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ABSTRACT

Mobile devices are increasingly equipped with heterogeneous multi-
processors, e.g., CPU + GPU + DSP. Yet existing Neural Network
(NN) inference fails to fully utilize the computing power of the
heterogeneous multi-processors due to the sequential structures
of NN models. Towards this end, this paper proposes NN-Stretch,
a new model adaption strategy, as well as the supporting system.
It automatically branches a given model according to the proces-
sor architecture characteristics. Compared to other popular model
adaption techniques such as model pruning that often sacrifices
accuracy, NN-Stretch accelerates inference while preserving accu-
racy.

The key idea of NN-Stretch is to horizontally stretch a model
structure, from a long and narrow model to a short and wide one
with multiple branches. We formulate the model branching into an
optimization problem. NN-Stretch attempts to narrow down the
design space by taking into account the hard latency constraints
through varying where the branches converge and how each branch
is scaled to fit heterogeneous processors, as well as the soft ac-
curacy constraints through maintaining the model skeleton and
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expressiveness of each branch. According to the constraints, NN-
Stretch can efficiently generate accurate and efficient multi-branch
models. To facilitate easy deployment, this paper also devises a sub-
graph-based spatial scheduler for existing inference frameworks to
parallelly execute the multi-branch models. Our experimental re-
sults are very promising, with up to 3.85x speedup compared to
single CPU/GPU/DSP execution and up to 0.8% accuracy improve-
ment.
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+ Human-centered computing — Ubiquitous and mobile com-
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1 INTRODUCTION

Mobile SoCs (System on a Chip) are becoming increasingly hetero-
geneous to pursue higher performance within power constraints.
The heterogeneous processors on a SoC, including the CPU, GPU
and DSP, have a unified memory and deliver comparable perfor-
mance [20]. Therefore, there is the opportunity for concurrent/-
parallel heterogeneous computing to improve the NN (Neural Net-
work) inference quality on mobile devices, in terms of both accu-
racy and efficiency.
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Fundamentally speaking, parallel NN model execution relies on
the parallelism of the model structure. For example, existing works
[21, 42] often leverage the intra-operator parallelism of a model
by partitioning an operator and running these partitions in par-
allel on different processors. Such a method is more suitable for
heavy-computation operators; otherwise the communication cost
between the processors (including synchronization, data mapping,
data transformation, etc.) may easily overshadow the gain from
parallel execution. However, heavy-computation operators are rare
to find in mobile-side NN models. For example, our measurements
show that the communication cost between the CPU and GPU is
around 1 ms, but the latency of each MobileNetV1 [17] operator is
normally <1ms.

Inter-operator parallelism, on the other hand, could work for all
operators. It concurrently executes operators that do not have data
dependency on different processors, rather than partitioning a sin-
gle operator. However, the challenge here is that the widely-used
NN models such as ResNet [12] and EfficientNet [32] are all com-
posed of sequential operators, i.e., a single branch, and thus can-
not apply inter-operator parallelism. Additionally, even the multi-
branch models can hardly benefit from concurrent execution on
heterogeneous processors, as the computation loads on different
branches are not balanced, such as the Inception series [34].

Meanwhile, many model adaption techniques [8, 14, 22, 47], such
as model pruning, have been proposed to optimize the model struc-
ture to facilitate mobile-side deployment, but they often focus on
inference acceleration on a single processor. None of these tech-
niques has considered adapting models for heterogeneous comput-
ing so far. Besides, these methods often trade-off model accuracy
for latency.

We thus raise the important research question: can we automat-
ically transform a given single-branch model to a balanced multi-
branch structure for efficient parallel execution on heterogeneous
processors? Compared to pruning or distillation which sacrifices
model capacity for latency reduction, such a model branching op-
eration can accelerate inference with no loss on model capacity
(i.e., accuracy).

To answer the above question, this paper proposes NN-Stretch,
a novel model adaption strategy and the supporting system for
model deployment on mobile/edge devices. To the best of our knowl-
edge, this is the first model adaptation technique realizing auto-
matic model branching for parallel execution on heterogeneous
multiprocessors, i.e., branch parallelism, as shown in Fig. 1. In order
to facilitate better model deployment, we argue that the proposed
model adaption technique should have the following properties: (1)
achieving latency reduction with no accuracy loss; (2) not requir-
ing any additional efforts from model designers; and (3) incurring
no more overhead than other model adaption techniques, such as
pruning.

The key idea of NN-Stretch is to transform a given single-branch
model that is usually long and narrow to a short and wide one
with multiple branches through the horizontal stretch as shown
in Fig. 1, with each branch extracting different groups of features.
The effectiveness of this transformation is supported by the find-
ing that scaling a model in depth or width within a certain degree
can successfully preserve its accuracy as discussed in previous re-
search [1, 6, 10, 25, 29].
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The problems are then to determine (1) where to converge the
branches, named as meeting point, to merge features extracted by
each branch, and (2) how to scale each branch. We formulate this
problem into an optimization problem. Similar as other model de-
sign space, the number of design options is too large to search ef-
ficiently. To decrease the number of design options, we engage
the “hard” latency constraints (that are directly correlated with
the above two factors), as well as the “soft” accuracy constraints
(whose correlations with these two factors are more indirect and
unpredictable). Only those design options that satisfy the constraints
need to be considered.

More specifically, we adopt the following constraints. For la-
tency, we have (1) cost-amortized meeting point identification, to
amortize the processor communication cost with branch depth,
and (2) heterogeneity-aware depth-width scaling, to scale down
the depth (number of layers) or width (number of filters) on each
branch to reduce the total computation cost and improve the uti-
lization of heterogeneous processors. For accuracy, we have (1)
structure-preserved meeting point identification, to keep the model
skeleton by taking the model stages (i.e., the update of feature-map
size) as meeting points, and (2) capacity-guaranteed depth-width
scaling, to keep the expressiveness of each branch by setting the
lower bounds for depth and width. The combination of these con-
straints rapidly shrinks the design options so that the multi-branch
model can be quickly generated.

The main challenge in executing such multi-branch models stems
from the fact that current inference frameworks sequentially run
a model on one processor at a time. To address this challenge,
we devise a sub-graph-based spatial scheduler to complement the
available inference frameworks. It uses the concept of processor-
level sub-graph (i.e., a sequence of operators, with only the first
one having a dependency on other processors) as the scheduling
unit to perform processor assignment. Each model branch is thus
a sub-graph scheduled to run on a specific processor. The sched-
uler design also addresses the different processor communication
mechanisms for correctness and efficiency, such as synchronous-
or asynchronous-run of different processors to the host CPU.

In this work, NN-Stretch is evaluated for popular CNN models,
including EfficientNet [32], RegNet [31], and ResNet [12], using
ImageNet [9] datasets. The comparison baselines are TFLite [24] in-
ference framework, and CoDL [19], the state-of-the-art parallel in-
ference system on the CPU+ GPU processors. Our on-device eval-
uation runs on three different mobile phones with three different
processors, including CPU, GPU and DSP. Results show that NN-
Stretch can achieve up to 2.3, 3.85% and 2X speedup on CPU+GPU+
DSP compared to CPU-only, GPU-only and DSP-only, respectively.
The model accuracy is preserved.

In fact, NN-Stretch is the first to enable flexible combination of
available processors for inference, such as GPU+DSP and CPU+GPU
+DSP. It gives more scheduling options based on the real device
usage. NN-Stretch is orthogonal to other model deployment opti-
mizations, such as quantization, model pruning, and operator ker-
nel optimization. NN-Stretch is open-sourced!.

The main contributions of this paper are as follows:

!https://github.com/caoting-dotcom/multiBranchModel


https://github.com/caoting-dotcom/multiBranchModel

NN-Stretch: Automatic Neural Network Branching for Parallel Inference on Heterogeneous Multi-Processors

NN-
Stretch

Laténcy
reduction

Figure 1: NN-Stretch transforms a long and lean model (usually with
a single branch) into a short and wide one with multiple branches
through horizontal stretching.
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Figure 2: Representative building blocks from state-of-the-art NN
models (a) ResNetV1, (b) RegNetX, and (c) EfficientNet, are sequen-
tially connected.

e We propose a new model adaption strategy that can trans-
form a single-branch model into a multi-branch one to enjoy
the benefit of branch parallelism;

o We devise the meeting-point identification and depth-width
scaling techniques to achieve effective model branching while
considering both model and hardware characteristics;

e We design a sub-graph-based scheduler in inference frame-
works to support the parallel inference on heterogeneous
processors.

e We implement NN-Stretch system that demonstrates both
latency reduction and accuracy gain.

