,0.70) 0.77 (0.92,0.67) 0.74 (0.90,0.65) 0.65 (0.80,0.56) 0.66 (0.88,0.54)

Baselines
MC-FK 0.69 (0.88,0.57) 0.65 (0.93,0.49) 0.63 (0.70,0.58) 0.65 (0.67,0.63) 0.62 (0.70,0.56) 0.56 (0.46,0.72) 0.54 (0.48,0.63) 0.54 (0.49,0.61) 0.52 (0.42,0.69) 0.42 (0.30,0.68)
Fast-FK 0.76 (0.79,0.72) 0.76 (0.79,0.74) 0.68 (0.69,0.66) 0.53 (0.53,0.52) 0.65 (0.67,0.63) 0.47 (0.46,0.47) 0.45 (0.48,0.42) 0.49 (0.53,0.46) 0.47 (0.49,0.46) 0.42 (0.40,0.44)
HoPF 0.83 (0.86,0.81) 0.77 (0.77,0.76) 0.72 (0.73,0.71) 0.63 (0.58,0.70) 0.68 (0.67,0.70) 0.55 (0.49,0.64) 0.62 (0.55,0.70) 0.61 (0.58,0.64) 0.57 (0.55,0.60) 0.49 (0.44,0.56)

Enhanced
Baselines

MC-FK+LC 0.86 (0.90,0.83) 0.85 (0.91,0.80) 0.87 (0.87,0.86) 0.89 (0.87,0.90) 0.88 (0.85,0.91) 0.90 (0.87,0.92) 0.87 (0.83,0.91) 0.84 (0.81,0.87) 0.78 (0.79,0.77) 0.74 (0.73,0.74)
Fast-FK+LC 0.90 (0.89,0.90) 0.91 (0.91,0.92) 0.87 (0.87,0.88) 0.85 (0.85,0.85) 0.87 (0.88,0.86) 0.86 (0.87,0.84) 0.85 (0.85,0.85) 0.83 (0.82,0.84) 0.76 (0.73,0.78) 0.71 (0.68,0.75)
HoPF+LC 0.85 (0.87,0.83) 0.81 (0.82,0.81) 0.77 (0.78,0.75) 0.70 (0.65,0.75) 0.75 (0.74,0.76) 0.62 (0.57,0.67) 0.64 (0.58,0.72) 0.70 (0.67,0.72) 0.64 (0.60,0.69) 0.53 (0.46,0.62)

LC 0.89 (0.90,0.88) 0.89 (0.90,0.88) 0.87 (0.87,0.87) 0.88 (0.89,0.87) 0.86 (0.87,0.86) 0.89 (0.91,0.87) 0.86 (0.87,0.84) 0.83 (0.84,0.82) 0.77 (0.79,0.75) 0.72 (0.72,0.71)

Table 11: Edge-level quality reported as “F-1 (precision, recall)”, by number of input tables in Real benchmark.

of tables 4 5 6 7 8 9 10 [11,15] [16,20] 21+

Auto-BI
Auto-BI 1.00 0.96 0.95 0.89 0.95 0.97 0.85 0.78 0.64 0.55
Auto-BI-P 1.00 0.98 0.99 0.94 0.96 0.99 0.95 0.89 0.83 0.67

Auto-BI-S 0.99 0.95 0.93 0.93 0.95 0.80 0.76 0.69 0.49 0.31
Commercial System-X 0.91 0.87 0.81 0.85 0.77 0.78 0.74 0.75 0.52 0.54

Baselines
MC-FK 0.76 0.68 0.41 0.34 0.19 0.14 0.1 0.13 0.09 0.05
Fast-FK 0.68 0.65 0.39 0.14 0.32 0.08 0.09 0.12 0.09 0.03
HoPF 0.78 0.57 0.42 0.21 0.32 0.06 0.18 0.19 0.18 0.11

Enhanced
Baselines

MC-FK+LC 0.89 0.92 0.75 0.62 0.67 0.70 0.63 0.53 0.35 0.31
Fast-FK+LC 0.88 0.92 0.77 0.64 0.78 0.73 0.67 0.49 0.22 0.21
HoPF+LC 0.87 0.74 0.66 0.62 0.57 0.49 0.48 0.34 0.28 0.19

LC 0.87 0.85 0.72 0.66 0.68 0.81 0.65 0.53 0.28 0.26

Table 12: Case-level precision, by the number of input tables

in Real benchmark.

