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Abstract—DRAM is a key driver of performance and cost in public cloud servers. At the same
time, a significant amount of DRAM is underutilized due to fragmented use across servers.
Emerging interconnects such as CXL offer a path towards improving utilization through memory
pooling. However, the design space of CXL-based memory systems is large, with key questions
around the size, reach, and topology of the memory pool. At the same time, using pools requires
navigating complex design constraints around performance, virtualization, and management.
This paper discusses why cloud providers should deploy CXL memory pools, key design
constraints, and observations in designing towards practical deployment. We identify
configuration examples with significant positive return of investment.

1. Introduction

Motivation. Many public cloud customers deploy
their workloads via virtual machines (VMs). VMs
enable performance comparable to on-premises
datacenters without the need to manage data-
centers. Cloud providers face the challenge of
achieving excellent performance at a competitive
hardware cost.

A key driver of both performance and cost
is main memory. The gold standard for memory
performance is to preallocate a VM with cores
and memory on the same socket. This leads to
memory latency below 100ns and facilitates vir-
tualization acceleration. At the same time, DRAM
has become a major portion of hardware cost due
to its poor scaling properties with only nascent
alternatives [1]. For example, DRAM can be over
50% of server cost [2].

Through analysis of Azure VM traces, we
identify memory stranding as a dominant source
of memory waste and a potential source of cost

savings. Stranding happens when all server cores
are rented (i.e., allocated to customer VMs) but
unallocated memory capacity remains and cannot
be rented. We find that up to 30% of DRAM
becomes stranded as more cores become allocated
to VMs.

Limitations of the state-of-the-art. Reducing
DRAM usage in the public cloud is challenging
due to its stringent performance requirements.
Pooling memory via memory disaggregation is
a promising approach because stranded memory
can be returned to the disaggregated pool and
used by other servers. Unfortunately, existing
pooling systems have microsecond access laten-
cies and require page faults or changes to the VM
guest [3, 4].

The emerging CXL interconnect. The emerging
Compute Express Link (CXL) interconnect [5]
enables cacheable load/store (ld/st) accesses
to pooled memory on many current processors.
Pool-memory accesses via loads/stores is a game
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changer for cloud computing as it allows memory
to remain statically preallocated while physically
being located in a shared pool. However, CXL
access latency depends on the overall system de-
sign, especially the pool size (the number of CPU
sockets able to use a given pool) and topology.
Larger pools require traversing switching levels,
which adds significant latency. Additionally, each
CXL component adds to the system cost, which
must be balanced against stranding savings.

This work. This work is motivated by the mem-
ory stranding problem identified in Pond [2] and
we paraphrase the stranding analysis in Section 3.
While Pond focuses on system software policies
and mechanisms for allocating/managing pooled
memory, this work focuses on design tradeoffs in
the pool’s hardware configuration. First, we char-
acterize pool components, possible topologies,
and associate memory access latencies. We derive
a set of design recommendations from this anal-
ysis. Second, we compare savings from memory
pooling to the cost of its components for different
pool sizes and CXL device types. We find that
CXL-based memory pooling can yield significant
positive returns on investment. Contrary to the
focus of existing literature, smaller pools may be
attractive. Third, we discuss future directions for
the industry as well as academic research.

2. Background
Cloud resource allocation. Public cloud work-
loads run inside virtual machines (VMs). To offer
performance close to dedicated (non-virtualized)
resources, VM resources are statically allocated
by reserving each resource (CPU, DRAM, net-
work bandwidth, etc.) for a VM’s lifetime. Ad-
ditionally, providers optimize I/O performance
with virtualization accelerators that bypass the
hypervisor [6]. For example, accelerated network-
ing is enabled by default on AWS and Azure.
Virtualization acceleration requires statically pre-
allocating (or “pinning”) a VM’s entire address
space [7].

Cloud resource scheduling. Scheduling VMs
with heterogeneous multi-dimensional resource
demands onto servers leads to a challenging bin-
packing problem [8, 9]. Scheduling is further
complicated by constraints such as spreading
VMs across multiple failure domains.

A simplified view of Azure’s VM scheduling
is that VMs are first assigned to a compute cluster
and then placed on a specific server within this
cluster. A cluster roughly corresponds to a row
of racks with homogenous server configurations.
We use the unit of a cluster to characterize our
workloads.