2 BACKGROUND AND RELATED WORK

In this section, we describe the characteristics of mobile SoCs and
typical NN model architectures, as well as the mismatch between
the two. Namely, mobile SoCs are unique in that their CPU cores
and GPUs have comparable performance and can execute different
branches of a model concurrently. However, popular NN models
are sequentially connected and cannot take advantage of this fea-
ture directly (Sec. 2.1). Most of the earlier model adaption efforts
have assumed execution on a single processor, not on heteroge-
neous processors (Sec. 2.2). In addition, we also explain that exist-
ing multi-branch NN design cannot be used for general automatic
model branching that suits our need (Sec. 2.3).
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Table 1: Stages of RegNetX-4GF model.
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2.1 Mismatch between Heterogeneous
Architecture and Model Structure

Concurrent heterogeneous computing architecture. Different
from servers, mobile devices employ a unique heterogeneous com-
puting architecture. Take the widely-used mobile CPU and GPU
as an example. (1) Comparable performance. Different from server
GPUs which run orders-of-magnitude faster than the CPUs, be-
cause of the chip and power limitation, mobile CPUs and GPUs
have similar performance especially for deep learning model in-
ference, as shown in Fig. 3. (2) A unified memory. Different from
server machines which usually have separate memory units for
the CPU and GPU, the mobile CPU and GPU share a unified mem-
ory [20]. Thus, expensive data copying costs can be avoided. Be-
cause of these two properties, there are opportunities to adopt
heterogeneous concurrent computing to speed up the model in-
ference.

Sequential model structure. Current widely-used NNs are com-
posed of operators sequentially dependent on each other. The gen-
eral practice to design a NN is to design a layer first, which can
be a single operator or a building block, and then stack the layer
repeatedly in each stage. A stage is a sequence of layers with the
same size of a feature map. Fig. 2 shows the building blocks of rep-
resentative NN models. Table 1 lists the stages of RegNetX-4GF
as an example, which is mainly composed of four stages with the
number of blocks as 2, 5, 14 and 2, respectively. Within a stage,
the first building block is applied with convolution (short as Conv)
stride=2, while the following blocks are stride=1. Other hyperpa-
rameters within a stage stay the same, such as the number of filters.

Communication-intensive intra-operator parallelism. To con-
currently execute a sequential NN, three research papers player [21],
Optic [42] and CoDL [19] explore to utilize the intra-operator par-
allelism of a NN. They partition each operator (along the output
channel or height/width dimensions) to run on different proces-
sors, as illustrated in Fig. 3a. Upon the execution of an operator, the
processors communicate to share the output between each other
for the next operator. Though the CPU/GPU/DSP processors share
a unified memory on mobile SoC, the communication normally in-
troduces the following overheads: (1) data transformation, to trans-
form the data to the type used by each processor; (2) data mapping,
to map the data to each processor’s address space; and (3) proces-
sor synchronization, to inform other processors the completion of
an action.

The processor communication overhead is significant, particu-
larly for the light-weight mobile-side NNs. Fig. 3 compares the
communication latency and the single-processor execution time
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Figure 3: (a) Intra-operator parallelism. Communication is needed
for each operator. (b) Execution latency when executed on a sin-
gle CPU or GPU vs. CPU-GPU communication latency when exe-
cuted on both processors in parallel, for each layer of MobileNetV1
running on Snapdragon 855. Communication latency is longer than
most layers’ execution times.

Figure 4: The sequential operator execution across processors in a
typical today’s industrial on-device inference framework.

for each operator of MobileNetV1. The communication latency is
relatively stable around 1 ms, more than the inference latency of
most operators on CPU or GPU only.

To address this challenge, this paper explores branch parallelism
to avoid frequent processor-to-processor communications.

Unsupported processor concurrency. Though the research work
player and Optic have proposed concurrent processor execution, in
real production scenarios, current industrial NN inference frame-
works do not support multi-processor concurrent execution due to
the high communication cost, either the mobile-side ones such as
TFLite [24], Mace [27], and ncnn [38] or the server-side ones such
as ONNX runtime [28] and TensorFlow [11]. Instead, they sequen-
tially run operators on each processor as shown in Fig. 4.

This paper proposes a sub-graph-based modification for avail-
able mobile-side inference frameworks to enable multi-processor
concurrent execution.

2.2 Lack of Model Adaption Suitable for
Multi-Processor Execution

A NN model designed by data scientists normally has a gap for
real-world usage, and requires model adaption for deployment on
different devices. The gap can be: (1) unsatisfactory running time,
(2) too-large model size and memory footprint, and (3) unsuitable
operator types for hardware.
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Figure 5: The handmade multi-branch block of InceptionV1.

Therefore, different model adaption techniques are proposed,
which can be categorized into three major directions. (1) Model
scaling [12, 17, 37]. It scales the depth (the number of layers), width
(the number of filters i.e., output channels) or resolution of a given
model to generate models of different sizes and FLOPs (the num-
ber of floating point operations) for diverse devices. For example,
EfficientNets uniformly scales all dimensions, with the model size
ranging from 7.8 MB to 66 MB, and accuracy 79% to 84%. (2) Model
compression. Different from model scaling that scales model depth
or width up/down for different devices and tasks, model compres-
sion mostly focus on removing the weight redundancy to compress
a model into a smaller size. It includes a range of techniques, such
as model pruning [13, 14, 22, 46] and quantization [4, 43, 45]. (3)
Processor-tailored NN design [8, 36, 47, 50]. It designs NNs using
hardware-efficient operators or hyperparameters. For example, Ef-
ficientNetEdgeTPU [32] and MobileNetEdgeTPU [2] aim to design
efficient models for Edge TPU by augmenting the design space
with expert-selected building blocks that run efficiently on Edge
TPU.

These techniques above adapt models to either reduce the mem-
ory and computation usage, or better utilize the characteristics of
a single processor. They greatly facilitate the deployment of NN
models to mobile devices. However, none of them has considered
model adaption for the unique feature of mobile devices, i.e., CPU-
GPU heterogeneous computing.

There are also techniques that leverage the existing independent
subgraphs. DUET [51] targets a subgraph-partition-compiling
-scheduling problem. DUET depends on the existing parallel
branches in a model, and then compiles the kernels for multipro-
cessors. DUET cannot generate branches for a model. BlastNet [23]
depends on the multi-DNN concurrent execution. BlastNet parti-
tions each model into blocks and schedules the blocks across dif-
ferent processors. Both techniques heavily rely on existing inde-
pendent subgraphs for concurrent execution and are not suitable
for sequential DNN models.

To address this challenge, this paper proposes a new model adap-
tion strategy, which branches a model to utilize the heterogeneous
processors.

2.3 Call for General and Automatic Model
Branching

There are a few handmade multi-branch NN, such as the Incep-

tion series [18, 33-35], and the NAS (Neural Architecture Search)-

searched modes such as NASNet [3] and Cai et al. [52]. Incep-

tion, shown in Fig. 5, uses kernels of different sizes in different
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branches to extract global and local information. Achieving com-
pelling accuracy with low latency, the hand-crafted multi-branch
NN is carefully designed and the blocks are customized stage-by-
stage, though it is unclear how to adapt the Inception architectures
to new datasets/tasks [44]. Therefore, the technique cannot be ex-
tended for general automatic model branching. The NAS-based
methods search optimal NNs from a large space composed of ba-
sic multi-branch blocks. Though it can save manual labor, it is too
costly in terms of computation, e.g., requiring 2000 GPU hours for
NASNet [3] to find a proper multi-branch NN, rendering it imprac-
tical for deployment.

To address this challenge, our paper proposes a general, practi-
cal, and automatic branching technique.

3 NN-STRETCH SYSTEM OVERVIEW

Fig. 6 shows the overview of NN-Stretch system. It covers both
model adaption/design and model inference. During the design
phase, NN-Stretch takes as input a sequential model, its training
function with dataset, and the target deployment platforms (both
the device types and inference frameworks). NN-Stretch outputs
the branched model. The model format is augmented with two new
attributes for each operator to facilitate parallel inference: (1) a
meeting point or not, and (2) the recommended running proces-
SOr.

For inference, we design the sub-graph-based spatial scheduler
to support parallel inference on multiple processors. It partitions
each branch into a sub-graph, as the basic scheduling unit to run on
a processor. The processor is picked according to the model design
recommendation, processor availability, and the latency or energy
priorities.

The first step of model design is to identify the meeting points,
considering both the communication cost for latency and the model
structure preservation for accuracy. The model is segmented by
these meeting points. A duplicate-and-scale-down process is applied
to these segments for branching, considering both processor het-
erogeneity for latency and capacity guarantee for accuracy. The
process duplicates a segment into multiple branches first leading to
an inflated model size, and then scales down the width i.e., the num-
ber of filters, or depth i.e., the number of layers, of each branch to
shrink the model size back to the original. After the multi-branch
model is generated, like other model adaption techniques, the new
model is trained by the given training function and dataset.