D PROOF OF THEOREM 3

Proof. We show the hardness and inapproximability of 𝑘-MCA-
CC.Wewill first show the hardness of the problem using a reduction
from Hamilton path [28]. We then show inapproximability using a
reduction from non-metric min-TSP [21].

Recall that given a graph𝐺 = (𝑉 , 𝐸), the Hamilton path problem
looks for a path that visits each vertex exactly once. We reduce
Hamilton path to 𝑘-MCA-CC. Given an instance of Hamilton path
on 𝐺 = (𝑉 , 𝐸), we construct an instance of 𝑘-MCA-CC as follows.
We construct a new graph𝐺 ′ = (𝑉 , 𝐸′) on the same set of vertices𝑉 ,
where for each 𝑣𝑖 ∈ 𝑉 we construct a table 𝑇𝑖 with a single column
𝐶𝑖 in 𝑘-MCA-CC. For each directed edge 𝑒 (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸, we construct
a possible N:1 FK/PK join between 𝐶𝑖 of 𝑇𝑖 and 𝐶 𝑗 of 𝑇𝑗 in 𝑘-MCA-
CC, which would correspondingly create an edge 𝑒 (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸′

in the graph representation for 𝑘-MCA-CC. Note that because we
construct each table 𝑇𝑖 to have a single column 𝐶𝑖 , and given the
FK-once constraint (Equation (16)), when there are multiple edges
pointing away from a vertex 𝑣 in 𝐺 ′, a solution to 𝑘-MCA-CC
is forced to pick only one such edge, ensuring that the 𝑘-MCA
returned by the solution contains either single paths, or isolated
vertices (which are trivial forms of single paths). Furthermore, in our
constructed 𝑘-MCA-CC, we set all edge-weight to be unit weight,
and set the penalty weight 𝑝 to be a large constant |𝑉 | + 1. This
large penalty weight ensures that if a 1-MCA exists on 𝐺 ′, it is
guaranteed to have a lower cost than any 𝑘-MCA with 𝑘 > 1,
because the penalty term |𝑉 | is already larger than the cost of
1-MCA (which is at most |𝑉 | − 1).

We now show that by this construction, a solution 𝑃 to Hamilton-
path on𝐺 , will also be a solution to the 𝑘-MCA-CC we constructed.
This is the case because if 𝑃 is a Hamilton-path of 𝐺 , it must be
a feasible solution on 𝐺 ′ to 𝑘-MCA-CC, because first of all, 𝑃 is
a single path, which is a trivial 1-MCA, satisfying Equation (15).
Furthermore, since 𝑃 passes through each vertex exactly once, it
satisfies our FK-once constraint in Equation (16). Lastly, its cost in
Equation (14) is exactly |𝑉 | − 1 (with |𝑉 | − 1 unit-weight edges in
the path 𝑃), which is guaranteed to be lower than any 𝑘-MCA with
𝑘 > 1 (whose penalty cost alone is |𝑉 |). All of these above guarantee
that 𝑃 is an optimal solution to the 𝑘-MCA-CC we constructed on
𝐺 ′.

Assume for a moment that we can solve 𝑘-MCA-CC efficiently
in polynomial time, then by this construction, we can solve any
instance of Hamilton path using the reduction above, also in poly-
nomial time, which contradicts with existing complexity result of
Hamilton path [28]. We can thus conclude that 𝑘-MCA-CC is also
NP-hard.

We now show the inapproximability of 𝑘-MCA-CC using a re-
duction from non-metric min-TSP [21]. Recall that the non-metric
min-TSP on a graph 𝐺 = (𝑉 , 𝐸) finds the min-cost cycle that visits
each vertex exactly once, and returns to the origin, where cost
is defined as the sum of edge-weights (which in the non-metric
version of min-TSP, can be arbitrary numbers).

Recall that the Hamilton cycle problem (a special version of min-
TSP) can be reduced to Hamilon path, by adding an artificial source
and sink vertex 𝑠 and 𝑡 to the input graph, which is connected to
a vertex 𝑣 and its cleaved copy 𝑣 ′ with the same neighborhood as
𝑣 [28]. We perform a similar construction from non-metric TSP
(cycle) to non-metric min-cost Hamilton path, using the same ar-
tificial source and sink vertex 𝑠 and 𝑡 , together with a cleaved 𝑣 ′.
For any instance of the non-metric min-TSP problem, we can thus
construct a min-cost Hamilton path problem. Because the edges
(𝑠, 𝑣), (𝑡, 𝑣 ′) are constructed to have 0 cost, the reduction is value
preserving as an optimal solution to min-TSP is also the optimal
min-cost Hamilton-path (modulo 𝑠 and 𝑡), and the two solutions
have the same objective function values. Furthermore, using the
same reduction from Hamilton path to 𝑘-MCA-CC above, we can

then reduce an instance of non-metric min-TSP first to min-cost
Hamilton path, and then to 𝑘-MCA-CC, all with the same objective
values for optimal solutions.