Memory stranding. It is often difficult to pro-
vision servers that closely match the resource
demands of the incoming VM mix. A common
reason is that the DRAM-to-core ratio of a server
that will last years must be determined at platform
design time and is statically fixed over its lifetime.
Additionally, fixed-size DIMMs over limited free-
dom in determining the DRAM-to-core ratio.

When the DRAM-to-core ratio of VM arrivals
and a cluster’s server resources do not match,
tight packing becomes especially difficult. We
define a resource as stranded when it is techni-
cally available to be rented to a customer, but is
practically unavailable as some other resource has
been exhausted. The typical scenario for memory
stranding is that all cores have been rented, but
there is still memory available in the server.

Reducing stranding via pooling. This work
proposes to break the fixed hardware configura-
tion of servers by disaggregating memory into
a pool that is accessible by multiple hosts [10].
By dynamically reassigning memory to different
hosts at different times, we can shift memory
resources to where they are needed. Thus, we can
provision servers close to the average DRAM-to-
core ratios and tackle deviations via the memory
pool.

Pooling via CXL. The CXL.mem protocol for
ld/st memory semantics maps device memory
to the system address space. Last-level cache
(LLC) misses to CXL memory addresses trans-
late into requests on a CXL port whose re-
sponses bring the missing cachelines. Similarly,
LLC write-backs translate into CXL data writes.
CXL memory is virtualized using hypervisor page
tables and the memory-management unit and is
thus compatible with virtualization acceleration.

CXL.mem uses PCIe’s electrical interface
with custom link and transaction layers for low
latency. Intel measures CXL port latencies at 25ns
round-trip [11]. With PCIe 5.0, the bandwidth
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Figure 1: Memory stranding. (a) Stranding increases
significantly as more CPU cores are scheduled; (b) Strand-
ing changes dynamically over time.

of a bidirectional ×8-CXL port at a typical
2:1 read:write-ratio roughly matches an 80-bit
DDR5-4800 channel.

3. Cloud Workload Characterization
3.1. Stranding at Azure

We summarize previous analysis on strand-
ing [2].

Dataset. We measure stranding in 100 general-
purpose clusters over a 75-day period. A general-
purpose cluster hosts a mix of first-party and
third-party VM workloads that do not require spe-
cial hardware (such as GPUs). We select clusters
with similar deployment years, spanning major
regions on the planet. Each cluster trace contains
millions of per-VM arrival/departure events.

Memory stranding. Figure 1a shows the hourly
average amount of stranded DRAM across our
cluster sample, bucketed by the percentage of
scheduled CPU cores. In clusters where 75%

of CPU cores are scheduled for VMs, 6% of
memory is stranded. This grows to over 10%
when ∼85% of CPU cores are allocated to VMs.
This makes sense since stranding is an artifact
of highly utilized nodes, which correlates with
highly utilized clusters. Outliers are shown by the
error bars, representing 5th and 95th percentiles.
At 95th, stranding reaches 25% during high uti-
lization periods. Individual outliers reach more
than 30% stranding.

Figure 1b shows stranding over time across
eight adjacent racks. Every row shows a server
within each rack. A workload change (around day
36) suddenly increased stranding significantly.
Furthermore, stranding can affect many racks
concurrently (e.g., racks 2, 4–7) and it is generally
hard to predict which clusters/racks will have
stranded memory.

3.2. VM Memory Utilization in Azure

Dataset. We perform measurements on the same
100 general-purpose production clusters. For un-
touched memory, we rely on guest-reported mem-
ory usage counters cross-referenced with hyper-
visor page table access bit scans. We sample
memory bandwidth counters using Intel RDT [12]
for a subset of clusters with compatible hardware.
Finally, we use hypervisor counters to measure
non-uniform memory access (NUMA) spanning in
dual-socket servers, where a VM has cores on one
socket and some memory from another socket.

Memory bandwidth. Memory bandwidth us-
age of general-purpose workloads is generally
low with average bandwidth utilization below
10 GB/s. VMs on a small number of hosts do,
however, use 100% of memory bandwidth.

NUMA spanning. Most VMs are small and can
fit on a single socket. Azure’s hypervisor aims to
schedule VMs on dual-socket servers such that
they fit entirely (cores and memory) on a single
NUMA node. We find that spanning occurs for
only 2-3% of VMs.