The meeting point and scaling ratio selection is guided by la-
tency reduction. The latency can be measured on devices or can
also be predicted. We extend the state-of-the-art nn-Meter [49] la-
tency predictor to predict latency on the target device.

4 MODEL BRANCHING

In order to transform a deep and narrow network to a short and
wide one with multiple branches, the questions are where to branch
the model, and what each branch looks like. We at first explored dif-
ferent NN design methods, such as the processor-tailored ones [8,
36, 47, 50], by which we tried to replace some layers by searched
processor-friendly layers in different branches. However, we find
that these methods can easily be against NN-Stretch’s principles,
leading to accuracy losses, heavy model adaption overheads, or
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model designer involvements. They are thus not practical as a gen-
eral and automatic deployment strategy.

Consequently, we conclude the important guideline for
NN-Stretch’s model branching: to mostly maintain the given model’s
structure and capacity (the size of weights and the total amount of
computations, i.e., FLOPs). In this end, the model branching of NN-
Stretch is devised as a duplicate-and-scale process. More specifi-
cally, NN-Stretch employs the following 3 steps: (1) identifying the
meeting points to partition the sequential (deep and narrow) net-
work to multiple segments, (2) duplicating each segment to form
a multi-branch network structure, and (3) scaling down the depth
and width of each branch to reduce the inference cost. This section
will introduce how we formulate and solve the model branching is-
sue.

4.1 Large Design Space for Model Branching

Problem formulation. NN-Stretch introduces a series of hyper-
parameters needed to be specified for model branching. Specif-
ically, Table 2 lists all hyper-parameters, as well as their types,
shapes and potential values: the number of meeting-points (Npeet),
the number of branches (Np, gnch), the locations of meeting points
(Lmeet), the depth-scaling ratios (Rgepsn) and width-scaling ratios
(Ryvidzn) of all branches.
With all these hyper-parameters specified, NN-Stretch transforms

a given model (represented as a graph, Gseq) to a multi-branch one
(Gpranch) represented as:

Gbranch = F(Gseq: Nmeet, Npranchs Lmeets Rdepth, Ryiarn) (1)

where F denotes the graph transformation. Notably, different width-
scaling factors could lead to different output channel numbers across
branches. To tackle the divergence problem and restore the chan-
nel number, the graph transformation F inserts a 1x1 Conv oper-
ator after each branch, and concatenates all branches (an example
Fig. 8 shown at the end of this section).

In NN-Stretch, we target to find a proper set of hyper-parameters
(Nmeets Npranchs Lmeet, Raepihs Rwidrn) for a given model (Gseq),
generating a multi-branch model (Gp, 4pcp) With minimum latency,
subject to the accuracy of the multi-branch model is larger than or
equal to a pre-defined target accuracy (e.g., the Gseq accuracy, or
with an acceptable relaxation). As discussed in [1, 6, 10, 25, 29],
scaling a model in depth and width has similar expressive power
and can successfully preserve its accuracy within a certain range.
In general, model branching can be formulated as the following
optimization problem:
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Table 2: Estimation of the Hyper-parameter design space of meeting-point identification and depth-width scaling for model branching. The

total design space for popular CNN models easily exceeds 10°.

Hyper-Parameter Description Type Potential Values
Nmeet number of meeting points int 1to Njgyer
Nyranch number of branches int 1 to Nprocessor
Lineer n'lee.ting—point loc.ations int 1-d array each location:
(indices of layer_id) (shape = [Nmeer]) 1t0 Nigyer
Riepth depth-scaling ratios float 2-d vector each factor:
(shape = [Nmeet-Npranch]) 0.1to 1.0
R width-scaling ratios float 2-d vector each factor:
width & (shape = [Nmeet-Npranch)) 0.1to 1.0

Table 3: Both accuracy and latency improved with the meeting point
number N,,¢.; (evaluated on ResNet56 with dataset CIFAR-100 and
input size NHWC=<1, 96, 96, 3>).

Nieet ‘ Top-1 Acc. Top-5 Acc. Latency (ms)

1 70.32 90.93 13.2
2 71.03 91.13 13.9
3 71.95 91.52 14.5
4 72.24 91.67 15.1
5 72.20 91.69 15.6
[ 72.31 91.74 16.1
9 72.46 91.85 17.9
min Latency(Gpranch) ()

Nmeet,NbranchsLmeetaRdepth Rvidtn

s.t.  Accuracy(Gpranen) = target_accuracy (3)

Challenges. However, it is extremely challenging to quickly find a
set of hyper-parameters for multi-branch transformation that sat-
isfies Equations 2 and 3, due to the following two reasons. First,
the design space is huge. For a popular CNN model with 30-50
layers, the hyper-parameter design choices for model branching
easily exceed 10°. Second, even though the inference latency of
a transformed multi-branch model can be quickly and accurately
predicted or tested on actual devices, its accuracy can only be ver-
ified after the training phase which requires a large amount of
GPU resources and training time, not to mention the ~ 10%° de-
sign choices.

Directly searching all combinations of potential hyper-parameter
choices is simply infeasible. In NN-Stretch, we propose a system-
atic way to drastically narrow down the search space according
to: (1) the analysis of the influence of hyper-parameters on infer-
ence efficiency, (2) the observations of the influences of hyper-
parameters on model accuracy.

4.2 Narrowing Down Design Space from
Inference Latency Perspectives

Typically, the hyper-parameters of meeting points and scaling ra-
tios have a direct and statistical correlation to the inference latency
of the transformed multi-branch model, which also can be accu-
rately and quickly predicted or tested on real devices. Therefore,
we can explicitly formulate the relationship between latency and
hyper-parameters, pruning away solutions with unsatisfactory la-
tency.

Cost-amortized meeting point identification. When running
multi-branch models on mobile SoCs, each meeting point natu-
rally becomes a communication point across processors. A larger
number of meeting-points results in higher communication costs,
which may even offset the latency reduction gained from branch
parallelism. As demonstrated in Table 3, the increase of meeting
points results in a significant increase in overall latency.

In order to avoid exploring long latency solutions caused by
high communication costs, we add constraints on the number of
and locations of meeting points, as shown in Eq. 4. The rationale
is to amortize the communication cost by the depth of a segment.

Latency(communication) <=
Lli+1]-1
a- Z Latency(layer;),Vi € [0, Npeer — 1)
Jj=L[i]

where Latency(communication) is the communication latency across
processors; Latency(layer;) is the latency of a specific layer; a is
a user-defined amortization ratio (e.g., 0.1, meaning that the com-
munication cost is less than 10% of the latency of each segment).

©)

Heterogeneity-aware depth-width scaling. In NN-Stretch, mul-
tiple branches are running on heterogeneous processors. Hence,
the number of branches (Np,4,cp) is determined by the number of
processors (Nprocessor) on the mobile SoC.

Similar to cost-amortized meeting point identification, we set
lower bounds on the depth/width-scaling ratios to avoid straggler
branches that can increase the overall latency.

Latency,,, ., (branch;) <=

B Latencypyc, (original_segment),Vi € [1, Np,anch] ©)
where f denotes an adjustment coefficient (normally as 1.1 or 1.2)
to restrict the FLOPs of each branch and proc; is the fastest pro-
cessor to execute the original segment.

As mobile SoCs are inherently heterogeneous, diverse proces-
sors (e.g., CPU, GPU, DSP) have different architectures and pre-
fer branches with different scaling options to fully match their
architectural characteristics. For example, the depth-scaling leads
to a relatively wider branch shape, which is suitable for highly-
paralleled GPU and DSP. As Fig. 7 shows, the achieved perfor-
mance (GFLOPs/second) on the GPU increases greatly as the op-
erator becomes wider. On the other hand, the width-scaling leads
to arelatively deeper branch, which is more suitable for CPU as it is
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Figure 7: The performance (GFLOPs/second) increases greatly as
the number of channels increases on the GPU. Operator set-
ting: 3xX3 Conv, the same number of input and output channels,
height=width=28.

good at sequential small operators. Therefore, according to differ-
ent hardware characteristics, corresponding constraints on scaling
strategies can be applied to further narrow down the search space.

Last but not least, as processors in a mobile SoC have similar but
slightly different performance power, the best way to fully saturate
all processors is to align the FLOPs of each branch to the perfor-
mance of the processor that executes this branch, as formulated in
Eq. 6. (Note again that FLOPs means the number of floating point
operations, and FLOPS is the throughput, i.e., FLOPs Per Second).