Given that the non-metric min-TSP is EXP-APX-complete [21],
we know 𝑘-MCA-CC is also EXP-APX-complete (for otherwise
given any instance of non-metric min-TSP, we can use the reduction
above to solve the corresponding 𝑘-MCA-CC efficiently, and thus
non-metric min-TSP, contradicting with the complexity result of
non-metric min-TSP). □

E PROOF OF THEOREM 4

Proof. We show that Algorithm 3 solves 𝑘-MCA-CC optimally.
If the optimal solution to 𝑘-MCA, 𝐽 , does not violate FK-once con-
straint (Equation (16), then in Line 2 we know 𝐽 must be a feasible
solution to 𝑘-MCA-CC on the same graph. Furthermore, because
the feasible region of 𝑘-MCA is strictly no smaller than that of
𝑘-MCA-CC, we know if 𝐽 is an optimal solution to 𝑘-MCA and it
is feasible for 𝑘-MCA-CC, it must also be an optimal solution to
𝑘-MCA-CC. Thus we return 𝐽 in Line 3 and we are done.

If instead, the optimal solution to 𝑘-MCA, 𝐽 , does violate FK-
once constraint in Line 2, because there are at least one edge set

𝐶𝑠 = {𝑒𝑠 𝑗 , 𝑒𝑠𝑘 , . . .} ⊆ 𝐽 that causes violations, where all edges in
𝐶𝑠 point from the same vertex with the same column-index 𝑠 . We
partition𝐶𝑠 into |𝐶𝑠 | number of subsets𝐶1

𝑠 ,𝐶2
𝑠 , . . . ,𝐶

|𝐶𝑠 |
𝑠 , each with

exactly one edge from𝐶𝑠 , and then construct |𝐶𝑠 | number of𝑘-MCA-
CC problem instances, each with a new graph𝐺𝑖 = (𝑉 , 𝐸𝑖), where
𝑉𝑖 = 𝑉 , 𝐸𝑖 = 𝐸\𝐶𝑠∪𝐶𝑖

𝑠 , whichwe then recurse and solve the𝑘-MCA-
CC on each graph 𝐺𝑖 in Line 11. To show that 𝐽 ∗ = argmin𝐽𝑖 𝑐 (𝐽𝑖)
is the optimal solution to the original 𝑘-MCA-cc problem on 𝐺 , we
need to show that the optimal solution to the original 𝑘-MCA-cc
problem on𝐺 , 𝐽+, is still not pruned when we split edges in𝐶𝑠 and
create |𝐶𝑠 | number of smaller problems with𝐺𝑖 . In order to see this,
notice that the optimal solution to the original 𝑘-MCA-cc problem
on 𝐺 , 𝐽+, will have at most one edge in 𝐶𝑠 (otherwise it violates
FK-once constraint and would not have been a feasible solution). If
𝐽+ has no edge in 𝐶𝑠 , then it has not been pruned away when we
partition 𝐶𝑠 and reduce the solution space, as it is still a feasible
solution in each 𝐺𝑖 . Alternatively, 𝐽+ has one edge in 𝐶𝑠 , and let it
be the edge in 𝐶𝑙

𝑠 , then all the edges in 𝐽+ is still in the graph 𝐺𝑙

(which only pruned edges in 𝐶𝑠 \𝐶𝑙
𝑠). As such, 𝐽+ is still a feasible

solution in 𝐺𝑙 , and will be returned in step Line 12. □

	Abstract
	1 Introduction
	2 Related Works
	3 Problem Statement
	3.1 Preliminary: BI models
	3.2 Harvest Real BI Models
	3.3 Problem Statement: Auto-BI

	4 Auto-BI
	4.1 Architecture Overview
	4.2 Join Prediction: Train Local Classifier
	4.3 Auto-BI: Exploit Global Join Graph

	5 Experiments
	5.1 Evaluation Setup
	5.2 Methods compared
	5.3 Quality comparisons
	5.4 Efficiency comparison
	5.5 Ablation Studies
	5.6 Sensitivity Analysis

	6 Conclusions and Future Work
	References
	A Local join: Two Optimizations
	B Local join classifier: Details
	C Additional Experiments
	D Proof of Theorem 3
	E Proof of Theorem 4