Overall, untouched memory and low memory
bandwidth requirements make VM workloads a
good fit for memory pooling. However, with
97-98% of VMs using NUMA-local memory,
performance parity for pooled memory will be
challenging.
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Figure 2: Performance slowdowns when memory latency increases by 182-222% (§3.3). Workloads have different
sensitivity to increased memory latency as they would see with CXL. X-axis shows 158 representative workloads; Y
represents the normalized performance slowdown, i.e., performance under higher (remote) latency relative to all local
memory. “Proprietary” denotes production workloads at Azure.

3.3. Workload Sensitivity to Memory Latency
We summarize previous experiments on la-

tency sensitivity [2].

Dataset. We evaluate 158 workloads across pro-
prietary workloads, in-memory stores, data pro-
cessing, and benchmark suites. They run on dual-
socket Intel Skylake 8157M, with a 182% latency
increase for socket-remote memory, or AMD
EPYC 7452, with 222% latency increase. We
normalize performance as slowdown relative to
NUMA-local performance.

Latency sensitivity. Figure 2 surveys workload
slowdowns. Under a 182% increase in memory
latency, we find that 26% of the 158 workloads
experience less than 1% slowdown under CXL.
At the same time, some workloads are severely
affected with 21% of the workloads facing >25%
slowdowns. Overall, every workload class has at
least one workload with less than 5% slowdown
and one workload with more than 25% slowdown
(except SPLASH2x). Our proprietary workloads
are less impacted than the overall workload set
with almost half seeing <1% slowdown. These
production workloads are NUMA-aware and of-
ten include data placement optimizations.

Under a 222% increase in memory latency, we
find that 23% of the 158 workloads experience
less than 1% slowdown under CXL. More than
37% of workloads face >25% slowdowns — a
significantly higher fraction than on the 182%
emulated latency increase. We find that the pro-
cessing pipeline for some workloads, like VoltDB,
seems to have just enough slack to accomodate
the smaller 182% latency increase with significant
pipeline stalls for 222% latency increase. Other

workload classes like graph processing (GAPBS)
are sensitive to both latency and bandwidth, and
both effects are worsened on the 222% system.

4. The Memory Pool Design Space
Designing a memory pool involves multiple

hardware components and design choices that
expand with every new CXL release. To limit
complexity, we focus on two design aspects:
1) whether to provide connectivity via CXL
switches or through CXL multi-headed devices
(MHDs) [5, §2.5] and 2) how large the con-
structed pool should be to maximize return-on-
investment (ROI). We discuss a particular set of
choices suitable for general-purpose cloud com-
puting. Other use cases may see different sets of
choices and tradeoffs.

4.1. Components
CXL memory controller (MC) devices act as

a bridge between the CXL protocol and memory
devices such as DDR5 DRAMs. Today’s MCs
typically bridge between 1-2 CXL ×8 ports and
1-2 80b channels of DDR5 (e.g., [13]).

CXL switches behave similar to other network
switches in that they forward requests and data,
without serving as an endpoint. Physically, CXL
switches will likely share many characteristics
(e.g., port count) with PCIe switches, due to using
the same physical interface. For the purposes of
this analysis, we assume that switches with 128-
lanes (16-ports) of CXL are used to build a fabric
layer.

A CXL MHD essentially combines a switch
and a memory controller in a single device.
Specifically, the MHD offers multiple CXL ports
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Figure 3: Pool size and latency tradeoffs. Small pools of 8-16 sockets add only 75-90ns relative to NUMA-local
DRAM. Latency increases for larger pools that require retimers and a switch.

and appears to each connected host as a single
logical memory device [5]. The most significant
tradeoffs for MHD designs are the number of
incoming CXL ports and DDR channels. A useful
design comparison is a modern server CPU IO-
die (IOD), such as the one in AMD Genoa [14].
The Genoa IOD offers 128 PCIe5 lanes as well
as 12 DDR5 channels. With the ×8-CXL require-
ment, this would be analogous to a 16-headed
device with at least 8 channels of DDR5. In our
analysis we consider both this 16-headed device
as well as a smaller 8-headed device.

4.2. Pool size vs latency
At a high level, the first design decision is

whether cloud compute servers can pool all of
their memory. With 21-37% of workloads facing
significant slowdowns on pool-only configura-
tions (§3), we do not recommend fully disag-
gregating compute and memory. Servers need
to retain significant amounts of local DRAM to
maintain performance expectations, which will
likely go beyond the scope of on-die memory.
Further, achieving maximum memory bandwidth
requires CPUs to populate all available local DDR
channels, creating a practical minimum for local
memory capacity.

Observation 1:
A significant percentage (more than 25%) of dat-

acenter memory needs to remain local to compute
servers.