FLOPs(branchy) : FLOPs(branchy) : - - - : FLOPs(branchy,)
~ FLOPS(procy) : FLOPS(procy) : - -+ : FLOPS(procy,)

4.3 Narrowing Down Design Space from
Model Accuracy Perspectives

Unlike latency-related constraints listed in Section 4.2 that are well
formulated and analyzed, the accuracy-related constraints are ‘soft’
constraints due to the uncertainty and unpredictability of model in-
ference accuracy. According to the characteristics of the sequential
model itself and observations on preliminary experiments, model-
specific soft constraints can be applied to further narrow down the
search space.

Structure-preserved meeting point identification. In popular
CNN models (e.g., ResNet, MobileNet, ShuffleNet), the models are
often composed of multiple stages, with all the building blocks in
each stage sharing the same architecture. In order to preserve the
expert-designed model structure as much as possible, we first take
the connection points between stages as meeting points, rendering
each stage a segment to be branched.

Apart from inference efficiency, the number of meeting points
also influences model accuracy. Intuitively, having more meeting
points leads to more frequent feature exchanges, which in turn
likely leads to better accuracy. While having fewer meeting points
tends to hurt the model accuracy due to insufficient information
exchange. The experimental result on ResNet56 with the Npeer
from 1 to 9 matches our intuition, as shown in Table 3. Therefore,
for a specific model, we set a lower bound on the number of meet-
ing points, a number below which would result in violation of the
accuracy requirement in Equation 3.
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Figure 8: A generated multi-branch stage for EfficientNet.

Capacity-guaranteed depth-width scaling. Previous

works [7, 26] point out that extremely shallow or narrow networks

have limited expressive power and undermine the model accuracy.
Inspired by this finding, we can also introduce lower bounds on

depth-scaling and width-scaling ratios to avoid searching extremely
shallow or narrow branches that cannot maintain the original accu-
racy. Our experiment on ResNet also demonstrates that branched

models with extremely low scaling ratios (0.3 in Table 4) perform

worse than those scaling ratios that result in a similar model size

under a similar number of FLOPs. In general, lower bounds on scal-
ing ratios can be obtained through preliminary experiments for

different models.

Table 4: The low scaling ratio harms accuracy even when the to-
tal model size is similar (evaluated on ShuffleNetV2 with dataset
CIFAR-100). (n,m) is (Rdeptb Ryidtn)-

Top-1 Top-5 #Params
P
Branch, Branch; Ace. Ace. GFLOPs ™)
0.51) (0.75,04) 72.81 92.91 0.83 1.38
(0.5,1) (0.3,1) 71.52 92.21 0.90 1.50
(1,0.5) (1,0.3) 7039 91.80 0.83 1.37

Notably, the constraints are not limited to Eq. 4, 5, and 6 intro-
duced in Section 4.2 and those soft constraints introduced in Sec-
tion 4.3. Further constraints on narrowing down the search space
can be proposed and explored for various NN models. In NN-Stretch,
with these constraints, we can effectively narrow down the search
space from 10°° to less than 10 or 20 for popular CNN models.
Therefore, we are able to efficiently find appropriate branching
hyper-parameters using grid search.

For example, Figure 8 shows a generated multi-branch stage in
NN-Stretch for EffcientNet. EfficientNet has 7 stages, and we use
the 5th one for illustration. This stage has 7 blocks and 176 chan-
nels, i.e., (depth, width) as (7, 176). Here, we set ¢ as 0.1, f as 1.0, and
the lower bound of scaling ratios as 0.5. Among all the candidates,
a CPU branch with (depth, width) as (6, 136) and a DSP branch
(depth, width) as (4, 160) achieve the best latency reduction.

5 SUB-GRAPH-BASED SPATIAL SCHEDULER

For inference systems, a model is a graph containing a set of opera-
tors, which is the scheduling unit within a processor. To efficiently
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support the parallel execution of multiple processors and reduce
communication costs, NN-Stretch leverages a coarser granularity,
i.e., sub-graph, as the scheduling unit among processors. The defi-
nition of a sub-graph is a sequence of operators run on a processor
with only the first operator depending on the output from other
processors. Each model branch is thus a sub-graph, and scheduled
to run on a processor (Fig. 8 as an example).

Challenge of scheduler design. The challenge stems from the
different communication mechanisms among processors, which re-
quire a careful design for both correctness and efficiency.

Take the GPU as an example. Since it provides low-level pro-
gramming APIs, such as OpenCL, it can be programmed to run
synchronously or asynchronously to the host CPU. However, the
DSP library provides only the operator-level and graph-level APIs
in a synchronous manner, which blocks the CPU thread until it
finishes.

Similarly, considering data sharing among processors, proces-
sors on mobile SoCs have one unified memory, and there is no
need for memory copy. However, there is no hardware-supported
cache coherence. The coherence has to be guaranteed in the soft-
ware [5]. The GPU has an explicit API, i.e., memory mapping, to
make sure all the changed data in the cache is written back to mem-
ory, and ready to be read by other processors. On the other hand,
DSP does not provide this explicitly, buried in the high-level APIs.
Threadpool for processor communication. The thread manage-
ment is therefore specifically designed for different communica-
tion mechanisms. To address the synchronous-only manner on the
DSP, we implement a threadpool, and assign a separate CPU thread
to communicate with the DSP. The threadpool is created only once
during initialization, to avoid repeated thread creation costs for
each sub-graph.

Unexpectedly, we observe this communication thread greatly
competes for the big cores. For example, the inference becomes
very unstable and can be 2x slower after adding a thread for DSP
communication. Thus, we bind the communication thread to the
little cores and leave the big ones for operator-execution threads.

For processors that can run asynchronously, such as the GPU,
our scheduler does not use a separate communication thread to
avoid competition.

To address different data-sharing mechanisms, we explicitly call
the memory mapping API for the GPU for cache coherence. For the
DSP, we use the C++ future synchronization method to wait for the
DSP communication thread to finish and then access the data for
coherence.

Scheduling process. Algorithm 1 shows the scheduling process.
During the model parsing phase of inference initialization, NN-
Stretch partitions the graph into topology-ordered sub-graphs. Based
on the design recommendation, processor availability, and laten-
cy/energy priority, it can decide the execution processor for each
sub-graph.

During inference, if a sub-graph is a meeting point (Line 3 to 6),
it starts the CPU sub-graph execution, waits for all the processors
to finish, and then concatenates all the results. If the sub-graph tar-
gets the GPU, the scheduler does not start a separate thread. It en-
queues the necessary commands (Line 15 to 19), including memory
mapping, data transformation, and operator kernels, to the GPU
queue and returns. If the sub-graph targets the DSP, it is pushed
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to a separate thread in the threadpool. The future object will be set
after this thread is done, and the shared data with the DSP can be
read by the CPU (Line 21).

Algorithm 1: Sub-graph-based spatial scheduler

1 for subgraph € TopoSorted(Subgraphs) do
2 if subgraph.isMeetingPoint then

3 ExecuteOnCpu(CpuSubgraph);
4 OpenCLQueue.Finish();
5 DspFuture Wait();
6 Execute(subgraph);
7 else
8 ParallelExecute(subgraph);
9 end
10 end

11 Function ParallelExecute(subgraph):
12 if subgraph.isCpuSubgraph then

13 ‘ CpuSubgraph = subgraph;

14 else if subgraph.isGpuSubgraph then

15 EnqueuelnputMapBuffer();

16 EnqueuelnputTransformKernel();

17 EnqueueGpuKernels(subgraph);

18 EnqueueOutputTransformKernel();

19 EnqueueOutputMapBuffer();

20 else if subgraph.isDspSubgraph then

21 ‘ DspFuture = ThreadPool.push(subgraph);

6 DISCUSSION

Model training cost reduction. The heterogeneity-aware model
design of NN-Stretch performs the best when customized to the
target processor. It may introduce re-design and re-train cost if
the model needs to be deployed on diverse mobile devices. The su-
pernet training method [48] from neural architecture search field
can be leveraged to solve the issue. The supernet contains a range
of subnets with different model configurations. By weight sharing
technique, all the subnets in the supernet can be trained together
only once. We use this method in Sec. 7.4 Ablation Study, since
we need to compare many different models designed by different
methods. All the model variants are trained together once. The su-
pernet training costs 3X more GPU hours compared to training one
model from scratch.