To understand pool latencies, we first charac-
terize the impact on latency of achievable topolo-
gies given viable components.

Observation 2:
When using at least a ×8-CXL port for each host,
pool sizes beyond 16-32 hosts will require at least
one level of switches if MHDs are used or two
levels of switches if using only individual MCs.

Access latencies derive from multiple param-
eters. Port latency plays a dominant role with
initial measurements indicating 25ns [11]. Re-
timers are devices used to maintain CXL/PCIe
signal integrity over distances above roughly half
a meter, depending on the implementation of the
signal path. They add about 10ns of latency in
each direction (e.g., [15]). Each switch will add
at least 70ns of latency due to ports, arbitration,
and network-on-chip (NOC).

Figure 3 shows a range of CXL path types
based on pool sizes and the use of MHDs versus
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switches with single-headed devices. We find
that small 8-and 16-socket pools using MHDs
increase latencies to 182-212% (155-180ns) rela-
tive to NUMA-local DRAM. Latency when using
only switches and single-headed memory con-
trollers would further increase by 23-38%.

Rack-scale pooling with 64 sockets would
increase latencies by 318-405% (270-345ns) and
pooling across multiple racks would require yet
another level of switching and potentially mul-
tiple retimers, increasing latencies by more than
465% (395ns). Comparing these latencies to the
slowdowns observable at 182-222% (§3), we
observe that large-scale pooling will likely be
prohibitive from a performance perspective.

Observation 3:
The size of CXL-based memory pools will likely
be a subset of a rack to minimize the performance
impact of access latencies.

Modern CPUs can connect to multiple MHDs
or switches, which allows scaling to meet band-
width and capacity goals for different clusters.

4.3. Pool size vs DRAM savings
We analyze VM-to-server traces from Azure

(§3) to estimate the amount of DRAM that could
be saved via pools of different sizes. The reduc-
tion in DRAM comes from averaging host’s peak
memory needs across the pool. Our simulation
plays back VM traces while assigning a fixed per-
centage of pool memory. We repeatedly run clus-
ter simulations while decreasing overall memory
in 0.5% steps until the first VM is rejected. The

minimum amount of cluster memory corresponds
to the “required overall DRAM” reported below.

Figure 4 presents cluster DRAM requirements
when VMs are assigned either 10%, 30%, or
50% of pool DRAM. As the pool size increases,
the figure shows that required overall DRAM
decreases. However, this effect diminishes for
larger pools. For example, with a fixed 50% pool
DRAM, a pool with 32 sockets saves 12% of
DRAM while a pool with 64 sockets saves 13%
of DRAM. Note that allocating 50% of VM mem-
ory to pool DRAM require latency mitigation
techniques (§6).

Besides low latency, feasible configurations
also must be ROI positive, as discussed next.

4.4. Pool size vs system cost
System cost depends on many factors. We

consider a simplified model that focuses on
key hardware components: DRAM, memory con-
trollers, cables, and the memory blade enclo-
sure/printed circuit board (PCB). Our model ig-
nores factors of time, scale, and market com-
petition. Specifically, our model calculates cost
relative to a non-pooled server’s bill of materials
(BOM) based on the following set of parameters.
MC cost of a typical 2x8 CXL memory con-

troller (e.g., 0.4%)
MHD8 cost of an 8-headed memory controller

(e.g., 0.8%)
MHD16 cost of a 16-headed memory controller

(e.g., 2.0%)
Switch cost of a 16-port CXL switch (e.g., 1.6%)
Ret cost of a CXL retimer (e.g., 0.02%)
Infra cost of the supporting memory enclosure,

PCBs, and cables expressed as a multiplier
applied to MHD or switch cost (e.g., 0.5-
2×)

The exemplary values for the parameters are
roughly based on estimates of silicon area as
well as connectivity and infrastructure necessary
to support the memory pools. Note that there is
significant room for these parameters to change
between companies, server configurations, use
cases, and over time.