Also, we observe that for the same SoC series, such as Qual-
comm Snapdragon 855 and 888, the processor design is relatively
stable, but just scales up the processor performance. We thus avoid
model redesign if the model behaves as expected on a new device.
More scheduling opportunities. NN-Stretch enables the flexible
combination of different processors for inference, based on the real
usage of processors by other applications on the devices. For small
models that already achieve real-time on one-single processor, NN-
Stretch also gives the space to increase the model size and accuracy
with the same latency cost. We will also show the accuracy and
latency tradeoff results of NN-Stretch in the ablation study.
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Adaption to dynamic workloads. A key design goal of NN-Stretch
is to adapt to dynamic workload, by generating parallel model struc-
ture for combinations of available processors. For example, if GPU
is busy rendering, we can use CPU+DSP for inference. Similarly,
if CPU is busy, we can use GPU+DSP. By comparison, many DNN
models use sequential structures, and can only run on one pro-
cessor. This bottlenecks the flexibility and speedup upper bound
according to Amdah!’s law. Our model structure does have proces-
sor affinity for better performance. But this does not prohibit it
from running on other processors. We will show the results of NN-
Stretch adaption to dynamic workloads in Sec. 7.4 ablation study.
Integration with the current mobile software stack. Our model
design only updates the model structure, decoupled with the in-
ference systems. After the updated model file is input into the
inference system, any model optimizations or compressions can
be applied. Our scheduler is integrated into the inference system
scheduler, to enqueue the operators to the available processors for
parallel execution. The inference systems we used are TFLite from
Google, and Mace from Xiaomi, which are all widely used mobile
inference systems.

Application to other tasks and models. One design principle
of NN-Stretch is to maintain the model accuracy, by keeping the
total number of FLOPs, the basic model structure, and the capacity-
guaranteed branch scaling. We evaluate NN-Stretch on the com-
plex ImageNet dataset as a showcase. There are certainly numer-
ous tasks in the real world. We expect NN-Stretch could maintain
accuracy. This paper targets the widely used convolution models
for mobile devices. For Transformer models, NN-Stretch could also
be leveraged, e.g., to parallelize multiple attention heads, and FFN
layers on the CPU, GPU, and DSP. The exploration of more tasks,
datasets, and transformer models can be promising future works.

7 EVALUATION

7.1 NN-Stretch Implementation

The model design is implemented based on Facebook’s pycls [31],
an image classification codebase written in PyTorch. It was origi-
nally developed for the RegNet models. pycls uses basic training
settings without any training or testing enhancements and thus
provides simple, strong and reproducible baselines. We integrate a
multi-branch model builder, TFLite model generator, latency pre-
dictor and supernet trainer into pycls.

The parallel inference is implemented in TFLite 2.8.0 [24]. The
major updates in TFLite is as following. The augmented operator
parsing is in GetOpsToReplace; sub-graph partitioning in
PartitionGraphIntoIndependentNodeSubsets; and
sub-graph scheduling to different processors in Invoke. The sub-
graph is wrapped by HexagonDelegateKernel object for DSP and
TfLiteGpuDelegateV2 for GPU.

To measure the communication latency of the CPU and GPU,
we leverage the OpenCL Event object [30], which gives the timing
of a GPU command execution, i.e., queued (command is enqueued
by the host), submitted (command is submitted by the host to the
device), running (command starts execution on the device), and
complete (command finishes execution on the device). We time be-
tween the queued c1EnqueueMapBuffer command and the start of
the first GPU computing kernel, as well as the completion of the
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Table 5: Test platforms in the evaluation.

‘ Xiaomi 9 ‘ Pixel 6 ‘ Xiaomi 11
SoC | Snapdragon 855 Google Tensor Snapdragon 888
CPU Kyro 485 Cortex-X1/A76/A55 Kyro 680
GPU | Adreno 640 Mali-G78 Adreno 660
DSP | Hexagon 690 - Hexagon 780

Table 6: FLOPs and model size of our test models.

Model FLOPs (G) Params (M)
ResNet34 3.7 21.8
ResNet50 4.1 25.6
RegNetX-1.6GF 1.6 11.2
RegNetX-4GF 4.0 20.6
EfficientNet-Lite4 2.6 13.0
EfficientNet-B5 10.3 30.4

last GPU computing kernel and clEnqueueUnmapObject, as the
communication latency. In this way, the communication latency
includes kernel enqueue overhead, data transformation, and mem-
ory map/unmap. For CPU and DSP, as they share the same physical
address space, there is no memory map/unmap cost. The hexagon
DSP provides no APIs for fine-grained profiling. We get the com-
munication latency by subtracting the elapsed time of
hexagon_nn_execute_new in a normal DSP-only execution from
the total latency of the DSP communication thread in the thread-
pool.

The total lines of code (LOC) include 2860 lines of modifications
to pycls and Tensorflow, and 1058 of testing tools.

7.2 Experiment Setup

Test models. The NNs selected for evaluation are ResNet, Reg-
Net and EfficientNet. They are widely-used models and also their
model size is suitable for mobile deployment. They are composed
of different backbone blocks such as residual bottleneck and MB-
Conv, and different backbone operators such as vanilla convolu-
tion, grouped convolution and depth-wise convolution. We also
choose two variations of each to show NN-Stretch’s effectiveness
for various model lengths and widths, i.e., ResNet-34/50, RegNetX-
1.6GF/4GF and EfficientNet-Lite4/B5. The model FLOPs and sizes
are shown in Table 6.

To deploy RegNet onto the mobile GPU, we follow the common
practice to replace the grouped convolution with a split and several
small convolutions, each of which is corresponding to one group
of the grouped convolution [39]. To deploy EfficientNet-B5, we re-
move the SE operators and replace swish operators on the CPU
branch with ReLU6 [40].

Since the DSP only supports INT8 computation, all the models
are INT8-quantized. The CPU also has hardware-supported INT8
instructions. Mobile GPU does not support INT8 execution, and
the models are executed in FP16.

ImageNet classification task. The application selected is the pop-
ular image classification for the large-scale ImageNet dataset. Im-
ageNet consists of 1.28M for training and 50K images for valida-
tion. The input image size for inference is NHWC = <1, 224, 224, 3>.
Model training code and configurations for every model are from
pycls. The training configurations are as follows. All the models
use SGD with a momentum of 0.9, a half-period cosine schedule,
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Table 7: Comparison of Top-1 accuracy of the multi-branch models
from NN-Stretch on all three devices, with the base sequential mod-
els. NN-Stretch can maintain the accuracy of the models. R, RX, EN
stand for ResNet, RegNetX, EfficientNet and C, G, D stand for CPUj,
GPU, DSP, respectively.

| R-3¢ R-50 | RX-1.6 RX-4 | EN-L4 EN-B5

Original 733  76.7 77.0 78.6 77.8 78.0
Mi9/C+G 728 76.2 76.9 78.4 77.9 77.8
Mi9/C+D 73.2  76.2 77.5 78.9 77.6 77.9

Mi9/G+D 733 76.6 76.9 78.4 77.5 77.8
Mi9/C+G+D | 729 76.1 76.6 78.3 - -

Pixel6/C+G 73.6 765 - - 77.6 77.9
Mi11/C+G 72.8 76.2 76.9 78.4 77.9 77.8

and 100 training epochs. ResNet and RegNet use a learning rate
of 0.2, a batch size of 256, and a weight decay of 5e-5. Efficient-
Net uses a reference learning rate of 0.4, a batch size of 256, and a
weight decay of le-5. Training takes the same amount of time as
the baseline models.

Hardware devices. We evaluate NN-Stretch on three different
mobile SoCs, integrated with different CPUs, GPUs and DSPs. Ta-
ble 5 lists the detailed specification. Pixel 6 does not have DSP
equipped.

We try the best to run different processor combinations for each
device. However, there are some settings not supported by the in-
ference system. The DSP on Xiaomi 11 cannot be evaluated, as
Snapdragon 888 is currently unsupported for TFLite Hexagon DSP
delegate. Additionally, split operators with more than four output
tensors are not supported by the TFLite OpenCL backend for Mali-
GPUs. That means RegNetX-1.6GF/4GF cannot be evaluated on the
Pixel 6.

Energy measurement. To measure the energy consumption, we
monitor the real-time power of the phone during inference by read-
ing /sys/class/power_supply. We sample the power with an inter-
val of 0.1ms, and then integrate the power with respect to time to
get energy.

Comparison baselines. We have two baselines. The first is the
single processor latency using default TFLite. The second is the
CoDL system, i.e., the state-of-the-art parallel inference system on
the mobile CPU and GPU, leveraging intra-operator parallelism.
For a fair comparison, we update the CoDL code directly to sup-
port our multi-branch parallel inference. The baseline CoDL results
use the settings as image-based GPU memory type, heuristic chain-
search policy, and output channel as partition dimension.

7.3 Overall Results

Accuracy. Table 7 compares the accuracy of the multi-branch mod-
els generated by NN-Stretch with the given baseline models. We de-

sign different models for different devices by adjusting the depth/width

scaling ratios. As there is similar CPU vs GPU computing perfor-
mance between Mil1 and Mi9, they share the multi-branch models.
We can see that NN-Stretch can preserve the accuracy of the mod-
els.

It’s possible to reuse the weights of the given model by applying
knowledge distillation (KD). Furthermore, as our stretched model
has a similar structure to the original model, KD can perform even
better in such a situation. But in our evaluation section, to prove
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that the stretched models have the same or even better expressive
power, we train them from scratch with the same training con-
figurations as the original models. By applying KD to ResNet-34
(Mi9/C+G) and ResNet-50 (Mi9/C+G), we can achieve 73.7% and
76.9% respectively using the weighted soft label distillation [15].

Speedup to TFLite. Fig. 9 shows the inference latency compari-
son between the single-processor (CPU/GPU/DSP) baseline on de-
fault TFLite, and NN-Stretch. By the multi-branched model design
and sub-graph scheduling, NN-Stretch enables the flexible proces-
sor combinations based on availability, i.e., CPU+GPU, CPU+DSP,

GPU+DSP, and CPU+GPU+DSP, for parallel inference. We can achieve

up to 2.2X, 1.4X, and 1.8x speedup compared to the fastest single
processor, on the three platforms respectively. The fastest infer-
ence is achieved obviously when all three processors are used. The
following is CPU+DSP, and then CPU+GPU. Note that the GPU
runs in FP16, and thus its performance can be worse than the INT8
CPU and DSP for some models.

Considering just the speedup of branches, we can achieve near-
ideal speedup by adding more processors. However, for this end-
2-end speedup comparison, there is surely a speedup difference
from ideal. For example, ResNet-50 on Mi9/C+D achieves a 1.5X
speedup. Based on the latency of the single CPU and DSP, a 1.9%
speedup is expected. The major causes are as follows. (1) The stem
and head blocks of the model are not parallelized. The percent-
age of these blocks depends on the model structure. In ResNet-
50, this accounts for 11% of the total latency. For EfficientNet, this
percentage is 15%. Therefore, EfficientNet is not worthy for three-
processor parallelism. (2) Another reason is the communication
overhead among processors. In this ResNet-50 on Mi9/C+D exam-
ple, this overhead contributes to 17.9% of the total latency.

The missing bars on Pixel 6 and Mil1 are not supported by the

platforms due to the reasons explained in Sec. 7.2.
Speedup to CoDL. Fig. 11 shows the latency comparison with the
CoDL baseline. Since it is only for CPU+GPU parallel run, we also
run NN-Stretch on the CPU+GPU. NN-Stretch achieves a speedup
of up-to 1.9X compared to GPU and 1.6X compared to CoDL. Reg-
NetX and EfficientNet are not evaluated, as grouped convolution
and INT8 depth-wise convolution are currently not included in
CoDL. Pixel6 is not evaluated because OpenCL 3.0 is unsupported
by Mace framework utilized by CoDL.

For these relatively small models, CoDL fails to achieve latency
reduction due to the high communication cost brought by intra-
op parallelism. However, as NN-Stretch only requires synchroniza-
tion at meeting points, this overhead is dramatically reduced. For
instance, when running ResNet-50 on Mi11, CoDL takes 12.2ms for
communication, accounting for 35.3% of the total latency. In con-
trast, NN-Stretch reduces the communication overhead to 3.0ms.
Power and energy. We also evaluate the power and energy con-
sumption of NN-Stretch. As shown in Fig. 10, for the power of a sin-
gle processor, running the model on the CPU consumes the highest
power, ranging from 5.1 to 6.5w. The DSP costs the lowest, rang-
ing from 1.2 to 2.0 W. This is due to the simpler architecture of
the DSP. Interestingly, compared with the single CPU, the use of
multi-processors by NN-Stretch does not increase power consump-
tion greatly. The most significant increase is seen in EfficientNet-
Lite4, which increases by 24%. This phenomenon occurs because
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Figure 9: Latency comparison of the TFLite single-processor with NN-Stretch multi-processors.
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Figure 10: Power and energy comparison of the single processor and
NN-Stretch multi-processors on Xiaomi 9.

the inference computation is distributed across multiple proces-
sors, and the CPU power and utilization are reduced. For instance,
when designing ResNet-34 for CPU+DSP, the widths of the convs
in the CPU branch are scaled down to 50%, the smallest scaling
ratio among all the models, resulting in less power consumption
than the CPU.

Similarly, for energy, the lowest cost is running the model on
the DSP, followed by the DSP with other processors, i.e., GPU+DSP

and CPU+GPU+DSP. Compared with the single CPU, CPU+GPU+DSP

can reduce the energy cost by 56.3%.

Discussion. Though the DSP consumes less power and energy, its
applicability is quite limited. It only supports common operators
in INT8 precision, long-vector computation, and no low-level pro-
grammable APIs [41]. The CPU and GPU are still the most widely
used processor for DNN inference on mobile devices. All in all, NN-
Stretch enables the capability of DNN inference to flexibly select
the proper processors to run, based on the model and hardware
characteristics, and the latency and energy priority.
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Figure 11: Latency comparison of the single processor, CoDL and
NN-Stretch on CPU+GPU on Mi9 and Mi1l.

Table 8: The accuracy of just branching without depth/length scal-
ing on ResNet-50.

Network Top-1 Acc.

Original 76.7
Two Branch 78.2

7.4 Ablation Study

Since this section evaluates many different designed models, we
use the supernet training method to train all the model variations
together. As you will see, the supernet training can achieve com-
petitive accuracy and latency results compared to training each
model from scratch.

Effectiveness of segment duplication. To evaluate whether
each branch can effectively extract the features after meeting point
identification and segment duplication, we generate a model be-
fore scaling down to train and evaluate the accuracy as shown in
Table 8. Results show that by only duplicating the segment, the in-
flated model can achieve 1.5% higher accuracy, which leaves space
for further scaling down for latency reduction.

Different scaling strategies. Sec. 4.3 suggests scaling on differ-
ent dimensions for each branch. This diversifies the branches po-
tentially for better accuracy, as well as better utilization of het-
erogeneous hardware features. This section also evaluates the ac-
curacy and latency for other possibilities, i.e., only depth scaling
for both branches, and only width scaling for both branches, to
compare with the length and width scaling for each, as shown in
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Table 9: Accuracy and speedup comparison of different scaling
strategies: depth-only, width-only, and depth+width for ResNet-50.

Strategy Top-1 Acc. Speedup
Original 76.7 1
Depth-only 75.7 1.3
Width-only 76.2 1.2
Depth + Width 76.2 1.5

Table 9. The results show that NN-Stretch can achieve higher per-
formance and better accuracy compared to the other two.
Accuracy improvement. Besides latency reduction and accuracy
preservation, NN-Stretch also provides the opportunity for accu-
racy improvement by setting different latency constraints and dif-
ferent branch scaling ratios. Fig. 12 shows the latency and accu-
racy tradeoff line from NN-Stretch for ResNet-50 on Mi9/C+D. It
is above the original model, which means at similar latency, NN-
Stretch could achieve higher model accuracy, and thus gives shows
more options for the users based on the latency and accuracy bud-
get.
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Figure 12: NN-Stretch improves the accuracy-latency tradeoff
(marked as dots) compared to the original ResNet-50 on Mi9/C+D
(marked as the star).

Adaption to dynamic workloads. NN-Stretch can adapt to dy-
namic workloads by employing different availale processors for
execution. To validate this, we introduce interference workload,
and compare the latency response of NN-Stretch with the single-
processor baseline, shown in Fig. 13. The interference workload
used is Gables [16], which executes roofline model benchmarks
on either CPU or GPU, including both memory- and computation-
intensive operations. NN-Stretch monitors processor’s utilization
after each model inference. If NN-Stretch detects resource contention
with other processes on a processor, it will move the model to run
on other processors.

The figure shows three phases, marked by the two dotted lines.
The interference workload runs on the GPU during [0, 50) model in-
ference. The baseline inference runs on the CPU, while NN-Stretch
runs on GPU+DSP. During [50, 155), the interference runs on the
CPU, as well as the baseline. The baseline latency becomes flunc-
tuated because of the interference. The worst latency can reach
222 ms. That is possibly when Gables is running computation inten-
sive operations. On the other hand, NN-Stretch moves the model

Jianyu Wei, Ting Cao, Shijie Cao, Shiqi Jiang, Shaowei Fu, Mao Yang, Yanyong Zhang, and Yunxin Liu

to the GPU+DSP when contention is detected after the 50, infer-
ence. Though the latency cost of running ResNet-34 on GPU+DSP
is higher than CPU+DSP by NN-Stretch, it is still much faster than
the baseline. During [155, 200), the intereference is moved back
to run on the GPU. The latency response of the baseline and NN-
Stretch becomes similar as phase one, i.e., [0, 50).