Figure 5 presents cost overheads for pool sizes
from 2-64 sockets and for pools encompassing
two different capacity points relative to total sys-
tem memory. The baseline for comparison is the
full cost of a non-pooled server, including CPU,
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DRAM, and other standard infrastructure (e.g.
network interface cards (NICs), power delivery,
management controllers, boards, etc.). Within this
baseline, DRAM memory is assumed to account
for approximately half of the total cost, with
the CPU and other infrastructure splitting the
other half. All other modeled configurations hold
the total cost of the base system constant, but
add the costs of the extra components required
for pooling part of the memory. Our results are
reported as a percentage of cost uplift versus the
baseline configuration. We vary the infrastructure
overhead cost to show that the overall costs are
very sensitive to the ability for a design to cost-
effectively provide connectivity to the pool. The
analysis also shows that overhead for switch-
based designs versus MHD designs is significant.
As an example, an 8-socket pool implemented
with switches adds over two-and-a-half times the
cost of an 8-socket pool based on MHDs.

This overhead is important, as the system-
level goal is reaching a beneficial pooling con-
figuration, which is one where the cost uplift of
moving memory into the pool is less than the ef-
ficiency benefit of having flexible memory as out-
lined in the savings analysis above. In Figure 5,
the black line plots the savings estimate from the
earlier analysis (Figure 4). Configurations below
this line are ROI positive, while those above
the line are likely ROI negative unless further
optimizations can be made to improve savings.
Note in particular that most switch-based con-
figurations are ROI negative, while many MHD-
based configurations are ROI positive, especially
for smaller pool sizes.

Observation 4:
Positive ROI requires pool designers to navigate

a complex tradeoff between pool size, topology,
and savings, which is workload dependent. Infras-
tructure overheads may become a major hurdle
to adopting CXL-based pooling as expensively-
designed configurations will not achieve benefi-
cial ROI.

5. Related Work
Low memory resource utilization and strand-

ing has been observed at Google [16] and Mi-
crosoft [17]. This motivated at least three lines of
prior research on memory pooling prior to CXL.
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practitioners to evaluate savings for their workloads.

Hypervisor/OS level approaches such as [3]
rely on page faults and access monitoring to
maintain the working set in local DRAM. In
the context of general-purpose cloud computing,
these OS-based approaches bring too much over-
head and jitter. They are also incompatible with
virtualization acceleration (e.g., DDA).

Runtime-based disaggregation designs [4, 18]
propose customized application programming in-
terfaces for remote memory access. While effec-
tive, this approach requires developers to explic-
itly use these mechanisms at the application level.

Hardware-based memory disaggregation have
served as an inspiration for CXL but prior ap-
proaches were not available on commodity hard-
ware [10, 19].

Prior analysis of requirements for disaggrega-
tion are related to our goals. However, network-
based disaggregation [20] lead to a different
design space, e.g., with latency considered in
the range of 1us to 40us, whereas we consider
latencies lower by an order of magnitude.
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6. Discussion and Conclusion
CXL-based memory pooling promises to re-

duce DRAM needs for general-purpose cloud
platforms. This paper outlines the design space
for memory pooling and offers a framework to
evaluate different proposals.

As cloud datacenters are quickly evolving,
some key parameters will differ significantly even
among cloud providers and over time. The frac-
tion of VM memory that can be allocated on
CXL pools depends largely on the type of latency
mitigation employed. For example, the recent
Pond [2] system can allocate an average of 35-
44% of DRAM on CXL pools while satisfying
stringent cloud performance goals. Future tech-
niques for performance management may lead
to significantly higher CXL pool usage. Another
difference comes from server and infrastructure
cost breakdowns, which lead to entirely different
cost curves (Figure 5).

Regardless of the variability in system and
cost parameters, we believe that Observations 1-4
broadly apply to general-purpose clouds. We
highlight that small pools, spanning up to 16
sockets, can lead to significant DRAM savings.
This requires keeping infrastructure cost over-
heads low, which reinforces the need for stan-
dardization of pooling infrastructure. Latency and
cost increase quickly for larger pool sizes, while
the efficiency benefits fall off, which may make
large pools counterproductive in many scenarios.

Our savings model focuses on pooling itself,
e.g., averaging peak DRAM demand across the
pool, and for Azure specific workloads. CXL also
enables other savings including using cheaper
media behind a CXL controller, such as reusing
DDR4 from decommissioned servers. We advise
practitioners to create a savings model for their
specific use cases, which might differ from ours.

CXL re-opens memory controller architecture
as a research frontier. With memory controllers
decoupled from CPU sockets, new controller fea-
tures can be more quickly explored and deployed.
Cloud providers need improved reliability, avail-
ability, and serviceability (RAS) capabilities in-
cluding memory error correction, management,
and isolation. Tighter integration between mem-
ory chips, modules, and controllers can enable
improvements along the Pareto frontier of RAS,
memory bandwidth, and latency.
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