50 CPU-only
NN-Stretch
% 40 GPU Interference ||CPU Interference GPU Interference
£
>
2
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©
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Figure 13: The latency response of NN-Stretch and baseline with in-
terference workload for ResNet-34 on Mi9. NN-Stretch can adapt
to dynamic interference. The baseline always runs on the CPU. For
[0, 50) and [155, 200) inferences, interference workload runs on the
GPU, while NN-Stretch runs on the CPU+DSP. During [50, 155), the
interference runs on the CPU, and NN-Stretch moves the model to
run on the GPU+DSP.

8 CONCLUSION

This paper carefully studies how to accelerate DNN model infer-
ence on mobile devices by levering the heterogeneous processors
(i.e., CPU, GPU, DSP) equipped on these devices. In particular, we
propose to restructure the models that are often sequentially struc-
tured to multi-branch structures and assign each branch to a pro-
cessor for concurrent execution.

To the best of our knowledge, NN-Stretch is the first work that
exploits the branch parallelism for a model to speed up its infer-
ence. Moving forward, we will continue our exploration in this
direction, by investigating how to adopt our method on different
hardware platforms such as robots or autonomous cars, as well as
different deep learning models such as natural language process-
ing models. We would like to see the branch parallelism evolves to
be a general type of parallelism that benefits many different deep
learning model inference scenarios.
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//doi.org/10.5281/zenodo0.7907009.

REFERENCES

[1] Md. Zahangir Alom, Theodore Josue, Md Nayim Rahman, Will Mitchell, Chris
Yakopcic, and Tarek M. Taha. 2018. Deep Versus Wide Convolutional Neural


https://doi.org/10.5281/zenodo.7907009
https://doi.org/10.5281/zenodo.7907009

NN-Stretch: Automatic Neural Network Branching for Parallel Inference on Heterogeneous Multi-Processors

(3

8

[9

[10

(11

[12

[13

[14

[15

[16

[17

[18

[20

=

=

=

]

]

]

]

]

]

Networks for Object Recognition on Neuromorphic System. In 2018 International
Joint Conference on Neural Networks, [JCNN 2018, Rio de Janeiro, Brazil, July 8-13,
2018. IEEE, 1-8. https://doi.org/10.1109/IJCNN.2018.8489635

Suyog Gupta Andrew Howard. 2019. Introducing the Next Generation of On-
Device Vision Models: MobileNetV3 and MobileNetEdgeTPU. https://ai.googleblog.
com/2019/11/introducing-next-generation-on-device.html

Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. 2018. Path-
Level Network Transformation for Efficient Architecture Search. In Proceed-
ings of the 35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmdssan, Stockholm, Sweden, July 10-15, 2018 (Proceedings of Machine Learn-
ing Research, Vol. 80), Jennifer G. Dy and Andreas Krause (Eds.). PMLR, 677-686.
http://proceedings.mlr.press/v80/cail8a.html

Zhaowei Cali, Xiaodong He, Jian Sun, and Nuno Vasconcelos. 2017. Deep Learn-
ing with Low Precision by Half-Wave Gaussian Quantization. In 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI,
USA, July 21-26, 2017. IEEE Computer Society, 5406-5414. https://doi.org/10.
1109/CVPR.2017.574

Lucian Codrescu, Willie Anderson, Suresh Venkumanhanti, Mao Zeng, Erich
Plondke, Chris Koob, Ajay Ingle, Charles Tabony, and Rick Maule. 2014.
Hexagon DSP: An Architecture Optimized for Mobile Multimedia and Commu-
nications. IEEE Micro 34, 2 (2014), 34-43. https://doi.org/10.1109/MM.2014.12
Nadav Cohen, Or Sharir, and Amnon Shashua. 2015. On the Expressive
Power of Deep Learning: A Tensor Analysis. CoRR abs/1509.05009 (2015).
arXiv:1509.05009 http://arxiv.org/abs/1509.05009

Nadav Cohen, Or Sharir, and Amnon Shashua. 2016. On the Expressive Power of
Deep Learning: A Tensor Analysis. In 29th Annual Conference on Learning Theory
(Proceedings of Machine Learning Research, Vol. 49), Vitaly Feldman, Alexander
Rakhlin, and Ohad Shamir (Eds.). PMLR, Columbia University, New York, New
York, USA, 698-728. https://proceedings.mlr.press/v49/cohen16.html
Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei Sun, Yanghan Wang,
Marat Dukhan, Yunqing Hu, Yiming Wu, Yangqing Jia, et al. 2019. Chamnet:
Towards efficient network design through platform-aware model adaptation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A large-scale hierarchical image database. In 2009 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20-
25 June 2009, Miami, Florida, USA. IEEE Computer Society, 248-255.  https:
//doi.org/10.1109/CVPR.2009.5206848

Fenglei Fan, Rongjie Lai, and Ge Wang. 2020. Quasi-Equivalence of Width and
Depth of Neural Networks. arXiv: Learning (2020). https://doi.org/arXiv:2002.
02515

Google. 2019. TensorFlow: An end-to-end open source machine learning platform.
https://www.tensorflow.org/

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770-778. https://doi.org/10.1109/CVPR.2016.90
Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. 2019. Filter Pruning
via Geometric Median for Deep Convolutional Neural Networks Acceleration.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR).

Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel Pruning for Accelerating
Very Deep Neural Networks. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV).

Zhou Helong, Song Liangchen, Chen Jiajie, Zhou Ye, Wang Guoli, Yuan Jun-
song, and Qian Zhang. 2021. Rethinking soft labels for knowledge distillation: a
bias-variance tradeoff perspective. In International Conference on Learning Rep-
resentations (ICLR).

Mark Hill and Vijay Janapa Reddi. 2019. Gables: A Roofline Model for Mobile
SoCs. In 2019 IEEE International Symposium on High Performance Computer Ar-
chitecture (HPCA). 317-330. https://doi.org/10.1109/HPCA.2019.00047

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861.

Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In ICML (JMLR
Workshop and Conference Proceedings, Vol. 37), Francis R. Bach and David M. Blei
(Eds.). JMLR.org, 448-456. http://dblp.uni-trier.de/db/conf/icml/icml2015.html#
ToffeS15

Fucheng Jia, Deyu Zhang, Ting Cao, Shiqi Jiang, Yunxin Liu, Ju Ren, and Yaoxue
Zhang. 2022. CoDL: Efficient CPU-GPU Co-execution for Deep Learning Infer-
ence on Mobile Devices. In The 20th Annual International Conference on Mobile
Systems, Applications and Services (MobiSys *22). ACM. https://doi.org/10.1145/
3498361.3538932

Shiqi Jiang, Lihao Ran, Ting Cao, Yusen Xu, and Yunxin Liu. 2020. Profiling and
Optimizing Deep Learning Inference on Mobile GPUs. In APSys "20. Association
for Computing Machinery, New York, NY, USA, 75-81.

[21

[22]

[23

[26

[34

[35

&
2

[37

[43]

MobiSys ’23, June 18-22, 2023, Helsinki, Finland

Youngsok Kim, Joonsung Kim, Dongju Chae, Daehyun Kim, and Jangwoo Kim.
2019. pLayer: Low Latency On-Device Inference Using Cooperative Single-
Layer Acceleration and Processor-Friendly Quantization. In EuroSys ’19. Associ-
ation for Computing Machinery, New York, NY, USA, Article 45, 15 pages.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2017.
Pruning Filters for Efficient ConvNets. The International Conference on Learn-
ing Representations (ICLR).

Neiwen Ling, Xuan Huang, Zhihe Zhao, Nan Guan, Zhenyu Yan, and Guo-
liang Xing. 2023. BlastNet: Exploiting Duo-Blocks for Cross-Processor Real-
Time DNN Inference. In Proceedings of the 20th ACM Conference on Embedded
Networked Sensor Systems (Boston, Massachusetts) (SenSys °22). Association for
Computing Machinery, New York, NY, USA, 91-105. https://doi.org/10.1145/
3560905.3568520

Tensorflow Lite. 2020. https://www.tensorflow.org/lite/

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang.
2017. The Expressive Power of Neural Networks: A View from the Width.
In Advances in Neural Information Processing Systems 30: Annual Confer-
ence on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Ben-
gio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (Eds.). 6231-6239.  https://proceedings.neurips.cc/paper/2017/hash/
32cbf687880eb1674a07bf717761dd3a- Abstract.html

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. 2017.
The Expressive Power of Neural Networks: A View from the Width. In Proceed-
ings of the 31st International Conference on Neural Information Processing Systems
(Long Beach, California, USA) (NIPS’17). Curran Associates Inc., Red Hook, NY,
USA, 6232-6240.

MACE. 2020. https://github.com/XiaoMi/mace

Microsoft. 2019. ONNX Runtime. https://github.com/microsoft/onnxruntime
Thao Nguyen, Maithra Raghu, and Simon Kornblith. 2021. Do Wide and Deep
Networks Learn the Same Things? Uncovering How Neural Network Represen-
tations Vary with Width and Depth. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net. https://openreview.net/forum?id=KJNcAkY8tY4

OpenCL. 2021. https://www.khronos.org/opencl/

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr
Dollar. 2020. Designing Network Design Spaces. In CVPR.

Mingxing Tan Suyog Gupta. 2019. EfficientNet-EdgeTPU: Creating Accelerator-
Optimized Neural Networks with AutoML. https://ai.googleblog.com/2019/08/
efficientnet-edgetpu-creating.html

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A. Alemi.
2017. Inception-v4, Inception-ResNet and the Impact of Residual Connections
on Learning. In Proceedings of the Thirty-First AAAI Conference on Artificial In-
telligence, February 4-9, 2017, San Francisco, California, USA, Satinder P. Singh
and Shaul Markovitch (Eds.). AAAI Press, 4278-4284. http://aaai.org/ocs/index.
php/AAAI/AAAIL7/paper/view/14806

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. 2015. Going deeper with convolutions. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE
Computer Society, 1-9. https://doi.org/10.1109/CVPR.2015.7298594

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. 2015. Rethinking the Inception Architecture for Computer Vision.
CoRR abs/1512.00567 (2015). arXiv:1512.00567 http://arxiv.org/abs/1512.00567
Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, An-
drew Howard, and Quoc V Le. 2019. Mnasnet: Platform-aware neural architec-
ture search for mobile. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. In Proceedings of the 36th International Confer-
ence on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA
(Proceedings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and Rus-
lan Salakhutdinov (Eds.). PMLR, 6105-6114. http://proceedings.mlr.press/v97/
tan19a.html
Tencent. 2018.
Tencent/ncnn
Tensorflow. 2020. https://github.com/titu1994/Keras-ResNeXt

Tensorflow. 2022. https://github.com/tensorflow/tpu/tree/master/models/
official/efficientnet/lite

TensorFlow. 2022. Hexagon Delegate. https://github.com/tensorflow/
tensorflow/blob/master/tensorflow/lite/delegates/hexagon/README.md

S. Wang, G. Ananthanarayanan, and T. Mitra. 2019. OPTiC: Optimizing Col-
laborative CPU-GPU Computing on Mobile Devices With Thermal Constraints.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
38, 3 (2019), 393-406.

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng.
2015. Quantized Convolutional Neural Networks for Mobile Devices. CoRR
abs/1512.06473 (2015). arXiv:1512.06473 http://arxiv.org/abs/1512.06473

Tencent ncnn deep learning framework.  https://github.com/


https://doi.org/10.1109/IJCNN.2018.8489635
https://ai.googleblog.com/2019/11/introducing-next-generation-on-device.html
https://ai.googleblog.com/2019/11/introducing-next-generation-on-device.html
http://proceedings.mlr.press/v80/cai18a.html
https://doi.org/10.1109/CVPR.2017.574
https://doi.org/10.1109/CVPR.2017.574
https://doi.org/10.1109/MM.2014.12
https://arxiv.org/abs/1509.05009
http://arxiv.org/abs/1509.05009
https://proceedings.mlr.press/v49/cohen16.html
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/arXiv:2002.02515
https://doi.org/arXiv:2002.02515
https://www.tensorflow.org/
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/HPCA.2019.00047
http://dblp.uni-trier.de/db/conf/icml/icml2015.html#IoffeS15
http://dblp.uni-trier.de/db/conf/icml/icml2015.html#IoffeS15
https://doi.org/10.1145/3498361.3538932
https://doi.org/10.1145/3498361.3538932
https://doi.org/10.1145/3560905.3568520
https://doi.org/10.1145/3560905.3568520
https://www.tensorflow.org/lite/
https://proceedings.neurips.cc/paper/2017/hash/32cbf687880eb1674a07bf717761dd3a-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/32cbf687880eb1674a07bf717761dd3a-Abstract.html
https://github.com/XiaoMi/mace
https://github.com/microsoft/onnxruntime
https://openreview.net/forum?id=KJNcAkY8tY4
https://www.khronos.org/opencl/
https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14806
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14806
https://doi.org/10.1109/CVPR.2015.7298594
https://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
https://github.com/Tencent/ncnn
https://github.com/Tencent/ncnn
https://github.com/titu1994/Keras-ResNeXt
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/delegates/hexagon/README.md
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/delegates/hexagon/README.md
https://arxiv.org/abs/1512.06473
http://arxiv.org/abs/1512.06473

MobiSys "23, June 18-22, 2023, Helsinki, Finland Jianyu Wei, Ting Cao, Shijie Cao, Shiqi Jiang, Shaowei Fu, Mao Yang, Yanyong Zhang, and Yunxin Liu

[44] Saining Xie, Ross B. Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. 2017. [49] Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao, Yuqing

Aggregated Residual Transformations for Deep Neural Networks. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI,
USA, July 21-26, 2017. IEEE Computer Society, 5987-5995. https://doi.org/10.
1109/CVPR.2017.634

Yuhui Xu, Yongzhuang Wang, Aojun Zhou, Weiyao Lin, and Hongkai Xiong.
2018. Deep Neural Network Compression With Single and Multiple Level Quan-
tization. Proceedings of the AAAI Conference on Artificial Intelligence 32, 1 (Apr.
2018). https://ojs.aaai.org/index.php/AAAT/article/view/11663

Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. 2017. Designing Energy-Efficient
Convolutional Neural Networks Using Energy-Aware Pruning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler,
Vivienne Sze, and Hartwig Adam. 2018. Netadapt: Platform-aware neural net-
work adaptation for mobile applications. In Proceedings of the European Confer-
ence on Computer Vision (ECCV).

[48] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans,

Mingxing Tan, Thomas Huang, Xiaodan Song, and Quoc V. Le. 2020. BigNAS:
Scaling Up Neural Architecture Search with Big Single-Stage Models. In Euro-
pean Conference on Computer Vision.

Yang, and Yunxin Liu. 2021. nn-Meter: Towards Accurate Latency Prediction
of Deep-Learning Model Inference on Diverse Edge Devices. In MobiSys 2021.
https://www.microsoft.com/en-us/research/publication/nn-meter-towards-
accurate-latency-prediction- of-deep-learning-model-inference-on-diverse-
edge-devices/

Li Lyna Zhang, Yuqing Yang, Yuhang Jiang, Wenwu Zhu, and Yunxin Liu. 2020.
Fast Hardware-Aware Neural Architecture Search. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR Workshops 2020, Seattle, WA,
USA, June 14-19, 2020. Computer Vision Foundation / IEEE, 2959-2967. https:
//doi.org/10.1109/CVPRW50498.2020.00354

Minjia Zhang, Zehua Hu, and Mingqin Li. 2021. DUET: A Compiler-Runtime
Subgraph Scheduling Approach for Tensor Programs on a Coupled CPU-GPU
Architecture. In 2021 IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS). 151-161. https://doi.org/10.1109/IPDPS49936.2021.00024
Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. 2018. Learn-
ing Transferable Architectures for Scalable Image Recognition. In CVPR. 8697—
8710. http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_
Transferable_Architectures_ CVPR_2018_paper.html


https://doi.org/10.1109/CVPR.2017.634
https://doi.org/10.1109/CVPR.2017.634
https://ojs.aaai.org/index.php/AAAI/article/view/11663
https://www.microsoft.com/en-us/research/publication/nn-meter-towards-accurate-latency-prediction-of-deep-learning-model-inference-on-diverse-edge-devices/
https://www.microsoft.com/en-us/research/publication/nn-meter-towards-accurate-latency-prediction-of-deep-learning-model-inference-on-diverse-edge-devices/
https://www.microsoft.com/en-us/research/publication/nn-meter-towards-accurate-latency-prediction-of-deep-learning-model-inference-on-diverse-edge-devices/
https://doi.org/10.1109/CVPRW50498.2020.00354
https://doi.org/10.1109/CVPRW50498.2020.00354
https://doi.org/10.1109/IPDPS49936.2021.00024
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Mismatch between Heterogeneous Architecture and Model Structure
	2.2 Lack of Model Adaption Suitable for Multi-Processor Execution
	2.3 Call for General and Automatic Model Branching

	3 NN-Stretch system Overview
	4 Model Branching
	4.1 Large Design Space for Model Branching
	4.2 Narrowing Down Design Space from Inference Latency Perspectives
	4.3 Narrowing Down Design Space fromModel Accuracy Perspectives

	5 Sub-graph-based Spatial Scheduler
	6 Discussion
	7 Evaluation
	7.1 NN-Stretch Implementation
	7.2 Experiment Setup
	7.3 Overall Results
	7.4 Ablation Study

	8 Conclusion
	9 Acknowledgement
	A appendix
	References

